Stochastik 2-Presence-Exercises 4:

Presence-Exercise 4.I:

Gas molecules move about randomly in a box which is divided into two halves symmetrically by a partition. A hole is made in the partition. Suppose there are N molecules in the box of which exactly one passes the partition each time-period. Show that the number of molecules on one side of the partition just after a molecule has passed through the hole evolves as a Markov Chain. What are the transition probabilities? What is the invariant distribution of this chain? Explain in detail the construction of your Markov Chain.

Presence-Exercise 4.II:

Assume $\left(X_{n}\right)_{n \in \mathbb{N}}$ to be Markov Chain on probability space $(\Omega, \mathcal{F}, \mathbb{P})$, with transition matrix P on (countable) finite state-space I, then the set of invariant distributions of the stochastic matrix P is convex, i.e. for all ν, μ invariant measures on I under \mathbb{P}, for all $\lambda \in[0,1]$, the measure $\lambda \nu+(1-\lambda) \mu=: \eta$ is again an invariant measure on I under \mathbb{P}.
(Note, that there are two claims to show: First, the property that a convex combination of probability measures is again a probability measure and second the invariance property.)

Presence-Exercise 4.III:

Find an example of
(...) a full-rank $n \times n$-matrix P such that there is exactly one invariant distribution.
(...) a full-rank $n \times n$-matrix P such that there are infinitely many invariant distributions.
(...) a Markov Chain on a finite countable state space I, such that for some $i \in I$ the probabilities $p_{i j}^{(n)}$ do not converge (in n) for every j.

Presence-Exercise 4.IV:

Remember presence-exercise 1.III (1) observe the distribution of X at multiple points in time with start in $(1,0,0)$ and (2) compute all invariant measures of P. (3) Discribe your observations. The distribution of $X_{10}, X_{100}, X_{1000}$ under $\mathbb{P}_{(1,0,0)}$ is given by

Figure 1:

$\mathbb{P}_{X_{10},(1,0,0)}, \ldots$

$$
\begin{aligned}
\mathbb{P}_{X_{1},(1,0,0)} & =\left(\begin{array}{lll}
0 & 0.500 & 0.500
\end{array}\right) \\
\mathbb{P}_{X_{2},(1,0,0)} & =\left(\begin{array}{lll}
0.375 & 0.25 & 0.375
\end{array}\right) \\
\mathbb{P}_{X_{3},(1,0,0)} & =\left(\begin{array}{lll}
0.250 & 0.375 & 0.375
\end{array}\right) \\
\mathbb{P}_{X_{4},(1,0,0)} & =\left(\begin{array}{lll}
0.281 & 0.313 & 0.406
\end{array}\right) \\
\mathbb{P}_{X_{5},(1,0,0)} & =\left(\begin{array}{lll}
0.281 & 0.344 & 0.375
\end{array}\right) \\
\mathbb{P}_{X_{10},(1,0,0)} & =\left(\begin{array}{lll}
0.277 & 0.3333 & 0.3901
\end{array}\right) \\
\mathbb{P}_{X_{10},(1,0,0)} & =\left(\begin{array}{lll}
0.277 & 0.3333 & 0.3901
\end{array}\right) \\
\mathbb{P}_{X_{100},(1,0,0)} & =\left(\begin{array}{lll}
0.2778 & 0.3333 & 0.3889
\end{array}\right)
\end{aligned}
$$

