Daniel Altemeier
Department of Mathematics
Bielefeld University

Stochastik 2-Exercises 1

Handover date: Friday, Apr 15th, 10:00
Please put your solutions into the mailbox 200 which belongs to the head of the tutorials, Ms. Katharina von der Lühe. The mailbox can be found in the copy-room V3-128. Before the insertion of the solution please check that the sheets are ordered correctly and tacked. Write down your name in a legible handwriting on the the first sheet of your solution.

Exercise 1.I:

Consider $\left(Y_{n}\right)_{n \in \mathbb{N}}$ to be i.i.d. equally distributed random variables on the probability space $(\Omega, \mathbb{P})^{\otimes \infty}=\left(\Omega^{\infty}, \mathbb{P}^{\otimes \infty}\right)$ with $Y(\Omega)=\{1,2\}$. Define the (random) process $X=$ $\left(X_{n}\right)_{n \in \mathbb{N}}$ by

$$
X_{n}(\omega):=2 Y_{n}(\omega)+Y_{n+1}(\omega) \quad \text { for all } \omega \in \Omega^{\infty} \text { and } n \in \mathbb{N}
$$

Show, that X is a Markovian Chain and specify the transition probabilities of X.

Exercise 1.II: (maximum of the symmetric random walk)
Let $\left(Y_{n}\right)_{n \in \mathbb{N}}$ i.i.d. random variables on some probability space (Ω, \mathbb{P}), equally distributed on $\{-1,1\}$ and consider the partial sums

$$
S_{n}(\omega):=\sum_{i=1}^{n} Y_{i}(\omega) \text { for } n \in \mathbb{N}
$$

(Note, that this $\left(S_{n}\right)_{n \in \mathbb{N}}$ is indeed the classical case of symmetric random walk)
Now, denote by $\left(X_{n}\right)_{n \in \mathbb{N}}$ the running maximum of $\left(S_{n}\right)_{n \in \mathbb{N}}$, i.e.

$$
X_{n}:=\max \left\{S_{i} \mid i \leq n\right\} \text { for } n \in \mathbb{N}
$$

Is $X=\left(X_{n}\right)_{n \in \mathbb{N}}$ a Markovian Chain? Prove your answer.

Exercise 1.III:

The transition probabilities of a Markovian Chain with state space $\left\{S_{1}, \ldots, S_{7}\right\}$ are represented by the following stochastic matrix

$$
P=\left(\begin{array}{ccccccc}
0 & 0 & \frac{1}{3} & 0 & \frac{1}{2} & \frac{1}{6} & 0 \\
0 & 0 & 0 & \frac{2}{5} & 0 & 0 & \frac{3}{5} \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{2}{3} & 0 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & \frac{1}{4} & 0 & \frac{3}{4} & 0 & 0 & 0
\end{array}\right)
$$

(a) Draw the transition graph, i.e. a graph for which there is a 1-1-correspondence between nodes of the graphs and states of the Markovian Chain. Furthermore draw in directed edges between nodes whereever there is positive probability for a transition between the corresponding states. Also write down the transition probabilities at the edges.
(b) Let the transition probabilities of a process X be given by the stochastic matrix P, and assume that $X_{0}=\delta_{S_{1}}(\cdot)$ for all $\omega \in \Omega$. Give the probability distribution of the random variable X_{2}, use a computer to figure out the distributions of X_{10}, X_{100} and X_{1000}.

Exercise 1.IV:

Figure 1:

Find the stochastic matrix that corresponds to the above transition graph and give the distribution of X_{1}, if we assume that X_{0} is the equal distribution on $\{A, B, C, D\}$. Again use your computer to find the (approximative) distributions of X_{10}, X_{100} and X_{1000}.

