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1. Introduction

In this thesis the author examines convergence problems of non-symmetric forms defined
on different Hilbert spaces. The aim is to provide necessary and sufficient conditions
for convergence of the associated resolvents and semigroups. The convergence of pro-
cesses shall also be considered. We deal with various concepts of convergence “along” a
“sequence of Hilbert spaces”, including the concept of generalized convergence of non-
symmetric forms or, more precisely, so-called generalized Dirichlet forms. Our notion of
convergence is a generalization of the famous concept of Mosco convergence, a variational
convergence of symmetric quadratic forms introduced by U. Mosco (cf. [Mos94]). Not
only that the considered forms are fitting the general framework of generalized Dirich-
let forms introduced by W. Stannat (cf. [Sta98], [Sta99]), they are also assumed to be
defined on different Hilbert spaces. This idea is due to K. Kuwae and T. Shioya who de-
veloped this framework in [KS03] as a consequence of research on convergence of metric
measure spaces. To understand this conceptual difference to former research on conver-
gence of forms (except a few papers published recently), we would like to explain what
we mean with “convergence of Hilbert spaces” in applications. An abstract functional
analytic introduction to this new framework and consequences can be found in Chapter
2.1, where many proofs are taken either from [KS03] or from [Kol05a] and can be found
in Appendix A in order to make this thesis as self-contained as possible.

Let E be an infinite dimensional locally convex (real) topological vector space. Let µn,
n ∈ N, µ be fully supported Borel probability measures such that µn → µ weakly. Define
Hn := L2(E;µn), n ∈ N, H := L2(E;µ) and let C := FC∞

b (E) be the space of so-called
cylindrical test functions. Assume that E is Souslinean, so that C is dense in H. Now
{Hn} converges to H in the following sense:
There exists a sequence {Φn : C ⊂ H → Hn} of injective linear operators with dense
linear domain C such that

lim
n
‖Φn(u)‖Hn = ‖u‖H , ∀u ∈ C.

Clearly, if we take each Φn as the identity operator on C, Hn converges to H in this
sense by weak convergence of measures.
If we let E := Rd and µn, n ∈ N, µ be fully supported Borel measures such that
µn → µ vaguely, we clearly obtain by setting C := C∞

0 (Rd), Hn := L2(Rd;µn), n ∈ N,
H := L2(Rd;µ) that Hn converges to H in this sense. Let us denote the disjoint union
of Hilbert spaces by H :=

.⋃
nHn∪̇H.

Now one can define the concept of strong and weak convergence of vectors {un} to u with
un ∈ Hn, n ∈ N, u ∈ H. This is done via approximation in C, since in a way we deal
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1. Introduction

with “isometry classes of Hilbert spaces” which itselves are not normed but somehow
equipped with a Gromov-Hausdorff-type topology.

Definition 1.1 (Strong and weak convergence). A sequence of vectors {un}, un ∈
Hn, n ∈ N is said to strongly converge to u ∈ H if there exists a approximating sequence
{ϕm} ⊂ C with ϕm → u in H and

lim
m

lim
n
‖Φn(ϕm)− un‖Hn = 0.

A sequence of vectors {un}, un ∈ Hn, n ∈ N is said to weakly converge to u ∈ H if

lim
n

(un, vn)Hn = (u, v)H

for every vn → v strongly convergent.

Carrying on in this framework we also define weak and strong convergence of bounded
linear operators from Hn to Hn, n ∈ N and the analog to Mosco convergence (resp. Γ-
convergence) in this framework. This has mainly be done by K. Kuwae and T. Shioya in
[KS03]. The analysis of Dirichlet forms by convergence problems goes back to [DGS73],
[DGF75] where the so-called Γ-convergence introduced by E. De Georgi was used to
obtain asymptotic properties of Dirichlet forms (see [DM93] for a complete disquisition
on Γ-convergence on arbitrary topological spaces). In [Mos94] U. Mosco examined the
Mosco convergence formerly known as strong Γ-convergence. His main result was to
identify Mosco convergence as a necessary and sufficient condition on a sequence of
symmetric closed forms {E n} such that the associated C0-contraction resolvents {Gn

α}
α > 0 converge in the strong operator topology. (For an introduction to symmetric
Dirichlet forms we refer to [FOT94] or [MR92]).

Definition 1.2 (Mosco convergence - standard version). We say that a sequence
of symmetric closed forms {E n} on some common Hilbert space H0 Mosco converges to
a symmetric closed form E on the same Hilbert space H0 if the following two conditions
are fulfilled:

(M1) For every weakly convergent sequence of vectors un → u we have

E (u) ≤ lim
n

E n(un).

(M2) For every v ∈ D(E ) there exists a strongly convergent sequence vn → v such that

E (v) = lim
n

E n(vn),

where D(E ) denotes the domain of E . We extend every E n, n ∈ N, E to H0 by
setting E (u) := +∞ if u ∈ H0 \D(E ) (similarly for each E n).
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The convergence of the associated C0-contraction semigroups {T n
t }, t ≥ 0 in the strong

operator topology is either obtained by analysis of the associated spectral measures or
the more general Theorem of T. Kato (cf. [Kat66, Theorem IX.2.16]).

Combining both the concepts of [Mos94] and [KS03] almost analog results for Mosco
convergence can be obtained (see Chapter 2.2 of this thesis). There has been some
research on this new approach, since (as can be seen in the examples above) a change of
reference measures resp. speed measures can be considered here. We refer to the papers
of A.V. Kolesnikov [Kol05a], [Kol06] and [Kol05b], where also other useful completions
of the Kuwae-Shioya framework have been proved. They can be found in Chapter 3,
since Mosco convergence of symmetric parts of non-symmetric forms helps to establish
generalized convergence (see Definition 1.3 below). The proofs are omitted with some
important exceptions.

Convergence problems for Dirichlet forms, resp. associated operators have been ex-
amined in [AHKS80], [AKS86], [CES02], [Can75], [Hin98], [Kas05], [Kol05a], [Kol06],
[Kol05b], [KS03], [KU97], [KU96], [LZ93], [LZ94], [LZ96], [Mat99], [Mer94], [Mos94],
[OTT02], [Pos96], [PZ04], [RZ97], [Str88], [Sun99] and [Uem95].

We would like to point out that S. Mataloni in [Mat99] and P. Mertens in [Mer94] first
considered an abstract convergence of sectorial forms (though non-symmetric cases can
be found also in [RZ96] and other papers) and that M. Hino in [Hin98] first stated
abstract conditions on generalized forms (as in [Sta99]). In all of these three papers
the strong convergence of the associated resolvents was proved. (For an introduction
to sectorial forms we refer to [MR92]; the theory of generalized forms can be found in
[Sta99]).

Our notion of generalized convergence as found below is a generalization of M. Hino’s
conditions for the Kuwae-Shioya framework. The author would like to express his grat-
itude to this advance in research. Although we shall use the case of generalized forms
later, we would like to formulate this notion for sectorial forms here:

Definition 1.3 (Generalized convergence). A sequence of coercive closed forms
{(E n,D(E n))} defined on Hn resp. converges to a coercive closed form (E ,D(E )) on H
in the generalized sense if the sector constants Kn of the E n’s are uniformly bounded
and D(E ) ⊂ H is dense w.r.t. Ẽ 1/2

1 . And, moreover, the following two conditions hold:

(F1) For every weakly convergent sequence un → u with limn Ẽ1(un) < ∞ we get that
u ∈ D(E ).

(F2) For every w ∈ D(E ) and for every weakly convergent sequence un → u with
un ∈ D(E n), u ∈ D(E ) there exists a strongly convergent sequence wn → w such
that

lim
n

E (wn, un) = E (w, u)

We prove in the Kuwae-Shioya framework, that this is equivalent to the strong con-
vergence of the associated resolvents and the weak convergence of the associated co-
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1. Introduction

resolvents. This has not been done before, although the proof relies on the results of
M. Hino. The condition that the sector constants are uniformly bounded can be relaxed
into a weaker version of (F1).

Let us now give a brief overview of the structure of this thesis and the main results.

In Chapter 2.1 we develop the Kuwae-Shioya framework of convergence of spectral struc-
tures along a sequence of Hilbert spaces. Chapter 2.1.1 introduces us to the original
rather abstact setting, whereas in view of our later applications we will use the set-
ting of Chapter 2.1.2 exclusively (this is just the setting as described above, from an
abstact point of view). Here we obtain as a main result (cf. Theorem 2.10) the (com-
plete and separable) metric structure of our space H and a sequence of isometric iso-
morphisms {Ψn : H → Hn} with the property that un → u strongly if and only if
limn‖Ψn(u)− un‖Hn = 0. The proof is essentially due to A.V. Kolesnikov (cf. [Kol05a,
Proposition 7.2]), but has been completed, simplified and entirely rewritten. All other
Lemmas and Propositions from this Chapter are taken from K. Kuwae and T. Shioya
in [KS03, Chapter 2]. All proofs (partially completed and rewritten) can be found in
Appendix A (as well as some of the proofs of A.V. Kolesnikov in [Kol05a] and [Kol06]
and one proof of H. Attouch in [Att84]). We propose to the interested reader to carry
through Chapters 2.1–2.2 and Appendix A parallelly.

In Chapter 2.1.4 we prove an entirely new result, namely the generalization of T. Kato’s
Theorem (as mentioned above) for the Kuwae-Shioya case. It gives the equivalence of
strong convergence of resolvents and semigroups.

Chapter 2.2 is taken from [KS03] and [Kol05a].

In Chapter 2.3 we arrive at the main result for generalized (non-symmetric) forms. The
result (Theorem 2.41) is already described above. We would like to point out that our
version differs from the above, and, being more general, gives necessary and sufficient
conditons on the convergence of resolvents. After that we examine the relation between
Mosco convergence and generalized convergence. This is also entirely new.

Chapter 2.4 examines the connection of generalized convergence and strong graph con-
vergence of the infinitesimal generators of our forms. Equivalence is proved as well.
Additionally, we give a new characterization of strong graph convergence for closed oper-
ators associated with generalized forms. All this is done in the Kuwae-Shioya framework,
and particularly, since dealing with the non-symmetric case, is entirely new.

Chapter 2.5 deals with the contraction and Dirichlet properties of our forms, and shows
that generalized convergence is sufficiently strong to obtain the Dirichlet property of the
limiting form.

Chapter 3 reviews the results of [Kol05a] and [Kol06] by reasons mentioned already.

Chapter 4 containes the main application results, which are also totally new. We con-
sider finite and infinite dimensional elliptic (and sectorial) ai,j-forms and give sufficient
conditions on the generalized convergence of these forms.
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Chapter 5 gives an short application to stochastics, namely, that the associated processes
converge weakly (in the sense of the generating path measures) provided the associated
forms converge in the generalized sense and the collection of path measures is tight.
This is also new in this detail in the Kuwae-Shioya framework, and we would like to
remark that here the concept of changing reference measures unfolds its strength in a
very distinct manner.

Appendix A is a collection of proofs (which may have been completed and rewritten)
from some reference papers.
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2. General functional analytic theory

2.1. Convergence of spectral structures

We shall first start with some notation. Let N, Z, Q, R, C resp. denote the natural,
integer, rational, real, complex numbers resp. We write K := R or C if we do not want
to specify whether we use the real or complex numbers. Let R := R ∪ {−∞} ∪ {+∞}
and C := C ∪ {∞}, i.e., the corresponding compactified numbers. For two sets A,B
we write A∪̇B := A ∪ B, if A and B are disjoint, i.e., A ∩ B = ∅. This notation also
extends to arbitrary unions of pairwise disjoint sets. For a Banach space E we denote by
E ′ its (topological) dual. For Banach spaces E,F denote the set of all bounded linear
operators from E to F by L (E,F ) with operator norm ‖ ‖L (E,F ). For convenience we
set L (E) := L (E,E). We abbreviate α := α Id for any α ∈ K.

We follow a framework developed recently by K. Kuwae and T. Shioya in [KS03]. It
provides a beautiful functional analytic theory introducing convergence along a sequence
of Hilbert spaces, and applications to convergence of spectral structures and forms. The
most important proofs are repeated in Appendix A.

2.1.1. Convergence of Hilbert spaces - the general case

The general framework shall be described as follows remarking that we intend to restrict
it to a countable index set thereafter. Let N be an arbitrary index set and {Hν | ν ∈ N }
a family of separable Hilbert spaces over K. Assume there exists a family

{Φν,µ : Cν → Hµ | ν, µ ∈ N }

of linear maps with dense linear domains Cν ⊂ Hν such that Φν,ν for each ν ∈ N is the
identity operator on Cν . Assume that {Hν | ν ∈ N } (i.e., N ) has a (not necessarily
Hausdorff) topology such that a sequence {Hνn}n∈N converges to some Hν , ν ∈ N if
and only if for any u ∈ Cν

lim
n
‖Φν,νnu‖Hνn

= ‖Φν,νu‖Hν (= ‖u‖Hν ).

Now we can define a topology on the disjoint union H :=
.⋃

ν∈N Hν by:

Definition 2.1. Assume that a sequence {Hνn} converges to an Hν . We say a that a
sequence {un}n∈N with un ∈ Hνn (strongly) converges to a vector u ∈ Hν if for one (and

11



2. General functional analytic theory

hence all) sequence(s) {ũm}m∈N ⊂ Cν tending to u in Hν such that

lim
m

lim
n
‖Φν,νnũm − un‖Hνn

= 0.

This topology is called the strong topology on H . Note that this notion of convergence
depends explicitly on the sequence {νn} and can only be defined in a reasonable way
if Hνn → Hν . “Reasonable” means that “hence all” in the above Definition holds,
which is a consequence of the easily provable fact that Hνn → Hν if and only if for every
{ũm} ⊂ Cν such that ũm → 0 ∈ Hν we have

lim
m

lim
n
‖Φν,νnũm‖Hνm

= 0.

Nevertheless, the notion of a subsequence is defined, since, provided Hνn → Hν , clearly
Hνnk

→ Hν for any sequence of natural numbers nk ↑ ∞, nk+1 > nk. It can easily
be proved that un → u, un ∈ Hνn , u ∈ Hν strongly if and only if every subsequence
unk

→ u, unk
∈ Hνnk

strongly. On the other hand, it does not make sense to ask for
convergence of a sequence {un} ⊂ H with un ∈ Hνn for some νn such that the sequence
{Hνn}n∈N does not have a limit.

Lemma 2.2. The the strong topology on H is Hausdorff if and only if {Hν | ν ∈ N }
is Hausdorff.

Proof. This is a more detailed proof than the original one found in [KS03, Corollary
2.2]. To prove the “if”-part assume that {Hν | ν ∈ N } is Hausdorff, i.e., a convergent
sequence {Hνn} has at most one limit point Hν0 . Now let un ∈ Hνn , u, v ∈ Hν0 such that
un → u and un → v strongly. If we can prove that u = v, we are done. Let {ũm}, {ṽm} ⊂
Cν0 as in Definition 2.1 such that limm‖ũm − u‖Hν0

= 0, limm‖ṽm − v‖Hν0
= 0,

lim
m

lim
n
‖Φν0,νnũm − un‖Hνn

= 0 and lim
m

lim
n
‖Φν0,νn ṽm − un‖Hνn

= 0.

Now,

‖u− v‖Hν0
≤ lim

m

[
‖u− ũm‖Hν0

+ ‖ũm − ṽm‖Hν0
+ ‖ṽm − v‖Hν0

]
= lim

m
lim

n
‖Φν0,νn(ũm − ṽm)‖Hνn

= lim
m

lim
n
‖Φν0,νnũm − Φν0,νn ṽm‖Hνn

≤ lim
m

lim
n
‖Φν0,νnũm − un‖Hνn

+ lim
m

lim
n
‖un − Φν0,νn ṽm‖Hνn

= 0.

Hence u = v.

To prove the “only if”-part, assume that {Hν | ν ∈ N } is not Hausdorff, i.e., there exists
a sequence of Hilbert spaces {Hνn} with Hνn → Hν1 and Hνn → Hν2 where Hν1 6= Hν2 .
Set un := 0 ∈ Hνn , n ∈ N. Then clearly un → 0 ∈ Hν1 strongly and un → 0 ∈ Hν2

strongly. Hence H is not Hausdorff which proves the “only if”-part.
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2.1. Convergence of spectral structures

We would like to remark that the fact that for every u ∈ Hν0 there exists a strongly con-
vergent sequence {un} along Hνn is verified in the fundamental case below (see Remark
2.6), but it is not clear whether it holds in the general case. (Theorem 2.10 even tells us
that H is polish in this case).

2.1.2. Convergence of Hilbert spaces - the fundamental case

From now on, we shall consider the case that N = N ∪ {∞}. Therefore, let Hn,
n ∈ N, H∞ resp. be real separable Hilbert spaces with inner product ( , )Hn , ( , )H∞

resp. and norm ‖ ‖Hn
= ( , )

1/2
Hn

, ‖ ‖H∞
= ( , )

1/2
H∞

resp. As a special case of the above,
we set Cn := Hn, n 6= ∞, and fix some dense linear subspace C∞ ⊂ H∞. Furthermore,
we fix some injective linear operators Φ∞,n : C∞ → Hn, and for m,n ∈ N set Φm,n = Id,
if m = n and Φm,n ≡ 0 if m 6= n. Let H :=

.⋃
n∈NHn∪̇H∞ be the disjoint union of

Hilbert spaces. As above we define:

Definition 2.3 (Convergence of Hilbert spaces). Let nk be (not necessarily in-
creasing) sequence of natural numbers. A sequence of Hilbert spaces

{Hnk
} ⊂ {Hn | n ∈ N ∪ {∞}}

is said to converge to a Hilbert space Hn0 , n0 ∈ N ∪ {∞} if

lim
n→∞

‖Φn0,nk
u‖Hnk

= ‖u‖Hn0
(2.1)

for every u ∈ Cn0 .

From now on assume:

Assumption 1. {Hn}n∈N converges to H∞.

For the motivation of this assumption and the relation to a sequence of L2-spaces and
forms defined on them we either refer to the introduction or the latter chapters.

Definition 2.4 (Strong convergence). Let {nk} be a (not necessarily increasing)
sequence of natural numbers. Let n0 ∈ N ∪ {∞}. Assume that Hnk

→ Hn0 in the
above sense. {uk}, uk ∈ Hnk

is said to strongly converge to some u ∈ Hn0 if there exist
{ũm} ⊂ Cn0 with:

lim
m
‖ũm − u‖Hn0

= 0, (2.2)

lim
m

lim
k
‖Φn0,kũm − uk‖Hnk

= 0. (2.3)

Then (2.3) even holds for every sequence {ṽm} ⊂ Cn0 with ṽm → u in Hν0 .

13



2. General functional analytic theory

Definition 2.5 (Weak convergence). Let {nk} be a (not necessarily increasing) se-
quence of natural numbers. Let n0 ∈ N ∪ {∞}. Assume that Hnk

→ Hn0 in the above
sense. {uk}, uk ∈ Hnk

is said to weakly converge to u ∈ Hn0 if

(uk, vk)Hnk
→ (u, v)Hn0

(2.4)

for every sequence {vk}, vk ∈ Hnk
strongly convergent to v ∈ Hn0 .

Strong (weak) convergence creates a topology on H =
.⋃

n∈NHn∪̇H∞, called the strong
(weak) topology.

Remark 2.6. We point out that we are in the very special case which in a way restricts
strong and weak convergence of “interesting” sequences to those converging along the
sequence of Hilbert spaces Hn → H∞. To see what this specificly means consider the
following statements, which can easily be proved taking into account that for n,m ∈ N,
Cn = Hn, Φm,n = Id if m = n and Φm,n ≡ 0, if m 6= n,

(1) It can easily be seen that the topology of {Hn | n ∈ N ∪ {∞}} is Hausdorff (which
also follows from Lemma 2.2 and Theorem 2.10). (It has also been proved that it is
second countable, see [KS03, Lemma 2.13]).

(2) Let n0 ∈ N, (n0 6= ∞ !) Hnk
→ Hn0 if and only if ∃k0 ≥ 1 with Hnk

= Hn0 ∀k ≥ k0.

(3) Let n0 ∈ N, (n0 6= ∞ !) and assume Hnk
→ Hn0. Then uk → u, uk ∈ Hnk

, u ∈ Hn0

strongly if and only if ∃k0 ≥ 1 such that uk ∈ Hn0 ∀k ≥ k0 and

lim
k→∞,k≥k0

‖uk − u‖Hn0
= 0.

A similar characterization holds for the weak convergence.

As a consequence, in our particular case, depending on the “limiting” Hilbert space, one
should understand strong and weak convergence either in the “usual” way, ending up in
one “final” Hilbert space, or in the new sense “along Hn” ending in H∞, introducing
a new notion of strong convergence, where “un converges strongly to u” means: The
“distance” between some approximating sequence {ũm} ⊂ C∞ and u is small, and the
“distance” between its embeddings in the Hn’s via the Φ∞,n’s and the un’s is small.

