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1. Introduction

Nonlinear waves are a common feature in many applications such as the spread of
epidemics, electric signalling in nerve cells and excitable chemical reactions. For
example, one of the most common references in Mathematical Biology [22]1 devotes
more than 100 pages to explaining and analyzing waves in biological systems.
We emphasize that our main interest is not in classical applications of wave phe-
nomena in evolution equations, such as water waves, shock waves in gas dynamics,
and electromagnetic waves, see the reference [31]2. Rather we concentrate on waves
in nonlinear parabolic systems which arise when modelling reaction diffusion sys-
tems. One important feature of these systems is that waves have a specific velocity,
as opposed to the continuum of waves with different wave lengths and different wave
speeds that typical occur in classical wave equations.

1James D. Murray, born in Scotland 1931, Professor Emeritus of the University of Oxford,
known for his work and his books on Mathematical Biology

2Gerald Witham 1927-2014, a British-born American applied mathematician, worked at the
California Institute of Technology, known for his work in fluid dynamics and waves
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One of the most important applications where this unique speed is essential, is
the famous and Nobel-prize winning Hodgkin-Huxley model for conduction and
excitation in nerve [15].
Our main topic will be travelling waves in one space dimension and the following
problems will provide the guidelines for this lecture:

• Compute explicit travelling wave solutions for specific PDEs from appli-
cations.

• Detect travelling waves of PDEs in one space dimension as connecting
orbits of ODEs und use phase plane analysis.

• Prove the existence of a travelling wave (and uniqueness of its speed if
possible).

• Study the (asymptotic) stability of travelling waves for the underlying
evolution equation and investigate its relation to the spectra of lineariza-
tions.

• Discuss numerical methods for computing travelling waves and analyze
the error arising from the truncation of an unbounded to a bounded do-
main.

• Study families of travelling waves in systems with conserved quantities,
in particular in Hamiltonian PDEs.

In the first chapter we will discuss some formulae of explicitly known wave solu-
tions (see [24]), but also briefly touch upon waves in several space dimensions and
show some examples and numerical simulations. However, a rigorous mathematical
theory of such dynamic patterns is far from being complete and is well beyond the
scope of this lecture.

2. Examples and basic principles

2.1. Travelling wave solutions. Consider a general evolution equation in one
space dimension

(2.1) ut = F (u), u(x, t) ∈ Rm, x ∈ R, t ≥ 0,

where we think of F being a linear or nonlinear differential operator in d
dx

= ∂x.

Definition 2.1. A solution

u⋆ : R× [0,∞) → Rm, (x, t) 7→ u(x, t)

of equation (2.1) of the form

(2.2) u⋆(x, t) = v⋆(x− c⋆t), x ∈ R, t ≥ 0

is called a travelling wave with profile v⋆ : R 7→ Rm and speed c⋆ ∈ R. If addition-
ally the limits

(2.3) lim
ξ→−∞

v⋆(ξ) = v− ∈ Rm, lim
ξ→∞

v⋆(ξ) = v+ ∈ Rm
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exist then u⋆ is called a travelling front if v− 6= v+, and a travelling pulse (or a
solitary wave) if v− = v+.

In Definition 2.1 we intentionally left the notion of a solution imprecise and we
did also not specify the form of the (nonlinear) differential operator F . This will
become clearer with the following examples. Generally, we assume a travelling wave
to be continuously differentiable and bounded, i.e. the function v⋆ is continuously
differentiable and bounded. Figure 2.1 shows some wave profiles v⋆ of travelling
waves, namely a front in (a), a pulse in (b) and a wavetrain in (c).

v⋆

ξ

v+

v−

(a)

v⋆

ξ

v+
v−

(b)

v⋆

ξ

(c)

Figure 2.1. Profile v⋆: front (a), pulse (b), and wavetrain (c).

Finding travelling waves in one space dimension can be reduced to searching for
special solutions of ODEs. For that purpose assume (2.1) to have the more specific
form

(2.4) ut = f(u, ∂xu, . . . , ∂
k
xu), x ∈ R, t ≥ 0,

where f : R(k+1)m → Rm is a given nonlinearity. We insert the travelling wave
ansatz

(2.5) u(x, t) = v(x− ct), x ∈ R, t ≥ 0

into (2.4) and find

−cv′(x− ct) = f(v(x− ct), v′(x− ct), . . . , v(k)(x− ct)), x ∈ R, t ≥ 0.

