The Nagumo Equation with Comsol Multiphysics

Denny Otten ${ }^{1}$
Christian Döding ${ }^{2}$
Department of Mathematics
Bielefeld University
33501 Bielefeld
Germany

Date: 25. April 2016

1. Traveling Front in the Nagumo equation

Consider the Nagumo equation

$$
u_{t}=u_{x x}+u(1-u)(u-b), \quad x \in \mathbb{R}, t \geqslant 0
$$

for $0<b<1$, where $u=u(x, t) \in \mathbb{R}$. We want to solve this equation numerically for a suitable initial value function u_{0} with Comsol Multiphysics. Therefore, we have to restrict the equation on a sufficiently large bounded domain $\Omega \subset \mathbb{R}$ with homogeneous Neumann boundary conditions, i.e. we solve the initial boundary value problem

$$
\begin{align*}
u_{t} & =u_{x x}+u(1-u)(u-b) & & , x \in \Omega, t \in(0, T] \\
u(\cdot, 0) & =u_{0} & & , x \in \bar{\Omega}, t=0, \tag{1.1}\\
u_{x} & =0 & & , x \in \partial \Omega, t \in[0, T],
\end{align*}
$$

on the spatial domain $\Omega=(-50,50)$ for end time $T=100$, initial data

$$
u_{0}(x)=\frac{1}{1+\exp \left(-\frac{x}{\sqrt{2}}\right)}, \quad x \in \mathbb{R}
$$

and parameter $b=\frac{1}{4}$. For the space discretization we use linear Lagrange elements with maximal element size $\triangle x=0.1$. For the time discretization we use the BDF method of maximum order 2 with intermediate time steps, time stepsize $\Delta t=0.1$, relative tolerance $\mathrm{rtol}=10^{-3}$ and absolute tolerance atol $=10^{-4}$ with global method set to be unscaled. The nonlinear equations should be solved by the Newton method. i.e. automatic (Newton).

[^0]
2. Model Wizard

Start Comsol Multiphysics.

To start Comsol Multiphysics 5.2 open the Terminal and enter

- comsol -ckl

Model Wizard.

Space dimension

- In the New window, click Model Wizard.
- In the Model Wizard window, click 1D in the Select Space Dimension menu.

Equation

- In the Select Physics tree, select Mathematics $>$ PDE Interfaces $>$ Coefficient Form PDE (c).
- Click Add.
- Next, locate the Dependent Variables section.
- In the Field name text field, type u.
- In the Dependent variables text field, type also u.

Study settings

- Click Study and choose Preset Studies>Time Dependent.
- Click Done.

Some Advanced Settings.

Hint: In the Model Builder window you should click on the Show icon and enable everything that is possible from the menu: Equation Sections (Equation View, Override and Contribution, Discretization, Stabilization, Advanced Physics Options, Advanced Study Options and Advanced Results Options). Done this, click Expand All icon.

3. Geometry

- In the Model Builder tree, expand the Component 1 (comp1) node, right-click Geometry 1 and select Interval.
- In the Settings window for Interval, locate the Interval section.
- In the Left endpoint text field, type -50.
- In the Right endpoint text field, type $\mathbf{5 0}$.
- In the Model Builder tree, right-click on the Component 1 (comp1) \rightarrow Geometry 1 node and select Build all. (Alternatively, press the short cut F8.)

4. Partial differential equation

General Settings.

- Click on Component 1 (comp1) \rightarrow Coefficient Form PDE (c).
- Locate the Settings window for Coefficient Form PDE.
- In the Label text field, type Nagumo Equation.
- In the Discretization section choose
- Shape function type: Lagrange,
- Element order: Linear.

Partial differential equation. We define the PDE:

- Switch to Component 1 (comp1) \rightarrow Nagumo Equation (c) \rightarrow Coefficient Form PDE 1

$$
e_{a} \frac{\partial^{2} u}{\partial t^{2}}+d_{a} \frac{\partial u}{\partial t}+\nabla \cdot(-c \nabla u-\alpha u+\gamma)+\beta \cdot \nabla u+a u=f
$$

with $\nabla=\frac{\partial}{\partial x}$, and enter the following values

- Mass Coefficient e_{a} : 0,
- Damping or Mass Coefficient $d_{a}: 1$,
- Diffusion coefficient $c:$ 1,
- Conservative Flux Convection Coefficient α : 0,
- Conservative Flux Source γ : 0,
- Convection Coefficient β : 0,
- Absorption Coefficient a: 0,
- Source Term f : fu.