From now on we shall always understand strong and weak convergence, unless stated
differently, along the sequence Hn → H∞, since by the above remark the other cases
are more or less trivial. This convention extends also to the Appendix. From now
on we also shall set H := H∞, C := C∞, Φn := Φ∞,n, unless this leads to confusion.
Subsequences are also understood in this way.

Now let us start with some useful facts.

Lemma 2.7. (1) Let un ∈ Hn, n ∈ N. Then un → 0 ∈ H strongly in H if and only if
‖un‖Hn → 0.

14



2.1. Convergence of spectral structures

(2) Let un, vn ∈ Hn, n ∈ N, u, v ∈ H such that un → u strongly and vn → v strongly.
Then αun + βvn → αu+ βv strongly in H for any α, β ∈ R.

(3) Let {un} be a sequence with un ∈ Hn, n ∈ N and un → u ∈ H strongly. Then
‖un‖Hn → ‖u‖H . In particular, the sequence of norms {‖un‖Hn} of a strongly
convergent sequence is bounded.

(4) If un, vn ∈ Hn, n ∈ N, u, v ∈ H such that un → u and vn → v H -strongly, then
(un, vn)Hn → (u, v)H . In particular, every strongly convergent sequence converges
weakly.

Proof. See Appendix A.

Lemma 2.8. Let {un}, {vn} be two sequences of vectors in H with un, vn ∈ Hn, n ∈ N,
and let u ∈ H. Suppose that un → u strongly in H . Then vn → u strongly in H if and
only if ‖un − vn‖Hn → 0.

Proof. The proof is trivial by Lemma 2.7 (1) and (2).

Remark 2.9. (1) One immediately obtains by definition that Φn(ϕ) → ϕ H -strongly
for every ϕ ∈ C.

(2) Note that if vn ∈ Hn, n ∈ N, with vn → ϕ ∈ C H -strongly, it follows from Lemma
2.8 (or even from “hence all” in Definition 2.1), that

lim
n
‖vn − Φn(ϕ)‖Hn = 0.

We will use this later.

The next Theorem is due to A.V. Kolesnikov, taken from [Kol05a, Propositon 7.2]. We
would like to point out, that the proof has been rewritten and completed for this paper.

Theorem 2.10. Assume that all Hn, n ∈ N and H are infinite dimensional and separa-
ble. Then there exists a complete separable metric dH on H such that the convergence in
dH coincides with the strong convergence and there exists a bijective isometry of metric
spaces Ψ : (H , dH ) → I × `2, where I := {0} ∪

⋃
n∈N{

1
n
} ⊂ R.

There also exists a sequence of isometric isomorphisms of Hilbert spaces

Ψn : H∞ → Hn

such that Ψ∞ = IdH∞ and un → u, un ∈ Hn, u ∈ H∞ strongly in H if and only if

lim
n
‖Ψnu− un‖Hn = 0. (2.5)

Futhermore, if we fix n0 ∈ N, the metric has the property that for fm ∈ Hn0 for all
m ∈ N, f ∈ Hn0 one has ‖fm − f‖Hn0

→ 0 as m→∞ if and only if dH (fm, f) → 0 as
m→∞.
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2. General functional analytic theory

Proof. As in the beginning of the paper we write H∞ = H. Let us first construct an
orthonormal basis {ei | i ∈ N} in H∞ consisting of vectors from C using a standard
orthogonalization procedure.

Step 1:
Let us assume for a while that the Ψn’s are constructed already. Then for fixed n0 ∈
N∪{∞}, {Ψn0(ei) | i ∈ N} clearly is an orthonormal basis of Hn0 . Let u ∈ Hn, v ∈ Hm,
n,m ∈ N ∪ {∞}. We claim that the metric

dH (u, v) =

√√√√|δn − δm|2 +
∞∑
i=1

(ui − vi)2,

where u =
∑∞

i=1 uiΨn(ei) ∈ Hn, v =
∑∞

i=1 viΨm(ei) ∈ Hm, δn := 1
n
, δ∞ := 0, is the

desired one.

Let us prove that dH is a metric generating strong convergence on H . Obviously, dH

is symmetric. We would like to prove that dH (u, v) = 0 if and only if u = v:
The “if”-part is trivial. To see the “only if”-part, assume that both |δn − δm|2 = 0 and∑∞

i=1(ui − vi)
2 = 0. The former gives us that u, v ∈ Hn0 for some fixed n0 ∈ N ∪ {∞}.

and the latter shows that u = v.
The triangular inequality follows obviously from the triangular inequality for `2 (as a
metric space). Thus dH defines a metric on H . Now we would like to prove that
convergence in this metric coincides with strong convergence in H .

Case 1: “Hn → H∞”. Let un ∈ Hn, u ∈ H∞, un → u strongly. Then by (2.5)

lim
n
‖Ψn(u)− un‖Hn = 0.

Let u
(n)
i := (un,Ψn(ei))Hn , ui := (u, ei)H∞ = (Ψn(u),Ψn(ei))Hn . Thus by Parseval’s

identity (cf. [RS72, Theorem II.6])

∞∑
i=1

(u
(n)
i − ui)

2 =
∞∑
i=1

|(un −Ψn(u),Ψn(ei))Hn|
2 = ‖un −Ψn(u)‖2

Hn
→ 0 (2.6)

as n→∞. Clearly, limn|δn − δ∞|2 = 0. Thus limn dH (un, u) = 0.

Now assume limn dH (un, u) = 0. Let u
(n)
i , ui as above. Now we can prove that

limn‖Ψn(u)− un‖Hn = 0 by reading (2.6) backwards.

Case 2: “Hnk
→ Hn0”. Let {nk} be a (not necessarily increasing) sequence of natural

numbers and n0 ∈ N. Assume that Hnk
converges to Hn0 . Then there exists a

k0 ∈ N such that
Hnk

= Hn0 ∀k ≥ k0. (2.7)

Let uk ∈ Hnk
, u ∈ Hn0 . We want to prove that uk → u strongly if and only if

limk dH (uk, u) = 0.
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2.1. Convergence of spectral structures

Assume that uk → u strongly in H . By (2.7) δk = δn0 ∀k ≥ k0. Thus limk|δk −
δn0|2 = 0. Let u

(k)
i := (uk,Ψnk

(ei))Hnk
, ui := (u,Ψn0(ei))Hn0

. Since uk ∈ Hn0

∀k ≥ k0, we have by strong convergence

lim
k→∞,k≥k0

dH (uk, u) = lim
k→∞,k≥k0

∞∑
i=1

(u
(k)
i − ui)

2

= lim
k→∞,k≥k0

∞∑
i=1

∣∣(uk − u,Ψn0(ei))Hn0

∣∣2
= lim

k→∞,k≥k0

‖uk − u‖2
Hn0

= 0.

(2.8)

Thus limk dH (uk, u) = 0.
Suppose now limk dH (uk, u) = 0. By reading (2.8) backwards and noting the
observations above we get limk‖uk − u‖2

Hn0
= 0 ∀k ≥ k0, which gives the desired

result.

By Remark 2.6 all types of strongly convergent sequences are contained in these two
cases. The other way round, if limk d(uk, u) = 0 for some uk ∈ H , u ∈ H , we clearly
are in one of the two cases above.

Step 2:
It remains to prove the existence of the isometric isomorphisms Ψn : H∞ → Hn with
the property (2.5). To this end, for k ∈ N let L k := lin{e1, . . . , ek}, L k

n := Φn(L k),
which is k-dimensional as well since the Φn’s are one-to-one. Now by (2.1) the sequence
of symmetric matrices {Mk

n} ⊂ Rk ⊗Rk given by

(Mk
n)1≤i,j≤k := ((Φn(ei),Φn(ej))Hn)1≤i,j≤k

tends to 1k := diag{1, . . . , 1} ∈ Rk ⊗Rk in the usual matrix norm

‖(ai,j)1≤i,j≤k‖Rk⊗Rk := max
1≤i,j≤k

|ai,j|,

and thus in the standard operator norm ‖ ‖L k
n→L k

n
, i.e.,

‖Mk
n − 1k‖L k

n→L k
n
≤ const.‖Mk

n − 1k‖Rk⊗Rk <
1

k
∀n ≥ n(k),

for some increasing sequence of natural numbers n(k). (Here we have used Remark 2.9
(1) and Lemma 2.7 (4)). Let n ≥ n(k). For each such n we want to define

Ψn : L k ⊂ C ⊂ H∞ → L k
n ⊂ Hn

such that for the operator

(Ψn − Φn) �L k : L k → L k
n ⊂ Hn

17



2. General functional analytic theory

we have

‖Ψn − Φn‖L k→L k
n
<

1

k
,

provided n ≥ n(k). This is needed to establish (2.5).
There exists an orthonormal basis {en

1 , . . . , e
n
k} of L k

n and a bijective linear operator
V k

n : L k
n → L k

n with

Φn(ei) =
k∑

j=1

(V k
n e

n
i , e

n
j )Hne

n
j ,

such that (V k
n )∗V k

n = Mk
n . More precisely, V k

n e
n
i := Φn(ei). Note that {en

1 , . . . , e
n
k}

depends on the inner product generated by Mk
n .

By the Polar-Decomposition Theorem (cf. [LT85, Theorem 5.7.1]) we can represent
V k

n = Bk
nU

k
n as a composition of a positive definite, self-adjoint operator Bk

n =
√
V k

n (V k
n )∗

on L k
n and an isometric operator Uk

n on L k
n . Bk

n is even strictly positive definite, since
V k

n is invertible, hence all eigenvalues λk
n,i, 1 ≤ i ≤ k, of Bk

n are strictly positive.

For a bounded self-adjoint linear operator A and a polynomial P we have

‖P (A)‖ = sup
λ∈σ(A)

|P (λ)|,

where σ(A) denotes the spectrum of A (cf. [RS72, Section VII.1 Lemma 2]).

Furthermore, we have 1k = Uk
n(Uk

n)∗ and

(Bk
n)2 = (Bk

n)∗Bk
n = (V k

n (Uk
n)∗)∗V k

n (Uk
n)∗ = Uk

n(V k
n )∗V k

n (Uk
n)∗ = Uk

nM
k
n(Uk

n)∗.

Hence for each n ≥ n(k) we have (using also the fact that Uk
n is isometric)

max
1≤i≤k

{|(λk
n,i)

2 − 1|} = ‖(Bk
n)2 − 1k‖L k

n→L k
n
≤ ‖Mk

n − 1k‖L k
n→L k

n
<

1

k
.

Hence
√

1− 1
k
< λk

n,i <
√

1 + 1
k

for all 1 ≤ i ≤ k. Define Ψk
n : L k → L k

n by

Ψk
n(ei) := Uk

ne
n
i

and linear extension. Then (Ψk
n(ei),Ψ

k
n(ej))Hn = δi,j, where δi,j denotes the Kronecker-

delta. Moreover, for 1 ≤ i ≤ k

(Φn −Ψk
n)(ei) = (V k

n − Uk
n)(en

i )

and consequently for n ≥ n(k) again by the above remark about spectra and the fact
that Uk

n is isometric

‖Φn −Ψk
n‖L k→L k

n
= ‖V k

n − Uk
n‖L k

n→L k
n
≤ ‖Bk

n − 1k‖L k
n→L k

n
= max

1≤i≤k
{|λk

n,i − 1|} ≤ 1

k
.
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2.1. Convergence of spectral structures

To extend Ψk
n to H∞, pick for every n ∈ N some arbitrary isometric isomorphisms

Ψ̃k
n : (L k)⊥ → (L k

n )⊥ and extend Ψk
n by setting Ψk

n(v) := Ψ̃k
n(v) for every v ∈ (L k)⊥.

Set Ψ∞ := IdH∞ : H∞ → H∞ and pick some arbitrary isometric isomorphisms Ψn :
H∞ → Hn for 1 ≤ n < n(1). Now by a standard diagonal argument we can select a
sequence of isometric isomorphisms (using the construction above)

Ψn : H∞ → Hn

such that

‖Φn −Ψn‖L k→L k
n
<

1

k

for all n ≥ n(k). Evidently, for every fixed k0 ∈ N and every v ∈ Lk0 we have

lim
n
‖(Φn −Ψn)v‖Hn = 0.

Finally, if we can prove (2.5), we are done. So let u =
∑∞

i=1 αiei ∈ H∞. Let us first
prove that Ψnu→ u strongly in H . Therefore, set ũm :=

∑m
i=1 αiei ∈ C. Then ũm → u

in H∞ as m→∞ and

lim
m

lim
n
‖Φnũm −Ψnu‖Hn

= lim
m

lim
n
‖(Φn −Ψn)

m∑
i=1

αiei −Ψn

∞∑
i=m+1

αiei‖Hn

≤ lim
m

lim
n
‖(Φn −Ψn)

m∑
i=1

αiei‖Hn + lim
m

lim
n
‖Ψn

∞∑
i=m+1

αiei‖Hn

= lim
m
‖

∞∑
i=m+1

αiei‖H∞

=0.

Now by Lemma 2.8 (since Ψnu → u strongly for any u ∈ H∞) for un ∈ Hn, n ∈ N,
u ∈ H∞, we have un → u H -strongly if and only if

lim
n
‖Ψnu− un‖Hn = 0.

In addition, it is clear that the following mapping Ψ : H → I × `2, I := {0}∪
⋃

n∈N{
1
n
}

is the desired isometry of metric spaces:

Ψ(v) := (δn, (vi)i∈N) ∈ I × `2,

where v ∈ Hn and vi := (v,Ψn(ei))Hn . It is clearly bijective. Note I × `2 is complete as
a product of complete metric spaces (I is complete since it is compact in R) and hence
is (H , dH ). Furthermore,

⋃
n∈N linQ

⋃
i∈N{Ψnei} is a countable set which is dense in

H w.r.t. dH (here linQ denotes the linear span w.r.t. Q).

The proof is complete.
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2. General functional analytic theory

Corollary 2.11. (i) For any u ∈ H there exists a sequence {un}, un ∈ Hn, n ∈ N,
such that un → u strongly.

(ii) If nk ↑ ∞ as k → ∞ and vk ∈ Hnk
, k ∈ N, such that vk → u ∈ H in dH , then

there exist un ∈ Hn, n ∈ N, such that un → u in dH and unk
= vk for every k ∈ N.

Proof. (i): Obvious.

(ii): For n 6∈ {nk | k ∈ N} define un := Ψn(u) and unk
:= vk for k ∈ N. Then {un} is

as desired.

We would like to remark that the above Theorem enlightens the geometric structure of
H as follows: We start with a rather weak limiting structure of H based on a “uniform
approximation” of H by the Hn’s via our embeddings Φn (which are not unitary nor
even bounded!) on a set of vectors C (having e.g. “nice” or “controllable” properties).
The definition of strong convergence (of weak, too) seems natural in this setting, but is
yet hard to handle and does not even provide existence of strongly convergent sequences
(along the Hn’s) for every possible limit u ∈ H, unless much stronger assumptions on the
Φn’s like uniform bound of operator norms are stated. Finally, by the above Theorem,
using only basic properties of our concepts and a little linear algebra, we construct a
natural metric on H , and moreover, a sequence of isometric isomorphisms {Ψn} which
in a way carry over the geometry of H to each Hn and contain the “asymptotics” of
strong convergence (namely, un → u strongly if and only if ‖un−Ψn(u)‖Hn → 0). From
now on, strong convergence should always be thought as given by this characterization:
along a “limit of orthonormal bases” resp. “geometric structures” via the Ψn’s. From
now on we shall always refer to the Ψn’s of Theorem 2.10 if we use this notation.

As a surprising fact, we would like to mention that in applications the Φn’s are actually
the “easier guys”, namely being identity operators. Keeping this in mind, the next two
Lemmas and Lemma 2.20 as well as the later convergence Theorems for forms turn out
to be very useful for they provide conditions for various properties having to be checked
only along {Φn(ϕ)}, ϕ ∈ C.

Lemma 2.12. A sequence {un}, un ∈ Hn, n ∈ N converges to u ∈ H H -strongly if
and only if ‖un‖Hn → ‖u‖H and (un,Φn(ϕ))Hn → (u, ϕ)H for every ϕ ∈ C.

Proof. See Appendix A.

Lemma 2.13. Let {un}, un ∈ Hn, n ∈ N be a sequence in H and let u ∈ H. Then
un → u weakly if and only if supn‖un‖Hn < ∞ and (un,Φn(ϕ))Hn → (u, ϕ)H for every
ϕ ∈ C.

Proof. See Appendix A.
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2.1. Convergence of spectral structures

Lemma 2.14. (1) Let {un} be a sequence with un ∈ Hn, n ∈ N. If the sequence of
norms {‖un‖Hn} is bounded, there exists a weakly convergent subsequence of {un}.

(2) Let {un}, un ∈ Hn, n ∈ N be a sequence which weakly converges to u ∈ H. Then

sup
n
‖un‖Hn <∞, ‖u‖H ≤ lim

n
‖un‖Hn .

Moreover, un → u strongly if and only if

‖u‖H = lim
n
‖un‖Hn .

(3) A sequence {un}, un ∈ Hn, n ∈ N tends to u ∈ H H -strongly if and only if

(un, vn)Hn → (u, v)H

for every {vn}, vn ∈ Hn, n ∈ N H -weakly tending to v ∈ H.

Proof. See Appendix A.

2.1.3. Convergence of bounded operators

Definition 2.15 (Convergence of bounded operators). {Bn}, Bn ∈ L (Hn) are
said to strongly (weakly) converge to B ∈ L (H) if for every sequence {un}, un ∈ Hn

strongly (weakly) converging to u ∈ H, {Bnun} strongly (weakly) converges to Bu.

{Bn}, Bn ∈ L (Hn) is said to compactly converge to B ∈ L (H) if for every sequence
{un}, un ∈ Hn weakly converging to u ∈ H, {Bnun} strongly converges to Bu.

Clearly, compact convergence of a sequence of bounded operators implies both weak and
strong convergence of this sequence.

Lemma 2.16. Let {Bn} be a sequence of bounded operators, Bn ∈ L (Hn), B ∈ L (H).
Then we have:

(1) Bn → B strongly if and only if

lim
n

(Bnun, vn)Hn = (Bu, v)H (2.9)

for any {un}, {vn}, u, v such that un → u strongly and vn → v weakly.

(2) Bn → B weakly if and only if (2.9) holds for any {un}, {vn}, u, v such that un → u
weakly and vn → v strongly.

(3) Bn → B compactly if and only if (2.9) holds for any {un}, {vn}, u, v such that
un → u weakly and vn → v weakly.
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2. General functional analytic theory

Proof. The lemma follows from the definitions of convergences and Lemma 2.14 (3).

Lemma 2.17. (1) If Bn → B strongly, then

lim
n
‖Bn‖L (Hn) ≥ ‖B‖L (H).

(2) If Bn → B compactly, then

lim
n
‖Bn‖L (Hn) = ‖B‖L (H).

Proof. See Appendix A.

Denote by Â the adjoint of an operator A. The following is a direct consequence of
Lemma 2.16.

Corollary 2.18. (1) Bn → B strongly if and only if B̂n → B̂ weakly. In particular,
strong convergence is equivalent to weak convergence for symmetric operators.

(2) Bn → B compactly if and only if B̂n → B̂ compactly.

It is very important to realize, that in this point the Kuwae-Shioya framework differs
from the case of one fixed Hilbert space, where strong operator convergence implies weak
operator convergence. Also uniform operator convergence does not make any sense in
this framework.

Lemma 2.19. If Bn → B compactly, then B and B̂ are both compact operators.

Proof. See Appendix A.

The next Lemma shows that C contains enough information to verify strong convergence
of a sequence of operators, if strong convergence along the sequence {Φn(ϕ)}, ϕ ∈ C is
assumed. This has not been proved in this setting before.

Lemma 2.20. Let Bn ∈ L (Hn), n ∈ N, B ∈ L (H), such that supn‖Bn‖L (Hn) <∞.

(1) If BnΦnϕ→ Bϕ H -strongly for every ϕ ∈ C,

(2) or if there exists a dense linear subspace C̃ ⊂ H (which might be taken equal to H)
such that BnΨnψ → Bψ H -strongly for every ψ ∈ C̃,

then Bn → B strongly in the sense of Definition 2.15.
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2.1. Convergence of spectral structures

Proof. We prove only (2), since the proof of (1) is similar except BnΨnψm in (2.10) is
replaced by BnΦnψm. Let u ∈ H and un ∈ Hn, n ∈ N with un → u H -strongly. Pick
ψm → u strongly in H with ψm ∈ C̃ for every m. Clearly,

‖Bnun −ΨnBu‖Hn

≤‖Bnun −BnΨnψm‖Hn + ‖BnΨnψm −ΨnBψm‖Hn + ‖ΨnBψm −ΨnBu‖Hn

≤ sup
n
‖Bn‖L (Hn)‖un −Ψnψm‖Hn + ‖BnΨnψm −ΨnBψm‖Hn + ‖B‖L (H)‖ψm − u‖H .