Since this should hold for all arguments we can substitute the wave variable ξ =
x− ct and obtain the equation

0 = cv′(ξ) + f(v(ξ), v′(ξ), . . . , v(k)(ξ)), ξ ∈ R,

which is a k-th order ODE on the real line. We usually suppress arguments and
write this travelling wave ODE as

(TWODE) 0 = cv′ + f(v, v′, . . . , v(k)), ξ ∈ R.

Note that the final step of reducing to an autonomous ODEs does not work if the
function f in (2.4) depends explicitly on x or t

ut = f(x, t, u, ∂xu, . . . , ∂
k
xu), x ∈ R, t ≥ 0.
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We will call (TWODE) the travelling wave ODE for the given PDE (2.4).

2.2. Examples from linear PDEs.

Example 2.2 (The advection equation). Consider the advection equation (or linear
transport equation)

(2.6) ut + aux = 0, x ∈ R, t ≥ 0

for some 0 6= a ∈ R. The travelling wave ODE of (2.6) is

0 = cv′ − av′, ξ ∈ R.

For nonconstant v we have v′ 6= 0 which implies c = a. Therefore, any function
u⋆(x, t) = v⋆(x − at) with sufficiently smooth profile v⋆ (i.e. v⋆ ∈ C1(R,R)) is a
travelling wave solution of (2.6) with speed c⋆ = a. In fact, the associated Cauchy
problem of (2.6)

ut + aux = 0, x ∈ R, t ≥ 0,

u(x, 0) = u0(x), x ∈ R,
(2.7)

admits the solution u(x, t) = u0(x − at). That is all solutions of this simple
equation are travelling waves (which, in a sense, is boring). For constant initial
data, the solution is the same, but the speed is arbitrary. We consider this to be
a degenerate situation since constants are steady states of the evolution equation
(2.6) (i.e. ux = 0) while nonconstant profiles do not have this property. We
sometimes call the latter ones true (or nontrivial) travelling waves. A travelling
pulse solution of (2.6) is shown in Figure 2.2.

Example 2.3 (The heat equation). Consider the heat equation (or diffusion equa-
tion)

(2.8) ut = auxx, x ∈ R, t ≥ 0,

for some 0 < a ∈ R. The travelling wave ODE of (2.8) is

0 = cv′ + av′′, ξ ∈ R,

which has the two linearly independent solutions

(2.9) v1(ξ) = 1, v2(ξ) = e−
c
a
ξ, ξ ∈ R.

Both are either constant or unbounded. We conclude that the heat equation has no
true bounded travelling wave solutions. Later on, we will learn that this changes
dramatically when we introduce nonlinearities into the heat equation.

Example 2.4 (The Klein Gordon equation). Consider the Klein Gordon equation

(2.10) utt = a2uxx − µ2u, x ∈ R, t ≥ 0

for some 0 6= a, µ ∈ R. It is an easy exercise to show that the scaling

ũ(y, s) = u(
a

µ
y,

1

µ
s)
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Figure 2.2. Travelling pulse solution u⋆(x, t) = v⋆(x − c⋆t) of the
advection equation (2.6) with profile v⋆(ξ) = exp(− ξ2

2
) and velocity

c⋆ = a = 1 at time t = 0 (solid line) and t = 4 (dashed line).

transforms equation (2.10) into

(2.11) utt = uxx − u,

where the tilde was dropped and (y, s) was renamed as (x, t) for convenience.
Applying the travelling wave ansatz (2.5) to (2.11) leads to the travelling wave
ODE of (2.11)

(2.12) 0 = (c2 − 1)v′′ + v, ξ ∈ R,

which is now a second order ODE. Note that second order time derivative in (2.11)
always imply a second order derivative in the associated traveling wave ODE (2.12).
The characteristic polynomial of (2.12)

p(λ) = (c2 − 1)λ2 + 1.

