Daniel Altemeier
Department of Mathematics
Bielefeld University

Stochastik 2-Exercises 4

Handover date: Friday, May 6th, 10:00
Please put your solutions into the mailbox 200 which belongs to the head of the tutorials, Ms. Katharina von der Lühe. The mailbox can be found in the copy-room V3-128. Before the insertion of the solution please check that the sheets are ordered correctly and tacked. Write down your name in a legible handwriting on the the first sheet of your solution.

Exercise 4.I:(Stopping times)

Consider $X=\left(X_{n}\right)_{n \in \mathbb{N}}$ a Markov Chain with countable state space I on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ where $\mathcal{F}=\bigcup_{i \in \mathbb{N}} \mathcal{F}_{i}$ is the natural filtration of the Markov Chain X.
(a) Show that for all $i \in I$, the first hitting time,

$$
\tau_{i}(\omega):=\inf \left\{n \in \mathbb{N} \mid X_{n}(\omega)=i\right\} \quad \forall \omega \in \Omega
$$

with the convention $\inf \{\emptyset\}=+\infty$, is a stopping time ${ }^{1}$.
(b) Show that for any $A \subseteq I$ the first hitting

$$
\tau_{A}:=\inf \left\{n \in \mathbb{N} \mid X_{n} \in A\right\}
$$

is a stopping time, where we again use the convention $\inf \{\emptyset\}=+\infty$.
(c) Show that the random variable

$$
\iota_{i}:=\sup \left\{n \in \mathbb{N} \mid X_{n}(\omega)=i\right\}
$$

(set $\sup (\emptyset)=-\infty)$ in general is not a stopping time.

Exercise 4.II:

Again let $X=\left(X_{n}\right)_{n \in \mathbb{N}}$ be a Markov Chain with countable state space I on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ where \mathcal{F} is again the natural filtration of X. Consider two \mathcal{F}-stopping times S and T. Show that the following claims hold:

1. The random variable $S+T$ is again a stopping time, does the same hold true for $S-T$ if $S>T$?
2. If $S \leq T$, then $\mathcal{F}_{S} \subseteq \mathcal{F}_{T}$.
3. For which $\alpha \in \mathbb{R}_{+}$is αT again a stopping time?
[^0]
Exercise 4.III:

Consider $X=\left(X_{n}\right)_{n \in \mathbb{N}}$ a Markov Chain on $(\Omega, \mathcal{F}, \mathbb{P})$ with countable state space I.
(a) Show that the random variable

$$
X_{T}(\omega):=X_{T(\omega)}(\omega) \quad \text { for all } \omega \in \Omega,
$$

is measurable w.r.t. ${ }^{2} \mathcal{F}_{T}$ if T is a stopping time.
(b) Find an example for $T: \Omega \rightarrow \mathbb{N}$ such that X_{T} is not \mathcal{F}_{T}-measurable.

[^1]
[^0]: ${ }^{1}$ see A.IV. 1 b)

[^1]: ${ }^{2}$ An I-valued random variable $Y: \Omega \rightarrow I$ is called measurable with respect to some set \mathcal{A} of subsets of Ω, if for all $i \in I$, the set $\{\omega \in \Omega \mid Y=i\}$ is included in \mathcal{A}