(2.10)

The first term tends to 0 as m,n→∞ by the uniform boundedness of {‖Bn‖L (Hn)} and

‖un −Ψnψm‖Hn ≤ ‖un −Ψnu‖Hn + ‖Ψnu−Ψnψm‖Hn = ‖un −Ψnu‖Hn + ‖u− ψm‖H .

The second term tends to 0 as m,n → ∞ by assumption as clearly the last term, too.
This proves the assertion.

2.1.4. Convergence of semigroups

In this section we prove a generalization of Kato’s Theorem for strong convergence
of semigroups (cf. [Kat66, Theorem IX.2.16]), i.e., that strong convergence of (not
necessarily symmetric) contraction semigroups is equivalent to strong convergence of
the associated contraction resolvents. We point out that this result is entirely new for
the Kuwae-Shioya framework and that the proof uses techinques turning out to be useful
only in this particular framework, for the standard proof cannot be assigned one-to-one.

To this end, let (An, D(An)), n ∈ N, (A,D(A)) resp. be the infinitesimal generators
of (not necessarily symmetric) C0-contraction-semigroups (T n

t )t≥0, n ∈ N, (Tt)t≥0 resp.
defined on subspaces D(An) ⊂ Hn, n ∈ N, D(A) ⊂ H. Let (Gn

α)α>0, n ∈ N, (Gα)α>0

resp. be the associated C0-contraction-resolvents.

Theorem 2.21. Let (T n
t )t≥0, n ∈ N, (Tt)t≥0, (Gn

α)α>0, n ∈ N, (Gα)α>0 be as above.
Then Gn

α → Gα strongly for any α > 0 if and only if T n
t → Tt strongly for any t ≥ 0.

Proof. Let us first prove the “if”-part: Let α > 0, un ∈ Hn, n ∈ N, u ∈ H, un → u
H -strongly. Then T n

t un → Ttu strongly for every t ≥ 0. We express Gn
αun in terms of

the following Hn-valued Bochner integral

Gn
αun =

∫ ∞

0

e−αsT n
s unds,

(cf. [MR92, Section I.1] and, particularly for Bochner integrals: [Yos78, Section V.5]).
Let vn ∈ Hn, n ∈ N, v ∈ H such that vn → v weakly in H . It suffices to prove that

(Gn
αun, vn)Hn → (Gαu, v)H .
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2. General functional analytic theory

We note that

sup
n
|e−αs(T n

s un, vn)Hn| ≤ e−αs sup
n
‖un‖Hn‖vn‖Hn ≤ Ce−αs

for some constant C > 0 by the contraction property of the T n
s ’s, Cauchy’s inequality and

strong and weak convergence of {un}, {vn} resp. applied to Lemma 2.14 (2). The right-
hand side is integrable, so we can use Lebesgue’s dominated convergence theorem and the
well-known fact, that Bochner integrals interchange with continuous linear functionals
(cf. [Yos78, Corollary V.5.2]) to obtain

lim
n→∞

(Gn
αun, vn)Hn = lim

n→∞
(

∫ ∞

0

e−αsT n
s un ds, vn)Hn

= lim
n→∞

∫ ∞

0

e−αs(T n
s un, vn)Hnds =

∫ ∞

0

e−αs(Tsu, v)Hds

= (

∫ ∞

0

e−αsTsu ds, v)H = (Gαu, v)H .

The “if”-part is proved.

To prove the “only if”-part, let Gn
α → Gα strongly for α > 0. Recall that for each α > 0,

n ∈ N, we have Gn
α(Hn) = D(An), Gα(H) = D(A) (cf. [MR92, Section I.1.a)]). We

would like to prove for each ψ ∈ H, t ≥ 0, α > 0 that

T n
t ΨnGαψ → TtGαψ (2.11)

strongly in H . Since D(A) ⊂ H densely (e.g. by [MR92, Proposition I.1.10]), we can
apply Lemma 2.20 (2) and we are done (note that supn‖T n

t ‖L (Hn) ≤ 1 <∞).

Throughout the following fix α > 0. Now let u ∈ H and s ≥ 0. We have

d

ds
TsGαu = TsAGαu = −Ts(1− αGα)u

and the same with T n
s , An and Gn

α replacing Ts, A and Gα resp. Now for t ≥ s ≥ 0

d

ds
T n

t−sG
n
αΨnTsGαu

= T n
t−sG

n
αΨn

(
d

ds
TsGα

)
+

d

ds′
T n

t−s′G
n
αΨnTsGαu

∣∣∣∣∣
s′=s

= T n
t−sG

n
αΨn(−Ts(1− αGα)u) + T n

t−s(1− αGn
α)ΨnTsGαu

= −T n
t−s(G

n
αΨnTs −ΨnTsGα)u,

where the “product rule” is proved the same way as in finite dimensions. Note that
we have used that Ψn is continuous and the fact that TsGαu = GαTsu for u ∈ H (cf.
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2.1. Convergence of spectral structures

[Kat66, Chapter IX.]). Applying the fundamental theorem of calculus we obtain

−
∫ t

0

T n
t−s(G

n
αΨnTs −ΨnGαTs)u ds =

∫ t

0

d

ds
T n

t−sG
n
αΨnGαTsu ds

= T n
t−sG

n
αΨnGαTsu

∣∣∣∣∣
s=t

s=0

= Gn
αΨnGαTtu− T n

t G
n
αΨnGαu.

Hence by Bochner’s inequality (cf. [Yos78, Corollary V.5.1])

‖Gn
αΨnGαTtu− T n

t G
n
αΨnGαu‖Hn ≤

∫ t

0

‖(Gn
αΨnTs −ΨnGαTs)u‖Hnds. (2.12)

First note that ‖Gn
αΨnTsu − ΨnGαTsu‖Hn → 0 as n → ∞ by Lemma 2.8 and the fact

that both Gn
αΨnTsu→ GαTsu and ΨnGαTsu→ GαTsu H -strongly, which follows from

the strong convergence of resolvents. It is easy to see that ‖(Gn
αΨnTs−ΨnTsGα)u‖Hn ≤

2
α
‖u‖H for every n. We conclude that by Lebesgue’s dominated convergence theorem

the right-hand side of (2.12) tends to zero as n→∞. Altogether, for u ∈ H,

lim
n
‖Gn

αΨnTtGαu− T n
t G

n
αΨnGαu‖Hn = 0

and since Gα(H) = D(A), and D(A) ⊂ H densely, we get by a 3-ε-argument, taking
into account that ‖Gn

α‖Hn ≤ α−1 for every n, that for every ψ ∈ H

lim
n
‖Gn

αΨnTtψ − T n
t G

n
αΨnψ‖Hn = 0. (2.13)

As another result of strong convergence of resolvents and Lemma 2.8 we get (using the
contraction property of the T n

t ’s)

lim
n
‖T n

t ΨnGαψ − T n
t G

n
αΨnψ‖Hn ≤ lim

n
‖ΨnGαψ −Gn

αΨnψ‖Hn = 0, (2.14)

and

lim
n
‖Gn

αΨnTtψ −ΨnGαTtψ‖Hn = 0. (2.15)

To prove (2.11), let ψ ∈ H, t ≥ 0, α > 0. One easily observes

‖T n
t ΨnGαψ −ΨnTtGαψ‖Hn

≤‖T n
t ΨnGαψ − T n

t G
n
αΨnψ‖Hn + ‖T n

t G
n
αΨnψ −Gn

αΨnTtψ‖Hn + ‖Gn
αΨnTtψ −ΨnGαTtψ‖Hn

Gathering (2.14), (2.13) and (2.15) and the last equation above, we get the desired result
as n→∞. The proof is complete.
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2. General functional analytic theory

2.2. Convergence of symmetric forms

Now we consider three different types of convergence of a sequence of symmetric forms
{En} along H , where each form is defined on Hn. Recall that a quadratic form is
a bilinear mapping E : D(E ) × D(E ) → R defined on some subspace D(E ) ⊂ H.
In this section we consider only non-negative and symmetric quadratic forms, that is,
E (u, u) ≥ 0 for every u ∈ D(E ) and E (u, v) = E (v, u) for every u, v ∈ D(E ). Define for
α > 0 and a form (E ,D(E )) the inner product

Eα(u, v) := E (u, v) + α(u, v)H , u, v ∈ D(E ),

which makes D(E ) a pre-Hilbert space. Recall that a form E is closed if D(E ) equipped

with the norm E 1/2
1 is complete. We identify a quadratic form E with the functional

E (u) : u 7→

{
E (u, u) , u ∈ D(E )

∞ , u 6∈ D(E ).
(2.16)

It is well known that E is closed if and only if E : H → R is lower-semicontinuous (see
for instance [Mos94, p. 372]). We shall use the notions quadratic form and bilinear
form interchangeably if the form is symmetric and non-negative, which is justified by
the polarization identity:

E (u, v) =
1

4
[E (u+ v, u+ v)− E (u− v, u− v)] , u, v ∈ D(E ).

Also note that E (u) := E (u, u), u ∈ D(E ) is used for the diagonal even for non-
symmetric forms.

Definition 2.22. A sequence {E n : Hn → R} of symmetric, non-negative, closed forms
is said to Mosco converge to a quadratic form E on H if the following two conditions
hold:

(M1) If {un}, un ∈ Hn, n ∈ N weakly converges to u ∈ H then

E (u) ≤ lim
n

E n(un).

(M2) For every u ∈ H there exists a strongly convergent sequence un → u, un ∈ Hn,
n ∈ N such that

E (u) = lim
n

E n(un).

Definition 2.23. A sequence {E n : Hn → R} of symmetric, non-negative, closed forms
is said to Γ-converge to a quadratic form E on H if the following conditions are fulfilled:

(G1) If {un}, un ∈ Hn, n ∈ N strongly converges to u ∈ H then

E (u) ≤ lim
n

E n(un).
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2.2. Convergence of symmetric forms

(G2) For every u ∈ H there exists a strongly convergent sequence un → u with un ∈ Hn,
n ∈ N such that

E (u) = lim
n

E n(un).

The above conditions, especially (M2) resp. (G2) make sense by Corollary 2.11 and
(2.16). It is clear that Mosco convergence implies Γ-convergence. To determine when
they are equivalent, consider the following:

Definition 2.24. A sequence {E n} is called asymptotically compact if for every {un},
un ∈ Hn, n ∈ N such that

lim
n

(E n(un) + ‖un‖2
Hn

) <∞,

there exists a strongly convergent subsequence of {un}.

Lemma 2.25. Assume that {E n} is asymptotically compact. Then {E n} Γ-converges
to E if and only if {E n} Mosco converges to E .

Proof. The proof of [Mos94, Lemma 2.3.2] can be extended to our framework easily.

Note that Γ-convergence can be defined for arbitrary functionals on a topological space
with values in R (see for instance [DM93]) and every Γ-limit is lower-semicontinuous.
In particular, it means that if the form E is a Γ-limit, then it is closed.

It is a well-known fact that every sequence of functionals on a second-countable space
with values in R has a Γ-convergent subsequence (see [DM93, Theorem 8.5]). So in our
case we have the following (see [KS03, Theorem 2.3]):

Theorem 2.26. Every sequence {E n} of symmetric, non-negative quadratic forms (with
values in R) has a Γ-convergent subsequence whose Γ-limit is a symmetric, non-negative,
closed quadratic form on H.

This just means that the space of symmetric, non-negative forms is relatively sequentially
compact w.r.t. the Γ-topology.

Definition 2.27. We say that E n → E compactly if E n → E Mosco and if {E n} is
asymptotically compact.

Lemma 2.25 and Theorem 2.26 together imply:

Corollary 2.28. If {E n} is asymptotically compact, it has a compact convergent subse-
quence.

With every non-negative symmetric closed form E we associate a non-negative self-
adjoint operator −A with D(A) ⊂ D(

√
−A) = D(E ) and E (u, v) = (

√
−Au,

√
−Av),

27



2. General functional analytic theory

u, v ∈ D(E ). Let Tt := etA, t ≥ 0 be the associated semigroup and Gα := (α − A)−1,
α > 0 the associated resolvent (see [FOT94] for details).

For further reference for convergence problems of spectral structures (in the symmetric
case) we would again like to mention [KS03, Section 2]. The next Theorem (whose proof
has been reformulated for this paper and can be found in the Appendix) shows the
essential power of Mosco convergence, which is - as a variational convergence - necessary
and sufficient for strong convergence of resolvents and semigroups.

Theorem 2.29 (Mosco, Kuwae, Shioya). Let {E n : Hn → R} be a sequence of
non-negative, symmetric, closed forms and let E be a closed form on H. The following
statements are equivalent:

(1) {E n} Mosco converges to E ,

(2) {Gn
α} strongly converges to Gα for all α > 0,

(3) {T n
t } strongly converges to Tt for all t ≥ 0.

Proof. See Appendix A.

Now we shall state some useful conditions on a sequence of forms {E n : Hn → R}, which
can easily be checked in many applications and give us a nice criterion for Mosco conver-
gence. The idea is to restrict strong and weak convergence of vectors along the sequence
of domains {D(E n)}, which contains enough information to verify Mosco convergence.

Definition 2.30. Suppose that we are given a convergent sequence of Hilbert spaces
Hn → H and a sequence of non-negative symmetric closed forms {E n : Hn → R}. We
say that a sequence of pairs {(Hn,E n)} converges to (H,E ) if the following conditions
hold

(1) Φn(C) ⊂ D(E n) for every n ∈ N.

(2) C ⊂ D(E ) is dense in (D(E ),E 1/2
1 ).

(3) limn E n(Φn(ϕ)) = E (ϕ) for every ϕ ∈ C.

If we have a convergent sequence {(Hn,E n)} of pairs in the above sense, we have a con-
vergent sequence of Hilbert spaces {(D(E n),E n

1 ( , ))} which converges to (D(E ),E1( , ))
in the sense of Definition 2.3. Let us denote the space

.⋃
n D(E n)∪̇D(E ) by HE . Hence

we can construct the corresponding isometries ΨE
n , n ∈ N as in Theorem 2.10. Then for

every u ∈ D(E ), ΨE
n(u) → u strongly in HE .

Lemma 2.31. Assume that {(Hn,E n)} converges to (H,E ). If un → u strongly in HE ,
then un → u strongly in H .
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2.2. Convergence of symmetric forms

Proof. Let un → u, un ∈ D(E n), n ∈ N, u ∈ D(E ) strongly in HE . Then there exists a
sequence {ϕm} ⊂ C with

‖u− ϕm‖2
H ≤ const.E1(u− ϕm) → 0

as m→∞. Clearly,

lim
m

lim
n
‖un − Φn(ϕm)‖2

Hn
≤ const. lim

m
lim

n
E n

1 (un − Φn(ϕm)) = 0,

hence un → u strongly in H . The case D(E nk) → D(E n0) for some arbitrary sequence
of natural numbers with limk nk → n0 is trivial.

The same is not true for weak convergence. More precisely, we have the following

Proposition 2.32. Assume that {(Hn,E n)} converges to (H,E ). If for any sequence
un → u weakly in HE , un ∈ D(E n), n ∈ N, u ∈ D(E ) we have that un → u weakly in
H , too, then E n → E Mosco.

For the proof, we need the following

Lemma 2.33. Assume that {(Hn,E n)} converges to (H,E ) and (M1) holds. Then
E n → E Mosco (i.e., (M1) ⇒ (M2) in this case).

Proof. Let us take u ∈ D(E ). Clearly, ΨE
n(u) → u HE -strongly and also H -strongly by

Lemma 2.31. By Lemma 2.12 we have

lim
n

E n
1 (ΨE

n(u)) = E1(u)

and
lim

n
‖ΨE

n(u)‖2
Hn

= ‖u‖2
H .

Therefore
lim

n
E n(ΨE

n(u)) = E (u)

which gives us (M2) for u ∈ D(E ). If u ∈ H \ D(E ) (M2) holds for any H -strongly
convergent sequence un → u as a consequence of (M1).

Proof of Proposition 2.32. We only have to prove (M1) by the preceding Lemma. Let
un ∈ Hn, n ∈ N, u ∈ H with un → u H -weakly. If limn E n(un, un) = +∞ there
is nothing to prove. So assume that limn E n(un, un) < +∞, which gives that for a
subsequence {unk

} we have supk E nk(unk
) < +∞. But by Lemma 2.14 (2) supn‖un‖Hn <

+∞. By extracting another subsequence if necessary we can use Lemma 2.14 (1) to force
that for some ũ ∈ D(E ) we have unk

→ ũ HE -weakly and limk E nk(unk
) = limn E n(un).

By assertion unk
→ ũ H -weakly, too, which shows ũ = u. Now,

lim
k

E n
1 (unk

,ΨE
k (u)) = E1(u, u)
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2. General functional analytic theory

and by Lemma 2.31
lim

k
(unk

,ΨE
k (u))Hn = (u, u)H .

Combining the last two equalities, we get

lim
k

E (unk
,ΨE

k (u)) = E (u, u).

Therefore,

E (u, u)2 = lim
k
|E nk(unk

,ΨE
k (u))|2

≤ lim
k

E nk(unk
, unk

)E nk(ΨE
k (u),ΨE

k (u)) ≤ lim
n

E (un, un)E (u, u),

which gives us (M1).

2.3. Convergence of non-symmetric forms

2.3.1. Generalized forms

To analyze convergence of a sequence of non-symmetric forms defined on different Hilbert
spaces, we will assume our forms to be so called generalized (Dirichlet) forms, following
the framework of [Sta99, Section I]. In other words, we assume our form E n to be
associated with some coercive closed form (A n,Vn) and some properly chosen linear
operator (Λn,D(Λn, Hn)). We prove necessary and sufficient conditions on the forms
{E n} for strong convergence of the associated resolvents and semigroups. We also give
conditions for the Mosco-convergence of the symmetric parts {Ã n} of {E n} to the
symmetric part Ã of E .

Now let A be a bilinear form on H with a domain V ⊂ H. The symmetric part Ã of
A is defined by

Ã (u, v) :=
1

2
[A (u, v) + A (v, u)] , u, v ∈ V .

The antisymmetric part Ǎ of A is defined by

Ǎ (u, v) :=
1

2
[A (u, v)−A (v, u)] , u, v ∈ V .

It is clear that A = Ã + Ǎ . For α > 0, set

Aα(u, v) := A (u, v) + α(u, v)H , u, v ∈ V .

Ãα is defined similarly. We suppose that (A ,V ) is a coercive closed form with sector
constant K ≥ 1, that is,

(1) (Ã ,V ) is a non-negative definite, symmetric, closed form,
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2.3. Convergence of non-symmetric forms

(2) (A ,V ) satisfies the weak sector condition, i.e., there exists a sector constant K ≥ 1
such that

|A1(u, v)| ≤ KA1(u, u)
1/2A1(v, v)

1/2 for all u, v ∈ V .

Equipped with the norm ‖ ‖V := Ã 1/2
1 ( ), V becomes a Hilbert space. Identifying H

with its dual H ′ we obtain a dense and continuous embedding V ⊂ H ≡ H ′ ⊂ V ′. The
pairing between V and V ′ is expressed by V ′( , )V .

Let Λ be a linear operator on H with a linear domain D(Λ, H). We assume the following:

(1) Λ generates a C0-semigroup of contractions (Ut)t≥0 on H.

(2) (Ut)t≥0 can be restricted to a C0-semigroup of contractions on V .

Denote the infinitesimal generator of the restricted semigroup by (Λ,D(Λ,V )). Note
that the adjoint operator (Λ̂,D(Λ̂,V ′)) of (Λ,D(Λ,V )) also satisfies the conditions
above. In particular, D(Λ, H) ∩ V is dense in V . It follows from [Sta99, Lemma I.2.3]
that Λ : D(Λ, H) ∩ V → V ′ is closable. Let us denote its closure by (Λ,F ). Then F
is a Hilbert space with norm

‖·‖F :=

(
‖·‖2

V + ‖Λ·‖2
V ′

)1/2

.

Furthermore, define F̂ := D(Λ̂,V ′) ∩ V with norm

‖·‖F̂ :=

(
‖·‖2

V + ‖Λ̂·‖2
V ′

)1/2

.

F and F̂ are dense in V , V ′(Λu, u)V H ≤ 0 for u ∈ F , V ′(Λ̂u, u)V H ≤ 0 for u ∈ F̂ and
D(Λ,V ) is dense in F (cf. [Sta99, Lemma I.2.5] and [Sta99, Lemma I.2.6]).

Now for given A and Λ, define the bilinear form E associated with (A ,V ) and (Λ,D(Λ, H))
on H by

E (u, v) :=

{
A (u, v)− V ′(Λu, v)V , if u ∈ F , v ∈ V ,

A (u, v)− V ′(Λ̂v, u)V , if u ∈ V , v ∈ F̂ .

We extend E to a form defined on H and taking values in R by setting E (u, v) = +∞
for every other case, even if u ∈ H \ V and v = 0.

We also define the co-form Ê by

Ê (u, v) :=

{
A (v, u)− V ′(Λ̂u, v)V , if u ∈ F̂ , v ∈ V ,

A (v, u)− V ′(Λv, u)V , if u ∈ V , v ∈ F .
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2. General functional analytic theory

Remark 2.34. Let (A ,V ) be a coercive closed form and Λ = 0. Clearly F = V = F̂
and E = A is a generalized form by [Sta99, Example I.4.9 (i)]. This is the case of
(Dirichlet) forms as described in [MR92].

