Dr. Kilian Raschel Daniel Altemeier Department of Mathematics Bielefeld University

Stochastik 2 - Presence-Exercises 3:

Presence-Exercise 3.I: (A concrete filtration)

Denote by \mathcal{P} the equal distribution on $\{-1, 1\}$, define then $(\Omega, \mathbb{P}) = (\{-1, 1\}^{\infty}, \mathcal{P}^{\otimes \infty})$. Now denote $X_n = \sum_{i=1}^n \omega_i, n \in \mathbb{N}$, set $X_0 = 0$. Let \mathcal{F} be the natural filtration of the process X on Ω . Denote $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$ explicitly by writing down all the sets $\{X_i = k_i, i \leq j\}, 0 \leq j \leq 3 \forall k_i \in I = \mathbb{N}.$

To obtain the sets $\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$, the above sets must be expanded by all countable unions, intersections and complementation within these sets. So the denoted sets are nor really the sets of $\mathcal{F}_i, 0 \leq i \leq 3$.

For property that one receives the sets \mathcal{F}_i , $i \leq 3$ just by taking countable unions, intersections and complements, one says that the above sets form a generating system of \mathcal{F}_i , $i \leq 3$.

Presence-Exercise 3.II:(Stopping times)

Consider $X = (X_n)_{n \in \mathbb{N}}$ a Markov Chain with countable state space I on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ where $\mathcal{F} = \bigcup_{i \in \mathbb{N}} \mathcal{F}_i$ is the natural filtration of the Markov Chain X. Let T be a stopping time.

- 1. Is T + 3 again a stopping time, what about T 3 for T > 3?
- 2. Is the product of two stopping times $(S \cdot T) : \Omega \to \mathbb{N} \cup \{0\}$ if $S, T \ge 0$, again a stopping time?
- 3. Does b) hold if S, T > 1?

Presence-Exercise 3.III:

Consider $X = (X_n)_{n \in \mathbb{N}}$ a Markov Chain with countable state space I on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ where $\mathcal{F} = \bigcup_{i \in \mathbb{N}} \mathcal{F}_i$ is the natural filtration of the Markov Chain X.

- 1. Show that a filtration is always increasing
- 2. Show:

A mapping $T: \Omega \to \mathbb{N}$ is a stopping time \iff for all $n \in \mathbb{N}$: $\{T \leq n\} \in \mathcal{F}_n$.