Heat Transfer in a Coffee Cup with Comsol Multiphysics

Denny Otten ${ }^{1}$
Department of Mathematics
Bielefeld University
33501 Bielefeld
Germany

Date: 27. Mai 2015

1. Introduction and Mathematical Setting

2. Model Wizard

Start Comsol Multiphysics.
To start Comsol Multiphysics 5.0 open the Terminal and enter

- comsol -ckl

Model Wizard.

- In the New window, click Model Wizard.
- In the Model Wizard window, click 3D in the Select Space Dimension menu.
- In the Select Physics tree, select Mathematics $>$ PDE Interfaces $>$ Coefficient Form PDE (c).
- Click Add.
- Next, locate the Dependent Variables section.
- In the Field name text field, type T.
- In the Dependent Variables text field, type also T.
- Next, locate the Units section.
- From the Dependent variable quantity list, choose Temperature (K).
- From the Source term quantity list, choose Heat source ($\mathbf{W} / \mathbf{m}^{3}$).
- Click Study.
- In the Select Study tree, select Preset Studies $>$ Time Dependent.
- Click Done.

[^0]
Unit System.

- In the Model Builder window, click Untitled.mph (root).
- In the Settings window for Root, locate the Unit System section.
- From the Unit System list, choose SI.

Some Advanced Settings.

Hint: In the Model Builder window you should click on the Show icon and enable everything that is possible from the menu: Expand Sections (Equation View, Override and Contribution, Discretization, Stabilization, Advanced Physics Options, Advanced Study Options and Advanced Results Options). Done this, click Expand All icon.

3. Parameters and Variables

Parameters.

- In the Model Builder window, expand the Global node, right-click Definitions and select Parameters. (Alternatively: On the Model toolbar, click Parameters.)
- In the Settings window for Parameters, locate the Parameters section.
- In the table, enter the following settings:

Name	Expression	Value	Description
L1	$0.073[\mathrm{~m}]$	0.073 m	innerer Durchmesser der Tasse
L2	$0.079[\mathrm{~m}]$	0.079 m	äußerer Durchmesser der Tasse
L3	$0.055[\mathrm{~m}]$	0.055 m	Größe des Haltegriffs (bzw. Durchmes- ser des Toruses L4
	$0.007[\mathrm{~m}]$	0.007 m	Dicke (bzw. innerer Durchmesser) des Haltegriffs H1
$0.08[\mathrm{~m}]$	0.08 m	max. Füllhöhe der Tasse	
H2	$0.008[\mathrm{~m}]$	0.008 m	Höhe des Bodens der Tasse tatsächliche Füllhöhe Abstand mittlerer Teil des Haltegriffes H3 $0.07[\mathrm{~m}]$
H4	$0.046[\mathrm{~m}]$	0.07 m	0.046 m

Variables.

- In the Model Builder window, expand the Component 1 (comp1) node, right-click Definition and select Variables.
- In the Settings window for Variables, locate the Variables section.
- In the table, enter the following settings:

Name	Expression	Unit	Description
T0_wasser	$(273.15+60)[\mathrm{K}]$	K	Temp. der Flüssigkeit zu Meßbeginn
T0_tasse	$(273.15+23)[\mathrm{K}]$	K	Temp. der Tasse zu Meßbeginn
T_luft	$(273.15+23)[\mathrm{K}]$	K	Temp. der Raumluft zu Meßbeginn
kappa_luft	$10\left[\mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$	$\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$	Wärmeübergangskoeffizient Luft
rho_wasser	$995\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$	$\mathrm{kg} / \mathrm{m}^{3}$	Dichte Luft (bei 30 $\left.{ }^{\circ} \mathrm{C}\right)$
c_wasser	$4182[\mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})]$	$\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$	spez. Wärmekapazität Wasser $\left(20{ }^{\circ} \mathrm{C}\right)$
lambda_wasser	$0.597[\mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})]$	$\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$	Wärmeleitfähigkeit Wasser $\left(20^{\circ} \mathrm{C}\right)$
rho_glas	$2500\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$	$\mathrm{kg} / \mathrm{m}^{3}$	Dichte Glas
c_glas	$600[\mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})]$	$\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$	spez. Wärmekapazität Glas
lambda_glas	$0.76[\mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})]$	$\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$	Wärmeleitfähigkeit Glas
rho_porzellan	$2300\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$	$\mathrm{kg} / \mathrm{m}^{3}$	Dichte Porzellan
c_porzellan	$730[\mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})]$	$\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$	spez. Wärmeleitfähigkeit Porzellan
lambda_porzellan	$1.03[\mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})]$	$\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$	Wärmeleitfähigkeit Porzellan
g_wasser	$0\left[\mathrm{~m}^{2} / \mathrm{s}^{3}\right]$	$\mathrm{m}^{2} / \mathrm{s}^{3}$	
g_glas	$0\left[\mathrm{~m}^{2} / \mathrm{s}^{3}\right]$	$\mathrm{m}^{2} / \mathrm{s}^{3}$	
g_porzellan	$0\left[\mathrm{~m}^{2} / \mathrm{s}^{3}\right]$	$\mathrm{m}^{2} / \mathrm{s}^{3}$	

4. Geometry

Work Plane 1 (middle part of the coffee cup).

