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Abstract. The long time behavior of solutions of (Dirichlet) initial boundary value prob-
lems for the focusing nonlinear Schrödinger equation in the case of (asymptotically) periodic
boundary conditions of special (one-frequency) structure is considered both theoretically
and numerically. The results of numerical simulations are shown to confirm the theoretical
description in the parameter ranges where the assumption about the one-frequency character
of the Neumann boundary values is (theoretically) admissible, whereas in the other ranges
they suggest a more complicated description of the behavior of these values.

1. Introduction

The evaluation of the long time behavior of solutions of evolution nonlinear systems, con-
tinuous as well as discrete, is the most challenging problem in the theory of such system. The
last 15 years have clearly shown that for integrable systems (in the sense that there exists
an associated Lax pair), the appropriate tool is the inverse scattering transform method in
the form of Riemann–Hilbert problems (RHP), the use of which in the study of long time
behavior is performed in the framework of the nonlinear steepest descent method [12].

This approach allowed obtaining rigorous results concerning the long time behavior of
solutions of Cauchy problems, i.e., initial value problems for various equations in dimension
1+1 (1D space-type variable + time variable), where the initial data specified on the whole
line of the space variable are rapidly decaying at infinity [10,13]. Recently, this method has
been generalized to the study of asymptotics of Cauchy problems with non-vanishing initial
data, with constant or periodic background [11].

The primary step of the RHP method for studying the long time behavior of solutions of
well-posed initial value problems consists in representing the solutions in terms of the solution
of an associated Riemann–Hilbert problem, all the data for which — the jump matrix and,
possibly, residue conditions — are uniquely determined by the given initial data, in terms of
the associated spectral functions. Then the study of the long time behavior of the solution
of a nonlinear equation in question reduces to the study of the long time asymptotics of
this solution of this Riemann–Hilbert problem. Usually, the jump matrix of the problem,
as it appears naturally in its original setting, oscillates rapidly as t → ∞ and thus a series
of transformations is needed in order to reduce the problem to a “model problem” with
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decaying (to zero, or to constant matrices, possibly with different values on different parts of
the contour) jump matrices, so that the resulting (model) problem can be solved explicitly.

2. Initial-boundary value problems

A natural problem arises: generalize this powerful method to the case of initial bound-
ary value (IBV) problems, where, along with initial data, certain boundary conditions are
specified for a well-posed problem. The simplest setting seems to be the following:

Problem 1. For a 1 + 1 equation, find a solution in the quarter plane x > 0, t > 0 having
prescribed
• initial data, for t = 0, x ∈ [0,+∞), decaying as x→ +∞,
• and certain boundary data, for x = 0, t ∈ [0,+∞).

To fix ideas, consider the focusing nonlinear Schrödinger equation (NLS)

iqt + qxx + 2|q|2q = 0, x > 0, t > 0. (2.1)

It is known that the Dirichlet boundary value problem is well-posed, if one specifies decaying
(as x→ +∞) initial values

q(x, 0) = q0(x), x ∈ [0,+∞) (2.2)

and boundary values

q(0, t) = g0(t), t ∈ [0, T ] (2.3)

for any T > 0; for the precise statements concerning the well-posedness (the functional classes
for boundary functions, the definitions for a solution of various (weak) types, etc.), see, e.g.,
[17] and the references therein. Particularly, for any fixed T , sufficiently smooth data, g0(t),
t ∈ [0, T ] and q0(x), x > 0 determine uniquely the classical solution q(x, t) of (2.1) in the
half-strip x > 0, t ∈ [0, T ].

A natural question is:

Question 1. What happens with this solution as t→ +∞?

Evidently, the answer to this question depends crucially on the behavior of the boundary
data g0(t) as t→ +∞.

