Daniel Altemeier
Department of Mathematics
Bielefeld University

Stochastik 2-Exercises 2 2nd version

Handover date: Thursday, Apr 21st, 12:00

Please put your solutions into the mailbox 200 which belongs to the head of the tutorials, Ms. Katharina von der Lühe. The mailbox can be found in the copy-room V3-128. Before the insertion of the solution please check that the sheets are ordered correctly and tacked. Write down your name in a legible handwriting on the the first sheet of your solution.

Exercise 2.I:

Consider a Markov Chain $\left(X_{n}\right)_{n \in \mathbb{N}}$ with finite countable state-space I and specified by some transition matrix $P=\left(p_{i, j}\right)_{i, j \in I}$.
(a) Show that: If $f_{i i}>0 \forall i \in I$, then ' kns ' is an equivalence-relation on I
(b) Prove Proposition A.III.8: If $i \rightsquigarrow j$, then

$$
\text { State } i \text { is recurrent } \Rightarrow \text { state } j \text { is recurrent. }
$$

Exercise 2.II:

Consider the following transition matrix P that corresponds to some Markov-Chain $\left(X_{n}\right)_{n \in \mathbb{N}}$, let $\left\{S_{1}, \ldots, S_{5}\right\}$ be the state-space.

$$
P:=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 2 / 3 & 0 & 0 \\
0 & 1 / 3 & 0 & 2 / 3 & 0 \\
0 & 0 & 1 / 3 & 0 & 2 / 3 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(a) Draw the corresponding transition graph and note, that one can interpret the chain as asymmetric random walk with absorbing boundary.
(b) Find the probability, that the process X is absorbed in state S_{1}, if we assume to start in S_{2}.

Exercise 2.III:

Consider some diploid plant genome containing the alleles a and A. A typical mean of breeding plants is the autogamic reproduction. We consider our initial plant to exhibit the allele-combination $A a$. Assume that inheritance chooses randomly (twice) one single allele from the current combination and there is only one offspring per generation. Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ denote the current allele-combination (within the allele-combination the order of alleles does not matter).
(a) Draw the transition graph, give all closed classes of the process.
(b) Compute explicitely all the n-step transition probabilities $p_{i, i}^{(n)}$ for all $i, j \in\{A A, A a, a a\}$ and all $n \in \mathbb{N}$. Which states are recurrent, which are transient?

Exercise 2.IV:

Consider the symmetric 2-dimensional random walk $X=\left(X_{n}\right)_{n \in \mathbb{N}}$ on \mathbb{Z}^{2} with $X_{0}=$ $0=(0,0)$. Use the following instructions to prove that every state $z \in \mathbb{Z}$ is recurrent.
(step 1) Give a precise definition of what symmetric 2-dimensional random walk on \mathbb{Z}^{2} with $X_{0}=0$ means.
(step 2) Denote $X_{n}=\left(X_{n}^{(1)}, X_{n}^{(2)}\right), n \in \mathbb{N}$ and show that the sum $S(n):=X_{n}^{(1)}+$ $X_{n}^{(2)}, n \in \mathbb{N}$ and the difference $D(n):=X_{n}^{(1)}-X_{n}^{(2)}, n \in \mathbb{N}$ are each a symmetric 1-dimensional random walk on \mathbb{Z} with start in 0 .
(step 3) Show that S_{n} and D_{n} are independent for all $n \in \mathbb{N}$.
(step 4) Use that $\left\{X_{n}=0=(0,0)\right\}$ is equivalent to $\left\{S_{n}=0\right\} \cap\left\{D_{n}=0\right\}$, then use the results from the lecture (see Proposition A.III.) to estimate $p_{00}^{(n)}$ of X.
(step 5) Deduce that X is recurrent

