The Nagumo Equation with Comsol Multiphysics

Denny Otten¹ Christian Döding² Department of Mathematics Bielefeld University 33501 Bielefeld Germany

Date: 25. April 2016

1. Traveling Front in the Nagumo equation

Consider the Nagumo equation

$$u_t = u_{xx} + u(1-u)(u-b), \quad x \in \mathbb{R}, \ t \ge 0$$

for 0 < b < 1, where $u = u(x, t) \in \mathbb{R}$. We want to solve this equation numerically for a suitable initial value function u_0 with Comsol Multiphysics. Therefore, we have to restrict the equation on a sufficiently large bounded domain $\Omega \subset \mathbb{R}$ with homogeneous Neumann boundary conditions, i.e. we solve the initial boundary value problem

(1.1)
$$u_{t} = u_{xx} + u(1-u)(u-b) , x \in \Omega, t \in (0,T],$$
$$u(\cdot,0) = u_{0} , x \in \overline{\Omega}, t = 0,$$
$$u_{x} = 0 , x \in \partial\Omega, t \in [0,T],$$

on the spatial domain $\Omega = (-50, 50)$ for end time T = 100, initial data

$$u_0(x) = \frac{1}{1 + \exp(-\frac{x}{\sqrt{2}})}, \quad x \in \mathbb{R}$$

and parameter $b = \frac{1}{4}$. For the space discretization we use linear Lagrange elements with maximal element size $\Delta x = 0.1$. For the time discretization we use the BDF method of maximum order 2 with intermediate time steps, time stepsize $\Delta t = 0.1$, relative tolerance $rtol = 10^{-3}$ and absolute tolerance $atol = 10^{-4}$ with global method set to be unscaled. The nonlinear equations should be solved by the Newton method. i.e. automatic (Newton).

¹e-mail: dotten@math.uni-bielefeld.de, phone: +49 (0)521 106 4784,

fax: +49 (0)521 106 6498, homepage: http://www.math.uni-bielefeld.de/~dotten/.

²e-mail: cdoeding@math.uni-bielefeld.de, phone: +49 (0)521 106 4765

2. Model Wizard

Start Comsol Multiphysics.

To start Comsol Multiphysics 5.2 open the **Terminal** and enter

• comsol -ckl

Model Wizard.

Space dimension

- In the **New** window, click **Model Wizard**.
- In the Model Wizard window, click 1D in the Select Space Dimension menu.

Equation

- In the Select Physics tree, select Mathematics>PDE Interfaces>Coefficient Form PDE (c).
- Click Add.
- Next, locate the **Dependent Variables** section.
- In the **Field name** text field, type **u**.
- In the **Dependent variables** text field, type also **u**.

Study settings

- Click Study and choose Preset Studies>Time Dependent.
- Click **Done**.

Some Advanced Settings.

Hint: In the Model Builder window you should click on the Show icon and enable everything that is possible from the menu: Equation Sections (Equation View, Override and Contribution, Discretization, Stabilization, Advanced Physics Options, Advanced Study Options and Advanced Results Options). Done this, click Expand All icon.

3. Geometry

- In the **Model Builder** tree, expand the **Component 1 (comp1)** node, right-click **Geometry 1** and select **Interval**.
- In the **Settings** window for Interval, locate the **Interval** section.
- In the **Left endpoint** text field, type **-50**.
- In the **Right endpoint** text field, type **50**.
- In the Model Builder tree, right-click on the Component 1 (comp1)→Geometry 1 node and select Build all. (Alternatively, press the short cut F8.)

4. Partial differential equation

General Settings.

- Click on Component 1 (comp1) \rightarrow Coefficient Form PDE (c).
- Locate the **Settings** window for Coefficient Form PDE.
- In the Label text field, type Nagumo Equation.
- In the **Discretization** section choose
 - Shape function type: Lagrange,
 - Element order: Linear.

2

Partial differential equation. We define the PDE:

• Switch to Component 1 (comp1) \rightarrow Nagumo Equation (c) \rightarrow Coefficient Form PDE 1

$$e_a \frac{\partial^2 u}{\partial t^2} + d_a \frac{\partial u}{\partial t} + \nabla \cdot (-c\nabla u - \alpha u + \gamma) + \beta \cdot \nabla u + au = f$$

with $\nabla = \frac{\partial}{\partial x}$, and enter the following values

- Mass Coefficient e_a : 0,
- Damping or Mass Coefficient d_a : 1,
- Diffusion coefficient c: 1,
- Conservative Flux Convection Coefficient α : 0,
- Conservative Flux Source γ : 0,
- Convection Coefficient β : 0,
- Absorption Coefficient a: 0,
- Source Term f: fu.