2.1. The RHP approach for IBV problems. A generalization of the RHP approach to
the case of initial boundary value (IBV) problems was proposed by Fokas [14, 15] and was
further developed for studying various nonlinear equations [3, 9, 16]. Similarly to the case of
initial value problems, the key feature of the method is the representation of the solution
to a nonlinear equation in terms of an associated RHP, the data for which are constructed
in terms of values of the sought solution on the boundary of the domain in the (x, t)-plane,
where the problem is posed, i.e., at t = 0 and at x = 0. However, there is a crucial difference:
in the case of IBV problems, the spectral functions needed for the construction of the RHP
are determined by an “excessive” number of boundary values. Particularly, in the case of the
NLS equation, a part of the spectral functions needed for the construction of the RHP are
determined in terms of g0(t) and g1(t) = qx(0, t). The reason for this is that the t-operator
in the associated Lax pair involves q and qx in the construction of its coefficient matrix.
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Thus, in order to construct the RHP (which will serve as basis for the subsequent long
time analysis), we have to specify, all together, q0(x), g0(t), and g1(t). Clearly, one cannot
prescribe these three functions (to be the boundary values of a certain solution of the NLS
equation) arbitrarily: the well-posedness results show that if one specifies, say, q0(x) and
g0(t), then g1(t) is uniquely determined by these data.

2.2. The Dirichlet-to-Neumann map. It turns out that the compatibility of the set of
functions {q0(x), g0(t), g1(t)} can be characterized, in a rather simple form, in terms of the
associated spectral data [16]. Combining this characterization with the Gelfand-Levitan-
Marchenko integral representation of solutions of the t-equation in the Lax pair allowed
translating the compatibility into the form of a (nonlinear) equation characterizing the “non-
linear Dirichlet-to-Neumann map”, i.e., the mapping [2]

{q0, g0}� g1.

in the physical variables. Although this map turns out to be rather complicated, it has been
successfully used, in terms of non-reflecting boundary conditions, in the numerical simulations
of solutions of the initial value problem for the NLS equation with “almost” finite initial
conditions [19].

Theoretically, this map can be used for the study of the long time behavior of g1(t), given
q0(x) and g0(t) for all t ∈ [0,+∞), but at present, this remains an open problem.

On the other hand, in the implementation of the RHP method for the study of long time
asymptotics, this information is crucially needed. Indeed, suppose that g0(t) is given for all
t ∈ [0,+∞). Then it is the behavior of g1(t) as t→ +∞ that determines the type of spectral
problem for the t-equation (2.4b) in the Lax pair for the NLS equation

ψx + ikσ3ψ = Qψ, (2.4a)

ψt + 2ik2σ3ψ = Q̃ψ, (2.4b)

where σ3 = diag(1,−1) and

Q =
(

0 q
−q̄ 0

)
, Q̃ =

(
i|q|2 2kq + iqx

−2kq̄ + iq̄x −i|q|2
)
. (2.5)

Recall that in the RHP method for the NLS equation on the half-line x > 0, the “master
Riemann–Hilbert problem” is constructed from two sets of spectral functions:
• the first one appears as the spectral functions in the scattering problem for equation (2.4a),

on the zero background, with the potential q = q0(x),
• whereas the second one consists of the spectral functions in the scattering problem for

equation (2.4b), where q = g0(t) and qx = g1(t) [16].
Under the assumption that {q0(x), g0(t), g1(t)} are compatible and that g0(t) → 0 and g1(t) →
0 sufficiently fast as t→ +∞, the solution q(x, t) of the associated IBV problem for the NLS
equation behaves, as t → +∞, roughly speaking, similarly to the case of the initial value
problem: there can be solitons propagating along certain directions in the quadrant x > 0,
t > 0, while the “rest” of the solution exhibits decaying (of order O(t−1/2)) modulated
oscillations [16]. The soliton parameters, as well as the parameters of the oscillations, are
determined, in the case of the IBV problem, in terms of spectral functions associated with
both initial and boundary conditions.
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Then a natural question emerges.

Question 2. What one can see in the asymptotics if the boundary values are non-decaying
as t→ +∞ (assuming that the initial values q0(x) are still fast decaying as x→ +∞)?

3. Periodic boundary conditions

The simplest non-decaying boundary conditions seem to be asymptotically periodic, with
the simple exponential dependence on t:

q(0, t) = g0(t) = ae2iωt + g
(1)
0 (t) (3.1)

with some numbers a > 0 and ω ∈ R, and with g(1)
0 (t) → 0 fast enough as t→ +∞.