Solving (2.12) is equivalent to finding zeros of p, i.e. λ with p(λ) = 0, which are

λ =

{
± 1√

1−c2
, |c| 6= 1

no zeros, |c| = 1
=





± 1√
|c2−1|

, |c| < 1

no zeros, |c| = 1

±i 1√
|c2−1|

, |c| > 1

.



7

-10 -5 0 5 10

-4

-3

-2

-1

0

1

2

3

4

x

u

Figure 2.3. Travelling wavetrain solution u⋆(x, t) = v⋆(x − c⋆t)
of the Klein Gordon equation (2.10) for k = 1, α1 = 2, α2 = 3,
c = ω(k)

k
=

√
2 at time t = 0 (solid line) and t = 1 (dashed line).

If |c| = 1 the equation p(λ) = 0, hence also the equation (2.12), has no solutions.
If |c| 6= 1 the fundamental solutions of the linear equation (2.12) are

v1(ξ) =

{
cosh(kξ), |c| < 1
cos(kξ), |c| > 1

, v2(ξ) =

{
sinh(kξ), |c| < 1
sin(kξ), |c| > 1

,

where the quantity k denotes the angular wave number defined by

(2.13) k =
1√

|c2 − 1|
.

In case |c| < 1 there is no bounded solution whereas in case |c| > 1 we have the
linear family of bounded solutions

(2.14) v(ξ) = α1 cos(kξ) + α2 sin(kξ), α1, α2 ∈ R.

Defining the angular frequency ω(k) := ck, we obtain the family of travelling waves

(2.15) u(x, t) = α1 cos(kx− ω(k)t) + α2 sin(kx− ω(k)t), x, t ∈ R, α1, α2 ∈ R.

The definition of ω(k) and equation (2.13) imply the relation

(2.16) ω(k)2 = k2 + 1,

which is called the dispersion relation. This relation shows how the speed c of the
wave is related to its frequency ω(k). In fact, multiplying (2.13) by the velocity c
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shows that (2.16) is equivalent to

ω(k) =
c√

|c2 − 1|
.

For completeness, recall the following relations from the theory of wave equations

k =
ω

c
=

2π

λ
=

2πν

c
,

where k is the angular wave number (or: magnitude of the wave vector), ν the
frequency of the wave, λ the wavelength, ω = 2πν the angular frequency of the
wave and c the phase velocity.
Note that the travelling waves (2.15) are neither fronts nor pulses but have an
oscillatory character. For this reason they are called wave trains. Contrary to
Example 2.2, the wave trains (2.15) do not have a fixed speed but can travel at all
speeds c > 1 and c < −1.

Example 2.5 (Symmetric hyperbolic systems). A direct generalization of the ad-
vection equation (2.6) is the first order system

(2.17) ut + Aux = 0, u : R× [0,∞) 7→ Rm, A ∈ Rm,m.

The travelling wave ODE reads (A − cIm)v
′ = 0. Every real eigenvalue with real

eigenvector

(2.18) Aw = λw, λ ∈ R, w ∈ Rm

leads to a solution

(2.19) v(ξ) = α(ξ)w,

where α : R 7→ R is any bounded sufficiently smooth function. This corresponds
to the travelling wave solution

(2.20) u(x, t) = α(x− λt)w.

If A is real diagonalizable, then it has only real eigenvalues λj with linearly in-
dependent eigenvectors wj, j = 1, . . . , m. Correspondingly, equation (2.17) has
solutions which are superpositions of waves travelling with speed λj in direction
wj

(2.21) u(x, t) =
m∑

j=1

αj(x− λjt)wj ,

where the αj are smooth bounded scalar functions. Given an initial condition
as in (2.7) with a vector valued function u0, the solution of the Cauchy problem
(2.17),(2.7) is given by (2.21), where the functions αj are determined from the
decomposition of initial data

u0(x) =
m∑

j=1

αj(x)wj , x ∈ R.
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We conclude that all solutions of the first order system (2.17) are linear super-
positions of travelling waves with different speeds. The system (2.17) is called
symmetric because we can transform (2.17) via

u(x, t) =Wv(x, t), W =
(
w1 w2 · · · wm

)
∈ Rm,m

into the diagonal system

vt + diag(λj, j = 1, . . . , m) vx = 0,

which consists of m copies of the advection equation (2.6) with different propaga-
tion speeds.

