Daniel Altemeier
Department of Mathematics
Bielefeld University

Stochastik 2-Presence-Exercises 9:

Presence-Exercise 9.I:

Let X be some CTMC with Q-matrix

$$
Q=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -1 & 0 \\
2 & 1 & -3
\end{array}\right)
$$

Compute the probability $p_{11}(t)$ to return to or stay in state 1 in time $t 1$. Use the instructions below:
step 1: Compute the eigen values of the matrix
step 2: The matrix Q can be diagonalized, i.e. there is an invertible U such that:

$$
Q=U\left(\begin{array}{ccc}
y_{1} & 0 & 0 \\
0 & y_{2} & 0 \\
0 & 0 & y_{3}
\end{array}\right) U^{-1}
$$

where y_{1}, y_{2}, y_{3} are the eigenvalues of Q. Deduce that $\exp (Q)$ is diagonalizable with the same matrix U.
step 3: Deduce an explicit functional term for $p_{11}(t)$ depending on the entries of U and terms of the form $\alpha_{i} \exp \left(\beta_{i} t\right), \alpha_{i}, \beta_{i} \in \mathbb{R}, i=1,2,3$.
step 4: Now, we know $P(0), P^{\prime}(0)$ and by the BE we know what $P^{\prime \prime}(0)$ 'looks like'.
step 5: Denote a system of linear equations and solve it for the parameters α_{1}, α_{2} and α_{3}.

Presence-Exercise 9.II:

For the Poisson-process with parameter λ we want to compute the transition semi-group.

1. Denote the BE and the FE,
2. Solve one of them and show that the solution also satisfies the other.
3. Is the solution unique?