3.1. ω < −3a2. In [6], the problem is addressed of constructing an associated RHP under
assumption that

qx(0, t) = g1(t) = 2iabe2iωt + g
(1)
1 (t), (3.2a)

b :=

√
a2 − ω

2
, (3.2b)

where g(1)
1 (t) → 0 as t → +∞, sufficiently fast. The intuition behind this assumption is the

existence (for b ∈ R) of the explicit solution of (2.1)

q(x, t) = ae2ibx+2iωt, (3.3)

for which q(0, t) and qx(0, t) are indeed as in (3.1) and (3.2) with g(1)
0 ≡ 0 and g(1)

1 ≡ 0 (notice,
however, that since b is real, q(x, t) in (3.3) does not decay as x→ +∞!).

Using this RHP, in [4, 5] the authors give the description of the long time behavior of
q(x, t), which appeared to be qualitatively different in three different sectors of the quarter
plane x > 0, t > 0. The following theorem has been proved (here we formulate it in a slightly
different way):

Theorem 1 (ω < −3a2, [4,5]). Consider the Dirichlet initial boundary value problem for the
focusing NLS equation in the quarter plane x > 0, t > 0:

iqt + qxx + 2|q|2q = 0, (3.4a)

q(x, 0) = q0(x), x ∈ [0,∞), (3.4b)

q(0, t) = g0(t), t ∈ [0,∞), (3.4c)

where q0(x) → 0 as x→ +∞ and g0(t) − ae2iωt → 0 as t → +∞ sufficiently fast, with a > 0
and ω ∈ R such that ω < −3a2, and q0(0) = g0(0). Assume that
(A) the solution q(x, t) of (3.4) satisfies the following limiting condition:

qx(0, t) − 2iabe2iωt → 0 as t→ +∞, (3.5)

where b =
√

(a2 − ω)/2 > 0,
(B) there are no solitons.
Then the quarter plane x > 0, t > 0 is divided into three sectors:

(i) x > 4bt,
(ii) 4(b− a

√
2)t < x < 4bt,
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(iii) 0 < x < 4(b− a
√

2)t,
where the asymptotics of q(x, t) as t→ +∞ has the following forms:

(i) For x > 4bt, the asymptotics has a quasi-linear dispersive character of Zakharov–
Manakov type (decaying modulated oscillations):

q(x, t) ∼ t−1/2α
(
− x

4t

)
(3.6)

× exp
{

ix2

4t
+ 2iα2

(
− x

4t

)
log t+ iφ

(
− x

4t

)}
,

where α(ξ) and φ(ξ) are determined in terms of the spectral functions associated with
the initial values q0(x) and the boundary values {q(0, t), qx(0, t)}.

(ii) For 4(b − a
√

2)t < x < 4bt, the asymptotics has the form of a modulated elliptic wave
expressed in terms of associated θ-functions.

(iii) For 0 < x < 4(b− a
√

2)t, the asymptotics has the form of a plane wave:

q(x, t) ∼ a exp
{
2i(bx + ωt) − φ

(
− x

4t

)}
(3.7)

with φ(0) = 0, where φ(ξ) is determined in terms of the spectral functions.

Remark 1. It is straightforward to incorporate solitons to this scheme.

3.2. Admissible data. The intuition behind the restriction ω < −3a2 on the range of values
of ω for which one expects the type of asymptotics described above, is the requirement that
the plane wave region (iii) is not empty so that the t-axis lies in this region (on its boundary)
and thus the assumed behavior of qx(0, t) is in agreement with the asymptotic result (3.7)
(the limiting case b = a

√
2 corresponds to ω = −3a2).

On the other hand, it is not a priori clear whether a particular value of the (complex)
amplitude for qx(0, t) in (3.5) is only admissible or a different value c ∈ C may appear in the
asymptotics for qx(0, t):

qx(0, t) − ce2iωt → 0 as t→ ∞. (3.8)
In (3.5), the value of c:

c = 2ia

√
a2 − ω

2
is chosen to be uniquely determined by a and ω.

Indeed, spectral functions can be associated to g0(t) and g1(t) satisfying respectively (3.1)
and (3.8) with any c ∈ C independent of a and ω, in the framework of the scattering problem
(on a periodic background) for equation (2.4b). The main problem, however, lies in the
compatibility of the set {q0, g0, g1}.

