Daniel Altemeier
Department of Mathematics
Bielefeld University

Stochastik 2-Exercises 5

Handover date: Friday, May 13th, 10:00
Please put your solutions into the mailbox 200 which belongs to the head of the tutorials, Ms. Katharina von der Lühe. The mailbox can be found in the copy-room V3-128. Before the insertion of the solution please check that the sheets are ordered correctly and tacked. Write down your name in a legible handwriting on the the first sheet of your solution.

Exercise 5.I:
Observe once more the stochastic matrix

$$
P=\left(\begin{array}{ccccccc}
0 & 0 & \frac{1}{3} & 0 & \frac{1}{2} & \frac{1}{6} & 0 \\
0 & 0 & 0 & \frac{2}{5} & 0 & 0 & \frac{3}{5} \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{2}{3} & 0 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & \frac{1}{4} & 0 & \frac{3}{4} & 0 & 0 & 0
\end{array}\right)
$$

Compute $\lim _{n \rightarrow \infty} p_{i i}^{n}$ and show that there are at least 2 invariant probability distributions for P.

Exercise 5.II:

Assume once more that I is (countable) finite and a Markov Chain $X=\left(X_{n}\right)_{n \in \mathbb{N}}$ on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, where \mathcal{F} is the natural filtration of the process X and the distribution \mathbb{P} representable in a stochastic matrix P. Suppose for some $i \in I$ that

$$
\begin{equation*}
p_{i j}^{(n)} \xrightarrow[n \rightarrow \infty]{ } \pi_{j} \text { for all } j \in I \tag{1}
\end{equation*}
$$

(a) Show that $\pi=\left(\pi_{j}: j \in I\right)$ is an invariant distribution.

Advice:

(i) Show that π is a probability distribution on I, you need that for finite sums the ' \sum ' and the limit operator 'lim...' are interchangable .
(ii) Use the Chapman-Kolmogorov equation to show, that π_{j} is indeed invariant under P.
(b) Find an example such that equation 1 is valid, but π is not an invariant measure under P.
(One of the two steps above does in general not work within an infinite state-space.)

Exercise 5.III:

Remember presence-exercise I.III (1) gather the distribution of X_{100}, X_{1000} for all $i \in$ $\{A, B, C, D, E\}$ as starting points X_{0} and (2) compute all invariant distributions ${ }^{1}$ of P. (3) Discribe your observations .

Figure 1: Transition graph Presence-Exercise 1.III:

Exercise 5.IV:

Observe the following transition P :

$$
P:=\left(\begin{array}{cccccc}
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 10 & 0 & 0 & 1 / 2 & 0 & 2 / 5 \\
0 & 0 & 0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 0 & 0 & 1 / 4 & 3 / 4
\end{array}\right)
$$

(a) Draw the transition graph
(b) Let $X=\left(X_{n}\right)_{n \in \mathbb{N}}$ be a Markov Chain on $(\Omega, \mathcal{F}, \mathbb{P})$ with transition matrix P. Give for all $e_{1}=(1,0,0,0,0,0), e_{2}=(0,1,0,0,0), \ldots, e_{6}=(0,0,0,0,0,1)$ the distribution of the random variable X_{10}, X_{100} under $\mathbb{P}_{e_{i}}, i=1, \ldots, 6$, which means to compute a 'long-time'-state distribution depending on the initial state of X.
(c) Compute all the invariant distributions of X.

[^0]
[^0]: ${ }^{1}$ We propose the use of a CAS, the explicit Gauss-elimination is NOT thought to be part of your solution.