Boundary Conditions. Since the PDE requires homogeneous Neumann boundary conditions at both end points of the interval, we do not must change anything. Hint: By default, there is implemented a zero flux boundary condition on the whole boundary, that corresponds to a homogeneous Neumann boundary condition.

Initial Values. We define the initial value $u(\cdot, 0) = u_0$ for the partial differential equation:

- Click on Component 1 (comp1) \rightarrow Nagumo Equation (c) \rightarrow Initial Values 1.
- In the **Initial Values** section enter
 - Initial value for u: u0,
 - Initial time derivative of u: 0.

The quantity $\mathbf{u0}$ will be defined below in Section 5. This completes the implementation of the initial boundary value problem.

5. Parameters and Variables

Parameters. We first define the parameters and constants arising in our model as 'global parameters':

- In the **Model Builder** tree, right-click on the **Global Definitions** node and select **Parameters**. (Alternatively: On the **Model** toolbar, click **Parameters**.)
- In the **Settings** window for Parameters, locate the **Parameters** section.
- In the table add the following entry:

Name	Expression	Value	Description
b	1/4	0.25	constant of Nagumo equation
Т	100	100	end time

Variables 1. We now define all functions which appear in our model as 'local variables'.

- In the Model Builder tree, right-click on the Component 1 (comp1) \rightarrow Definitions node and select Variables.
- In the **Settings** window for Variables, locate the **Variables** section.
- In the table add the following entries:

Name	Expression	Unit	Description
u0	$1/(1+\exp(-x/\operatorname{sqrt}(2)))$		initial value
fu	$u^{*}(1-u)^{*}(u-b)$		nonlinearity

6. Mesh

- In the Model Builder tree, click on Component 1 (comp1) \rightarrow Mesh 1.
- In the **Settings** window for Mesh, locate the **Mesh Settings** section.
- Set the Sequence type on User-controlled mesh.
- In the Model Builder tree, switch to Component 1 (comp1) \rightarrow Mesh 1 \rightarrow Size.
- In the **Settings** window for Size, locate the **Element Size Parameters** section.
- In the **Maximum element size** text field, type **0.1**.
- In the Model Builder tree, right-click on Component 1 (comp1)→Mesh and select Build All.

7. Studies and Computation

Study 1. Study 1

- Click on **Study 1**.
- Locate the **Settings** window for Study.
- In the Label text field, type Study 1: Nagumo Equation.

Step 1

- Click on Study 1: Nagumo Equation

 Step 1: Time Dependent.
- Locate the **Settings** window for Time Dependent.
- In the **Study Settings** section enter
 - Time unit: s,
 - Times: range(0,0.1,T),
 - Relative tolerance: 0.001.

The last input requires to enable the corresponding checkbox.

Solver Configurations

- Right-click on Study 1: Nagumo Equation
 Solver Configurations and select Show Default Solver.
- Click on Study 1: Nagumo Equation \rightarrow Solver Configurations \rightarrow Solution 1 (sol1) \rightarrow Time-Dependent Solver 1.
- Locate the **Settings** window for Time Dependent Solver.
- In the **Absolute Tolerance** section enter
 - Global method: Unscaled,
 - **Tolerance**: **0.0001**.
- In the **Time Stepping** section enter
 - Method: BDF,
 - Steps taken by solver: intermediate,
 - Maximum BDF order: 2.
- Click on Study 1: Nagumo Equation \rightarrow Solver Configurations \rightarrow Solution 1 (sol1) \rightarrow Time-Dependent Solver 1 \rightarrow Fully Coupled 1.
- Locate the **Settings** window for Fully Coupled.
- In the **Method and Termination** section, choose
 - Nonlinear Method: Automatic (Newton),

Solution Store

- Right-click on Study 1: Nagumo Equation
 Solver Configurations
 Solution 1 (sol1) and select Other
 Solution Store from the list.
- Click on Study 1: Nagumo Equation \rightarrow Solver Configurations \rightarrow Solution 1 (sol1) \rightarrow Solution Store 1 (sol2).
- Locate the **Settings** window for Solution Store.
- In the Label text field, type Nagumo Equation Solution.

7.1. Computation.

• Right-click on Study 1: Nagumo Equation and select Compute from the list.

8. Postprocessing and graphical output

In this section we generate 2 Plot groups and a movie for visualizing our results.

