Daniel Altemeier
Department of Mathematics
Bielefeld University

Stochastik 2 - Exercises 8 3rd edition

Handover date: Friday, June 10th, 10:00
Please put your solutions into the mailbox 200 which belongs to the head of the tutorials, Ms. Katharina von der Lühe. The mailbox can be found in the copy-room V3-128. Before the insertion of the solution please check that the sheets are ordered correctly and tacked. Write down your name in a legible handwriting on the the first sheet of your solution.

Exercise 8.I: (repetition)
Let $(A(i, j))_{1 \leq i, j \leq n}, n \in \mathbb{N} \cup\{\infty\}=I$, a matrix with the following properties:

1. $A(i, j) \geq 0$ for $i \neq j$,
2. $-a(i):=A(i, i)<0$ and $\sum_{j \in I} A(i, j)=0$ for all $j \in I$,
3. $a:=\sup _{i \in I} a(i)<\infty$.

Now, we construct a Markovian process $\left(M_{t}\right)_{t \geq 0}$ that "'jumps from i to j with rate $A(i, j)^{\prime \prime}$. Therefore, study the following matrix $\bar{\Pi}$:

$$
\Pi(i, j)=\delta_{i, j}+\frac{A(i, j)}{a}, \quad i, j \in I
$$

(i) As a starter...
[a] Show, that Π satisfies all the properties of a transition matrix
(ii) Assume now, that for all $i \in I$ on a properly defined probability space $\left(\Omega, \mathcal{F}, \mathbb{P}_{i}\right)$, the following objects are defined:

I First, a Markov-chain $\left(Z_{j}\right)_{j \in I}$ with transition probability Π and start in i,
II Second, an independent Poisson-process $N(t)_{t \geq 0}$ with intensity a.
Now, define $M_{t}:=\left(Z_{N(t)}\right)_{t \geq 0}$ and prove [b]-[d]:
[b] For all $i, j \in I$:

$$
\mathbb{P}_{i}\left[M_{t}=j\right]=\exp (t A)(i, j):=\sum_{n \geq 0}\left(\frac{t^{n} A^{n}}{n!}\right)(i, j)
$$

Show that $A^{n}(i, j) \leq(2 a)^{n}$ and deduce that the right-hand side is well defined. Furthermore, show that

$$
\left.\frac{d}{d t} \mathbb{P}_{i}\left[M_{t}=j\right]\right|_{t=0}=A(i, j) \forall i, j \in I
$$

[c] $\left(M_{t}\right)_{t \geq 0}$ is a Markov-process with transition semigroup $\Pi_{t}:=\exp (A t), t \geq 0$, That means, for all $n \geq 1,0=t_{0}<t_{1}<\ldots<t_{n}$ and $x_{0}, x_{1}, \ldots, x_{n} \in I$:

$$
\mathbb{P}_{x_{0}}\left[M_{t_{1}}=x_{1}, \ldots, M_{t_{n}}=x_{n}\right]=\prod_{k=1}^{n} \Pi_{t_{k}-t_{k-1}}\left(x_{k-1}, x_{k}\right) .
$$

[d] Now, let $\tau_{0}^{\star}=0$ and $Z_{0}^{\star}=i$ and define recursively for $n \geq 1$:

$$
\tau_{n}^{\star}:=\inf _{t>\tau_{n-1}^{\star}}: M_{t} \neq Z_{n-1}^{\star},
$$

the time of the n-th jump and

$$
Z_{n}^{\star}=M_{\tau_{n}^{\star}}
$$

the target of the n-th jump. Then:
[d.1] $\left(Z_{n}^{\star}\right)_{n \geq 0}$ is a Markov-chain with state-space I, transition matrix

$$
\Pi^{\star}(i, j)=\left\{\begin{array}{cc}
\frac{\Pi(i, j)}{1-\Pi(i, i)} & \text { if } i \neq j \\
0 & \text { else }
\end{array}\right.
$$

[d.2] Depending on the 'current' state $\left(Z_{n}^{\star}\right)_{n>0}$, the waiting times $\tau_{n+1}^{\star}-\tau_{n}^{\star}$ in state $Z_{n}^{\star}, n \geq 1$, are independent and exponentially distributed each with parameter $a\left(Z_{n}^{\star}\right)$.

Exercise 8.II:(finite explosion time)
In general weakening the assumption of bounded jump rates, we face the problem of a finite explosion time. In the above setting assume the following: Let $I=\mathbb{N}$ and assume

$$
A(i, i+1)=-A(i, i)=i^{2}, i \in I=\mathbb{N} .
$$

1. Determine the discrete jump-chain $\left(Z_{n}^{\star}\right)_{n \in \mathbb{N}}$ with start in $i_{0}=1$.
2. Compute the distribution of the jump-times $\left(\tau_{n}^{\star}\right)_{n \geq 1}$
3. Show that the CTMC $\left(M_{t}\right)_{t>0} \mathbb{P}_{i_{0}}$-almost surely explodes in finite time $\sup _{n \geq 1} \tau_{n}^{\star}$, i.e.

$$
\mathbb{E}^{i_{0}}\left[\sup _{n \geq 1} \tau_{n}^{\star}\right]<\infty .
$$