2.3. Travelling waves in nonlinear parabolic PDEs. We are looking for trav-
elling waves in a nonlinear system of equations

(2.22) ut = Auxx + f(u), x ∈ R, t ≥ 0,

where f ∈ C1(Rm,Rm) and A ∈ Rm,m is invertible. By (TWODE) the travelling
wave ODE is

(2.23) 0 = Av′′ + cv′ + f(v).

We look for solutions v ∈ C2(R,Rm) of this system such that the limits

v± = lim
ξ→±∞

v(ξ), v′± = lim
ξ→±∞

v′(ξ)

exist. As the next Lemma shows, this necessarily implies

(2.24) f(v±) = 0, lim
ξ→±∞

v′(ξ) = 0.

Lemma 2.6. With the setting w =

(
v
v′

)
equation (2.23) is equivalent to the first

order system

(2.25) w′ =

(
w2

−cA−1w2 − A−1f(w1)

)
=: G(w).

Any solution of (2.23) on [0,∞) for which the limits

lim
ξ→∞

v(ξ) =: v+, lim
ξ→∞

v′(ξ) =: v′+

exist, satisfy

(2.26) f(v+) = 0, v′+ = 0.

The same statement holds if the limits ξ → −∞ exist.

Proof. The transformation to a first order system is standard. From w(ξ) → w+ :=(
v+
v′+

)
as ξ → ∞ we obtain for all x ≥ 0

|G(w+)| =
∣∣∣∣
∫ x+1

x

G(w+)−G(w(ξ)) + w′(ξ)dξ

∣∣∣∣
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≤
∫ x+1

x

|G(w+)−G(w(ξ))|dξ + |w(x+ 1)− w(x)|

≤ sup
ξ≥x

|G(w+)−G(w(ξ))|+ |w(x+ 1)− w+|+ |w+ − w(x)|.

By our assumption and the continuity of G the right hand sides converge to 0 as
x→ ∞. Hence, w+ satisfies G(w+) = 0 from which (2.26) follows. �

Remark 2.7. If all eigenvalues of A have positive real part (i.e. equation (2.22)
is parabolic) then one can omit the assumption that the derivative v′(ξ) converges
as ξ → ±∞. This will be proved in Lemma 2.23 in Section 2.6.

Another simple observation is the following reflection symmetry.

Lemma 2.8. If v⋆, c⋆ is a travelling wave of the system (2.22) then so is

(2.27) v⋆(ξ) = v⋆(−ξ), c⋆ = −c⋆.
In the following we restrict to scalar equation with A = 1

(2.28) ut = uxx + f(u), x ∈ R, t ≥ 0,

with travelling wave ODE

(2.29) 0 = v′′ + cv′ + f(v).

According to Lemma 2.6 the potential limits of travelling waves must be zeroes of
f . In the following we are particularly interested in the case where f has three
zeroes

(2.30) b1 < b2 < b3 and f(v)

{
> 0, v < b1, b2 < v < b3
< 0, b1 < v < b2, b3 < v

.

Our model example is the following Nagumo equation

Example 2.9 (Nagumo equation). Consider the scalar parabolic equation

ut = uxx + u(1− u)(u− b), x ∈ R, t ≥ 0,(2.31)

where 0 < b < 1, [21], [22]. It is well known that (2.31) has an explicit travelling
front solution u⋆(x, t) = v⋆(x− c⋆t) (called the Huxley wave) given by

v⋆(ξ) =
1

1 + exp
(
− ξ√

2

) , c⋆ =
√
2

(
b− 1

2

)
,(2.32)

with asymptotic states v− = 0 and v+ = 1. Note that c⋆ < 0 if b < 1
2

and c⋆ > 0 if
b > 1

2
.

Demo: Phase plane analysis of (2.25),(2.29)
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In Mathematical Biology this equation is motivated by population models which
have three equilibria as in (2.30) in the spatially independent case. An example of
this is the spruce budworm model described in [22, Ch.1.2, Ch.11.5]

ut = ru

(
1− u

q

)
− u2

1 + u2
.