Let us recall some useful facts.

As usually, we define for α > 0

Eα(u, v) := E (u, v) + α(u, v)H .

Proposition 2.35. For all α > 0 there exist continuous, linear bijections Wα : V ′ → F
and Ŵα : V ′ → F̂ such that

Eα(Wαf, v) = V ′(f, v)V = Eα(v, Ŵαf)

for all f ∈ V ′, v ∈ V . (Wα)α>0 and (Ŵα)α>0 satisfy the resolvent equation (cf. [Sta99,
Proposition I.3.4]).

Furthermore, there exists a unique C0-resolvent (Gα)α>0 and a unique C0-coresolvent
(Ĝα)α>0 on H (being the restrictions of Wα, Ŵα resp. to H). such that for all α > 0,
f ∈ H and u ∈ V

Gα(H) ⊂ F , Ĝα(H) ⊂ F̂ ,

Eα(Gαf, u) = Eα(u, Ĝαf) = (f, u)H .
(2.17)

Ĝα is the adjoint of Gα and αGα, αĜα are contraction operators. Also, we have for
u ∈ V that

lim
α→∞

αGαu = u

strongly in V and thus in H.

Proof. See [Sta99, Section I.3].

Note that the second line of (2.17) is equivalent with

V ′((Mα − Λ)Gαf, g)V = (f, g)H = V ′((M̂α − Λ̂)Ĝαf, g)V , f ∈ H, g ∈ V ,

where for α > 0 we set Mα : V → V ′, V ′(Mαu, ·)V := Aα(u, ·) and M̂a : V → V ′,

V ′(M̂αu, ·)V := Aα(·, u).

Define approximate forms E (β), β > 0 of E by

E (β)(u, v) = β(u− βGβu, v)H , u, v ∈ H

and set E (β)
α (u, v) = E (β)(u, v) + α(u, v)H .

Proposition 2.36. (i) E (β)(u, v) = E (βGβu, v) for u ∈ H, v ∈ V .
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2.3. Convergence of non-symmetric forms

(ii) E (β)(u, u) = E (βGβu, βGβu) + β‖u− βGβu‖2
H for u ∈ H.

(iii) limβ→∞ E (β)(u, v) = E (u, v) for u ∈ F , v ∈ V .

(iv) If supβ>0 E (β)
1 (u, u) <∞, then u ∈ V .

Proof. For (i)–(iii), see [MR92, Lemma I.2.11] and [Sta98, Proposition 2.7 (iii)].

(iv): Since E (v, v) ≥ A (v, v) for v ∈ F and βGβ is contractive, we have by (ii)

E (β)
1 (u, u) = E (βGβu, βGβu) + β‖u− βGβu‖2

H + ‖u‖2
H

≥ A1(βGβu, βGβu) + β‖u− βGβu‖2
H .

Hence the assumption supβ>0 E (β)
1 (u, u) <∞ implies that

sup
β>0

A1(βGβu, βGβu) <∞, (2.18)

sup
β>0

β‖u− βGβu‖2
H <∞. (2.19)

From (2.19), βGβu → u in H as β → ∞. Combining this and (2.18), we have that
u ∈ V by [MR92, Lemma I.2.12].

Let (Tt)t≥0, (T̂t)t≥0 resp. be the C0-semigroup of contractions, the C0-cosemigroup of

contractions resp. associated with (Gα)α>0, (Ĝα)α>0 resp.

2.3.2. Criteria of convergence

In this section we shall give necessary and sufficient conditions on a sequence of gen-
eralized forms {E n} for the strong convergence of the associated resolvents {Gn

α} and
equivalently the weak convergence of coresolvents {Ĝn

α} (cf. Corollary 2.18). We point
out, that in a natural way we have to introduce a condition on the asymmetry of the
{E n}, which differs from (M1) and (M2), since clearly for symmetric forms all informa-
tion is contained on the diagonal. To this end, much stronger assumptions have to be
stated to obtain Mosco convergence of the symmetric parts {Ã n}.

In order to handle double indexed sequences we need the following Lemma, which is just
an elegant way to apply standard diagonal arguments.

Lemma 2.37. Let X be a metrizable space with some metric d and {xn,m | n,m ∈ N}
a double indexed sequence in X, {xm}m∈N ⊂ X, x ∈ X such that

d− lim
n→+∞

xn,m = xm

and
d− lim

m→+∞
xm = x.
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2. General functional analytic theory

Then there exists a mapping n 7→ m(n) increasing to +∞ so that

d− lim
n→∞

xn,m(n) = x.

Proof. See Appendix A.

Corollary 2.38. Suppose that double sequences {ui,j}i,j∈N ⊂ H , {ai,j}i,j∈N ⊂ R and
u ∈ H, a ∈ R satisfy that

dH − lim
j→∞

dH − lim
i→∞

ui,j = u,

lim
j→∞

lim
i→∞

ai,j = a.

Then there exists a mapping i 7→ {j(i)}, increasing to +∞, so that

dH − lim
i→∞

ui,j(i) = u,

lim
j→∞

ai,j(i) = a.

Proof. Apply Lemma 2.37 to the product space H × R with the (1-product) metric
d1((h1, a1), (h2, a2)) := dH (h1, h2) + |a1 − a2|, h1, h2 ∈ H , a1, a2 ∈ R.

Now we shall finally come to the criteria of convergence. First we define a functional,
which measures the rate of asymmetry of our form E , and is, indeed, an equivalent norm
to ‖ ‖F̂ (cf. Lemma 2.39 below). So let

Θ(u) := sup
‖v‖V =1

E1(v, u) = ‖E1(·, u)‖V ′ , for u ∈ F̂ ,

which is finite. If u ∈ H \ F̂ , we extend Θ to a functional on H with values in R by
setting Θ(u) := +∞.

Lemma 2.39. For u ∈ F̂ , we have

(i) Θ(u) ≤ K‖u‖F̂ ,

(ii) ‖u‖V ≤ Θ(u),

(iii) ‖Λ̂u‖V ′ ≤ (K + 1)Θ(u),

(iv) In particular, ‖ ‖F̂ ∼ Θ( ).

Proof. (i):

Θ(u) ≤ sup
‖v‖V =1

|A1(v, u)|+ sup
‖v‖V =1

∣∣∣ V ′(Λ̂u, v)V

∣∣∣ ≤ K‖u‖V + ‖Λ̂u‖V ′ ≤ K‖u‖F̂ ,

recalling that K ≥ 1.
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2.3. Convergence of non-symmetric forms

(ii):

‖u‖2
V ≤ E1(u, u) = ‖u‖V E1(

u

‖u‖V
, u) ≤ ‖u‖V sup

‖v‖V =1

E1(v, u) = ‖u‖V Θ(u).

(iii): For v ∈ V we have by (ii)

V ′(Λ̂u, v)V = A1(v, u)− E1(v, u)

≤ K‖v‖V ‖u‖V + ‖v‖V Θ(u)

≤ (K + 1)‖v‖V Θ(u).

Hence ‖Λ̂u‖V ′ ≤ (K + 1)Θ(u).

(iv): Obvious by (i)–(iii).

We arrive at the main convergence Theorem of this section. It is a generalization of
[Hin98, Theorem 3.1] by M. Hino. From now on, we consider that we are given forms
{E n}, E resp. on Hn, H resp. The operators, spaces and norms related to E n are
denoted by supplementing a suffix n, such as Gn

α, Θn and Vn. It is to be remarked,
that the sector constants Kn of the A n’s are not necessarily assumed to be uniformly
bounded.

Definition 2.40. Suppose C ⊂ F densely w.r.t. ‖ ‖F . Consider the following condi-
tions:

(F1) If a sequence {un} weakly convergent to u in H satisfies
limn Θn(un) <∞, then u ∈ V .

(F2) For any w ∈ C, any u ∈ V and any sequence {un} weakly convergent to u in H ,
un ∈ Vn, n ∈ N, there exists {wn}, wn ∈ Hn, n ∈ N converging to w strongly in
H such that limn E n(wn, un) = E (w, u).

(F2’) There exists a linear subspace C̃ of C such that C̃ ⊂ F densely w.r.t ‖ ‖F and for
any sequence nk ↑ ∞ and every w ∈ C̃, u ∈ V and any sequence {uk}, uk ∈ Hnk

,
k ∈ N converging weakly to u and satisfying supk Θnk(uk) <∞ one has a sequence
{wk}, wk ∈ Hnk

, k ∈ N converging H -strongly to w with limk E nk(wk, uk) ≤
E (w, u).

(R) {Gn
α} converges to Gα strongly for α > 0.

(CR) {Ĝn
α} converges to Ĝα weakly for α > 0.

Define also (F1a) (resp. (F1b)) by replacing Θn(un) by ‖un‖F̂n
(resp. ‖un‖Vn) in (F1)

and (F2’a) (resp. (F2’b)) by replacing Θnk(uk) by ‖uk‖F̂nk
(resp. ‖uk‖Vnk

) in (F2’).
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We have (F1b) ⇒ (F1) and (F2’b) ⇒ (F2’) by Lemma 2.39 (ii).

Theorem 2.41. Suppose that C ⊂ F densely w.r.t. ‖ ‖F . Then

(F2) ⇒ (F2’),

(F1)(F2’) ⇔ (F1)(F2) ⇔ (R) ⇔ (CR).

Proof. The equivalence between (R) and (CR) follows immediately from Corollary 2.18
(1).

(F2) ⇒ (F2’):
By letting un = 0 for every n in (F2), we know that for each w ∈ C there exists {wn}
converging to w strongly in H such that wn ∈ Vn for every n. Since C is dense in F
and therefore also dense in V , we can find a sequence {w′n} converging to any w ∈ V
with w′n ∈ Vn, n ∈ N by Corollary 2.38. Take an arbitrary sequence nk ↑ ∞ and {uk},
uk ∈ Hnk

, k ∈ N weakly convergent to u ∈ H in H with supk Θnk(uk) < ∞. Then by

Lemma 2.39 (iv) uk ∈ F̂nk
⊂ Vnk

, u ∈ V . Now take u′n weakly convergent to u with
u′n ∈ Vn and u′nk

= uk. Take an arbitrary w ∈ C̃ ⊂ C. Then by the observations above
there exists a sequence {wk}, wk ∈ Vnk

converging strongly to w such that

lim
k

E nk(wk, uk) ≤ lim
n

E n(wn, u
′
n) = E (w, u).

(F1),(F2’) ⇒ (CR):
We follow the argument of Röckner and Zhang in [RZ97]. Choose a sequence {fn} H -
weakly convergent to some f ∈ H. Let α > 0. We shall prove that Ĝn

αfn converges
H -weakly to Ĝαf . It suffices to prove that for any sequence nk ↑ ∞ we can extract a
subsequence {nkl

} such that Ĝ
nkl
α fnkl

converges to Ĝαf weakly in H . Set un := Ĝn
αfn.

Since ‖Ĝn
α‖L (Hn) ≤ α−1 and {fn} is uniformly bounded by Lemma 2.14 (2) one can

extract a subsequence unk
converging H -weakly to some u ∈ H using Lemma 2.14 (1).

Note that for some constant Cα > 0 depending only on α by Cauchy’s inequality and
the uniform boundedness of {fn} and since unk

= Ĝnk
α fnk

∈ F̂nk

sup
k

Θnk(unk
) = sup

k
sup

‖w‖Vnk
=1

E nk
1 (w, unk

)

≤ sup
k

sup
‖w‖Vnk

=1

[
|E nk

α (w, unk
)|+ |1− α||(w, unk

)Hnk
|
]

≤ sup
k

sup
‖w‖Vnk

=1

[
|(fnk

, w)Hnk
|+ |1− α|

α
‖w‖Hnk

‖fnk
‖Hnk

]
≤ Cα sup

k
sup

‖w‖Vnk
=1

‖fnk
‖Hnk

‖w‖Hnk
= Cα sup

k
‖fnk

‖Hnk
<∞

which yields u ∈ V by (F1).
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2.3. Convergence of non-symmetric forms

For any w ∈ C̃, by extracting a subsequence if necessary, we can choose {wk} strongly
convergent to w in H such that wk ∈ Vnk

and

lim
k

E nk(wk, unk
) ≤ E (w, u)

by (F2’). Since E nk
α (wk, unk

) = (wk, fnk
)Hnk

, it follows that

0 = lim
k

[
E nk

α (wk, unk
)− (wk, fnk

)Hnk

]
≤ Eα(w, u)− (w, f)H .

Hence Eα(w, u) ≥ (w, f)H . By substituting −w for w, this becomes an equality. Now
we have by Proposition 2.35, using that C̃ ⊂ C ⊂ F densely and continuously, that for
every w ∈ F

Eα(w, u) = (w, f)H = Eα(w, Ĝαf).

Hence V ′((Mα − Λ)w, u− Ĝαf)V = 0, but (Mα − Λ)(F ) = V ′ by [Sta99, Section I.3],

hence u = Ĝαf .

This yields Ĝn
αfn → Ĝαf weakly in H . Since fn was an arbitrary weakly convergent

sequence, we have Ĝn
α → Ĝα weakly in the sense of convergence of bounded operators.

(R) ⇒ (F1):
Let un → u weakly in H and M := limn Θn(un) < ∞. Choose a sequence {vn}
converging strongly to u in H . From Proposition 2.36 (i),(ii), for α > 0,

α(vn − αGn
αvn, un)Hn + (αGn

αvn, un)Hn

=E n
1 (αGn

αvn, un)

≤Θn(un)‖αGn
αvn‖Vn

≤Θn(un) [E n
1 (αGn

αvn, αG
n
αvn)]1/2

≤Θn(un)E n,(α)
1 (vn, vn)1/2

=Θn(un)
[
α(vn − αGn

αvn, vn)Hn + ‖vn‖2
Hn

]1/2

Taking limn on both sides, we have

E (α)
1 (u, u)− ‖u‖2

H + (αGαu, u)H ≤ME (α)
1 (u, u)1/2.

Hence

E (α)
1 (u, u)1/2 ≤ 1

2

[
M +

√
M2 + 4 (‖u‖2

H − (αGαu, u)H)

]
,

which implies that

sup
α>0

E (α)
1 (u, u) ≤ 1

2

[
M +

√
M2 + 8‖u‖2

H

]
<∞.

From Proposition 2.36 (iv), we obtain that u ∈ V .

37



2. General functional analytic theory

(R) ⇒ (F2):
Let un → u weakly in H , un ∈ Vn, u ∈ V and w ∈ C. Since Φn(w) → w H -strongly,
we have

dH − lim
α→∞

dH − lim
n→∞

αGn
αΦn(w) = w,

and

lim
α→∞

lim
n→∞

E n,(α)(Φn(w), un) = lim
α→∞

lim
n→∞

α(Φn(w)− αGn
αΦn(w), un)Hn

= lim
α→∞

E (α)(w, u) = E (w, u).

Due to Corollary 2.38, we can take a nondecreasing sequence {αn}, αn →∞ such that

dH − lim
n→∞

αnG
n
αn

Φn(w) = w, lim
n→∞

E n,(αn)(Φn(w), un) = E (w, u).

Recall that by Proposition 2.35 Gn
α(H) ⊂ Fn for any α > 0 and n ∈ N. Setting

wn := αnG
n
αn

Φn(w), we hence have wn → w H -strongly and by Proposition 2.36 (i)
that

E n(wn, un) = E n,(αn)(Φn(w), un) → E (w, u)

as n→∞ and (F2) is proved.

Corollary 2.42. Suppose that C ⊂ F densely.

(i) (F1b),(F2’b) ⇒ (R),

(ii) If the sector constants Kn of the A n’s are uniformly bounded, then (F1a),(F2’a)
⇔ (R).

Proof. (i): This is trivial, since clearly (F1b) ⇒ (F1) and (F2’b) ⇒ (F2’) by Lemma
2.39 (ii).

(ii): This is an consequence of Theorem 2.41 and Lemma 2.39.

Definition 2.43. We say that a sequence of generalized forms {E n} converges in the
generalized sense to a generalized form E , if C ⊂ F densely and (F1) and (F2) (or
equivalently (F1) and (F2’)) hold. We shall also use this notion, if (F1a) (or (F1b))
and (F2) (or (F2’a) or (F2’b)) hold, provided the sector constants Kn of the E n’s are
uniformly bounded.

Remark 2.44. According to Theorem 2.21, corresponding statements to (R), (CR) hold
also for the associated semigroups (T n

t )t≥0, n ∈ N, (Tt)t≥0 resp. and the associated

cosemigroups (T̂ n
t )t≥0, n ∈ N, (T̂t)t≥0 resp.
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2.3. Convergence of non-symmetric forms

Now we would like to prove some properties of convergence associated with the above
Theorem. First we want to point out that if C ⊂ F densely, C contains enough
elements to determine the behavior of a sequence E n along particular strongly convergent
sequences, so that (F2) turns out to be not that restrictive in comparison with (M2) as
it might seem. This shall be illustrated by the following Proposition.

Proposition 2.45. Let E n, n ∈ N, E be as in Theorem 2.41 and C ⊂ F densely.
Assume that (F2) holds. Then the following stronger version of (F2) holds:

For any w ∈ F and any un ∈ Vn, n ∈ N, u ∈ V with un → u H -weakly there exists a
sequence {wn}, wn ∈ Hn, n ∈ N, wn → w H -strongly such that

lim
n

E n(wn, un) = E (w, u).

This result also extends to (F2’) in an obvious way.

Proof. Let w ∈ F and un ∈ Vn, n ∈ N, u ∈ V with un → u H -weakly. Then there
exists a sequence {wm} ⊂ C such that wm → w strongly in ‖ ‖F (and therefore in ‖ ‖H).
Now pick by (F2) for every wm a sequence {wm

n } ⊂ H , wm
n ∈ Hn, n ∈ N such that

wm
n → wm H -strongly and

lim
n

E n(wm
n , un) = E (wm, u). (2.20)

Clearly,
lim
m

E (wm, u) = E (w, u).

By Theorem 2.10 and Corollary 2.38 there exists an increasing sequence of natural
numbers m(n) ↑ ∞ with

wm(n)
n → w H -strongly

and
lim

n
E n(wm(n)

n , un) = E (w, u).

The proof is complete.

In the case of coercive closed forms generalized convergence implies an even stronger
version of (F2) than in the above Proposition. More precisely, we have:

Proposition 2.46. Let E n = A n, n ∈ N, E = A be coercive closed forms. Assume
that C ⊂ V densely and for convenience that C ⊂ D(L) (here L is the infinitesimal
generator). Then (F1),(F2) are equivalent with (F1) and the following condition:

(FF2) For every w ∈ D(L) ⊂ V there exists a H -strongly convergent sequence {wn},
wn ∈ Hn, n ∈ N such that

lim
n

E n(wn, un) = E (w, u)

for any {un}, un ∈ Vn, n ∈ N, u ∈ V with un → u H -weakly.
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2. General functional analytic theory

Proof. It is clear that (F1),(FF2) ⇒ (F1),(F2). Let us prove the converse. Assuming
that (F1),(F2) hold, Theorem 2.41 tells us that (R) holds. Take w ∈ D(L) and define
v := (1 − L)w ∈ H. We have Gn

1Ψnv → G1v H -strongly by (R). Set wn := Gn
1Ψnv ∈

D(Ln). We have that

(1− Ln)wn = Ψnv → v = (1− L)w

H -strongly. Hence Lnwn → Lw H -strongly. But for every n ∈ N

E n(wn, un) = (−Lnwn, un)Hn

making sense for every un ∈ Vn.

Now take any un ∈ Vn, n ∈ N, u ∈ V with un → u H -weakly. Then,

lim
n

E n(wn, un) = lim
n

(−Lnwn, un)Hn = (−Lw, u)H = E (w, u)

by strong convergence of Lnwn → Lw.

Dealing with generalized convergence we are interested in the question, whether the
convergence E n → E in the sense of Theorem 2.41 is sufficient for the Mosco- or Γ-
convegence of the symmetric parts Ã n → Ã . Actually, to establish this, much stronger
assumptions on the forms have to be stated; in general we need to assume the sector
constants being uniformly bounded and conditions similar to (F1) and (F2) on the dual

forms Ê n, Ê to hold.

Remark 2.47. It is clear by Theorem 2.29 and Theorem 2.41 that in case of symmetric
forms and provided C ⊂ V densely (F1) and (F2) are just another characterization of
Mosco convergence.

If we compare Mosco convergence and generalized convergence, the main question is:
can we benefit from the fact, that the symmetric parts Ã n of given forms E n converge
Mosco to a symmetric form Ã being the symmetric part of a form E ? As we will
see later, the difficult part is to prove (M1) since (M2) can be obtained easily in the
most applications using Lemma 2.33. Accordingly, assuming Mosco convergence of the
symmetric parts, we end up verifying (F2), as the following Proposition shows.