- In the Model Builder window, expand the Component 1 (comp1) node, right-click Geometry and select Work Plane.
- In the Settings window for Work Plane, locate the Plane Definition section.
- In the z-coordinate text field, type H2.
- In the Model Builder window, expand the Component 1 (comp1) $>$ Geometry $\mathbf{1}>$ Work Plane 1 (wp1) node, right-click Plane Geometry and select Circle.
- In the Settings window for Circle 1, locate the Size and Shape section.
- In the Radius text field, type L2/2.
- Right-click Plane Geometry again and select Circle.
- In the Settings window for Circle 2, locate the Size and Shape section.
- In the Radius text field, type L1/2.
- Right-click Plane Geometry once more and select Booleans and Partions>Difference.
- In the Settings window for Difference, locate the Difference section.
- In the subsection Objects to add, the active button should be activated (green). Now, switching to the Graphics window and left-click on the larger circle. In the Objects to add list, the entry c1 now appears.
- Next, activate the activ button in the subsection Objects to substract. Switching once more to the Graphics window and left-click on the smaller (inner) circle. In the Objects to substract list, the entry c2 now appears.
- In the Model Builder window, right-click on Work Plane 1 (wp1) and select Extrude.
- In the Settings window for Extrude, locate the Distance from Plane section.
- In the Distances (m) table substitute 1 by H3.
- In the Model Builder window, right-click on Extrude 1 (ext1) and select Build Selected to check the result.

Work Plane 2 (top of the coffee cup).

- In the Model Builder window, expand the Component 1 (comp1) node, right-click Geometry and select Work Plane.
- In the Settings window for Work Plane, locate the Plane Definition section.
- In the z-coordinate text field, type $\mathbf{H} 2+\mathbf{H} 3$.
- In the Model Builder window, expand the Component 1 (comp1) $>$ Geometry $1>$ Work Plane 2 (wp2) node, right-click Plane Geometry and select Circle.
- In the Settings window for Circle 1, locate the Size and Shape section.
- In the Radius text field, type L2/2.
- Right-click Plane Geometry again and select Circle.
- In the Settings window for Circle 2, locate the Size and Shape section.
- In the Radius text field, type L1/2.
- Right-click Plane Geometry once more and select Booleans and Partions>Difference.
- In the Settings window for Difference, locate the Difference section.
- In the subsection Objects to add, the active button should be activated (green). Now, switching to the Graphics window and left-click on the larger circle. In the Objects to add list, the entry c1 now appears.
- Next, activate the activ button in the subsection Objects to substract. Switching once more to the Graphics window and left-click on the smaller (inner) circle. In the Objects to substract list, the entry c2 now appears.
- In the Model Builder window, right-click on Work Plane 2 (wp2) and select Extrude.
- In the Settings window for Extrude, locate the Distance from Plane section.
- In the Distances (m) table substitute 1 by H1-H3.
- In the Model Builder window, right-click on Extrude 2 (ext2) and select Build Selected to check the result.

Cylinder (bottom of the coffee cup).

- In the Model Builder window, right-click on Geometry 1 and select Cylinder.
- In the Settings window for Cylinder, locate the Size and Shape section.
- In the Radius text field, type L2/2 and in the Height text field H2.
- In the Model Builder window, right-click on Cylinder 1 (cyl1) and select Build Selected to check the result.

Torus (handle of the cup).

- In the Model Builder window, right-click on Geometry 1 and select More Primitives $>$ Torus.
- In the Settings window for Cylinder, locate the Size and Shape section.
- In the Major radius text field, type L3/2, in the Minor radius text field $\mathbf{L 4 / 2}$ and in the Revolution angle text field 180.
- Next, locate the Position section.
- In the \mathbf{x} text field, type $\mathbf{- L 2 / 2 + 0 . 0 0 1 , ~ i n ~ t h e ~} \mathbf{y}$ text field $\mathbf{0}$ and in the \mathbf{z} text field $\mathbf{H} 4$.
- Finally, locate the Axis section.
- As Axis type choose y-axis.
- In the Model Builder window, right-click on Torus 1 (tor1) and select Build Selected to check the result.