It is natural to assume that the requirement that {q0, g0, g1} be compatible may affect the
arbitrariness of c in (3.8). Indeed, it can be shown [7] that the compatibility can be expressed,
in the same way as in the case of decaying boundary conditions [16], in terms of a “global
relation” amongst the associated spectral functions. Then the analysis of the global relation
yields the following result:

Theorem 2 (admissible data, [7]). Let q(x, t) be the solution of the IBV problem (3.4), where
g0(t) − ae2iωt → 0 as t→ ∞ sufficiently fast, with a > 0 and ω ∈ R. Assume that



6 A. BOUTET DE MONVEL, V. P. KOTLYAROV, D. SHEPELSKY, AND C. ZHENG

(A) qx(0, t) − ce2iωt → 0 as t→ ∞, where c ∈ C.
Then the admissible values of (a, ω, c) are as follows:

• ω ∈ (−∞,−3a2] ∪ [a
2

2 ,∞).
• The admissible values of c are functions of ω and a:

– For ω ≤ −3a2, c = 2ia
√

a2−ω
2 .

– For ω ≥ a2

2 , c = ±a√2ω − a2.

The proof of Theorem 2 is based on the analysis of the way how the global relation im-
poses additional analytical restrictions for the spectral functions associated with {g0, g1} thus
restricting the admissible behavior of g1(t) for large t.

3.3. Explicit solutions. An interesting observation is that the whole range of admissible
cases for ω ≥ a2

2 is illustrated by a family of explicit solutions related to “stationary solitons”,
which are solutions of initial value problems with decaying initial conditions as |x| → ∞.

Indeed, apart from (3.3), the NLS equation has another family of explicit solutions whose
values at x = 0 are periodic exponentials of type (3.1). This family (parameterized by ω > 0
and ϕ0 ∈ R) consists of stationary solitons:

q(x, t) ≡ q(x, t;ω,ϕ0) =
√

2ω
cosh(

√
2ωx+ ϕ0)

e2iωt. (3.9)

For these solutions we have

q(0, t) =
√

2ω
coshϕ0

e2iωt ≡ ae2iωt, (3.10)

i.e., q(0, t) has the form of (3.1). But now a and ω are related by

a =
√

2ω
coshϕ0

and thus a2/2 ≤ ω. Notice that, in contrast with (3.3), q(x, t) in (3.9) decays to 0 as x→ +∞.
The values of qx(x, t) for x = 0 have the form

qx(0, t) =
−2ω sinhϕ0

cosh2 ϕ0

e2iωt, (3.11)

so that in this case we have
qx(0, t) = 2ab̂e2iωt, (3.12)

where

b̂ := −
√
ω

2
tanhϕ0.

In terms of ω and a,
4b̂2 = 2ω − a2

and thus
qx(0, t) = ±a

√
2ω − a2e2iωt,

the sign ± being opposite to the sign of ϕ0.
Notice that in this case we have the possibility to assume two different values of b̂ (with

different sign), if b̂ �= 0. A simple observation is that for ϕ0 = 0 (i.e., for b̂ = 0) we have
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qx(0, t) ≡ 0 for a one-parameter family of solutions q(x, t) of the NLS (parameterized by ω),
with q(0, t) =

√
2ωe2iωt. Therefore, for the IBV problem with Neumann boundary conditions

at x = 0 (which is also well-posed)

iqt + qxx + 2|q|2q = 0, (3.13a)

q(x, 0) = q0(x), x ∈ [0,∞), (3.13b)

qx(0, t) = 0, t ∈ [0,∞) (3.13c)

we see that the possible behavior of q(0, t) as t → +∞ is at least a one-parameter family
q(0, t) ∼ √

2ωe2iωt with ω > 0.

3.4. ω ≥ a2/2. Coming back to the IBV problem with the Dirichlet boundary conditions,
we have the following result.