Proposition 2.48. Let E n, n ∈ N, E be as in Theorem 2.41. Assume that C ⊂ F
densely. If the symmetric parts Ã n, n ∈ N, Ã resp. associated with E n, n ∈ N, E
resp. fulfill (M1), then (F1) holds.

Proof. Let un → u H -weakly with limn Θn(un) <∞. Using Lemma 2.39 (ii) and (M1)

Ã (u, u) ≤ lim
n

Ã n(un, un) ≤ lim
n
‖un‖2

Vn
≤ lim

n
(Θn(un))2 <∞,

which yields u ∈ V .
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2.4. Strong graph limits and generalized forms

Remark 2.49. Obviously, if A n ≡ 0, Vn = Hn, n ∈ N, A ≡ 0, V = H, i.e.,
our generalized forms {E n} depend only on operators (Λn, D(Λn, Hn)) = (Ln, D(Ln)),
n ∈ N (see [Sta99, Remark I.4.10] for details), condition (F1) can be omitted.

Remark 2.50. One can redo all of the steps above, if (A n,Vn), n ∈ N and (A ,V )
are coercive closed forms in a wide sense, that is, for some bound constant λ ∈ R,
independent from n,

(1) (Ãλ,V ) is a non-negative, symmetric, closed form.

(2) (Aλ,V ) satisfies the weak sector condition, i.e., there exists a sector constant K ≥ 1
such that

|Aλ+1(u, v)| ≤ KAλ+1(u, u)
1/2Aλ+1(v, v)

1/2 for all u, v ∈ V .

And similarly for the A n’s (where the sector constants can depend on n but λ not). In
this case the resolvents Gn

α, n ∈ N and Gα are only defined for α > λ. One can easily
verify that all the proofs above apply to this slight generalization.

2.4. Strong graph limits and generalized forms

Definition 2.51. For each n ∈ N let An be a closed linear operator on Hn with dense
linear domain D(An). {An} is said to be convergent in the strong graph sense, if for
each sequence {un}, un ∈ D(An), such that un → 0 ∈ H H -strongly and the H -strong
limit of {Anun} exists, we have that Anun → 0 ∈ H strongly in H .

If {An} converges in the strong graph sense, the following linear operator (A,D(A)) is
well-defined:

D(A) :=
{
u ∈ H | ∃{un}, un ∈ D(An), un → u ∈ H H -strongly,

Anun converges H -strongly
}
,

and for u ∈ D(A)

Au := lim
n
Anun with {un} such that un ∈ D(An), un → u H -strongly

and Anun converges H -strongly.

(A,D(A)) is called strong graph limit (as an operator) of {An} and we say that {An}
converges to A in the strong graph sense.

Definition 2.52. For each n ∈ N let An be a closed linear operator on Hn with dense
linear domain D(An). The strong graph limit (as a linear space) Γ∞ of {An} is defined
to be the set of pairs (u, v) ∈ H ×H such that there exists a sequence of vectors {un},
un ∈ D(An) with un → u and Anun → v strongly in H .
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We immediately obtain: {An} converges to some densely defined closed linear operator
A on H in the strong graph sense, if and only if Γ∞ coincides with the graph Γ(A) :=
{(u,Au) ⊂ H ×H | u ∈ D(A)} of A, that is, Γ∞ = Γ(A).

We remark that the conditions “closed” and “densely defined” can be relaxed, but turn
out to be reasonable in the following considerations.

The following Theorem, which has not been proved in this setting before, ensures that
strong graph convergence is powerful enough to characterize convergence of forms and
resolvents (even in the non-symmetric case). Unfortunately, this notion of convergence
is yet hard to handle, since in many cases the domains of the generators are difficult to
specify explicitly.

Theorem 2.53. Let E n, n ∈ N, E resp. be generalized forms on Hn, n ∈ N, H resp.
Suppose C ⊂ F densely. Denote by (Gn

α)α>0, n ∈ N, (Gα)α>0 resp. the associated C0-
contraction resolvents, by (T n

t )t≥0, n ∈ N, (Tt)t≥0 resp. the associated C0-contraction
semigroups and by An, n ∈ N, A resp. the associated infinitesimal generators. Then the
following statements are equivalent:

(1) Gn
α → Gα strongly for α > 0.

(2) T n
t → Tt strongly for t ≥ 0.

(3) An → A in the strong graph sense.

(4) E n → E in the generalized sense.

Proof. (1) ⇔ (2) follows from Theorem 2.21.

(1) ⇔ (4) follows from Theorem 2.41.

Note that in our setting (0,∞) ⊂ ρ(A) (where ρ(·) denotes the resolvent set) and A is
closed and densely defined. The same holds for An, n ∈ N.

Let us prove (1) ⇒ (3):
Assume that Gn

α → Gα strongly for any α > 0. We would like to prove Γ(A) = Γ∞. Let
u ∈ D(A) and set un := Gn

1Ψn(1− A)u. Then un ∈ D(An) for every n and

‖un −Ψnu‖Hn = ‖Gn
1Ψn(1− A)u−Ψnu‖Hn .

Ψnu→ u and Ψn(1−A)u→ (1−A)u H -strongly and by assumption Gn
1Ψn(1−A)u→

G1(1− A)u = u H -strongly. Thus by Lemma 2.8 un → u H -strongly. Now,

‖Anun −ΨnAu‖Hn

≤‖AnGn
1Ψn(1− A)u−ΨnAu‖Hn

=‖−(1− An)Gn
1Ψn(1− A)u+Gn

1Ψn(1− A)u−ΨnAu‖Hn

≤‖ΨnAu−ΨnAu‖Hn + ‖Gn
1Ψn(1− A)u−Ψnu‖Hn ,
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2.4. Strong graph limits and generalized forms

which clearly tends to 0 as n → ∞. Therefore (u,Au) = limn(un, A
nun) in H × H ,

hence Γ(A) ⊂ Γ∞.

Now let (u, v) ∈ Γ∞. Then there exist un ∈ D(An), n ∈ N, un → u H -strongly and
Anun → v H -strongly. Furthermore (1− An)un → u− v H -strongly and

un = Gn
1 (1− An)un → G1(u− v) =: w ∈ D(A)

by strong convergence of resolvents. But since H is Hausdorff (e.g. by Theorem 2.10),
we must have u = w ∈ D(A). Furthermore,

Au = Aw = AG1(u− v) = −(1− A)G1(u− v) +G1(u− v) = v − u+G1(u− v)︸ ︷︷ ︸
=w=u

= v.

Hence Γ∞ ⊂ Γ(A). The assertion is proved.

Let us now prove (3) ⇒ (1):
Let An → A in the strong graph sense. Let α > 0 and v ∈ H. We have that v = (α−A)u
with u := Gαv ∈ D(A). By assumption there exist un ∈ D(An), un → u H -strongly
and Anun → Au. We would like to apply Lemma 2.20:

‖Gn
αΨnv −ΨnGαv‖Hn

=‖Gn
αΨn(α− A)u−ΨnGα(α− A)u‖Hn

≤‖Gn
αΨn(α− A)u− un‖Hn + ‖un −Ψnu‖Hn

=‖Gn
αΨn(α− A)u−Gn

α(α− An)un‖Hn + ‖un −Ψnu‖Hn

≤ 1

α
‖Ψn(α− A)u− (α− An)un‖Hn + ‖un −Ψnu‖Hn ,

which clearly tends to 0 as n→∞, since (α−An)un → (α−A)u strongly and Ψnu→ u
strongly. The proof is complete.
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3. Examples of Mosco convergence

3.1. Finite dimensional symmetric case

We would like to shortly recall the results of A.V. Kolesnikov from [Kol05a], since the
convergence of elliptic non-symmetric forms can be proved using the Mosco convergence
of symmetric ai,j-forms, in particular, if the considered forms have Mosco-convergent
symmetric parts, we can apply Proposition 2.48.

Let d ≥ 1 and let dx be the Lebesgue measure on Rd and B(Rd) the Borel σ-algebra
of Rd. Let |·| denote the d-dimensional Euclidean norm and 〈·, ·〉 the d-dimensional
Euclidean inner product. Denote by C∞

0 (Rd) the set of all infinitely differentiable con-
tinuous (real valued) functions with compact support.

Assumption 2 (Convergence of speed measures). σn > 0 dx-a.e., σn ∈ L1
loc(dx),

n ∈ N and there exists a function σ such that σ > 0 dx-a.e., σ ∈ L1
loc(R

d; dx) and
{µn = σndx} tends to µ = σdx vaguely, i.e.,

lim
n

∫
Rd

ψ σndx =

∫
Rd

ψ σdx

for every continuous function ψ with compact support.

Let Hn := L2(Rd;µn), n ∈ N, H := L2(Rd;µ), C = C∞
0 (Rd) and Φn the identity

operators on C. Then Hn → H in the sense of Defintion 2.3. As above H =
.⋃

nHn∪̇H.
Note that Φn is well-defined since the measures µn have full support.

Lemma 3.1. Consider the following statements:

(1) fn → f strongly (weakly) in L2(Rd; dx).

(2) fn√
σn
→ f√

σ
strongly (weakly) in H .

Assume that
√
σn →

√
σ weakly in L2

loc(R
d; dx). Then (1) implies (2) for the strong

convergence and (2) implies (1) for the weak convergence. If, in addition,
√
σn →

√
σ

strongly in L2
loc(R

d; dx), then (1) and (2) are equivalent.

Proof. The proof is taken from [Kol05a, Lemma 3.1]. Suppose first that
√
σn →

√
σ

weakly in L2
loc(R

d; dx). Let us prove (1) ⇒ (2) for the strong convergence. Therefore,
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3. Examples of Mosco convergence

let fn → f in L2(Rd; dx). Let us find a sequence ϕn ∈ C∞
0 (Rd) such that ϕn

√
σ → f in

L2(Rd; dx). Then ϕn → f√
σ

in L2(Rd;σdx). Hence

lim
m

lim
n

∫
Rd

(
ϕm − fn√

σn

)2

σndx

= lim
m

lim
n

∫
Rd

(ϕm

√
σn − fn)2dx = lim

m

∫
Rd

(ϕm

√
σ − f)2dx = 0,

by weak convergence of
√
σn →

√
σ in L2

loc(R
d; dx) and Assumption 2.

Let us prove (2) ⇒ (1) for the weak convergence. Therefore, let fn√
σn
→ f√

σ
weakly in

H . Then for every H -strongly convergent sequence un → u we have that

lim
n

∫
Rd

fn√
σn

unσndx =

∫
Rd

f√
σ
u σdx.

Now let vn → v strongly in L2(Rd; dx). Then by the assertion proved before we have
that vn√

σn
→ v√

σ
H -strongly. Clearly,

lim
n

∫
Rd

fnvndx = lim
n

∫
Rd

fn√
σn

vn√
σn

σndx =

∫
Rd

f√
σ

v√
σ
σdx =

∫
Rd

fv dx.

Now suppose that
√
σn →

√
σ strongly in L2

loc(R
d; dx). We would like to prove (2) ⇒

(1) for the strong convergence. Therefore, let fn√
σn
→ f√

σ
strongly in H . Then there

exists a sequence of C∞
0 (Rd)-functions {ϕm} such that ϕm

√
σ → f in L2(Rd; dx) and

lim
m

lim
n

∫
Rd

(
ϕm − fn√

σn

)2

σndx = lim
m

lim
n

∫
Rd

(ϕm

√
σn − fn)

2
dx = 0.

Since limm limn ϕm
√
σn = f (all the limits are L2(Rd; dx)-limits), one can find a subse-

quence nk such that ϕk
√
σnk

tends to f and

lim
k
‖ϕk

√
σnk

− fnk
‖L2(Rd;dx) = 0.

Hence fnk
→ f in L2(Rd; dx). Since we can do the same with every subsequence of {fn},

we get that fn → f in L2(Rd; dx).

Let us prove (1) ⇒ (2) for the weak convergence. Therefore, let fn → f weakly in
L2(Rd; dx). Then for every un → u strongly in L2(Rd; dx) we have

lim
n

∫
Rd

fnundx =

∫
Rd

fu dx.

Now let vn → v strongly in H . By the assertion proved before we have that vn
√
σn →

v
√
σ strongly in L2(Rd; dx). Then

lim
n

∫
Rd

fn√
σn

vnσndx = lim
n

∫
Rd

fnvn

√
σndx =

∫
Rd

fv
√
σdx =

∫
Rd

f√
σ
v σdx.

The proof is complete.
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3.1. Finite dimensional symmetric case

For each n ∈ N consider the following symmetric form:

E n(f, g) =
d∑

i,j=1

∫
Rd

an
i,j(x)

∂f(x)

∂xi

∂g(x)

∂xj

dx, f, g ∈ C∞
0 (Rd).

Here an
i,j, 1 ≤ i, j ≤ d, are Borel locally integrable functions and an

i,j = an
j,i for 1 ≤ i, j ≤

d. We will denote by An the symmetric d×d-matrix (An(x))i,j := an
i,j(x), x ∈ Rd. Then

our forms can be written as

E n(f, g) =

∫
Rd

〈An∇f,∇g〉 dx.

We suppose that the An’s are dx-a.e. positive definite. We denote the elements of the
inverse matrix (An)−1 by (a−1)n

i,j, ((An)−1(x))i,j = (a−1)n
i,j(x), x ∈ Rd.

For an arbitrary Borel function f : Rd → R let us define the set

R(f) :=

{
x

∣∣∣∣ ∃ε > 0,

∫
|x−y|≤ε

dy

|f(y)|
<∞

}
,

where we adopt the convention 1
0

:= +∞. Evidently, R(f) is the largest open set V such
that 1

f
∈ L1

loc(V ; dx). Let R(A) be the largest open set V such that (a−1)i,j ∈ L1
loc(V ; dx)

for 1 ≤ i, j ≤ d and define R(An) similarly.

We say that an arbitrary Borel function f satisfies Hamza’s condition if for dx-a.e.
x ∈ Rd f(x) > 0 implies x ∈ R(f). This is equivalent to dx(Rd \R(f)) = 0.

The following Assumption ensures the closability of (E n, C∞
0 (Rd)) (this is weaker than

the standard Assumption made in [MR92, Section II.2.b)]).

Assumption 3. R(A) ⊂ R(σ), R(An) ⊂ R(σn), dx(Rd \R(An)) = dx(Rd \R(A)) = 0.

Lemma 3.2. The form (E+,D(E+)) defined by

D(E+) =

{
f ∈ L2(Rd;σdx)

∣∣∣∣ f admits weak derivatives ∂if in R(A)

for every i ∈ {1, . . . , d},
d∑

i,j=1

∫
Rd

ai,j(x)
∂f(x)

∂xi

∂f(x)

∂xj

dx <∞

}
,

E+(f, g) =
d∑

i,j=1

∫
Rd

ai,j(x)
∂f(x)

∂xi

∂f(x)

∂xj

dx, f, g ∈ D(E+),

is closed.

Proof. See [Kol05a, Lemma 3.4].
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3. Examples of Mosco convergence

(E+,D(E+)) is the so called “maximal” extension of (E , C∞
0 (Rd)). Let us denote by

D(E0) the completion of C∞
0 (Rd) w.r.t. E 1/2

1 (u) =
(
E (u) + ‖u‖L2(Rd;σdx)

)1/2
. The exten-

sion of (E , C∞
0 (Rd)) to this space, denoted by (E0,D(E0)), is a closed form on L2(Rd;σdx)

and called the “minimal” extension. Let us extend our notation to (E n
0 ,D(E n

0 )) and
(E n

+ ,D(E n
+)) in the obvious way. A.V. Kolesnikov has proved in [Kol05a] that the Mosco

topology is generally not Hausdorff (not even in the one dimensional case), i.e., additional
geometric assumptions have to be stated to identify a unique Mosco limit. Particularly,
we need to assume that the minimal and maxmial extensions coincide.

Theorem 3.3. Let
√
σn →

√
σ weakly in L2

loc(R
d; dx),

sup
n

∫
Ω

dx

σn

<∞, sup
n

∫
Ω

|(a−1)n
i,j|dx <∞, 1 ≤ i, j ≤ d

for every bounded domain Ω ∈ B(Rd) and there exists a d × d matrix A with Borel
locally integrable coefficients, which is symmetric and dx-a.e. positive definite. Assume
that (a−1)i,j ∈ L1

loc(R
d; dx) and

an
i,jdx→ ai,jdx, (a−1)n

i,jdx→ (a−1)i,jdx

vaguely.

Let

E (ϕ, ψ) =

∫
Rd

〈A∇ϕ,∇ψ〉 dx, ϕ, ψ ∈ C∞
0 (Rd).

Suppose that the minimal and maximal extensions of (E , C∞
0 (Rd)) in L2(Rd;σdx) coin-

cide. Then E n
0 → E and E n

+ → E Mosco.

Proof. See [Kol05a, Theorem 1.1].

3.2. Infinite dimensional symmetric case

The following results are mainly based on the work of A.V. Kolesnikov in [Kol06]. We
reduce the general case to the case of a “Gelfand triplet” which shall also be used in the
results on generalized convergence in Chapter 4.2.

Throughout this section we fix a separable real Hilbert space X with inner product
〈 , 〉X and norm ‖ ‖X = 〈 , 〉1/2

X which is densely and continuously embedded into some
separable real Banach space E. With E ′ we denote the topological dual of E and by

E′〈 , 〉E : E ′×E → R the corresponding dualization. Denote by B(E) the Borel σ-field
of E. Identifying X with its dual X ′ we have that

E ′ ⊂ X ′ ≡ X ⊂ E densely and continuously

and E′〈 , 〉E restricted to E ′ × X coincides with 〈 , 〉X . Here E ′ is endowed with the
operator norm ‖ ‖E′ := ‖ ‖L (E,R).
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3.2. Infinite dimensional symmetric case

Define the linear space of cylindrical test functions on E by

FC∞
0 (E) := {f(l1, . . . , lm) | m ∈ N, f ∈ C∞

0 (Rm), l1, . . . , lm ∈ E ′} .

Here C∞
0 (Rm) denotes the set of all infinitely differentiable (real-valued) functions onRm

with compact support and all partial derivatives continuous. Define for u ∈ FC∞
0 (E)

and k ∈ E the following Gâteaux-type derivative

∂u

∂k
(z) :=

d

ds
u(z + sk)

∣∣∣∣
s=0

, z ∈ E.

Observe that if u = f(l1, . . . , lm), then

∂u

∂k
=

m∑
i=1

∂f

∂xi

(l1, . . . , lm) E′〈li, k〉E ∈ FC∞
0 (E).

This shows that for fixed u ∈ FC∞
0 (E) and z ∈ E, h 7→ ∂u

∂h
(z) is a continuous linear

functional on X. Define ∇Xu(z) ∈ X by

〈∇Xu(z), h〉X =
∂u

∂h
(z), h ∈ X. (3.1)

To apply our results on Mosco convergence we fix a sequence {µn} of Borel probability
measures on E and a Borel probability measure µ on E.

Assumption 4. µn converges weakly to µ.

Note that by Prokhorov’s theorem {µn} is tight.

Assumption 5. µ is h-quasi-invariant for every h ∈ X, i.e., µ ◦ T−1
h is absolutely

continuous with respect to µ where Th(z) := z − h.

This implies that suppµ = E.

Now consider following sequence of Hilbert spaces {Hn} = {L2(E;µn)}. Set C :=
FC∞

0 (E) and H := L2(E;µ). Note that C ⊂ H densely by the Hahn-Banach Theorem
and a monotone class argument (cf. [MR92, Section II.3.a)] or [AR90, Remark 3.1]).
Let Φn be the identity operator. It is well-defined since µ has full support. Set H :=
.⋃

nHn∪̇H. {Hn} converges to H by weak convergence of measures.

Now consider a weakly convergent sequence hn → h of vectors from X, i.e.,

〈hn, g〉X → 〈h, g〉X ,

for every g ∈ X. Suppose additionally ‖hn‖X = 1 for every n, ‖h‖X = 1. Fix some
l ∈ E ′ such that 〈l, hn〉X 6= 0 for every n, which exists by the Hahn-Banach Theorem.
Denote by Phn the projection Phn : E → E0 := {x ∈ E | l(x) = 0}

Phn(z) := z − E′〈l, z〉E
〈l, hn〉X

hn, z ∈ E.
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3. Examples of Mosco convergence

It is well known that every probability measure µn has a conditional distribution ρn(x, ·)
on the real line such that letting νn := µn ◦ (Phn)−1 one has following disintegration
formula ∫

E

u(z)µn(dz) =

∫
E0

∫
R

u(x+ shn)ρn(x, ds)νn(dx), (3.2)

(see [DM78]).

Assumption 6. Every µn is hn-quasi invariant and hn → h weakly.

It follows from this Assumption that the ρn(x, ds) have densities w.r.t. the Lebesgue
measure, i.e. ρn(x, ds) = ρn(x+ shn)ds for νn-a.e. x ∈ E0.

