Daniel Altemeier
Department of Mathematics
Bielefeld University

Stochastik 2-Exercises 9

Handover date: Friday, June 17th, 10:00
Please put your solutions into the mailbox 200 which belongs to the head of the tutorials, Ms. Katharina von der Lühe. The mailbox can be found in the copy-room V3-128. Before the insertion of the solution please check that the sheets are ordered correctly and tacked. Write down your name in a legible handwriting on the the first sheet of your solution.

Exercise 9.I:

From the lecture...
Example B.V. 5 (Yule-Process). Consider a bacterial culture and assume that cell divisions occur i.i.d. exponentially with rate λ. Every bacterium is immortal. Let $X(t) \in$ \mathbb{N} denote the number of bacteria in time t. Then $(X(t))_{t \in[0, \infty)}$ is a CTMC on \mathbb{N}, the so-called Yule-process, a pure birth-process. Given the Q-matrix, the backward equation is solved by:

$$
P_{i, j}(t)=\left\{\begin{array}{cc}
\binom{j-1}{j-i}(\exp (\lambda t)-1)^{j-i} \exp (-j \lambda t), & \text { if } \quad i \leq j \\
0, & \text { else. }
\end{array}\right.
$$

1. Give the Q-matrix that belongs to the Yule-process.
2. Show that the backward equation is actually solved by the semi-group defined above.

Exercise 9.II:

In the lecture, the proof of the forward equation (Theorem B.V.6) was only briefly sketched, give a full and in-depth commentated proof.

Exercise 9.III:

Let X be some CTMC with Q-matrix

$$
Q=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
4 & -4 & 0 \\
2 & 1 & -3
\end{array}\right)
$$

Compute the probability $p_{23}(t)$ to reach state 3 in time t starting from state 2 . You may solve this by using the below list of advice:
step 1: Compute the eigenvalues of the matrix
step 2: The matrix Q can be diagonalized, i.e. there is an invertible U such that:

$$
Q=U\left(\begin{array}{ccc}
y_{1} & 0 & 0 \\
0 & y_{2} & 0 \\
0 & 0 & y_{3}
\end{array}\right) U^{-1},
$$

where y_{1}, y_{2}, y_{3} are the eigenvalues of Q. Deduce that $\exp (Q)$ is diagonalizable with the same matrix U.
step 3: Deduce an explicit functional term for $p_{23}(t)$ depending on the entries of U and terms of the form $\alpha_{i} \exp \left(\beta_{i} t\right), \alpha_{i}, \beta_{i} \in \mathbb{R}, i=1,2,3$.
step 4: Now, we know $P(0), P^{\prime}(0)$ and by the BE we know what $P^{\prime \prime}(0)$ looks like.
step 5: Denote a system of linear equations and solve it for the parameters α_{1}, α_{2} and α_{3}.

