Ordinary Differential Equations with Comsol Multiphysics

Denny Otten¹

Department of Mathematics Bielefeld University 33501 Bielefeld Germany

Date: April 17, 2015

1. Introduction and Mathematical Setting

In the following we explain how to solve the following ordinary differential equation

$$u''(t) = -\frac{gR^2}{(u(t) + R)^2}, t > t_0,$$

$$u(t_0) = u_0, \quad u'(t_0) = v_0,$$

where the gravitational acceleration g (in $\frac{m}{s^2}$), the Earth's radius R (in m), the initial time t_0 (in s), the initial height u_0 (in m) and the initial velocity v_0 (in $\frac{m}{s}$) are given. We seak for a time-dependent function u (in m) that describes the height of the body at time t (in s) measured from the Earth's surface.

For our simulation we use the following values

$$g = 10 \frac{\mathrm{m}}{\mathrm{s}^2}$$
, $R = 10^7 \mathrm{m}$, $t_0 = 0 \mathrm{s}$, $u_0 = 0 \mathrm{m}$, $v_0 = 10 \frac{\mathrm{m}}{\mathrm{s}}$.

2. Model Wizard

Start Comsol Multiphysics.

To start Comsol Multiphysics 5.0 open the **Terminal** and enter

• comsol -ckl

Model Wizard.

- In the **New** window, click **Model Wizard**.
- In the Model Wizard window, click 0D in the Select Space Dimension menu.
- In the Select Physics tree, select Mathematics>ODE and DAE interfaces>Global ODEs and DAEs (ge).
- Click Add.

¹e-mail: dotten@math.uni-bielefeld.de, phone: +49 (0)521 106 4784, fax: +49 (0)521 106 6498, homepage: http://www.math.uni-bielefeld.de/~dotten/.

- $\mathbf{2}$
- Click Study.
- In the Select Study tree, select Preset Studies>Time Dependent.
- Click Done.

Unit System.

- In the **Model Builder** window, click **Untitled.mph** (root).
- In the **Settings** window for Root, locate the **Unit System** section.
- From the **Unit System** list, choose **SI**.

Some Advanced Settings.

Hint: In the Model Builder window you should click on the Show icon and enable everything that is possible from the menu: Expand Sections (Equation View, Override and Contribution, Discretization, Stabilization, Advanced Physics Options, Advanced Study Options and Advanced Results Options). Done this, click Expand All icon.

3. Ordinary Differential Equation

- In the Model Builder window, expand the Component 1>Global ODEs and DAEs (ge) node, then click Global Equations 1.
- In the **Settings** window for Global Equations, locate the **Global Equations** section.
- In the table, enter the following settings:

Name	f(u, ut, utt, t) (1)	Initial value $(u_0)(1)$	Initial value (u_t0) (1)	Description
u	utt - F	u0	v0	

- In the **Settings** window for Global Equations, locate the **Units** section.
- For **Dependent variable quantity** specify **Length** (m).
- For Source term quantity specify Acceleration (m/s²)

4. Parameters and Variables

Parameters.

- In the **Model Builder** window, expand the **Global** node, right-click **Definitions** and select **Parameters**. (Alternatively: On the **Model** toolbar, click **Parameters**.)
- In the **Settings** window for Parameters, locate the **Parameters** section.
- In the table, enter the following settings:

Name	Expression	Value	Description
g	10	10	gravitational acceleration (in m/s^2)
R	10^{7}	1.0000E7	Earth's radius $(in m)$
t0	0	0	initial time (in s)
u0	0	0	initial height (in m)
v0	10	10	initial velocity (in m/s)

Variables.

- In the **Model Builder** window, expand the **Component 1 (comp1)** node, then click **Global Equations 1**. (Alternatively: On the **Model** toolbar, click **Variables** the **Local Variables**.)
- In the **Settings** window for Variables, locate the **Variables** section.
- In the table, enter the following settings:

Name	Expression	Unit	Description
F	$-g * R^2/(u+R)^2$	$1/m^{2}$	right hand side of 2nd order ODE

Hint: Note that the **variables** must be chosen **local**, not global.

5. Study Settings and Computation

Study Settings.

- In the Model Builder window, expand the Study 1 node, then click Step 1: Time Dependent.
- In the **Settings** window for Time Dependent, locate the **Study Settings** section.
- In the **Times** text field, type **range**(**t0**,**0**.1,**2**).

Computation.

• On the **Model** toolbar, click **Compute**.

6. Postprocessing and Graphical Output

The time-height plot.

- In the **Model Builder** window, expand the **Results** node, then click **1D Plot Group 1**.
- In the **Settings** window for 1D Plot Group, locate the **Title** section.
- From the **Title type** list, choose **Manual**. In the **Title** text field, type **Vertical throw and** free fall of a body.
- Locate the Plot Settings section. Mark both check boxes, x-axis label and y-axis label.
- In the x-axis label text field, enter Time t (s). In the y-axis label text field, enter Height u (m).
- In the Model Builder window, expand the Results>1D Plot Group 1 node, then click Global 1.
- In the **Settings** window for Global, locate the **Legends** section.
- Clear the checkbox Show legends.
- The result is shown in Figure 7.1.

The time-velocity plot.

- In the Model Builder window, right-click Results and select 1D Plot Group.
- In the Model Builder window, expand the Results node, then click 1D Plot Group 2.
- From the **Title type** list, choose **Manual**. In the **Title** text field, type **Vertical throw and** free fall of a body.
- Locate the Plot Settings section. Mark both check boxes, x-axis label and y-axis label.
- In the x-axis label text field, enter Time t (s). In the y-axis label text field, enter Velocity u_t (m).

- 4
- In the Model Builder window, expand Results, right-click 1D Plot Group 2 and select Global.
- In the **Settings** window for Global, locate the **y-Axis Data** section.
- In the table, enter the following settings:

Expression	Unit	Description
comp1.ut	m/s	State Variable u , first time derivative

- In the **Settings** window for Global, locate the **Legends** section.
- Enable the checkbox Show legends.
- The result is shown in Figure 7.2.

The time-acceleration plot.

- In the **Model Builder** window, right-click **Results** and select **1D Plot Group**.
- In the **Model Builder** window, expand the **Results** node, then click **1D Plot Group 3**.
- From the **Title type** list, choose **Manual**. In the **Title** text field, type **Vertical throw and** free fall of a body.
- Locate the Plot Settings section. Mark both check boxes, x-axis label and y-axis label.
- In the x-axis label text field, enter Time t (s). In the y-axis label text field, enter Acceleration u_tt (m).
- In the Model Builder window, expand Results, right-click 1D Plot Group 3 and select Global.
- In the **Settings** window for Global, locate the **y-Axis Data** section.
- In the table, enter the following settings:

Expression	Unit	Description
comp1.utt	m/s^2	State Variable u , second time derivative

- In the **Settings** window for Global, locate the **Legends** section.
- Enable the checkbox Show legends.
- The result is shown in Figure 7.3.

7. Save the Model

Save File.

- Select File>Save As....
- Select a desired folder, where the model should be saved, and enter **ODE.mph** as the **Name** for the model.
- Click **OK**.

FIGURE 7.1. Height u(t) (in m) of the body at time t (in s)

FIGURE 7.2. Velocity v(t) = u'(t) (in $\frac{m}{s}$) of the body at time t (in s)

FIGURE 7.3. Acceleration a(t) = u''(t) (in $\frac{m}{s^2}$) of the body at time t (in s)