Assumption 7. The following sequence of Borel measures

µ̃hn
n :=

ds

ρn(x+ shn)
νn(dx)

is uniformly bounded on all sets of the type EN
0 := {z ∈ E | |l(z)| ≤ N}. That is, the

sequence ∫
E

u(z)dµ̃hn
n :=

∫
E0

∫
R

u(x+ shn)
ds

ρn(x+ shn)
νn(dx)

is bounded for every bounded Borel function u : E → R with support in EN
0 .

In particular, for νn-almost every x (hence, Phn(µn)-a.e.) the function (ρn(·, x))−1 is
locally integrable.

For every hn consider following partial form

D(E hn
µn,0) := FC∞

0 (E),

and

E hn
µn,0(u, v) :=

∫
E

∂u

∂hn

∂v

∂hn

dµn, u, v ∈ FC∞
0 (E).

A sufficient condition for the closability of E hn
µn,0 is that µn admits a logarithmic derivative

along hn, i.e. there exists a measurable function βµn

hn
∈ L2(E;µn) such that∫

E

∂ϕ

∂hn

dµn = −
∫

E

ϕβµn

hn
dµn

for every ϕ ∈ FC∞
0 (E) (cf. [MR92, Section II.3.a)]).

Denote the “minimal closed extension” by (E hn
µ,0 ,D(E hn

µ,0)), which is by definition the

closure of (E hn
µn,0,FC∞

0 (E)) in L2(E;µn). Furthermore, define a “maximal” partial form
by

D(E hn
µn

) :=

{
u ∈ L2(E;µn)

∣∣∣∣ for νn-a.e. x ∈ E0, s 7→ u(x+ shn) has an absolutely

continuous (ds)-version ũx and
∂u

∂hn

:=

(
dũ(x+ shn)

ds

)
∈ L2(E;µn)

}
,

50



3.2. Infinite dimensional symmetric case

and

E hn
µn

(u, v) :=

∫
E

∂u

∂hn

∂v

∂hn

dµn, u, v ∈ D(E hn
µn

).

It follows from the local integrability of (ρn(·, x))−1, that E hn
µn

is closed (cf. [AR90]).

Lemma 3.4. For fixed n set µ := µn, ν := νn, ρ := ρn and h := hn. For the minimal
and maximal partial forms defined as above following statement holds

(E h
µ,0,D(E h

µ,0)) = (E h
µ ,D(E h

µ )).

Proof. See [Kol06, Lemma 3.3]

Now we formulate the main result for the Mosco convergence of partial Dirichlet forms.

Theorem 3.5. Let Assumptions 4-7 hold. Suppose that there exist disintegrations µn =
ρn(x+ shn)ds νn(dx) such that

(1) µn → µ weakly,

(2) νn → ν weakly,

(3) there exists an increasing sequence of numbers {ni}, ni ↑ ∞ such that {1E
ni
0
µ̃hn

n } is
tight and moreover,

1E
ni
0
µ̃hn

n → 1E
ni
0
µ̃h

weakly for every ni as n→∞.

Then E hn
µn

→ E h
µ Mosco.

Proof. See [Kol06, Theorem 3.4].

We shall now deal with the gradient case. For this purpose we fix an orthonormal basis
{ei | i ∈ N} of the separable Hilbert space X. Furthermore we fix a sequence of vectors
hn ∈ X, ‖hn‖X = 1 weakly converging to e1. Now construct a two index sequence {ei

n}
such that

(1) for fixed n every {ei
n | i ∈ N} is an orthonormal basis of X,

(2) for fixed i every {ei
n} converges weakly to ei.

(To do so one can easily check that the following construction has the wanted properties.
Just set

P i ≡ The unique orthogonal projection from X to lin(ei),

and
e1n := P 1(hn), ei

n := P i(hn) + ei, i ≥ 2.)

51



3. Examples of Mosco convergence

Recall that a sum of closed forms is closed (cf. [MR92, Proposition I.3.7]). We will
consider a sequence of forms

Eµn =
∞∑
i=1

E ei
n

µn

with the domain of definition

D(Eµn) =
n⋂

i=1

D(E ei
n

µn
),

which is the “maximal extension” of a gradient form. The “minmal extension” of
(Eµn ,FC∞

0 (E)) denoted by (Eµn,0,D(Eµn,0)) is the closure of (Eµn ,FC∞
0 (E)) in L2(E;µn).

Note that FC∞
0 (E) ⊂ D(Eµn) since

∞∑
i=1

〈
h, ei

n

〉2
X

= ‖h‖X <∞

for every h ∈ X (cf. [MR92, Proof of Proposition II.3.4]).

This type of form coincides with the infinite dimensional Dirichlet integral in the sense
of the gradient introduced in (3.1), since by Parseval’s identity

Eµn(u, v) =
∞∑
i=1

∫
E

∂u

∂ei
n

∂v

∂ei
n

dµn =

∫
E

∞∑
i=1

〈
∇Xu, e

i
n

〉
X

〈
ei

n,∇Xv
〉

X
dµn

=

∫
E

〈∇Xu,∇Xv〉X dµn, u, v ∈ D(Eµn).

Theorem 3.6. Let {µn} and {ei
n} satisfy conditions (1)-(3) of Theorem 3.5 for ev-

ery i. Assume additionally, that µn is ei
n-quasi invariant for every i. Suppose that

(Eµ,0,D(Eµ,0)) = (Eµ,D(Eµ)), i.e., FC∞
0 (E) is dense in D(Eµ) w.r.t. the norm (Eµ)

1/2
1 .

Then Eµn → Eµ Mosco.

Proof. Condition (M1) follows from the fact that (M1) is fulfilled for every sequence of

partial forms {E ei
n

µn }. Let us verify (M2). Since FC∞
0 (E) is dense in (D(Eµ), (Eµ)

1/2
1 ),

Lemma 2.33 implies that it suffices to show that Eµn(f) → Eµ(f) for every f ∈ FC∞
0 (E).

It is clear that

sup
n

∞∑
i=1

〈
h, ei

n

〉2
X

= sup
n
‖h‖X = ‖h‖X <∞ (3.3)

for all h ∈ X. Take f = ϕ(l1, . . . , ld), ϕ ∈ C∞
0 (Rd), l1, . . . , ld ∈ E ′, then

Eµn(f) =
∞∑
i=1

∫
E

d∑
j1,j2=1

∂ϕ

∂xj1

(l1, . . . , ld)
∂ϕ

∂xj2

(l1, . . . , ld)
〈
lj1 , e

i
n

〉
X

〈
lj2 , e

i
n

〉
X
dµn.

The claim follows form the Cauchy’s inequality, weak convergence µn → µ and (3.3).
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3.2. Infinite dimensional symmetric case

3.2.1. Logarithmic derivatives

This Subsection is taken from [Kol06] with slight changes, since it turns out that this
result will be used to prove convergence in the non-symmetric case.

Now consider the same situation as above, but assume only that µn → µ weakly. It is
clear by Prokhorov’s theorem that {µn} is tight. Recall that the well-known fact, that
L2-convergence of the logarithmic derivatives of measures implies strong convergence
of the corresponding semigroups. We fix some h ∈ X such that every µn has the
logarithmic derivative βµn

h ∈ L2(E;µn) along h and consider the sequence of partial
forms {E h

µn
} defined by

E h
µn

(f, g) =

∫
E

∂f

∂h

∂g

∂h
dµn

for f, g ∈ FC∞
0 (E). The condition βµn

h ∈ L2(E;µn) implies the closability of these forms
(in this case h is called well-µn-admissible, see [MR92, Section II.3.a)]). As usually, the
maximal closure of (E h

µn
,FC∞

0 (E)) is considered. It was proved in [RZ92] that FC∞
0 (E)

is dense in (D(E h
µ ), (E h

µ )
1/2
1 ) for every partial form E h

µ if µ admits a logarithmic derivative
along h.

Proposition 3.7. Let supn ‖β
µn

h ‖L2(E;µn) <∞. Then µ possesses a logarithmic deriva-

tive along h and {E h
µn
} Γ-converges to E h

µ . If, in addition, ‖βµn

h ‖L2(E;µn) → ‖βh‖L2(E;µ)

for some βh ∈ L2(E;µ), then E h
µn
→ E h

µ Mosco.

Proof. Condition (M2) resp. (G2) can be verified as in Lemma 2.33. Let us verify
condition (G1). Extract from {βµn

h } an H -weakly convergent subsequence, denoted in
the following again by {βµn

h }, such that βµn

h → βh ∈ L2(E;µ) H -weakly. Then by the
properties of weak convergence in H∫

E

ϕβ dµ = lim
n

∫
E

ϕβµn

h dµn = − lim
n

∫
E

∂ϕ

∂h
dµn = −

∫
E

∂ϕ

∂h
dµ

for every ϕ ∈ FC∞
0 (E). Hence µ has the logarithmic derivative βµ

h := βh ∈ L2(E;µ)
and, moreover, βµn

h → βµ
h H -weakly. Now let fn → f strongly in H with supn E h

µn
(fn) <

∞ (since otherwise (G1) is trivial). W.l.o.g. fn ∈ D(E h
µn

). Let K ⊂ E be a compact
set. Obviously the tightness of measures {µn} and Cauchy’s inequality(∫

E\K

∣∣∣∣∂fn

∂h

∣∣∣∣ dµn

)2

≤ µn(E \K)

∫
E

(
∂fn

∂h

)2

dµn

imply that the sequence of measures {νn} =

{
∂fn

∂h
µn

}
is tight. Extract a weakly conver-

gent sequence (denoted in the following again by {νn}) νn → ν. The following relations

53



3. Examples of Mosco convergence

show that ν is absolutely continuous w.r.t. µ:∫
E

ϕ dν = lim
n

∫
E

ϕ
∂fn

∂h
dµn

= lim
n

[
−
∫

E

∂ϕ

∂h
fndµn −

∫
E

ϕfnβ
µn

h dµn

]
= −

∫
E

∂ϕ

∂h
f dµ−

∫
E

ϕfβµ
hdµ,

ϕ ∈ FC∞
0 (E). We also observe that f admits a weak derivative along h and, moreover,

dν

dµ
=
∂f

∂h
. Hence by Cauchy’s inequality

∫
E

ϕ
∂f

∂h
dµ = lim

n

∫
E

ϕ
∂fn

∂h
dµn ≤

(
lim

n

∫
E

(
∂fn

∂h

)2

dµn

)1/2

·
(∫

E

ϕ2dµ

)1/2

.

Choosing a sequence ϕn → ∂f
∂h

in L2(E;µ) one can easily complete the proof.

It can be easily seen form the proof that the stronger assumption ‖βµn

h ‖L2(E;µn) →
‖βh‖L2(E;µ) implies that βµn

h → βh =: βµ
h H -strongly and (M1) is fulfilled so that

E h
µn
→ E h

µ Mosco.

Remark 3.8. Note that Theorem 3.6 works now in the case of one common orthonormal
basis {ei}, if we assume that each µn, n ∈ N, µ admits a logarithmic derivative along
each ei, i ∈ N denoted by βµn

i and that βµn

i → βµ
i H -strongly. The proof is essentially

the same as above (see also [MR92, Proof of Proposition II.3.4]).
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4. Examples of general convergence

4.1. Finite dimensional ai,j-forms

Let σndx = µn, n ∈ N, σdx = µ as in Chapter 3.1. Let Assumption 2 hold.

Let d ≥ 3. For n ∈ N let an
i,j, b

n
i , d

n
i , c

n ∈ L1
loc(R

d; dx), 1 ≤ i, j ≤ d and define for
u, v ∈ C∞

0 (Rd)

E n(u, v) :=
d∑

i,j=1

∫
an

i,j

∂u

∂xi

∂v

∂xj

dx+
d∑

i=1

∫
bni
∂u

∂xi

v dx

+
d∑

i=1

∫
dn

i u
∂v

∂xi

dx+

∫
cnuv dx.

Then for each n (E n, C∞
0 (Rd)) is a densely defined bilinear form on L2(Rd;σndx). Set

ãn
i,j := 1

2
(an

i,j + an
j,i), ǎ

n
i,j := 1

2
(an

i,j − an
j,i), b

n := (bn1 , . . . , b
n
d) and dn := (dn

1 , . . . , d
n
d).

Theorem 4.1. Suppose that

(i) we have
d∑

i,j=1

ãn
i,jξiξj ≥ |ξ|2

dx-a.e. for all ξ = (ξ1, . . . , ξd) ∈ Rd and for every n,

(ii) for some uniform constant M > 0 we have |ǎn
i,j| ≤ M for all 1 ≤ i, j ≤ d and for

every n,

(iii) |bn + dn| ∈ Ld
loc(R

d; dx), cn ∈ Ld/2
loc (Rd; dx) for every n,

(iv) |bn − dn| ∈ Ld(Rd; dx) or |bn−dn|√
σn

∈ L∞(Rd; dx) for every n,

(v) for some uniform α0 > 0 we have (cn + α0σn)dx−
∑d

i=1
∂dn

i

∂xi
is a positive measure

on B(Rd) for every n,

(vi) bn = βn + γn such that |βn|, |γn| ∈ L1
loc(R

d; dx) and (cn + α0σn)dx−
∑d

i=1
∂γn

i

∂xi
is a

positive measure on B(Rd) and |βn| ∈ Ld(Rd; dx) or βn
√

σn
∈ L∞(Rd; dx) for every

n.
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4. Examples of general convergence

Then there exists α ∈ (0,∞) (independent of n) such that each (E n
α , C

∞
0 (Rd)) is closable

on L2(Rd;σndx) and its closure (E n
α ,D(E n

α )) is a semi-Dirichlet form.

Proof. See the proof of [RS95, Theorem 1.2] and note the fact that all conditions above
are taken uniformly in n.

Let ai,j, bi, di, c ∈ L1
loc(R

d; dx), 1 ≤ i, j ≤ d satisfy the conditions of Theorem 4.1. For
u, v ∈ C∞

0 (Rd) define

E (u, v) :=
d∑

i,j=1

∫
ai,j

∂u

∂xi

∂v

∂xj

dx+
d∑

i=1

∫
bi
∂u

∂xi

v dx

+
d∑

i=1

∫
diu

∂v

∂xi

dx+

∫
cuv dx.

By Theorem 4.1 there exists a closed extension of (Eα, C
∞
0 (Rd)) on L2(Rd;σdx) which

we shall denote by (Eα,D(Eα)), for some α ∈ (0,∞) as in Theorem 4.1.

Theorem 4.2. Let for each 1 ≤ i, j ≤ d

an
i,j√
σn

→ ai,j√
σ
,

∂an
i,j

∂xj

(
√
σn)−1 → ∂ai,j

∂xj

(
√
σ)−1 strongly in L2

loc(R
d; dx),

bni√
σn

→ bi√
σ

strongly in L2
loc(R

d; dx),

dn
i√
σn

→ di√
σ
,

∂dn
i

∂xi

(
√
σn)−1 → ∂di

∂xi

(
√
σ)−1 strongly in L2

loc(R
d; dx),

cn
√
σn

→ c√
σ

strongly in L2
loc(R

d; dx),

where the derivatives are taken in the distributional sense.

Assume that
√
σn →

√
σ weakly in L2

loc(R
d; dx).

Also assume that C∞
0 (Rd) is dense in D(Eα) w.r.t. Ẽ 1/2

α+1.

Then E n
α → Eα in the generalized sense, more precisely, conditions (F1b) and (F2) of

Definition 2.40 hold.

Before we prove Theorem 4.2, we shall consider two Lemmas, which will firstly provide a
useful observation about “local” strong and weak convergence, and secondly illuminate
the underlying structure of approximation of our forms.

Lemma 4.3. Let ϕ ∈ C∞
0 (Rd), un ∈ L2(Rd;σndx), n ∈ N, u ∈ L2(Rd;σdx). If un → u

strongly (weakly) in H , then ϕun → ϕu strongly (weakly) in H , too.
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4.1. Finite dimensional ai,j-forms

Proof. Note that clearly ϕ ∈ L2(Rd;σndx) for any n and ϕ ∈ L2(Rd;σdx) (with corre-
sponding dx-classes respected), if ϕ ∈ C∞

0 (Rd). Let {ϕm} ⊂ C∞
0 (Rd) such that ϕm → u

in L2(Rd;σdx) and

lim
m

lim
n
‖ϕm − un‖L2(Rd;σndx) = 0.

Then by Hölder inequality

‖ϕmϕ− uϕ‖L2(Rd;σdx) ≤ ‖ϕ‖L∞(Rd;dx)‖ϕm − u‖L2(Rd;σdx) → 0

as m→∞ and

‖ϕmϕ− unϕ‖L2(Rd;σndx) ≤ ‖ϕ‖L∞(Rd;dx)‖ϕm − un‖L2(Rd;σndx) → 0

as m,n → ∞. The case of weak convergence follows from Lemma 2.13 since ϕ · ψ ∈
C∞

0 (Rd) for any ϕ, ψ ∈ C∞
0 (Rd).

Lemma 4.4. Consider (Eα,D(Eα)) as above. Suppose that the conditions of Theorem
4.2 hold. Then (L2(Rd;σndx), Ẽ n

α ) → (L2(Rd;σdx), Ẽα) in the sense of Definition 2.30.

Proof. (1) is trivial. (2) follows from the assumption. For (3) just observe that for ϕ ∈
C∞

0 (Rd), ϕ
√
σn → ϕ

√
σ weakly in L2

loc(R
d; dx) by Lemma 3.1 and the assumption that

√
σn →

√
σ weakly in L2

loc(R
d; dx). Also note that

ãn
i,j√
σn
→ ãi,j√

σn
strongly in L2

loc(R
d; dx)

for 1 ≤ i, j ≤ d by linearity. Then clearly (using the product rule)

Ẽ n
α (ϕ, ϕ) =

d∑
i,j=1

∫
ãn

i,j

∂ϕ

∂xi

∂ϕ

∂xj

dx+
1

2

d∑
i=1

∫
bni
∂ϕ2

∂xi

dx+
1

2

d∑
i=1

∫
dn

i

∂ϕ2

∂xi

dx

+

∫
cnϕ2dx+ α

∫
ϕ2σndx

=
d∑

i,j=1

∫
ãn

i,j√
σn

∂ϕ

∂xi

∂ϕ

∂xj

√
σndx+

1

2

d∑
i=1

∫
bni√
σn

∂ϕ2

∂xi

√
σndx

+
1

2

d∑
i=1

∫
dn

i√
σn

∂ϕ2

∂xi

√
σndx+

∫
cn
√
σn

ϕ2√σndx+ α

∫
ϕ2σndx

−→
n→∞

d∑
i,j=1

∫
ãi,j√
σ

∂ϕ

∂xi

∂ϕ

∂xj

√
σdx+

1

2

d∑
i=1

∫
bi√
σ

∂ϕ2

∂xi

√
σdx

+
1

2

d∑
i=1

∫
di√
σ

∂ϕ2

∂xi

√
σdx+

∫
c√
σ
ϕ2
√
σdx+ α

∫
ϕ2σdx

=Ẽα(ϕ, ϕ).

The proof is complete.
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Proof of Theorem 4.2. First note that we are in the situation of Remark 2.50 and that
the sector constantsKn of the E n’s are uniformly bounded (since all closability conditions
are taken uniformly in n) and thus Corollary 2.42 applies. Let us first prove (F1b).
Let un ∈ Hn, u ∈ H, un → u H -weakly with limn(Ẽ n

α+1)
1/2(un) < ∞. By Lemma

4.4 we can consider the sequence of Hilbert spaces HẼα
=

.⋃
n∈ND(Ẽ n

α )∪̇D(Ẽα). We

can extract a subsequence {unk
} converging weakly in HẼα

to some ũ ∈ D(Ẽα) with

limk Ẽ nk
α+1(unk

) ≥ Ẽα+1(ũ). But clearly ũ = u, thus we obtain (F1b) (here we have used
Lemma 2.14).