Theorem 3 (ω ≥ a2/2, [7]). Consider the Dirichlet initial boundary value problem (3.4) for
the focusing NLS equation in the quarter plane x > 0, t > 0, where q0(x) → 0 as x→ ∞ and
g0(t) − ae2iωt → 0 as t → +∞ sufficiently fast, with a > 0 and ω ∈ R such that ω ≥ a2/2,
and q0(0) = g0(0). Assume that
(A) the solution q(x, t) of (3.4) satisfies the limiting condition (3.8), with c = a

√
2ω − a2 or

with c = −a√2ω − a2,
(B) there are no solitons propagating in the quarter plane x > 0, t > 0.
Then for any ε > 0, the asymptotics of q(x, t) as t→ +∞ in the region x/t > ε has a quasi-
linear dispersive character of Zakharov–Manakov type (“decaying modulated oscillations”)
(3.6), where α(ξ) and ϕ(ξ) are determined in terms of spectral functions associated with the
initial values q0(x) and the boundary values {q(0, t), qx(0, t)}.
Remark 2. In spectral terms, solitons propagating in the quarter plane (i.e., showing them-
selves along certain lines x/t = ϕi in the (x, t) quarter plane) correspond to zeros, with
nonzero real parts, of the spectral functions associated with the initial and boundary values.
Similarly to the case of Theorem 1, one can incorporate such solitons into the asymptotics
applying the dressing method [18].

Although the results of Theorems 1–3 correspond to a conditional setting (we are given the
Dirichlet values of q(x, t), q0(x) and g0(t), and we make assumption (3.8) about the class of
qx(0, t)), the results of the numerical simulations, where the Dirichlet initial boundary value
problem (3.4) is solved for q(x, t), show very good agreement between the values of qx(0, t)
calculated from q(x, t) and the values of admissible asymptotics in Theorem 2, see Section 4.

3.5. −3a2 < ω < a2/2. As for the parameter range −3a2 < ω < a2

2 , we believe that theo-
retical reasons for the form of the asymptotics of q(0, t) and qx(0, t) compatible with the fact
that q(0, t) and qx(0, t) are indeed boundary values of a solution q(x, t) of the NLS equation,
lie in the following circle of ideas.

3.5.1. Related initial value problems on the line. Consider the initial value problem (on the
whole line) for the NLS equation with initial data q0(x) having (generally) different behaviors
when x→ +∞ and when x→ −∞.

More precisely, assume that q0(x) → 0 when x → +∞ while q0(x) approaches a non-zero
background, of a certain structure, when x → −∞. Assume that we are able to analyze the



8 A. BOUTET DE MONVEL, V. P. KOTLYAROV, D. SHEPELSKY, AND C. ZHENG

long time asymptotics of the solution q(x, t) of this problem. Then the boundary values of
this solution, i.e., q(0, t) and qx(0, t), suggest admissible asymptotics for the boundary values
g0(t) and g1(t) of our initial boundary value problem on the half-line, i.e., in the domain
x > 0, t > 0.

3.5.2. Specific related initial value problem [8]. Particularly, for q0(x) such that:
• q0(x) → 0 as x→ +∞,
• q0(x) − ae2ibx → 0 as x→ −∞,
with a > 0 and b ∈ R, we are able [8] to study the long time asymptotics of the solution
of the initial value problem (on the whole line x ∈ (−∞,∞)) for the NLS equation (2.1).
The results are that there exist three regions (sectors) in the half-plane x ∈ (−∞,∞), t > 0,
where the solution behaves similarly to the way presented in Theorem 1.

Namely, for x < 4(b− a
√

2)t we have

q(x, t) ∼ a exp
{

2i(bx+ ωt) − φ
(
− x

4t

)}
,

where ω, a, and b are related as in Theorem 1:

ω = a2 − 2b2.

Hence, if b > 0 and b > a
√

2 — thus ω < −3a2 — then the plane wave sector overlaps the
quarter plane x > 0, t > 0, and thus the main term of the asymptotics of the solution of the
initial value problem as t→ +∞ along the line x = 0 has the form (3.7).

Otherwise, the asymptotics along the line x = 0 is described in terms of θ-functions
corresponding to 1-gap algebro-geometric solutions.

3.5.3. Conjecture. This allows conjecturing the appearance of 1-gap (or, more generally, n-
gap) formulas for the asymptotics of qx(0, t) and, consequently, for q(x, t) in sectors of the
quarter plane x > 0, t > 0, as solutions of the initial boundary value problem.

