Daniel Altemeier
Department of Mathematics
Bielefeld University

Stochastik 2-Exercises 7 2nd edition

Handover date: Friday, May 27th, 10:00
Please put your solutions into the mailbox 200 which belongs to the head of the tutorials, Ms. Katharina von der Lühe. The mailbox can be found in the copy-room V3-128. Before the insertion of the solution please check that the sheets are ordered correctly and tacked. Write down your name in a legible handwriting on the the first sheet of your solution.

Exercise 7.I:

Show Proposition B.1.9:
If $X=\left(X_{t}\right)_{t \in[0, \infty)}$ and $Y=\left(Y_{t}\right)_{t \in[0, \infty)}$ are two independent Poisson-processes, say X with parameter λ and Y with parameter μ. Then the process $Z=\left(X_{t}+Y_{t}\right)_{t \in[0, \infty)}$ is also a Poisson-process with parameter $\lambda+\mu$.

Exercise 7.II:

Consider $X=\left(X_{t}\right)_{t \in[0, \infty)}$ to be a Poisson-process with parameter λ. For arbitrary $n \in \mathbb{N}$, compute the distribution of the random variable

$$
S_{n}:=\inf \left\{t: X_{t}=n\right\}
$$

Exercise 7.III:

The number $\left(X_{t}\right)_{t \in[0, \infty)}$ of cars arriving at a gas-station in the time-interval $[0, t]$ is assumed to be a Poisson-process with Parameter λ. Whether or not a car is fueled with diesel, we want to consider as a sequence of independent Bernoulli-trials where $p \in(0,1)$ denotes the probability for each car to be fueled with diesel.
(a) Show that the number $Z=\left(Z_{t}\right)_{t \in[0, \infty)}$ of 'diesel'-cars in the time-intervals $[0, t]$ forms again a Poisson process with parameter $p \lambda$.
(b) Show that Z and $X-Z$ are independent.

Exercise 7.IV:(One more DTMC)
For a game in each point in time $n \in\{1,2, \ldots\}$ a certain coin (not necessarily fair) is tossed, assume the coin in time i shows 'head' with probability $p_{i} \in[0,1], i=1,2, \ldots$. If the coin tossed in time i shows tail, then the player advances on a sequence of states one step upwards, if not, i.e. if the coin shows 'head', then the player returns to state 0 . This is illustrated by the transition graph below.

Figure 1:

(a) Show that under the condition $p_{i} \in(0,1) \forall i \in S=\mathbb{N} \cup\{0\}$ the Markov Chain is irreducible.
(b) Compute the probability of returning to state 0 and the expected time to the first return to 0 . Is 0 nullrecurrent or positive recurrent?
(c) With the help of the above result give a relation between the values of p_{i} and the kind of recurrence of state $0 .{ }^{1}$

[^0]
[^0]: ${ }^{1}$ Advice:
 You may (without verification) use the classical result:
 Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of values from $(0,1]$, then the following holds:

 $$
 \begin{aligned}
 & \sum_{n=1}^{\infty} a_{n}<\infty \Rightarrow \lim _{m \rightarrow \infty} \prod_{n=1}^{m}\left(1-a_{n}\right)>0 \\
 & \sum_{n=1}^{\infty} a_{n}=\infty \Rightarrow \lim _{m \rightarrow \infty} \prod_{n=1}^{m}\left(1-a_{n}\right)=0 .
 \end{aligned}
 $$