Union.

- In the Model Builder window, right-click on Geometry 1 and select Booleans and Partions $>$ Union.
- In the Settings window for Union, locate the Union section.
- In the subsection Input objects, the active button should be activated (green). Now, switching to the Graphics window and left-click on the top, the middle, the buttom and on the handle of the cup. In the Input objects list, the entries ext1, ext2, cyl1 and tor1 now appears.

Cylinder (liquid in the cup).

- In the Model Builder window, right-click on Geometry 1 and select Cylinder.
- In the Settings window for Cylinder 2, locate the Size and Shape section.
- In the Radius text field, type L1/2 and in the Height text field H3.
- Next, locate the Position section.
- In the \mathbf{x} text field, type $\mathbf{0}$, in the \mathbf{y} text field $\mathbf{0}$ and in the \mathbf{z} text field $\mathbf{H 2}$.
- In the Model Builder window, right-click on Form Union (fin) and select Build Selected to check the overall result.
- The complete geometry is shown in Figure 4.1.

Abbildung 4.1. Geometry (spatial domain) of the coffee cup that is filled with a fluid (coffee)

5. The Heat Equation

Partial differential equation.

- In the Model Builder window, expand the Component 1 (comp 1) $>$ Coefficient Form PDE (c) node, then click Coefficient Form PDE 1.
- We are now in Settings window for Coefficient Form PDE.
- In the Diffusion Coefficient c text field, type lambda_glas.
- In the Source Term f text field, type rho_glas*g_glas.
- In the Damping or Mass Coefficient d_{a} text field, type rho_glas*c_glas.
- In the Model Builder window, right-click Coefficient For PDE (c) and select Coefficient Form PDE.
- In the Model Builder window, click Coefficient Form PDE 2.
- In the Settings window for Coefficient Form PDE 2, locate the Domain Selection section.
- As Selection choose Manual. The domain list should contain only domain 7, that corresponds to the liquid.
- In the Diffusion Coefficient c text field, type lambda_wasser.
- In the Source Term f text field, type rho_wasser*g_wasser.
- In the Damping or Mass Coefficient d_{a} text field, type rho_wasser* ${ }^{*}$ _wasser.

Boundary conditions.

- In the Model Builder window, right-click Coefficient For PDE (c) and select Flux/Source.
- In the Model Builder window, click Flux/Source 1.
- In the Settings window for Flux/Source 1, locate the Boundary Selection section.
- As Selection choose Manual. The boundary list should contain the boundaries 1-13,27,28,30,36-41,43,45-48. These correspond to all faces that have contact with the air.
- In the Boundary Flux/Source g text field, type -kappa_luft*(T-T_luft).

Initial values.

- In the Model Builder window, select Coefficient For PDE (c)>Initial Values 1.
- In the Settings window for Initial Values 1 , locate the Initial Values section.
- For Initial value for \mathbf{T} specify T0_tasse.
- In the Model Builder window, right-click Coefficient For PDE (c) and select Initial Values.
- In the Settings window for Initial Values 2, locate the Domain Selection section.
- As Selection choose Manual. The domain list should contain only domain 7, that corresponds to the liquid.
- In the Settings window for Initial Values 2, locate the Initial Values section.
- For Initial value for \mathbf{T} specify $\mathbf{T 0}$ _wasser.
- The initial temperature distribution $T(x, 0)=T_{0}(x)$ at initial time $t=0$ is shown in Figure 5.1.

Spatial discretization.

- In the Model Builder window, click Coefficient Form PDE (c).
- In the Settings window for Coefficient Form PDE, locate the Discretization section.
- As Shape function type select Lagrange and as Element order choose Linear.

6. Mesh, Study Settings and Computation

Generating Mesh.

- In the Model Builder window, click Mesh 1.

Abbildung 5.1. Initial temperature distribution T (in ${ }^{\circ} \mathrm{C}$) of the coffee cup at initial time $t=0($ in s$)$

- In the Settings window for Mesh, locate the Mesh Settings section.
- As Sequence type select User-controlled mesh.
- In the Model Builder window, expand the Mesh 1 node, then click Size.
- In the Settings window for Size, locate the Element Size Parameters section.
- In the Maximum element size text field, type 0.011.

Study Settings.