If one adds spatial spread of populations via diffusion to such a law then a parabolic
equation of the type (2.28) arises with the nonlinearity satisfying (2.30).
The following exercise shows that systems with cubic nonlinearities which have 3
consecutive zeros and behave like −u3 (rather than u3) can always be transformed
into the Nagumo equation (2.31).

Exercise 2.10. Show that the general equation

(2.33) ut = Duxx +B(u− b1)(b2 − u)(u− b3), x ∈ R, t ≥ 0

where D,B > 0 can be reduced to the Nagumo equation (2.31) via linear trans-
formations u = β1ũ + β2 and scalings of time and space u(x, t) = ũ(α1x, α2t).
Determine the profile and speed of a travelling wave for (2.33).
Solution: The linear transformation u = b1 + ũ(b3 − b1) shifts the zeroes b1, b2, b3 to 0, b =
b2−b1
b3−b1

, 1 and gives the equation

ut =(b3 − b1)ũt

=D(b3 − b1)ũxx +B(b3 − b1)ũ(b2 − b1 − (b3 − b1)ũ)(b3 − b1)(ũ − 1),

ũt =Dũxx +B(b3 − b1)
2ũ(b− ũ)(ũ − 1).

Now perform a scaling ũ(x, t) = ˜̃u(α1x, α2t) and obtain

ũt =α2
˜̃ut = α2

1D
˜̃uxx +B(b3 − b1)

2 ˜̃u(b− ˜̃u)(˜̃u− 1).

This is equivalent to (2.31) if we set

α2 = B(b3 − b1)
2, α1 =

√
α2

D
= (b3 − b1)

√
B

D
.

Suppose ˜̃u(x, t) = v⋆(x − c⋆t) is travelling wave of (2.31) then we have the following solution of
(2.33)

u(x, t) = b1 + (b3 − b1)v⋆(α1x− c⋆α2t).

This is a travelling wave with speed

(2.34) c̃ = c⋆
α2

α1

= c⋆
√
DB(b3 − b1)

and profile

(2.35) ṽ(ξ) = b1 + (b3 − b1)v⋆(α1ξ), α1 = (b3 − b1)

√
B

D
.

With the values of b and c⋆ from (2.32) we obtain the final expression for the speed of the wave
that belongs to (2.33)

c̃ =
√
2

(
b2 − b1

b3 − b1
− 1

2

)
(b3 − b1)

√
DB =

√
DB

2
(−b1 + 2b2 − b3).(2.36)
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Although it is easy to verify the formula (2.32) for the travelling wave of the
Nagumo equation (2.31), we discuss a more general approach that allows to arrive
at such an explicit expression. The travelling wave ODE for (2.31) is

(2.37) 0 = v′′ + cv′ + v(v − b)(1− v).

Note that the standard energy method for ODEs works only in case c = 0 (cf.
Section 2.4). In order to find a solution which connects v− = 0 to v+ = 1 we try a
solution of the first order equation

(2.38) v′ = αv(1− v) =: g(v),

where the parameter α > 0 is still to be determined. By separation of variables,
the solution of (2.38) with v(0) = 1

2
is found to be

(2.39) vα(ξ) =
1

1 + exp(−αξ) , ξ ∈ R.

We insert (2.38) into (2.37):

v′′α+cvα + vα(b− vα)(vα − 1) = g′(vα)v
′
α + cv′α − 1

α
(b− vα)v

′
α

=v′α

(
−2αvα + α + c− b

α
+

1

α
vα

)
.

This term vanishes provided we set

α =
1√
2
, c⋆ =

b

α
− α =

√
2(b− 1

2
),

which together with (2.39) leads to formula (2.32).
The following proposition summarizes the general methodology.

Proposition 2.11. Let g ∈ C1(Rm,Rm) satisfy for some c ∈ R

(2.40) (Dg(v) + cIm)g(v) + f(v) = 0, ∀v ∈ Rm.

Then any solution v ∈ C1(J,Rm) of v′ = g(v) on some interval J ⊆ R satisfies the
travelling wave ODE (2.29) on J .

