Dr. Kilian Raschel
Daniel Altemeier
Department of Mathematics
Bielefeld University

Stochastik 2-Presence-exercises 1:

Presence-Exercise 1.I:

An urn contains $m \geq 2$ balls that are consecutively numbered. One progressively draws (randomly with identical probability for each of the balls) a single ball, notes the label and returns it into the urn. Let $X=\left(X_{n}\right)_{n \in \mathbb{N}}$ denote the number of different balls observed until the n-th drawing.
Is X a Markovian Chain? If that is the case, specify the transition probabilities.

Presence-Exercise 1.II:

For the below stochastic matrix P give the stochastic process $X=\left(X_{n}\right)_{n \in \mathbb{N}}$ that 'evolves according to P^{\prime}, assume therefore, that the state-space is given by $\left\{S_{1}, \ldots, S_{8}\right\}$. Furthermore draw the transition graph of X.

$$
P=\left(\begin{array}{cccccccc}
1 / 2 & 1 / 4 & 0 & 1 / 4 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 / 4 & 3 / 4 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 0 & 0 & 0 & 0 & 1 / 10 & 4 / 5 & 1 / 10 \\
0 & 0 & 0 & 0 & 1 / 3 & 2 / 3 & 0 & 0
\end{array}\right)
$$

Presence-Exercise 1.III:

Figure 1:

Find the stochastic matrix that corresponds to the above transition graph and give the distribution of X_{1}, if we assume that X_{0} is the equal distribution.

Presence-Exersice 1.IV:

Are the following claims correct, are they false or are they possible but in general not correct?

- A stochastic matrix P, that is not the unit matrix, can be idempotent, which means: ${ }^{1} \exists k \in \mathbb{N}: \quad P^{n}=I_{n}$. (Find an example or prove the contrary)
- A stochastic matrix P can be nilpotent, i.e. $\exists k \in \mathbb{N}$ s.t. $P^{k}=0_{n}$.
- The product of two stochastic matrices is again a stochastic matrix, give a proof or a counterexample

[^0]
[^0]: ${ }^{1} I_{n}$ denotes the unit-matrix in \mathbb{R}^{n} and 0_{n} denotes the zero-matrix in \mathbb{R}^{n}.