Boundary Conditions. Since the PDE requires homogeneous Neumann boundary conditions at both end points of the interval, we do not must change anything. Hint: By default, there is implemented a zero flux boundary condition on the whole boundary, that corresponds to a homogeneous Neumann boundary condition.
Initial Values. We define the initial value $u(\cdot, 0)=u_{0}$ for the partial differential equation:

- Click on Component 1 (comp1) \rightarrow Nagumo Equation (c) \rightarrow Initial Values 1.
- In the Initial Values section enter
- Initial value for $\mathbf{u}: \mathbf{u 0}$,
- Initial time derivative of $\mathbf{u}: \mathbf{0}$.

The quantity u0 will be defined below in Section 5 . This completes the implementation of the initial boundary value problem.

5. Parameters and Variables

Parameters. We first define the parameters and constants arising in our model as 'global parameters':

- In the Model Builder tree, right-click on the Global Definitions node and select Parameters. (Alternatively: On the Model toolbar, click Parameters.)
- In the Settings window for Parameters, locate the Parameters section.
- In the table add the following entry:

Name	Expression	Value	Description
b	$1 / 4$	0.25	constant of Nagumo equation
T	100	100	end time

Variables 1. We now define all functions which appear in our model as 'local variables'.

- In the Model Builder tree, right-click on the Component 1 (comp1) \rightarrow Definitions node and select Variables.
- In the Settings window for Variables, locate the Variables section.
- In the table add the following entries:

Name	Expression	Unit	Description
u 0	$1 /(1+\exp (-\mathrm{x} / \operatorname{sqrt}(2)))$		initial value
fu	$\mathrm{u}^{*}(1-\mathrm{u})^{*}(\mathrm{u}-\mathrm{b})$		nonlinearity

6. Mesh

- In the Model Builder tree, click on Component 1 (comp1) \rightarrow Mesh 1.
- In the Settings window for Mesh, locate the Mesh Settings section.
- Set the Sequence type on User-controlled mesh.
- In the Model Builder tree, switch to Component 1 (comp1) \rightarrow Mesh $1 \rightarrow$ Size.
- In the Settings window for Size, locate the Element Size Parameters section.
- In the Maximum element size text field, type 0.1.
- In the Model Builder tree, right-click on Component 1 (comp1) \rightarrow Mesh and select Build All.

7. Studies and Computation

Study 1. Study 1

- Click on Study 1.
- Locate the Settings window for Study.
- In the Label text field, type Study 1: Nagumo Equation.

Step 1

- Click on Study 1: Nagumo Equation \rightarrow Step 1: Time Dependent.
- Locate the Settings window for Time Dependent.
- In the Study Settings section enter
- Time unit: s,
- Times: range($0,0.1, \mathrm{~T})$,
- Relative tolerance: 0.001.

The last input requires to enable the corresponding checkbox.
Solver Configurations

- Right-click on Study 1: Nagumo Equation \rightarrow Solver Configurations and select Show Default Solver.
- Click on Study 1: Nagumo Equation \rightarrow Solver Configurations \rightarrow Solution 1 (sol1) \rightarrow TimeDependent Solver 1.
- Locate the Settings window for Time Dependent Solver.
- In the Absolute Tolerance section enter
- Global method: Unscaled,
- Tolerance: 0.0001 .
- In the Time Stepping section enter
- Method: BDF,
- Steps taken by solver: intermediate,
- Maximum BDF order: 2.
- Click on Study 1: Nagumo Equation \rightarrow Solver Configurations \rightarrow Solution 1 (sol1) \rightarrow TimeDependent Solver $1 \rightarrow$ Fully Coupled 1.
- Locate the Settings window for Fully Coupled.
- In the Method and Termination section, choose
- Nonlinear Method: Automatic (Newton),

Solution Store

- Right-click on Study 1: Nagumo Equation \rightarrow Solver Configurations \rightarrow Solution 1 (sol1) and select Other $>$ Solution Store from the list.
- Click on Study 1: Nagumo Equation \rightarrow Solver Configurations \rightarrow Solution 1 (sol1) \rightarrow Solution Store 1 (sol2).
- Locate the Settings window for Solution Store.
- In the Label text field, type Nagumo Equation Solution.

7.1. Computation.

- Right-click on Study 1: Nagumo Equation and select Compute from the list.

8. Postprocessing and graphical output

In this section we generate 2 Plot groups and a movie for visualizing our results.

