Daniel Altemeier
Department of Mathematics
Bielefeld University

Stochastik 2-Presence-Exercises 8:

Presence-Exercise 8.I:

Let $\left(X_{t}\right)_{t \geq 0}$ be a CTMC with Q-matrix

$$
Q=\left(\begin{array}{cccc}
-\mu & \lambda_{1} & \ldots & \lambda_{n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)
$$

1. Compute the tansition-matrix (more precisely the whole transition semigroup) $P_{i j}(t), t \geq 0$.
2. Draw the transition graph at time t as well as the rate transition graph

Exercise 8.II

Consider the CTMC with Q-matrix

$$
Q=\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right), \quad \alpha, \beta>0
$$

1. Write down the backward and forward equations. Solve either the backward or the forward equation for the transition probabilities $p_{i j}(t), j=1,2$. Solve one of them and check that your solutions also solves for the other one.
Hint: One equation is easier to solve than the other, note furthermore that the solution of $y^{\prime}(t)=$ $a y(t)+b, t \geq 0$ is given by $y(t)=C \exp (a t)-b / a, C \in \mathbb{R}$.
2. Calculate Q^{n} by setting up recurrence relations for its entries and hence find

$$
\exp (t Q)=\sum_{n=0}^{\infty} \frac{t^{n} Q^{n}}{n!}
$$

compare your answer with that to part (a).
3. Solve the equation $\xi Q=0$ for ξ and verify that $p_{i, j}(t) \rightarrow \xi_{j}$ as $t \rightarrow \infty$. What is the interpretation of this?