4. Numerics

In this section, we present four groups of results of numerical simulations illustrating the
theoretical considerations and conjectures above. In all calculations —except for Examples 4,
8, 9— the initial boundary value problem (3.4) is solved numerically for the following initial
and boundary conditions (if otherwise is not stated explicitly):

q0(x) = pe−x2
,

g0(t) = ae2iωt + [p − a− i(2p − 2p3 + 2aω)t]e−10t2 ,

in order to have good compatibility of initial and boundary values at (0, 0). The compu-
tational interval is set to [0, 200], terminated by zero Dirichlet boundary condition. The
Schrödinger equation is evolved with the relaxation scheme proposed by Besse [1]. The spa-
tial step size and the time step are set to 0.005 and 0.001, respectively.

We consider four classes of numerical tests:
(i) The 1st group illustrates the parameter range ω ≤ −3a2.
(ii) The 2nd one is for the range ω ≥ a2

2 .
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(iii) The 3rd group gives examples in the intermediate range −3a2 < ω < a2

2 , where the
asymptotics of qx(0, t) cannot have the form ce2iωt.

(iv) The 4th group corresponds to periodic boundary conditions that are different from the
exponential form above.
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Figure 1. Example 1: a = 0.5, p = 0, ω = −1.75 < −3a2

4.1. Range ω ≤ −3a2. This parameter range is illustrated by two numeric examples:
(i) Example 1, Figure 1 corresponds to a = 0.5, p = 0, and ω = −1.75.
(ii) Example 2, Figure 2, corresponds to a = 0.5, p = 1, and ω = −1.
All numeric examples in this range show:

• Three sectors in the (x, t) plane with qualitatively different behavior (in accordance with
Theorem 1), see Figures 1(a) and 2(a).

• Very good agreement of calculated qx(0, t) with (3.5), see Figures 1(d) and 2(d).
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Figure 2. Example 2: a = 0.5, p = 1, ω = −1 < −3a2

• Rapid decay as x is growing, with fixed t, see Figures 1(c) and 2 (c)).
• Sinusoidal character in the plane wave sector: for fixed x, see Figures 1(b) and 2(b).

Numerical experiments in the range ω ≤ −3a2 show that, although the asymptotics of the
Neumann values (3.5) is justified theoretically only assuming that it has a one-frequency char-
acter (see Theorem 2), it indeed takes place in a wide set of initial and boundary conditions
for the Dirichlet problem (the question how general is this set remains open).

4.2. Range ω ≥ a2

2
. This range is also illustrated by two numeric examples:

(iii) Example 3, Figure 3 corresponds to a = 0.5, p = 1, and ω = 1.
(iv) Example 4, Figure 4 corresponds to a stationary soliton (3.9) with ω = 0.5 and ϕ0 = −1,

i.e., with a = (cosh 1)−1 ≈ 0.648.
Figures 3 shows:
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(3.8) with c = −a√2ω − a2

Figure 3. Example 3: a = 0.5, p = 1, ω = 1 > a2/2

• Rapid decay of q(x, t) in the whole quadrant x > 0, t > 0 (away from the t-axis), see
Figures 3(a), 3(b), and 3(c), which is in accordance with Theorem 3 (the oscillating pattern
in Figure 3(c) is due to smaller terms of the asymptotics).

• Very good agreement of qx(0, t) with (3.8), for c = −a√2ω − a2, see Figure 3(d).

On the other hand, Figure 4 shows that the case c = a
√

2ω − a2, though admissible
theoretically (explicit examples for this case are given by (3.9) with ϕ0 < 0), is unstable.
Indeed, Figure 4 illustrates the values of qx(0, t), where q(x, t) is the solution of the Dirichlet
problem (3.4) with q0(x) and g0(t) being exactly as coming from (3.9) with ω = 0.5 and
ϕ0 = −1 (which corresponds to a = (cosh 1)−1 ≈ 0.648). It is seen that the calculated values
of qx(0, t), being in good agreement for small t with its true values a

√
2ω − a2e2iωt, switch,

for larger t, to qx(0, t) ≈ −a√2ω − a2e2iωt.
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Figure 4. Example 4: Instability of qx(0, t) = a
√

2ω − a2e2iωt

4.3. Range −3a2 < ω < a2

2
. In this range, it is proved that the asymptotics of qx(0, t)

cannot have the one-frequency form (3.8).

