Dr. Kilian Raschel Daniel Altemeier Department of Mathematics Bielefeld University

Stochastik 2 - Exercises 4 Handover date: Friday, May 6th, 10:00

Please put your solutions into the mailbox 200 which belongs to the head of the tutorials, Ms. Katharina von der Lühe. The mailbox can be found in the copy-room V3-128. Before the insertion of the solution please check that the sheets are ordered correctly and tacked. Write down your name in a legible handwriting on the the first sheet of your solution.

Exercise 4.I:(Stopping times)

Consider $X = (X_n)_{n \in \mathbb{N}}$ a Markov Chain with countable state space I on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ where $\mathcal{F} = \bigcup_{i \in \mathbb{N}} \mathcal{F}_i$ is the natural filtration of the Markov Chain X.

(a) Show that for all $i \in I$, the first hitting time,

$$\tau_i(\omega) := \inf \{ n \in \mathbb{N} \mid X_n(\omega) = i \} \quad \forall \ \omega \in \Omega,$$

with the convention $\inf\{\emptyset\} = +\infty$, is a stopping time¹.

(b) Show that for any $A \subseteq I$ the first hitting

$$\tau_A := \inf \{ n \in \mathbb{N} \mid X_n \in A \},\$$

is a stopping time, where we again use the convention $\inf\{\emptyset\} = +\infty$.

(c) Show that the random variable

$$\iota_i := \sup \left\{ n \in \mathbb{N} \mid X_n(\omega) = i \right\}$$

(set $\sup(\emptyset) = -\infty$)in general is not a stopping time.

Exercise 4.II:

Again let $X = (X_n)_{n \in \mathbb{N}}$ be a Markov Chain with countable state space I on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ where \mathcal{F} is again the natural filtration of X. Consider two \mathcal{F} -stopping times S and T. Show that the following claims hold:

- 1. The random variable S + T is again a stopping time, does the same hold true for S T if S > T?
- 2. If $S \leq T$, then $\mathcal{F}_S \subseteq \mathcal{F}_T$.
- 3. For which $\alpha \in \mathbb{R}_+$ is αT again a stopping time?

¹see A.IV.1 b)

Exercise 4.III:

Consider $X = (X_n)_{n \in \mathbb{N}}$ a Markov Chain on $(\Omega, \mathcal{F}, \mathbb{P})$ with countable state space I.

(a) Show that the random variable

$$X_T(\omega) := X_{T(\omega)}(\omega) \quad \text{for all } \omega \in \Omega,$$

is measurable w.r.t. ² \mathcal{F}_T if T is a stopping time.

(b) Find an example for $T: \Omega \to \mathbb{N}$ such that X_T is not \mathcal{F}_T -measurable.

²An *I*-valued random variable $Y: \Omega \to I$ is called <u>measurable</u> with respect to some set \mathcal{A} of subsets of Ω , if for all $i \in I$, the set { $\omega \in \Omega \mid Y = i$ } is included in \mathcal{A}