8.1. Results for the Nagumo equation.

Plot Group 1: Traveling Front, View 1

- Click on Results \rightarrow 1D Plot Group 1. Hint: If 1D Plot Group 1 does not exists, right-click on Results and select 1D Plot Group from the list.
- Locate the Settings window for 1D Plot Group.
- In the Label text field, type Traveling Front, View 1.
- In the Data section select Data set Study 1: Nagumo Equation/Nagumo Equation Solution (sol2), Time selection Interpolated and Times (s) 020406080100 .
- In the Title section select Title type None.
- In the Plot Settings section select \mathbf{x}-axis label \mathbf{x} and \mathbf{y}-axis label $\mathbf{u}(\mathbf{x}, \mathbf{t})$.
- Click on Results \rightarrow Traveling Front, View $1 \rightarrow$ Line Graph 1. Hint: If Line Graph 1 does not exists, right-click on Results \rightarrow Traveling Front, View 1 and select Line Graph from the list.
- Locate the Settings window for Line Graph 1.
- In the Data section select Data set From parent.
- In the Selection section select Selection All domains.
- In the y-Axis Data section select Expression u.
- In the x-Axis Data section select Parameters Expression and Expression x.
- In the Coloring and Style section select Line Solid, Color Cycle and Width 2 in the Line style subsection.
- In the Legends section enable the Show legends checkbox, select Legends Manual and enter the legends $\mathbf{t}=\mathbf{0}, \mathbf{t}=\mathbf{2 0}, \mathbf{t}=\mathbf{4 0}, \mathbf{t}=\mathbf{6 0}, \mathbf{t}=\mathbf{8 0}$ and $\mathbf{t}=\mathbf{1 0 0}$.
Plot Group 2: Traveling Front, View 2
- Click on Results \rightarrow 1D Plot Group 2. Hint: If 1D Plot Group 2 does not exists, right-click on Results and select 1D Plot Group from the list.
- Locate the Settings window for 1D Plot Group.
- In the Label text field, type Traveling Front, View 2.
- In the Data section select Data set Study 1: Nagumo Equation/Nagumo Equation Solution (sol2) and Time selection All.
- In the Title section select Title type None.
- In the Plot Settings section select \mathbf{x}-axis label x and y -axis label t .
- Click on Results \rightarrow Traveling Front, View $\mathbf{2} \rightarrow$ Line Graph 1. Hint: If Line Graph 1 does not exists, right-click on Results \rightarrow Traveling Front, View 2 and select Line Graph from the list.
- Locate the Settings window for Line Graph 1.
- In the Data section select Data set From parent.
- In the Selection section select Selection All domains.
- In the y-Axis Data section select Expression t.
- In the \mathbf{x}-Axis Data section select Parameter Expression and Expression x.
- Right-click on Results \rightarrow Traveling Front, View $2 \rightarrow$ Line Graph 1 and select Color Expression.
- Click on Results \rightarrow Traveling Front, View $2 \rightarrow$ Line Graph $1 \rightarrow$ Color Expression 1.
- Locate the Settings window for Color Expression.
- In the Expression section select Expression u.

Plot Group 3: Plot for Animation

- Right-click on Results and select 1D Plot Group from the list.
- Locate the Settings window for 1D Plot Group 3.
- In the Label text field, type Plot Group for Animation.
- In the Data section select Data set Study 1: Nagumo Equation/Nagumo Equation Solution (sol2), Time selection First.
- In the Title section select Title type None.
- In the Plot Settings section select \mathbf{x}-axis label \mathbf{x} and \mathbf{y}-axis label $\mathbf{u}(\mathbf{x}, \mathrm{t})$.
- Click on Results \rightarrow Plot Group for Animation \rightarrow Line Graph 1. Hint: If Line Graph 1 does not exists, right-click on Results \rightarrow Plot Group for Animation and select Line Graph from the list.
- Locate the Settings window for Line Graph 1.
- In the Data section select Data set From parent.
- In the Selection section select Selection All domains.
- In the y-Axis Data section select Expression u.
- In the x-Axis Data section select Parameters Expression and Expression x.
- In the Coloring and Style section select Line Solid, Color Cycle and Width 2 in the Line style subsection.
- In the Legends section enable the Show legends checkbox, select Legends Automatic.

Animation 1: Traveling Front, Animation

- Click on the Animation icon on top of the Settings window and select Player.
- Locate the Setting window for Animation 1.
- In the Label text field, type Traveling Front, Animation.
- In the Target section select File.
- In the Output section select Format GIF and in the Filename text field type NagumoEquation.gif.
- In the Frames section enter Number of Frames 100.
- In the Layout section enable the checkbox for Include and then the checkboxes for Title, Legend and Axes and enter Font size 10.
- In the Advanced section disable the checkbox Synchronize scales between frames.
- Right-click Results \rightarrow Export \rightarrow Traveling Front, Animation and select Export.

[^0]: ${ }^{1}$ e-mail: dotten@math.uni-bielefeld.de, phone: +49 (0)521 1064784 ,
 fax: +49 (0)521 106 6498, homepage: http://www.math.uni-bielefeld.de/~dotten/.
 ${ }^{2}$ e-mail: cdoeding@math.uni-bielefeld.de, phone: +49 (0)521 1064765

