# Ordinary Differential Equations with Comsol Multiphysics 

Denny Otten ${ }^{1}$<br>Department of Mathematics<br>Bielefeld University<br>33501 Bielefeld<br>Germany

Date: April 17, 2015

## 1. Introduction and Mathematical Setting

In the following we explain how to solve the following ordinary differential equation

$$
\begin{aligned}
& u^{\prime \prime}(t)=-\frac{g R^{2}}{(u(t)+R)^{2}}, t>t_{0} \\
& u\left(t_{0}\right)=u_{0}, \quad u^{\prime}\left(t_{0}\right)=v_{0}
\end{aligned}
$$

where the gravitational acceleration $g$ (in $\frac{\mathrm{m}}{\mathrm{s}^{2}}$ ), the Earth's radius $R$ (in m ), the initial time $t_{0}$ (in s ), the initial height $u_{0}$ (in m ) and the initial velocity $v_{0}$ (in $\frac{\mathrm{m}}{\mathrm{s}}$ ) are given. We seak for a time-dependent function $u$ (in m) that descibes the height of the body at time $t$ (in s ) measured from the Earth's surface.
For our simulation we use the following values

$$
g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}, \quad R=10^{7} \mathrm{~m}, \quad t_{0}=0 \mathrm{~s}, \quad u_{0}=0 \mathrm{~m}, \quad v_{0}=10 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

## 2. Model Wizard

## Start Comsol Multiphysics.

To start Comsol Multiphysics 5.0 open the Terminal and enter

- comsol -ckl


## Model Wizard.

- In the New window, click Model Wizard.
- In the Model Wizard window, click 0D in the Select Space Dimension menu.
- In the Select Physics tree, select Mathematics $>$ ODE and DAE interfaces $>$ Global ODEs and DAEs (ge).
- Click Add.

[^0]- Click Study.
- In the Select Study tree, select Preset Studies>Time Dependent.
- Click Done.


## Unit System.

- In the Model Builder window, click Untitled.mph (root).
- In the Settings window for Root, locate the Unit System section.
- From the Unit System list, choose SI.


## Some Advanced Settings.

Hint: In the Model Builder window you should click on the Show icon and enable everything that is possible from the menu: Expand Sections (Equation View, Override and Contribution, Discretization, Stabilization, Advanced Physics Options, Advanced Study Options and Advanced Results Options). Done this, click Expand All icon.

## 3. Ordinary Differential Equation

- In the Model Builder window, expand the Component $1>$ Global ODEs and DAEs (ge) node, then click Global Equations 1.
- In the Settings window for Global Equations, locate the Global Equations section.
- In the table, enter the following settings:

| Name | $f(u, u t, u t t, t)(1)$ | Initial value (u_0)(1) | Initial value (u_t0) (1) | Description |
| :--- | :--- | :--- | :--- | :--- |
| $u$ | $u t t-F$ | $u 0$ | $v 0$ |  |

- In the Settings window for Global Equations, locate the Units section.
- For Dependent variable quantity specify Length (m).
- For Source term quantity specify Acceleration (m/s^2)


## 4. Parameters and Variables

## Parameters.

- In the Model Builder window, expand the Global node, right-click Definitions and select Parameters. (Alternatively: On the Model toolbar, click Parameters.)
- In the Settings window for Parameters, locate the Parameters section.
- In the table, enter the following settings:

| Name | Expression | Value | Description |
| :--- | :--- | :--- | :--- |
| $g$ | 10 | 10 | gravitational acceleration (in $\mathrm{m} / \mathrm{s}^{2}$ ) |
| $R$ | $10^{\wedge} 7$ | $1.0000 E 7$ | Earth's radius (in $m$ ) |
| $t 0$ | 0 | 0 | initial time (in $s$ ) |
| $u 0$ | 0 | 0 | initial height (in $m$ ) |
| $v 0$ | 10 | 10 | initial velocity (in $m / s)$ |

## Variables.

- In the Model Builder window, expand the Component 1 (comp1) node, then click Global Equations 1. (Alternatively: On the Model toolbar, click Variables the Local Variables.)
- In the Settings window for Variables, locate the Variables section.
- In the table, enter the following settings:

| Name | Expression | Unit | Description |
| :--- | :--- | :--- | :--- |
| $F$ | $-g * R^{\wedge} 2 /(u+R)^{\wedge} 2$ | $1 / m^{2}$ | right hand side of 2nd order ODE |

Hint: Note that the variables must be chosen local, not global.