4.3.1. ω = 0. Of particular interest is the case ω = 0, where the Dirichlet boundary data
reduce (asymptotically) to a constant:

q(0, t) − a→ 0.

Figures 5–6 illustrate this case for two different values of a:
(v) Example 5, Figure 5 corresponds to a = 0.5, ω = 0, p = 0.
(vi) Example 6, Figure 6 corresponds to a = 1, ω = 0, p = 0.
It is seen that:
• The Neumann values qx(0, t) are (asymptotically) periodic, but not sinusoidal.
• There are two sectors in the (x, t) plane:
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Figure 5. Example 5: a = 0.5, p = 0, ω = 0

(i) a sector of rapid decay,
(ii) a sector of oscillations similar to those in the elliptic wave zone in the case ω < −3a2.

• For bigger a, see Example 6, Figure 6, the periodic character of qx(0, t) as well as of q(x, t)
for a fixed x becomes more distinct.

4.3.2. ω �= 0. Figures 7 illustrate this case for one value of a:
(vii) Example 7, Figure 7 corresponds to a = 0.5, p = 0, and ω = −0.5.
Figure 7 shows that the picture for ω �= 0 in the considered range (particularly, for ω = −0.5
and a = 0.5) is quite similar to that for ω = 0:
• The Neumann values qx(0, t) are (asymptotically) periodic, but not sinusoidal.
• There are two sectors in the (x, t) plane:

(i) a sector of rapid decay,
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Figure 6. Example 6: a = 1, p = 0, and ω = 0

(ii) a sector of oscillations.

4.4. Boundary conditions of different type. For Figures 8–9, the boundary data were
taken to be (asymptotically) different from ae2iωt but having a similar (one-frequency) char-
acter:

g0(t) = Im
(
ae2iωt − ae−10t2 − 2iaωte−10t2

)
.

(viii) Example 8 has the same parameters for the boundary values as in Example 1, i.e.,
a = 0.5 and ω = −1.75, see Figure 8.

(ix) Example 9 has the same parameters for the boundary values as in Example 3, i.e.,
a = 0.5 and ω = 1, see Figure 9.

For both examples the initial conditions are the same: q0(x) ≡ 0.



IBV PROBLEMS FOR INTEGRABLE SYSTEMS: LONG TIME ASYMPTOTICS 15

0 5 10 15 20 25 30 35 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t

R
ea

l p
ar

t o
f q

(5
,t)

(a) values of Re q(x, t) (b) values of Re q(5, t)

0 50 100 150 200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

R
ea

l p
ar

t o
f q

(x
,2

0)

0 5 10 15 20 25 30 35 40
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t

Real part of Comp. Neumann data
Imaginary part of Comp. Neumann data

(c) values of Re q(x, 20) (d) values of Re qx(0, t) and Im qx(0, t)

Figure 7. Example 7: a = 0.5, p = 0, ω = −0.5

The pictures have similar features (which is in sharp contrast with the case of the boundary
data of the form ae2iωt, cf. Figures 1(a), 1(d), 3(a), and 3(d), which in turn are similar to
those in the case of q(0, t) 
 ae2iωt with ω < −3a2: the three sectors are clearly present.

Concluding remarks

For the two ranges ω ≤ −3a2 and ω ≥ a2

2 our numerical experiments match perfectly with
our theoretical results and with our assumptions on the Dirichlet-to-Neumann map.

For the intermediate range −3a2 < ω < a2

2 our numerical experiments suggest asymptotics
results like in the range ω ≤ −3a2. But the Dirichlet-to-Neumann map is clearly of a different
type than in the two previous cases and the numerics do not suggest any simple formula for
the Neumann data. We can only predict the appearance of n-gap formulas for the asymptotics
of qx(0, t).
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Figure 8. Example 8: q(0, t) 
 a sin 2ωt with a = 0.5 and ω = −1.75
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