Now we would like to prove (F2). Let ϕ ∈ C∞
0 (Rd). We choose Φn(ϕ) = ϕ → ϕ as

the desired H -strongly convergent sequence. Then, if un ∈ D(E n
α ), u ∈ D(Eα), un → u

H -weakly with supn(Ẽ n
α+1)

1/2(un) < ∞, we have by the assumption that
√
σn →

√
σ

weakly in L2
loc(R

d; dx) and Lemma 3.1 that un
√
σn → u

√
σ weakly in L2(Rd; dx) and

(“locally”) via partial integration:

E n
α (ϕ, un) =

d∑
i,j=1

∫
an

i,j

∂ϕ

∂xi

∂un

∂xj

dx+
d∑

i=1

∫
bni
∂ϕ

∂xi

undx

+
d∑

i=1

∫
dn

i ϕ
∂un

∂xi

dx+

∫
cnϕundx+ α

∫
ϕunσndx

=−
d∑

i,j=1

[∫
∂an

i,j

∂xj

∂ϕ

∂xi

undx+

∫
an

i,j

∂2ϕ

xixj

undx

]
+

d∑
i=1

∫
bni
∂ϕ

∂xi

undx

−
d∑

i=1

[∫
∂dn

i

∂xi

ϕundx+

∫
dn

i

∂ϕ

xi

undx

]
+

∫
cnϕundx+ α

∫
ϕunσndx

=−
d∑

i,j=1

[∫
∂an

i,j

∂xj

(
√
σn)−1 ∂ϕ

∂xi

un

√
σndx+

∫
an

i,j√
σn

∂2ϕ

xixj

un

√
σndx

]

+
d∑

i=1

∫
bni√
σn

∂ϕ

∂xi

un

√
σndx

−
d∑

i=1

[∫
∂dn

i

∂xi

(
√
σn)−1ϕun

√
σndx+

∫
dn

i√
σn

∂ϕ

xi

un

√
σndx

]
+

∫
cn
√
σn

ϕun

√
σndx+ α

∫
ϕunσndx

−→
n→∞

=−
d∑

i,j=1

[∫
∂ai,j

∂xj

(
√
σ)−1 ∂ϕ

∂xi

u
√
σdx+

∫
ai,j√
σ

∂2ϕ

xixj

u
√
σdx

]

+
d∑

i=1

∫
bi√
σ

∂ϕ

∂xi

u
√
σdx−

d∑
i=1

[∫
∂di

∂xi

(
√
σ)−1ϕu

√
σdx+

∫
di√
σ

∂ϕ

xi

u
√
σdx

]
+

∫
c√
σ
ϕu
√
σdx+ α

∫
ϕu σdx
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4.2. Infinite dimensional ai,j-forms

=−
d∑

i,j=1

[∫
∂ai,j

∂xj

∂ϕ

∂xi

u dx+

∫
ai,j

∂2ϕ

xixj

u dx

]
+

d∑
i=1

∫
bi
∂ϕ

∂xi

u dx

−
d∑

i=1

[∫
∂di

∂xi

ϕu dx+

∫
di
∂ϕ

xi

u dx

]
+

∫
cϕu dx+ α

∫
ϕu σdx

=
d∑

i,j=1

∫
ai,j

∂ϕ

∂xi

∂u

∂xj

dx+
d∑

i=1

∫
bi
∂ϕ

∂xi

u dx

+
d∑

i=1

∫
diϕ

∂u

∂xi

dx+

∫
cϕu dx+ α

∫
ϕu σdx

=Eα(ϕ, u)

The proof is complete.

4.2. Infinite dimensional ai,j-forms

Let E,X, {µn}, µ be as in Chapter 3.2, i.e.,

E ′ ⊂ X ′ ≡ X ⊂ E densely and continuously.

Considering this situation we would like to make the slight change that we consider
FC∞

b (E) instead of FC∞
0 (E). FC∞

b (E) is defined to be the linear space

FC∞
b (E) := {f(l1, . . . , lm) | m ∈ N, f ∈ C∞

b (Rm), l1, . . . , lm ∈ E ′},

where C∞
b (Rm) denotes the space of all infinitely differentiable continuous and bounded

(real-valued) functions on Rm with all partial derivatives bounded. This does not af-
fect the general setting, since this choice is standard. Nevertheless note that we need
FC∞

0 (E) functions for the results of A.V. Kolesnikov in [Kol06]. Let Assumptions 4
and 5 hold. Then Hn := L2(E;µn) → L2(E;µ) =: H in the sense of convergent Hilbert
spaces (here we set C := FC∞

b (E)). As usually set H :=
.⋃

nHn∪̇H.

Assume that there exists an orthonormal basis K0 := {ei | i ∈ N} of X whose elements
are well-µn-admissible for each n ∈ N (see Chapter 3.2.1). Denote by βµn

i the logarithmic
derivative of µn along ei, n ∈ N, i ∈ N.

Then next Lemma is analog to Lemma 4.3.

Lemma 4.5. Let ϕ ∈ FC∞
b (E), un ∈ L2(E;µn), n ∈ N, u ∈ L2(E;µ). If un → u

strongly (weakly) in H , then ϕun → ϕu strongly (weakly) in H , too.

Proof. Note that clearly ϕ ∈ L2(E;µn) for any n and ϕ ∈ L2(E;µ) (with corresponding
L2-classes respected), if ϕ ∈ FC∞

b (E). Let {ϕm} ⊂ FC∞
b (E) such that ϕm → u in

L2(E;µ) and
lim
m

lim
n
‖ϕm − un‖L2(E;µn) = 0.
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4. Examples of general convergence

Then by Hölder inequality

‖ϕmϕ− uϕ‖L2(E;µ) ≤ ‖ϕ‖L∞(E;µ)‖ϕm − u‖L2(E;µ) → 0

as m→∞ and

‖ϕmϕ− unϕ‖L2(E;µn) ≤ ‖ϕ‖L∞(E;µn)‖ϕm − un‖L2(E;µn) → 0

as m,n → ∞ (note that supn‖ϕ‖L∞(E;µn) = supn ess sup
(µn)
z∈Eϕ(z) < ∞). The case of

weak convergence follows from Lemma 2.13 since ϕ · ψ ∈ FC∞
b (E) for any ϕ, ψ ∈

FC∞
b (E).

Fix n ∈ N. Let A(n) := (a
(n)
i,j )i,j∈N, where each a

(n)
i,j , i, j ∈ N is a B(E)-measurable

function on E. For each z ∈ E define a linear operator on X by

A(n)(z)h :=
∞∑
i=1

∞∑
j=1

a
(n)
i,j (z) 〈h, ej〉X ei, h ∈ X.

Assume that
∑∞

i,j=1|a
(n)
i,j |(z) < ∞, z ∈ E, so that each A(n)(z) is a bounded (even

trace class) operator. Assume that z 7→
〈
A(n)(z)h1, h2

〉
X

is B(E)-measurable for all
h1, h2 ∈ X. Furthermore, assume that there exists a uniform ellipticity constant c > 0
not depending on n with

〈
A(n)(z)h, h

〉
X

=
∞∑
i=1

∞∑
j=1

a
(n)
i,j (z) 〈h, ei〉X 〈h, ej〉X ≥ c‖h‖2

X (4.1)

for all h ∈ X.

Set Ã(n) := 1
2
(A(n) + Â(n)), Ǎ(n) := 1

2
(A(n) − Â(n)) where Â(n)(z) denotes the adjoint of

A(n)(z), z ∈ E. One easily observes that Ã and Ǎ resp. can be constructed as in (4.1)

with ã
(n)
i,j := 1

2
(a

(n)
i,j + a

(n)
j,i ) and ǎ

(n)
i,j := 1

2
(a

(n)
i,j − a

(n)
j,i ) resp. Assume that ‖Ã(n)‖L (X) ∈

L1(E;µn), ‖Ǎ(n)‖L (X) ∈ L∞(E;µn).

Let c(n) ∈ L∞(E;µn) and b(n), d(n) ∈ L∞(E → X;µn) such that∫
E

(〈
b(n),∇Xu

〉
X

+ c(n)u
)
dµn ≥ 0,∫

E

(〈
d(n),∇Xu

〉
X

+ c(n)u
)
dµn ≥ 0

for all u ∈ FC∞
b (E), u ≥ 0.

60



4.2. Infinite dimensional ai,j-forms

Define for n ∈ N, u, v ∈ FC∞
b (E)

E n(u, v) =

∫
E

〈
A(n)(z)∇Xu(z),∇Xv(z)

〉
X
µn(dz)

+

∫
E

〈
b(n)(z),∇Xu(z)

〉
X
v(z)µn(dz)

+

∫
E

u(z)
〈
d(n)(z),∇Xv(z)

〉
X
µn(dz)

+

∫
E

c(n)(z)u(z)v(z)µn(dz).

Then for n ∈ N each (E n,FC∞
b (E)) is a densely defined positive bilinear form on

L2(E;µn) which is closable and whose closure (E n,D(E n)) is a Dirichlet form. Each E n

has a sector constant bounded by

Kn := sup
z∈E

[
‖Ǎ(n)(z)‖L (X) ∨ ‖d(n)(z)− b(n)(z)‖X

]
by the results of [MR92, Section II.3.e)] (and also fulfills the (semi-)Dirichlet property).

Define

Qn(u, v) :=

∫
E

〈∇Xu(z),∇Xv(z)〉X µn(dz), u, v ∈ FC∞
b (E).

Since each ei, i ∈ N is well-µn-admissible, (Qn,FC∞
b (E)) is closable and its closure

(Qn,D(Qn)) is a symmetric Dirichlet form (cf. [MR92, Sections II.3.a) and II.3.b)]. Let
us define (Q,D(Q)) in the same way.

For each n ∈ N, i, j ∈ N set b
(n)
i :=

〈
b(n), ei

〉
X

, d
(n)
i :=

〈
d(n), ei

〉
X

and assume that

a
(n)
i,j , b

(n)
i , d

(n)
i , c(n) ∈ L2(E;µn).

Theorem 4.6. First assume that the sector constants of the E n’s are uniformly bounded,
i.e., supnKn <∞.

Then suppose that for i, j ∈ N there are given ai,j, bi, di, c ∈ L2(E;µ) such that

a
(n)
i,j → ai,j H -strongly,

b
(n)
i → bi H -strongly,

d
(n)
i → di H -strongly,

c(n) → c H -strongly,

for i, j ∈ N and that the limiting coefficients fulfill the same conditions as above.

Assume also that for i ∈ N there exists a βi ∈ L2(E;µ) such that

‖βµn

i ‖L2(E;µn) → ‖βi‖L2(E;µ).
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4. Examples of general convergence

Also assume that there exists a uniform constant c0 > 0 such that

c0Q
n
1 (u, u) ≤ Ẽ n

1 (u, u)

for every u ∈ D(E n) ⊂ D(Qn), n ∈ N.

Assume that (E ,FC∞
b (E)) defined as follows

E (u, v) :=
∞∑

i,j=1

∫
E

ai,j
∂u

∂ei

∂v

∂ej

dµ+
∞∑
i=1

∫
E

bi
∂u

∂ei

v dµ

+
∞∑
i=1

∫
E

udi
∂v

∂ei

dµ+

∫
E

cuv dµ, u, v ∈ FC∞
b (E),

is closable with closure (E ,D(E )) and that FC∞
b (E) is dense in D(E ) w.r.t. Ẽ 1/2

1 .

Then E n → E in the generalized sense, in particular, (F1b) and (F2’b) hold and
(E ,D(E )) is a (semi-)Dirichlet form.

Lemma 4.7. Let the conditions of Theorem 4.6 hold. Then (L2(E;µn), Ẽ n) → (L2(E;µ), Ẽ )
in the sense of Definition 2.30.

Proof. (1) is trivial. (2) is a condition on E . To prove (3) let ϕ ∈ FC∞
b (E). Then

clearly

Ẽ n(ϕ, ϕ) =
∞∑

i,j=1

∫
E

ã
(n)
i,j

∂ϕ

∂ei

∂ϕ

∂ej

dµn +
1

2

∞∑
i=1

∫
E

b
(n)
i

∂ϕ2

∂ei

dµn

+
1

2

∞∑
i=1

∫
E

d
(n)
i

∂ϕ2

∂ei

dµn +

∫
E

c(n)ϕ2dµn

−→
n→∞

∞∑
i,j=1

∫
E

ãi,j
∂ϕ

∂ei

∂ϕ

∂ej

dµ+
1

2

∞∑
i=1

∫
E

bi
∂ϕ2

∂ei

dµ

+
1

2

∞∑
i=1

∫
E

di
∂ϕ2

∂ei

dµ+

∫
E

cϕ2dµ

=Ẽ (ϕ, ϕ),

where we have used Lemma 4.5 and the product rule for Gâteaux derivatives. Note
that all sums are finite by the above conditions on the coefficients (cf. [MR92, Section
II.3.a)]).

Proof of Theorem 4.6. We would first like to prove (F2’b). Note that by assumption the
sector constants Kn are uniformly bounded. Set C̃ := C = FC∞

b (E). By assumption

C ⊂ D(E ) densely w.r.t. Ẽ 1/2
1 . Let nk ∈ N, nk ↑ ∞, nk+1 > nk. Let uk ∈ L2(E;µnk

), u ∈
D(E ) such that uk → uH -weakly and supk(Ẽ

nk
1 )1/2(uk) <∞. W.l.o.g uk ∈ D(E nk). By
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4.2. Infinite dimensional ai,j-forms

c0Q
n
1 (u, u) ≤ E n

1 (u, u) for each u ∈ D(E n) ⊂ D(Qn) we have that supk(Q
nk
1 )1/2(uk) <∞.

Clearly each uk admits a weak derivative in each direction ei denoted by ∂uk

∂ei
. Hence by

the proof of Proposition 3.7 and Remark 3.8 Qn → Q Mosco (since a subsequence of
βµn

i converges H -strongly to βµ
i := βi being the logarithmic derivative of µ in direction

ei) and we can extract a subsequence {ukl
}, ukl

∈ D(E nkl ) such that ukl
→ u H -weakly

and u admits a weak derivative in each direction ei denoted by ∂u
∂ei

such that
∂ukl

∂ei
→ ∂u

∂ei

weakly in H . Clearly for ϕ ∈ FC∞
b (E) by Lemma 4.5

E nkl (ϕ, ukl
) =

∞∑
i,j=1

∫
E

a
(nkl

)

i,j

∂ϕ

∂ei

∂ukl

∂ej

dµnkl
+

∞∑
i=1

∫
E

b
(nkl

)

i

∂ϕ

∂ei

ukl
dµnkl

+
∞∑
i=1

∫
E

d
(nkl

)

i ϕ
∂ukl

∂ei

dµnkl
+

∫
E

c(nkl
)ϕukl

dµnkl

−→
l→∞

∞∑
i,j=1

∫
E

ai,j
∂ϕ

∂ei

∂u

∂ej

dµ+
∞∑
i=1

∫
E

bi
∂ϕ

∂ei

u dµ

+
∞∑
i=1

∫
E

diϕ
∂u

∂ei

dµ+

∫
E

cϕu dµ

=E (ϕ, u).

Since this is the limit of a subsequence we immediately get

lim
k

E nk(ϕ, uk) ≤ E (ϕ, u).

(F2’b) is proved.

To prove (F1b) let un ∈ L2(E;µn), u ∈ L2(E;µ), un → uH -weakly with limn(Ẽ n
1 )1/2(un) <

∞. By Lemma 4.7 we can consider the sequence of Hilbert spaces HẼ =
.⋃

n∈ND(Ẽ n)∪̇D(Ẽ ).

We can extract a subsequence {unk
} converging weakly in HẼ to some ũ ∈ D(Ẽ ) with

limk Ẽ nk
1 (unk

) ≥ Ẽ1(ũ) (here we have used Lemma 2.14). But clearly ũ = u, thus we
obtain (F1b).

The proof is complete.
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5. Applications to stochastics

5.1. Convergence of laws

Let E be an infinite dimensional separable complete metric space (i.e., a Polish space)
resp. a locally compact space if finite dimensional. Define FC∞

b (E) as in the previous
Chapter. Denote by Bb(E) the set of all bounded Borel-measurable (real-valued) func-
tions on E and by Cb(E) the set of all bounded and continuous (real-valued) functions
on E.

Let µ be a Borel probability measure on the Borel σ-algebra B(E) of E. Let

M = (Ω,M , (Xt)t≥0, (Pz)z∈E)

be a right process with lifetime ζ ≡ +∞ (i.e., the process is conservative). Define a
probability measure P on (Ω,M ) by

P(Γ) :=

∫
E

Pz(Γ)µ(dz), Γ ∈ M .

Let J := {t1, . . . , tk} ⊂ [0,∞), 0 ≤ t1 ≤ · · · ≤ tk, k ∈ N. The finite dimensional
distribution PJ of P on (EJ ,B(EJ)) is defined by

PJ(A) := P((Xt1 , . . . , Xtk) ∈ A), A ∈ B(EJ).

Let mn, n ∈ N, m resp. be fully supported Borel measures on E such that mn → m
weakly (resp. vaguely if E is locally compact). Then

L2(E;mn) =: Hn → H := L2(E;m)

in the sense of convergent Hilbert spaces, where C := FC∞
b (E) ⊂ L2(E;m) is dense

(see e.g. [MR92, Section II.3.a)]). As usually set H :=
.⋃

nHn∪̇H. (If E is locally
compact, we take C := C∞

0 (E)).

Assume that for every n ∈ N there exists a conservative right process

M(n) = (Ω,M , (X
(n)
t )t≥0, (P

(n)
z )z∈E)

on a common measure space (Ω,M ) and with common state space E. Define P(n),
P(n),J , similarly w.r.t. some Borel probability measure µn, n ∈ N on B(E).
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5. Applications to stochastics

Assumption 8. (1) µn → µ weakly.

(2) Each µn, n ∈ N, µ resp. is absolutely continuous w.r.t. mn, n ∈ N, m resp. with
positive densities hn, n ∈ N, h resp.

(3) hn ∈ L2(E;mn), n ∈ N, h ∈ L2(E;m) resp. and supn‖hn‖L2(E;mn) <∞.

Clearly by weak convergence,

lim
n

∫
E

ϕhn dmn = lim
n

∫
E

ϕ dµn =

∫
E

ϕ dµ =

∫
E

ϕh dm

for any ϕ ∈ FC∞
b (E) ⊂ Cb(E). Hence we get by Lemma 2.13 that hn → h weakly in

H . (The argument is similar in the finite dimensional case with vague convergence and
C = C∞

0 (E) ⊂ C0(E)).

Assumption 9. (1) {P(n)}n∈N is tight.

(2) The (common) path space Ω of the M(n)’s is Polish (provided the processes are
constructed canonically).

(1) can be verified in many cases with help of the so called Lyons-Zheng decomposition
(cf. [FOT94], [LZ93], [LZ94], [LZ96], [RZ96] and [Tak89]). For (2) we can use the so
called Skorokhod metric, since our considered processes are P(n)-a.s. right continuous.

Theorem 5.1. Let M(n), n ∈ N, M resp. be right processes as above associated with
(generalized) Dirichlet forms E (n), n ∈ N, E resp. on L2(E;mn), n ∈ N, L2(E;m)

resp. Denote by (T
(n)
t )t≥0, n ∈ N, (Tt)t≥0 resp. the associated L2-semigroups. Let

Assumptions 8 and 9 hold. If T
(n)
t → Tt strongly in H for any t ≥ 0, then P(n) → P

weakly.

Proof. Let J = {t1, . . . , tk}, 0 ≤ t1 ≤ · · · ≤ tk, k ∈ N be a subset of [0,∞). De-
note by pt(·, dx), t ≥ 0 the transition semigroup of (Xt)t≥0. Let FC∞

b (EJ) 3 g(x) =
g1(x1) · · · gk(xk), gi ∈ FC∞

b (E), 1 ≤ i ≤ k. Then∫
g dPJ =

∫
g1(Xt1) · · · gk(Xtk)dP

=

∫∫
g1(Xt1) · · · gk(Xtk)dPz µ(dz)

=

∫ ∫
· · ·
∫
g1(x1)pt1(z, dx1)g2(x2)pt2−t1(x1, dx2) · · ·

· · · gk(xk)ptk−tk−1
(xk−1, dxk)µ(dz)

=

∫
pt1(g1pt2−t1(g2 · · · ptk−tk−1

gk · · · ))(z)µ(dz).
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5.1. Convergence of laws

ptf is a m-version of Ttf for every f ∈ Bb(E) ∩ L2(E;m). Then clearly

ptk−1−tk−2
(gk−1ptk−tk−1

gk)

is a m-version of
Ttk−1−tk−2

(gk−1Ttk−tk−1
gk)

since gk−1ptk−tk−1
gk is bounded and contained in L2-class of gk−1Ttk−tk−1

gk. By an in-
duction argument

pt1(g1pt2−t1(g2 · · · ptk−tk−1
gk · · · ))

is a m-version of
Tt1(g1Tt2−t1(g2 · · ·Ttk−tk−1

gk · · · )).
A similar statement holds for every n ∈ N. Since hn → h H -weakly as a consequence
of Assumption 8 and T

(n)
t → Tt, t ≥ 0 strongly in the sense of Definition 2.15 we get

lim
n

∫
g dP(n),J

= lim
n

∫
T

(n)
t1 (g1T

(n)
t2−t1(g2 · · ·T (n)

tk−tk−1
gk · · · ))dµn

= lim
n

∫
T

(n)
t1 (g1T

(n)
t2−t1(g2 · · ·T (n)

tk−tk−1
gk · · · ))hn dmn

=

∫
Tt1(g1Tt2−t1(g2 · · ·Ttk−tk−1

gk · · · ))h dm

=

∫
Tt1(g1Tt2−t1(g2 · · ·Ttk−tk−1

gk · · · ))dµ

by an induction argument, since

T
(n)
tk−tk−1

gk → Ttk−tk−1
gk

H -strongly by strong convergence of semigroups and

gk−1T
(n)
tk−tk−1

gk → gk−1Ttk−tk−1
gk

H -strongly by Lemma 4.5 (Lemma 4.3 resp.).

Hence we obtain

lim
n

∫
g dP(n),J =

∫
g dPJ

for every g ∈ P := lin{g | g(x) = g1(x1) · · · gk(xk), gi ∈ FC∞
b (E), 1 ≤ i ≤ k}.