- In the Model Builder window, expand the Study 1 node, then click Step 1: Time Dependent.
- In the Settings window for Time Dependent, locate the Study Settings section.
- In the Times text field, type range(0,0.1,60).
- Enable the checkbox for Relative Tolerance.
- In the Model Builder window, right-click Solver Configurations and select Show Default Solver.
- In the Model Builder window, expand the Study $\mathbf{1}>$ Solver Configurations $>$ TimeDependent Solver 1 node and click Time-Dependent Solver 1.
- In the Settings for Time-Dependent Solver 1, locate the Absolute Tolerance section.
- As Global method choose unscaled.
- In the Settings for Time-Dependent Solver 1, now locate the Time Stepping section.
- As Method choose BDF, as Steps taken by solver choose Intermediate and as Maximum BDF oder choose 2.
- In the Model Builder window, expand the Study $1>$ Solver Configurations $>$ TimeDependent Solver 1 node and click Fully Coupled 1.
- In the Setting for Fully Coupled 1, locate the Method and Termination section.
- As Nonlinear method choose Automatic (Newton).

Computation.

- In the Model Builder window, expand the Study 1 node, right-click on Step 1: TimeDependent and select Compute Selected Step.

7. Postprocessing and Graphical Output

Surface Plot.

- In the Model Builder window, expand the Results node, then right-click Results $>$ 3D Plot Group 1 and select Surface from the menu.
- Next, right-click on Results $>$ 3D Plot Group $1>$ Slice 1 and select Delete from the menu.
- Now, click on Results $>$ 3D Plot Group 1.
- In the Settings window for 3D Plot Group 1, first locate the Data section. For Data set select Study 1/Solution 1 and for Time (s) select 60.
- Next, locate the Plot Settings section. Disable the check box for Plot data set edges.
- In the Model Builder window, click on Results>3D Plot Group $1>$ Surface 1.
- In the Settings window for Surface 1, first locate the Data section and select From Parent for Data set.
- Next, locate the Expression section. For Expression type T, for Unit select degC from the list and disable the check box for Description.
- Now, locate the Title section. For Title type select custom. In the Type and data subsection disable the check boxes for Type, Description and Expression, and enable the check box for Unit. In the text field for Prefix type Temperatur T.
- Finally, locate the Range section. Enable the check boxes for Manual color range and Manual data range. In the text fields for Minimum type 22 and for Maximum type $\mathbf{6 1}$.
- The result is shown in Figure 7.1.

Abbildung 7.1. Surface of the heat distribution (temperature) T (in ${ }^{\circ} \mathrm{C}$) of the coffee cup at time $t=60$ (in s)

Slice Plot.

- In the Model Builder window, right-click on Results and select 3D Plot Group from the menu.
- Next, right-click on Results $>$ 3D Plot Group 2 and select Slice from the menu.
- Now, click Results $>$ 3D Plot Group 2.
- In the Settings window for 3D Plot Group 2, locate the Data section. As Data set select Study 1/Solution 1 and as Time (s) select 60 from the list.
- In the Model Builder window, click Results $>$ 3D Plot Group 2>Slice 1.
- In the Settings window for Slice 1, first locate the Data section and select From Parent for Data set.
- Next, locate the Expression section. For Expression type T, for Unit select degC from the list and disable the check box for Desciption.
- Now, locate the Title section. For Title type select custom. In the Type and data subsection disable the check boxes for Type, Description and Expression, and enable the check box for Unit. In the text field for Prefix type Temperatur T.
- Next, locate the Plane Data section, select xy-plane for Plane and type 4 in the Planes text field.
- Finally, locate the Range section. Enable the check boxes for Manual color range and Manual data range. In the text fields for Minimum type 22 and for Maximum type 61.
- The result is shown in Figure 7.2.

Abbildung 7.2. Slices of the heat distribution (temperature) T (in ${ }^{\circ} \mathrm{C}$) of the coffee cup at time $t=60$ (in s)

Animation.

- In the Model Builder window, right-click on Results>Export and select Animation from the menu.
- Click on Results $>$ Export $>$ Animation 1.
- In the Settings window for Animation 1, first locate the Scene section and select 3D Plot Group 1 for Subject.
- Next, locate the Output section. As Output type select Movie, as Format select GIF and in the File name text field type coffee.gif. In the Frames per second text field type 10.
- Now, locate the Frames section. As Frame selection select Number of frames and in the Number of frames text field type 100. In the Width text field type 800 and in the Height text field 600.
- Finally, locate the Layout section and enable all check boxes, i.e. for Include, Title, Color legend, Grid, Axis orientation and Logotype. In the Font size text field type 10.
- Now, click on the Export (F8) symbol to create the movie. The symbol can be found in the header of the Settings window.

8. Save the Model

Save File.

- Select File>Save As....
- Select a desired folder, where the model should be saved, and enter CoffeeCup.mph as the Name for the model.
- Click OK.

[^0]: ${ }^{1}$ e-mail: dotten@math.uni-bielefeld.de, phone: +49 (0)521 1064784 ,
 fax: +49 (0)521 106 6498, homepage: http://www.math.uni-bielefeld.de/~dotten/.

