Daniel Altemeier
Department of Mathematics
Bielefeld University

Stochastik 2-Exercises 3

Handover date: Friday, Apr 29th, 10:00
Please put your solutions into the mailbox 200 which belongs to the head of the tutorials, Ms. Katharina von der Lühe. The mailbox can be found in the copy-room V3-128. Before the insertion of the solution please check that the sheets are ordered correctly and tacked. Write down your name in a legible handwriting on the the first sheet of your solution.

Exercise 3.I:

Consider $\left(X_{n}\right)_{n \in \mathbb{N}}$ as Markov Chain with transition matrix

$$
P=\left(\begin{array}{cccccc}
1 / 2 & 0 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 2 / 3 & 0 & 1 / 3 \\
0 & 1 / 8 & 0 & 3 / 4 & 1 / 8 & 0
\end{array}\right),
$$

let $X_{0}=0$. Decide for all states if they are recurrent or transient, make use of the theorems from the lecture, do NOT compute anything.

Exercise 3.II - 1st part:

Consider the symmetric 2-dimensional random walk $X=\left(X_{n}\right)_{n \in \mathbb{N}}$ on \mathbb{Z}^{2} with $X_{0}=$ $0=(0,0)$. Use the following instructions to prove that every state $z \in \mathbb{Z}^{2}$ is recurrent.
(step 1) Use: The transition probability is an equal distribution on the all states that have distant 1 in ' $p=2$ '-norm, i.e.

$$
\forall i, j \in \mathbb{Z}^{2}: \quad p_{i j}:= \begin{cases}1 / 4 & , \text { if }\|i-j\|_{2}=1 \\ 0 & , \text { else } .\end{cases}
$$

together with $X_{0}=0$ the Markovian Chain is totally characterized.
(step 2) Denote $X_{n}=\left(X_{n}^{(1)}, X_{n}^{(2)}\right), n \in \mathbb{N}$ and show that the sum $S(n):=X_{n}^{(1)}+$ $X_{n}^{(2)}, n \in \mathbb{N}$ and the difference $D(n):=X_{n}^{(1)}-X_{n}^{(2)}, n \in \mathbb{N}$ are each a symmetric 1 -dimensional random walk on \mathbb{Z} with start in 0 .
(step 3) Show that S_{n} and D_{n} are independent for all $n \in \mathbb{N}$.
(step 4) Use that $\left\{X_{n}=0=(0,0)\right\}$ is equivalent to $\left\{S_{n}=0\right\} \cap\left\{D_{n}=0\right\}$, then use the results from the lecture (see Proposition A.III.9) to estimate $p_{00}^{(n)}$ of X.
(step 5) Deduce that X is recurrent.

Exercise 3.II 2nd part:

Consider now the symmetric 3 -dimensional random walk $X=\left(X_{n}\right)_{n \in \mathbb{N}}$ on \mathbb{Z}^{3} with $X_{0}=0=(0,0,0)$. Again following the below instructions to show that in this case every $z \in \mathbb{Z}^{3}$ is transient.
(step 1) Give a precise definition of what symmetric random walk on \mathbb{Z}^{3} with $X_{0}=0$ means.
(step 2) For arbitrary $i \in I$, choose w.l.o.g. ${ }^{1} i=0$, the process can only return to 0 in an even number of steps and, the numbers of steps 'up' and 'down' must coincide (say i each), just like the ones 'north' and 'south' (say j each), and the ones 'west' and 'east' (say k each) must do. Furthermore $i+j+k=n$.
Show that the following holds for all $n \in \mathbb{N}$:

$$
p_{00}^{(2 n)}=\sum_{\substack{i, j, k \geq 0 \\ i+j+k=n}} \frac{(2 n)!}{(i!j!k!)^{2}}\left(\frac{1}{6}\right)^{2 n}
$$

Prove then:

$$
=\binom{2 n}{n}\left(\frac{1}{2}\right)^{2 n} \sum_{\substack{i, j, k \geq 0 \\ i+j+k=n}}\binom{n}{i j k}^{2} \cdot\left(\frac{1}{3}\right)^{2 n}
$$

(step 3) Now, argue that

$$
\sum_{\substack{i, j, k \geq 0 \\ i+j+k=n}}\binom{n}{i j k}\left(\frac{1}{3}\right)^{n}=1
$$

(Think of putting n balls in 3 different boxes, compute the probability to find i, j, k balls in box $1,2,3$, then the claim is obvious)
(step 4) In the case ${ }^{2} n=3 m$ for some $m \in \mathbb{N}$, show that by an application of Stirling's inequality, we get

$$
p_{00}^{(2 n)} \leq\binom{ 2 n}{n}\left(\frac{1}{2}\right)^{2 n}\binom{n}{m m m}\left(\frac{1}{3}\right)^{n} \sim \frac{1}{2 A^{3}}\left(\frac{6}{n}\right)^{3 / 2} \quad \text { when } n \text { large. }
$$

(step 5) Show the following inequalities:

$$
p_{00}^{(6 m)} \geq \frac{1}{6^{2}} p_{00}^{(6 m-2)} \quad \text { and } \quad p_{00}^{(6 n)} \geq \frac{1}{6^{4}} p_{00}^{6 m-4} \quad \text { for all } m \geq 1
$$

(step 6) Deduce that

$$
\sum_{n \in \mathbb{N}} p_{00}^{(n)}<\infty
$$

(step 7) Conclude that for all symmetric random walks on \mathbb{Z}^{d} with $d \geq 4$, all states are transient.

[^0]
[^0]: ${ }^{1}$ w.l.o.g. $\hat{=}$ without loss of generality
 ${ }^{2}$ You may use the fact, that here: $\left(\begin{array}{cc}\begin{array}{c}n \\ i\end{array} j & k\end{array}\right) \leq\left(\begin{array}{cc}n \\ m & m\end{array}\right)$ for all $i, j, k \geq 0: i+j+k=n$.