Proof. It is sufficient to note that v′ = g(v) on J implies v′′ = Dg(v)v′ = Dg(v)g(v)
on J by the chain rule. �

Remark 2.12. For the Nagumo equation (2.31) we used this proposition with the
settings f(v) = v(b− v)(v − 1), g(v) = αv(1 − v) where α and c were determined
such that (2.40) holds. If, in the scalar case, g is taken to be a polynomial of degree
ℓ, then f should be a polynomial of degree 2ℓ− 1. Moreover, relation (2.40) shows
that g is a smooth factor of f , i.e. the zeroes of g are also zeroes of f and if f has
even more real zeroes, then they must be incorporated into the first factor g′(v)+ c.
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Exercise 2.13. Consider the quintic Nagumo equation

(2.41) ut = uxx −
5∏

i=1

(u− bi),

where b1 < b2 < b3 < b4 < b5 . Determine a relation among b1, . . . , b5 that allows
to compute a travelling wave connection of b1 to b3 or of b3 to b5 from a first order
ODE.

2.4. Phase plane analysis of travelling wave ODEs. As shown in Lemma
2.6, the profile of a travelling wave appears as an orbit connecting two steady states
of an autonomous ODE.

Definition 2.14. Let w ∈ C1(R,Rm) be a solution of the dynamical system

(2.42) w′ = G(w), where G ∈ C1(Rm,Rm),

such that the limits

(2.43) lim
ξ→±∞

w(ξ) = w±

exist. Then Q(w) = {w(ξ) : ξ ∈ R} is called an orbit connecting the steady state
w− to the steady state w+. The connecting orbit is called heteroclinic if w− 6= w+,
and homoclinic if w− = w+.

Therefore, a travelling wave of equation (2.22) with speed c⋆ and profile v⋆ con-

necting v− to v+, corresponds to an orbit Q(w⋆), w⋆ =

(
v⋆
v′⋆

)
of the dynamical

system (2.25) with parameter c = c⋆ connecting the steady state w− =

(
v−
0

)
to

w+ =

(
v+
0

)
. We stress the fact that not only the orbit w⋆ but also the speed c⋆ is

unknown. Therefore, we have to drive the system (2.25) by varying c until an orbit
connecting two steady states occurs. Proving that such a connection occurs can
be quite hard, and we refer to Section 3 for some situations where this is possible.
Before treating further examples we add another observation that applies to trav-
elling waves of (2.22) for which the nonlinearity f is a gradient, i.e.

(2.44) f(v) = ∇F (v), v ∈ Rm for some F ∈ C2(Rm,R).

Proposition 2.15. Let A ∈ Rm,m be symmetric and let f ∈ C1(Rm,Rm) be the
gradient of some F ∈ C2(Rm,R). Further, let v∗ ∈ C2(R,Rm) be a travelling wave
of (2.22) with speed c∗ 6= 0, connecting v− to v+. Then, v′⋆ ∈ L2(R,Rm) and the
following formula holds

(2.45) c⋆

∫ ∞

−∞
|v′⋆(ξ)|2dξ = F (v−)− F (v+).
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Proof. Multiply the travelling wave ODE (2.23) by v′T⋆ and integrate over [−R,R]

(2.46)
∫ R

−R

v′⋆(ξ)
TAv′′⋆(ξ)dξ + c⋆

∫ R

−R

|v′⋆(ξ)|2dξ = −
∫ R

−R

v′⋆(ξ)
T∇F (v⋆(ξ))dξ.

Integration by parts and the symmetry of A show for the first integral
∫ R

−R

v′⋆(ξ)
TAv′′⋆(ξ)dξ =

1

2

(
(v′⋆)

2(R)− (v′⋆)
2(−R)

)
,

which converges to zero as R → ∞. The right hand side in (2.46) is a complete
integral

∫ R

−R

v′T⋆ (ξ)T∇F (v⋆(ξ))dξ =
∫ R

−R

d

dξ
(F ◦ v⋆)(ξ)dξ = F (v⋆(R))− F (v⋆(−R)),

which converges to F (v+) − F (v−). Therefore, we can take the limit R → ∞ in
(2.46) and obtain v′∗ ∈ L2(R,Rm) as well as formula (2.45). �

Formula (2.45) shows that the speed c⋆ of the wave is positive if F (v−) > F (v+)
and negative if F (v−) < F (v+), i.e. the wave runs from the larger critical value of
the potential F to the smaller critical value. This imposes restrictions on the type
of transitions that a wave can take. Note that c⋆ = 0 still follows from our proof
in case F (v−) = F (v+), but we cannot conclude v′⋆ ∈ L2(R,Rm) anymore.
Proposition 2.15 always applies to the scalar case which has the potential

(2.47) F (ξ) =

∫ ξ

0

f(x)dx.