Note that Assumption 9 (1) claims the tightness of {P(n)}. Now assume that P(n) 6→ P

weakly. Then by Prokhorov’s Theorem (which can be applied by Assumption 9 (2))
there exists a subsequence {P(nk)} of {P(n)} which weakly converges to some probability
measure P1 on (Ω,M ), P1 6= P. But

lim
n

∫
f dP(n),J =

∫
f dPJ
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for every f ∈ P. On the other hand, by weak convergence P(nk) → P1 we have

lim
k

∫
f dP(nk),J =

∫
f dPJ

1

for every f ∈ Cb(E
J), J as above. Clearly∫

f dPJ
1 =

∫
f dPJ

for every f ∈ P. We would like to show that σ(P) = B(EJ). We follow an argument
found in [MR92, Chapter IV.4.b)]. Therefore note that by the Hahn-Banach Theorem
(cf. [RS72, Theorem III.5]) {f | f(x) = sin l1(x1) · · · sin lk(xk), li ∈ E ′, 1 ≤ i ≤ k, x =
(x1, . . . , xk) ∈ EJ} separates the points of EJ , i.e.,

(EJ × EJ) \ d =
⋃

li∈E′

1≤i≤k

(sin l1 · · · sin lk, sin l1 · · · sin lk)−1((R×R) \ d′)

where d, d′ denotes the diagonal in EJ × EJ , R × R resp. Since EJ × EJ is strongly
Lindelöf as a separable metric space the above open cover of (EJ × EJ) \ d has a
countable subcover, i.e., there exist lin ∈ E ′, 1 ≤ i ≤ k, n ∈ N, such that K :=
{sin l1n · · · sin lkn | n ∈ N} separates the points of EJ . Now by [Sch73, Lemma 18, p.
108] it follows that σ(P) = σ(K) = σ((EJ)′) = B(EJ). Clearly P is an algebra. Now
by monotone class arguments (by setting

H0 :=

{
f

∣∣∣∣ f ∈ Bb(E
J) such that

∫
f dPJ

1 =

∫
f dPJ

}
as our monotone vector space) we get that∫

f dPJ
1 =

∫
f dPJ

for every f ∈ Bb(E
J), J as above. Since the finite dimensional distributions of the

process determine the probability measure P1 uniquely, we get P1 = P on (Ω,M ),
which creates a contradiction. Thus P(n) → P weakly.

Remark 5.2. If we had assumed instead, that hn → h H -strongly, which in our case
would have followed from ‖hn‖L2(E;mn) → ‖h‖L2(E;m) by Lemma 2.12, weak convergence

of semigroups T
(n)
t → Tt, t ≥ 0 would be sufficient for the same result (using Lemma

4.5). This completes the above result in terms of Theorem 2.41, which grants the weak
convergence of co-semigroups and thus we get a sufficiently strong type of convergence
of the dual processes M̂(n), n ∈ N to M̂.
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A. Remaining proofs from Chapter 2

In this chapter we want to repeat some of the proofs from [KS03]. Some proofs might
also be taken from [Kol05a] or [Kol06]. Some of the proofs have been rewritten for this
paper, some even completely redone. All proofs that cannot be found in this form in
literature are left to read already in Chapter 2.

Please note that we still use the convention H := H∞, Φn := Φ∞,n and C := C∞.

Proof of Lemma 2.7. (1): For the “if”-part assume that ‖un‖Hn → 0. Set ϕm = 0 ∈ C
for every m ∈ N. Then

lim
m

lim
n
‖un − Φn(0)‖Hn = lim

m
lim

n
‖un‖Hn = 0,

hence clearly un → 0 H -strongly.

For the “only if”-part assume that un → 0 ∈ H strongly in H . There exists a
sequence {ϕm} ⊂ C with ϕm → 0 in H and

lim
m

lim
n
‖un − Φn(ϕm)‖Hn = 0.

Clearly,

lim
n
‖un‖Hn ≤ lim

n
‖un − Φn(ϕm)‖Hn + lim

n
‖Φn(ϕm)‖Hn → 0

as m→∞.

(2): Obvious.

(3): Let un ∈ Hn, n ∈ N, u ∈ H such that un → u H -strongly. Choose {ϕm} ⊂ C with
limm‖ϕm − u‖H = 0 and limm limn‖Φn(ϕm)− un‖Hn = 0. Evidently,

|‖un‖Hn − ‖u‖H | ≤ ‖un − Φn(ϕm)‖Hn + |‖Φn(ϕm)‖Hn − ‖u‖H |.

The first term tends to zero as m,n→∞. Taking n→∞ in the second term, one
obtains

|‖ϕm‖H − ‖u‖H | ≤ ‖ϕm − u‖H ,

which tends to 0 as m→∞.
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A. Remaining proofs from Chapter 2

(4): Let {ũm} ⊂ C with ũm → u in H and {ṽm} ⊂ C with ṽm → v in H. Then by
Cauchy’s inequality

|(un, vn)Hn − (u, v)H |
= |(un − Φn(ũm), vn)Hn + (Φn(ũm), vn − Φn(ṽm))Hn + (Φn(ũm),Φn(ṽm))Hn − (u, v)H |

≤ ‖vn‖Hn‖un − Φn(ũm)‖Hn + ‖Φn(ũm)‖Hn‖vn − Φn(ṽm)‖Hn

+ |(Φn(ũm),Φn(ṽm))Hn − (u, v)H | . (A.1)

By (3) {‖vn‖Hn} is uniformly bounded in n (and in m) as clearly is {‖Φn(ũm)‖Hn},
too. So taking the limit m,n → ∞ the third line of (A.1) tends to 0. But by the
polarization identity and linearity of each Φn

(Φn(ũm),Φn(ṽm))Hn =
1

4

[
‖Φn(ũm) + Φn(ṽm)‖2

Hn
− ‖Φn(ũm)− Φn(ṽm)‖2

Hn

]
−→ 1

4

[
‖u+ v‖2

H − ‖u− v‖2
H

]
= (u, v)H

as m,n→∞, thus the fourth line of (A.1) tends to 0 as well.

Proof of Lemma 2.12. The “only if”-part follows from Lemma 2.7 (3) and (4) combined
with the fact that Φn(ϕ) → ϕ strongly for every ϕ ∈ C.

To prove the “if”-part, let ϕm → u in H, {ϕm} ⊂ C.

lim
m

lim
n
‖un − Φn(ϕm)‖Hn = lim

m
lim

n

∣∣‖un‖2
Hn
− 2(un,Φn(ϕm))Hn + ‖Φn(ϕm)‖2

Hn

∣∣1/2

= lim
m

∣∣‖u‖2
H − 2(u, ϕm)H + ‖ϕm‖2

H

∣∣1/2
= lim

m
‖u− ϕm‖H = 0.

Proof of Lemma 2.13. The “only if” part follows from the fact that Φn(ϕ) → ϕ strongly.

To prove the “if” part, let {un}, u as in the assertion and (un,Φn(ϕ))Hn → (u, ϕ)H for
all ϕ ∈ C. Take vn → v strongly in H . By strong convergence there exists a sequence
{ϕm}, ϕm ∈ C with ‖ϕm − v‖H → 0. We have to prove (un, vn)Hn → (u, v)H . By
Cauchy’s inequality one obtains

|(un, vn)Hn − (u, v)H |
≤ |(un, vn − Φn(ϕm))Hn|+ |(un,Φn(ϕm))Hn − (u, v)H |
≤‖un‖Hn‖vn − Φn(ϕm)‖Hn + |(un,Φn(ϕm)Hn − (u, v)H | .

{‖un‖Hn} is uniformly bounded in n by assumption, ‖vn − Φn(ϕm)‖Hn tends to zero
as m,n → ∞ by strong convergence. Furthermore, by assumption, (un,Φn(ϕm))Hn →
(u, ϕm)H as n→∞, so the last expression yields by Cauchy’s inequality

|(u, ϕm)H − (u, v)H | = |(u, ϕm − v)H | ≤ ‖u‖H‖v − ϕm‖H → 0

as m→∞.
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Proof of Lemma 2.14. (1): Pick a complete orthonormal basis {ek} of H. By uniform
boundedness of {un} we can assume that

lim
n

(un,Ψn(e1))Hn =: a1 ∈ R

exists. Similarly,
lim

n
(un,Ψn(ek))Hn =: ak ∈ R.

By a diagonal argument we can find a common subsequence nl ↑ +∞ such that

lim
l

(unl
,Ψnl

(ek))Hnl
= ak

for every k ∈ N.

Fix N ∈ N. Let L N
n := lin{Ψn(ek) | k = 1, . . . , N} ⊂ Hn and PL N

n
: Hn → L N

n

be the orthogonal projection on the (finite-dimensional) linear subspace L N
n of Hn.

{Ψn(ek) | k = 1, . . . , N} clearly is an orthonormal basis of L N
n (recalling that the

Ψn’s are unitary operators). Clearly for every n ∈ N,

PL N
n

(un) =
N∑

k=1

(un,Ψn(ek))HnΨn(ek),

and therefore (using the orthonormality of the Ψn(ek)’s),

N∑
k=1

|ak|2 = lim
l

N∑
k=1

∣∣(unl
,Ψnl

(ek))Hnl

∣∣2 ≤ lim
n
‖PL N

n
(un)‖2

Hn
≤ lim

n
‖un‖2

Hn
<∞

for any N ∈ N. This gives us the existence of

u :=
∞∑

k=1

akek ∈ H.

Let ϕ ∈
⋃

N≥1 lin{ek | k = 1, . . . , N} =: C0 ⊂ H. It suffices to prove that

lim
l

(unl
,Ψnl

(ϕ))Hnl
= (u, ϕ)H

for every such ϕ, noting that C0 ⊂ H is dense.

So, let ϕ =
∑N

k=1(ϕ, ek)Hek (i.e., ϕ depends only on the first N coordinates). Then,

(u, ϕ)H =
N∑

k=1

ak(ϕ, ek)H

= lim
l

N∑
k=1

(unl
,Ψnl

(ek))Hnl
(Ψnl

(ek),Ψnl
(ϕ))Hnl

= lim
l

(PL N
nl

(unl
),Ψnl

(ϕ))Hnl

= lim
l

(unl
,Ψnl

(ϕ))Hnl
.
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A. Remaining proofs from Chapter 2

(2): Suppose supn‖un‖Hn = ∞. Then there exists a subsequence {unk
} of {un} such

that ‖unk
‖Hnk

≥ k. Setting

vk :=
1

k
· unk

‖unk
‖Hnk

,

one has ‖vk‖Hnk
= 1/k → 0 and hence by Lemma 2.7 (1) vk → 0 in H , which

implies (unk
, vk)Hnk

→ (u, 0)H = 0. On the other hand,

(unk
, vk)Hnk

=
1

k
‖unk

‖Hnk
≥ 1.

This is a contradiction and thus we obtain supn‖un‖Hn <∞.

Let {vn} be a sequence with vn ∈ Hn which strongly converges to u (which exists
by Corollary 2.11). Then, (un, vn)Hn → (u, u)H . Hence,

0 ≤ lim
n
‖un − vn‖2

Hn

= lim
n

(‖un‖2
Hn
− 2(un, vn)Hn + ‖vn‖2

Hn
)

= lim
n
‖un‖2

Hn
− ‖u‖2

H .

This completes the proof of the first assertion. The second follows from Lemma 2.7
(3) and Lemma 2.12.

(3): The “only if”-part is trivial. We prove the “if” part. The assumption implies
that un → u weakly. Setting vn := un and v := u in the assumption, we have
‖un‖Hn → ‖u‖H , which proves the assertion by statement (2) of this Lemma.

Proof of Lemma 2.17. (1): For any ε > 0 there is a unit vector u ∈ H such that
‖Bu‖H > ‖B‖L (H) − ε. Let un ∈ Hn be strongly converging to u. Note that
‖un‖Hn → 1. Since Bn → B strongly, we have ‖Bnun‖Hn → ‖Bu‖H and therefore,

lim
n
‖Bn‖L (Hn) ≥ lim

n

‖Bnun‖Hn

‖un‖Hn

= ‖Bu‖H > ‖B‖L (H) − ε,

which gives the desired statement.

(2): There is a sequence of unit vectors un ∈ Hn such that |‖Bn‖L (Hn)−‖Bnun‖Hn| → 0.
Replacing with a subsequence, we assume that un weakly converges to a vector
u ∈ H with ‖u‖H ≤ 1. Since Bnun → Bu strongly by the assumption, we have

‖B‖L (H) ≥ ‖Bu‖H = lim
n
‖Bnun‖Hn = lim

n
‖Bn‖L (Hn),

which together with (1) completes the proof.
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Proof of Lemma 2.19. Note that the compactness of B is equivalent to that of B̂. Let
{um} ⊂ H, be a sequence of vectors in H weakly converging to a vector u ∈ H. It
suffices to prove that B̂um → B̂u H-strongly. We easily see that B̂um → B̂u H-weakly.
For each m ∈ N, there is a sequence um,n with um,n ∈ Hn such that limn um,n = um H -

strongly. Since B̂n → B̂ strongly, we have limn B̂num,n = B̂um H -strongly. A diagonal
argument yields (see Corollary 2.37) that there is a sequence of natural numbers nm ↑ ∞
such that

lim
m
um,nm = u H -weakly, (A.2)

lim
m
|‖B̂nmum,nm‖Hnm

− ‖B̂um‖H | = 0. (A.3)

The compact convergence B̂n → B̂ and (A.2) together show that limm B̂nmum,nm = B̂u

H -strongly. Hence, by (A.3), ‖B̂um‖H → ‖B̂u‖H and so B̂um → B̂u H-strongly. This
completes the proof.

Proof of Theorem 2.29. The proof uses only our notions of convergence and basic facts
about symmetric closed forms, which can be found e.g. in [MR92] or [FOT94], in
particular, if we refer to Proposition 2.36 (which is stated after this Theorem), we shall
remark that the proof does not depend on the progress of this paper and can be found
in [MR92, Chapter I.2]. We also use Lemma 2.37, whose proof is self-contained and can
be found later in this Appendix.

(2) ⇔ (3) is a special case of Theorem 2.21.

Let us prove (1) ⇒ (2). Let α > 0, {un}, un ∈ Hn, un → u ∈ H strongly. Define
zn := Gn

αun, z := Gαu. The vector zn is characterized as the unique minimizer of
v 7→ E n(v, v) + α(v, v)Hn − 2(un, v)Hn over Hn (cf. [MR92, Proof of Theorem I.2.6] and
also [MR92, Theorem I.2.8]). Since supn‖Gn

α‖L (Hn) ≤ α−1, we can extract a subsequence
of {zn} by Lemma 2.14 (1), still denoted by {zn}, which converges weakly to some z̃ ∈ H.
For an arbitrary given v ∈ H by condition (M2) we can find a sequence {vn}, vn ∈ Hn,
vn → v strongly such that limn E n(vn, vn) = E (v, v). Since for every n,

E n(zn, zn) + α(zn, zn)Hn − 2(un, zn)Hn ≤ E n(vn, vn) + α(vn, vn)Hn − 2(un, vn)Hn , (A.4)

by taking condition (M1), Lemma 2.7 (3) and Lemma 2.14 (2) into account, we find in
the limit

E (z̃, z̃) + α(z̃, z̃)H − 2(u, z̃)H ≤ E (v, v) + α(v, v)H − 2(u, v)H .

Therefore z̃ = Gαu. By the uniqueness of such z̃ it proves that zn → z weakly. We now
prove that (zn, zn)Hn → (z, z)H . By (M2) we choose {vn}, vn ∈ Hn, vn → z strongly
such that limn E n(vn, vn) = E (z, z), therefore, by rewriting (A.4) as

E n(zn, zn) + α
∥∥∥zn −

un

α

∥∥∥2

Hn

≤ E n(vn, vn) + α
∥∥∥vn −

un

α

∥∥∥2

Hn
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we get in the limit again by condition (M1) and Lemma 2.7 (3)

lim
n

∥∥∥zn −
un

α

∥∥∥2

Hn

≤
∥∥∥z − u

α

∥∥∥2

H
,

hence
∥∥zn − un

α

∥∥2

Hn
→
∥∥z − u

α

∥∥2

H
, and this together with Lemma 2.7 (3) and Lemma

2.14 (2) concludes the proof.

Let us now prove (2) ⇒ (1). Suppose Gn
α converges strongly to Gα for every α > 0. We

first want to prove (M1). For α > 0, n ∈ N define approximate forms

E n,(α)(u, v) := α(u− αGn
αu, v)Hn , u, v ∈ Hn

(cf. Proposition 2.36 and [MR92, Chapter I.2]). Now let {vn}, vn ∈ Hn, vn → u ∈ H
weakly. By the strong convergence of Gn

α we have

lim
n

E n,(α)(un, un) = E (α)(u, u)

for every un → u strongly. First observe that for every n, α > 0,

E n,(α)(vn, vn)− E n,(α)(un, un)− 2E n,(α)(un, vn − un)

= E n,(α)(vn, vn) + E n,(α)(un, un)− 2E n,(α)(un, vn)

= E n,(α)(un − vn, un − vn) ≥ 0.

So for every n, α > 0,

E n(vn, vn) ≥ E n,(α)(vn, vn) ≥ E n,(α)(un, un) + 2E n,(α)(un, vn − un).

It is easy to see that vn − un → 0 weakly, thus, by strong convergence of {Gn
α} we get

2E n,(α)(un, vn − un) = 2α(un − αGn
αun, vn − un)Hn → 0. Taking limn we get for every

α > 0
lim

n
E (vn, vn) ≥ E (α)(u, u).

Since this holds for any α > 0, we conclude

lim
n

E (vn, vn) ≥ E (u, u).

(M1) is proved.
To prove (M2) let un → u strongly. By strong convergence of {Gn

α} we have

E (u, u) = lim
α→∞

lim
n

E n,(α)(un, un)

and
lim

α→∞
lim

n
αGn

αun = u.

By Lemma 2.38 (for H is metrizable) pick a sequence of natural numbers αn ↑ ∞ with

E (u, u) = lim
n

E n,(αn)(un, un) and lim
n
αnG

n
αn
un = u.
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Set wn := αnG
n
αn
un. Observe that wn → u stongly. Using Proposition 2.36 (ii) we get

E n,(αn)(un, un) = E n(wn, wn) + αn‖un − wn‖2
Hn

≥ E n(wn, wn)

for every n. Taking limn and using (M1) proves the assertion.

Proof of Lemma 2.37. The proof is taken from [Att84, Lemma 1.15 and Corollary 1.18].
First, let {an,m} ⊂ R, n ∈ N, m ∈ N be a double indexed sequence. We will prove that
there exists a mapping n 7→ m(n) increasing to +∞, such that

lim
n→+∞

an,m(n) > lim
m→+∞

lim
n→+∞

an,m. (A.5)

Let am := limn→+∞ an,m and a := limm→+∞ am. If a = −∞, there is nothing to prove.
So, assume a > −∞ and take (ãp)p∈N a sequence of real numbers defined as follows:
If a < +∞, take ãp := a− 2−p, if a = +∞, take ãp := p.
By definition of a, there exists an increasing sequence (mp)p∈N, mp ↑ +∞ such that

am > ãp for all m ≥ mp.

This can be condensed in

am > (a− 2−p) ∧ p for all m ≥ mp.

In the same way, there exists an increasing sequence (np)p∈N, np ↑ +∞ such that

an,mp > (amp − 2−p) ∧ p for all n ≥ np.

Set m(n) := mp if np ≤ n < np+1 and verify that (A.5) is satisfied: when np ≤ n < np+1,
we get by the above

an,m(n) > (amp − 2−p) ∧ p > (((a− 2−p) ∧ p)− 2−p) ∧ p.

Thus, for all n ≥ np

an,m(n) > (((a− 2−p) ∧ p)− 2−p) ∧ p.

It follows that

lim
n→+∞

an,m(n) > (((a− 2−p) ∧ p)− 2−p) ∧ p.

This being true for any p ∈ N, using the fact that for any a ∈ R,

(((a− 2−p) ∧ p)− 2−p) ∧ p

increases to a as p goes to +∞, we get:

lim
n→+∞

an,m(n) > a = lim
m→+∞

lim
n→+∞

an,m.
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A. Remaining proofs from Chapter 2

This proves our first assertion. Clearly, replacing an,m by −an,m we obtain

lim
n→+∞

an,m(n) < lim
m→+∞

lim
n→+∞

an,m. (A.6)

Now let us prove the Lemma. Therefore, let {xn,m}, {xm}, x as above. Set an,m :=
d(xn,m, x) ⊂ R. By the above there exists an increasing map n 7→ m(n) such that (A.6)
holds. By definition of an,m,

lim
n→+∞

an,m = lim
n→+∞

d(xn,m, x) = d(xm, x)

and
lim

m→+∞
lim

n→+∞
an,m = lim

m→+∞
d(xm, x) = 0.

So,
lim

n→+∞
d(xn,m(n), x) = 0,

which proves the assertion.
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