## 5. Study Settings and Computation

## Study Settings.

- In the Model Builder window, expand the Study 1 node, then click Step 1: Time Dependent.
- In the Settings window for Time Dependent, locate the Study Settings section.
- In the Times text field, type range(t0,0.1,2).

Computation.

- On the Model toolbar, click Compute.


## 6. Postprocessing and Graphical Output

The time-height plot.

- In the Model Builder window, expand the Results node, then click 1D Plot Group 1.
- In the Settings window for 1D Plot Group, locate the Title section.
- From the Title type list, choose Manual. In the Title text field, type Vertical throw and free fall of a body.
- Locate the Plot Settings section. Mark both check boxes, x-axis label and $\mathbf{y}$-axis label.
- In the x-axis label text field, enter Time t (s). In the y-axis label text field, enter Height u (m).
- In the Model Builder window, expand the Results $>$ 1D Plot Group 1 node, then click Global 1.
- In the Settings window for Global, locate the Legends section.
- Clear the checkbox Show legends.
- The result is shown in Figure 7.1.

The time-velocity plot.

- In the Model Builder window, right-click Results and select 1D Plot Group.
- In the Model Builder window, expand the Results node, then click 1D Plot Group 2.
- From the Title type list, choose Manual. In the Title text field, type Vertical throw and free fall of a body.
- Locate the Plot Settings section. Mark both check boxes, x-axis label and $\mathbf{y}$-axis label.
- In the $\mathbf{x}$-axis label text field, enter Time $\mathbf{t}$ (s). In the $\mathbf{y}$-axis label text field, enter Velocity u_t (m).
- In the Model Builder window, expand Results, right-click 1D Plot Group 2 and select Global.
- In the Settings window for Global, locate the $\mathbf{y}$-Axis Data section.
- In the table, enter the following settings:

| Expression | Unit | Description |
| :--- | :--- | :--- |
| comp1.ut | $\mathrm{m} / \mathrm{s}$ | State Variable $u$, first time derivative |

- In the Settings window for Global, locate the Legends section.
- Enable the checkbox Show legends.
- The result is shown in Figure 7.2.

The time-acceleration plot.

- In the Model Builder window, right-click Results and select 1D Plot Group.
- In the Model Builder window, expand the Results node, then click 1D Plot Group 3.
- From the Title type list, choose Manual. In the Title text field, type Vertical throw and free fall of a body.
- Locate the Plot Settings section. Mark both check boxes, x-axis label and y-axis label.
- In the x-axis label text field, enter Time $\mathbf{t}$ ( $\mathbf{s}$ ). In the $\mathbf{y}$-axis label text field, enter Acceleration $u$ _tt (m).
- In the Model Builder window, expand Results, right-click 1D Plot Group 3 and select Global.
- In the Settings window for Global, locate the $\mathbf{y}$-Axis Data section.
- In the table, enter the following settings:

| Expression | Unit | Description |
| :--- | :--- | :--- |
| comp1.utt | $\mathrm{m} / \mathrm{s}^{\wedge} 2$ | State Variable $u$, second time derivative |

- In the Settings window for Global, locate the Legends section.
- Enable the checkbox Show legends.
- The result is shown in Figure 7.3.


## 7. Save the Model

## Save File.

- Select File>Save As....
- Select a desired folder, where the model should be saved, and enter ODE.mph as the Name for the model.
- Click OK.


Figure 7.1. Height $u(t)$ (in m ) of the body at time $t$ (in s )


Figure 7.2. Velocity $v(t)=u^{\prime}(t)$ (in $\frac{\mathrm{m}}{\mathrm{s}}$ ) of the body at time $t$ (in s )


Figure 7.3. Acceleration $a(t)=u^{\prime \prime}(t)$ (in $\frac{\mathrm{m}}{\mathrm{s}^{2}}$ ) of the body at time $t$ (in s)


[^0]:    ${ }^{1}$ e-mail: dotten@math.uni-bielefeld.de, phone: +49 (0)521 106 4784,
    fax: +49 (0)521 106 6498, homepage: http://www.math.uni-bielefeld.de/~dotten/.