8.1. Results for the Nagumo equation.

Plot Group 1: Traveling Front, View 1

- Click on **Results**→1D **Plot Group 1**. Hint: If 1D **Plot Group 1** does not exists, right-click on **Results** and select 1D **Plot Group** from the list.
- Locate the **Settings** window for 1D Plot Group.
- In the Label text field, type Traveling Front, View 1.
- In the Data section select Data set Study 1: Nagumo Equation/Nagumo Equation Solution (sol2), Time selection Interpolated and Times (s) 0 20 40 60 80 100.
- In the **Title** section select **Title type None**.
- In the Plot Settings section select x-axis label x and y-axis label u(x,t).
- Click on **Results**→**Traveling Front**, **View 1**→**Line Graph 1**. Hint: If **Line Graph 1** does not exists, right-click on **Results**→**Traveling Front**, **View 1** and select **Line Graph** from the list.
- Locate the **Settings** window for Line Graph 1.
- In the **Data** section select **Data set From parent**.
- In the **Selection** section select **Selection All domains**.
- In the **y-Axis Data** section select **Expression u**.
- In the x-Axis Data section select Parameters Expression and Expression x.
- In the Coloring and Style section select Line Solid, Color Cycle and Width 2 in the Line style subsection.
- In the Legends section enable the Show legends checkbox, select Legends Manual and enter the legends t=0, t=20, t=40, t=60, t=80 and t=100.

Plot Group 2: Traveling Front, View 2

- Click on Results→1D Plot Group 2. Hint: If 1D Plot Group 2 does not exists, right-click on Results and select 1D Plot Group from the list.
- Locate the **Settings** window for 1D Plot Group.
- In the Label text field, type Traveling Front, View 2.
- In the Data section select Data set Study 1: Nagumo Equation/Nagumo Equation Solution (sol2) and Time selection All.

- 6
- In the **Title** section select **Title type None**.
- In the Plot Settings section select x-axis label x and y-axis label t.
- Click on **Results**→**Traveling Front**, **View 2**→**Line Graph 1**. Hint: If **Line Graph 1** does not exists, right-click on **Results**→**Traveling Front**, **View 2** and select **Line Graph** from the list.
- Locate the **Settings** window for Line Graph 1.
- In the **Data** section select **Data set From parent**.
- In the Selection section select Selection All domains.
- In the y-Axis Data section select Expression t.
- In the x-Axis Data section select Parameter Expression and Expression x.
- Right-click on **Results**→**Traveling Front**, **View 2**→**Line Graph 1** and select **Color Expression**.
- Click on Results \rightarrow Traveling Front, View 2 \rightarrow Line Graph 1 \rightarrow Color Expression 1.
- Locate the **Settings** window for Color Expression.
- In the **Expression** section select **Expression u**.
- Plot Group 3: Plot for Animation
- Right-click on **Results** and select **1D Plot Group** from the list.
- Locate the **Settings** window for 1D Plot Group 3.
- In the Label text field, type Plot Group for Animation.
- In the Data section select Data set Study 1: Nagumo Equation/Nagumo Equation Solution (sol2), Time selection First.
- In the **Title** section select **Title type None**.
- In the Plot Settings section select x-axis label x and y-axis label u(x,t).
- Click on **Results**→**Plot Group for Animation**→**Line Graph 1**. Hint: If **Line Graph 1** does not exists, right-click on **Results**→**Plot Group for Animation** and select **Line Graph** from the list.
- Locate the **Settings** window for Line Graph 1.
- In the **Data** section select **Data set From parent**.
- In the **Selection** section select **Selection All domains**.
- In the **y-Axis Data** section select **Expression u**.
- In the x-Axis Data section select Parameters Expression and Expression x.
- In the Coloring and Style section select Line Solid, Color Cycle and Width 2 in the Line style subsection.
- In the **Legends** section enable the **Show legends** checkbox, select **Legends** Automatic.

Animation 1: Traveling Front, Animation

- Click on the **Animation** icon on top of the **Settings** window and select **Player**.
- Locate the **Setting** window for Animation 1.
- In the Label text field, type Traveling Front, Animation.
- In the **Target** section select **File**.
- In the **Output** section select **Format GIF** and in the **Filename** text field type **NagumoEquation.gif**.

- In the **Frames** section enter **Number of Frames 100**.
- In the Layout section enable the checkbox for Include and then the checkboxes for Title, Legend and Axes and enter Font size 10.
- In the **Advanced** section disable the checkbox **Synchronize scales between frames**.
- $\bullet \ {\rm Right-click} \ {\bf Results} {\rightarrow} {\bf Export} {\rightarrow} {\bf Traveling} \ {\bf Front}, \ {\bf Animation} \ {\rm and} \ {\rm select} \ {\bf Export}.$