In the scalar case (2.28), the system (2.25) becomes two-dimensional

(2.48) w′ =

(
w′

1

w′
2

)
=

(
w2

−f(w1)− cw2

)
=: G(w),

and much insight can be gained by so-called phase plane analysis.

Lemma 2.16. Let v0 ∈ R be a zero of f . Then the steady state w0 =

(
v0
0

)
of

(2.48) is a

saddle if f ′(v0) < 0,

sink if f ′(v0) > 0 and c > 0,

source if f ′(v0) > 0 and c < 0.

More precisely, the eigenvalues of the linearization

(2.49) DG(w0) =

(
0 1

−f ′(v0) −c

)

are

(2.50) λ± =
1

2

(
−c±

√
c2 − 4f ′(v0)

)
.
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In case of a saddle the eigenvalues satisfy λ− < 0 < λ+ and suitable eigenvectors
are

(2.51) y− =

(
1
λ−

)
, y+ =

(
1
λ+

)
.

Proof. The proof follows by straightforward computation of the eigenvalues and
eigenvectors of the Jacobian (2.49). Note that in the borderline cases f ′(v0) = 0 and
f ′(v0) > 0, c = 0 the linearization is not enough to determine the type of the steady
state since some eigenvalues lie on the imaginary axis (in case f ′(v0) = 0, c < 0 one
can at least conclude that w0 is unstable). Also note that the eigenvalues become
complex if

(2.52) c2 < 4f ′(v0),

i.e. the solutions are spiraling in if c > 0 and spiraling out if c < 0. �

Remark 2.17. The qualitative phase diagram near steady states is preserved from
the linear to the nonlinear case provided there are no eigenvalues on the imaginary
axis. This is made precise by the famous Hartman-Grobman theorem, see for exam-
ple [4, Theorem 19.9]. Given a dynamical system v′ = f(v) with f ∈ C1(Rm,Rm)
and t-flow denoted by ϕt. Let v0 ∈ Rm be a steady state such that Df(v0) has
no eigenvalues on the imaginary axis and let Φt(v) = exp(tDf(v0))v be the lin-
earized flow. Then there exist neighborhoods U ⊆ Rm of 0, V ⊆ Rm of v0 and a
homeomorphism h : U → V such that

(2.53) ϕt ◦ h(v) = h ◦ Φt(v)

holds for all (t, v) with Φs(v) ∈ U for all min(t, 0) ≤ s ≤ max(t, 0). The relation
(2.53) is also called local flow equivalence.

Demo: The following Figure shows the (numerical)

c1 = −0.4 <c2 = −0.36 < c3 = −0.35355339 ≈ c⋆

<c4 = −0.3 < c5 = −0.2 < c6 = 0.

Since f ′(0) < 0 and f ′(1) < 0 both steady states w− = (0, 0) and w+ = (1, 0) are
saddles. The eigenvectors from (2.51) are locally tangent to the so called stable
and unstable manifolds

(2.54)
W s(w±) ={w : ϕξ(w) → w± as ξ → ∞}
W u(w±) ={w : ϕξ(w) → w± as ξ → −∞},

where ϕξ denotes the ξ-flow of the system (2.48). We used the variable ξ instead
of t since ξ is the wave variable by derivation. Sometimes this approach is called
spatial dynamics. As we will see in Section 3, the stability of travelling waves for
the time-dependent PDE (2.22) has nothing to do with the stability properties of
the asymptotic steady states when considered as equilibria of the travelling wave
ODE.
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In the current example the one-dimensional unstable manifold of w− and the one-
dimensional stable manifold of w+ intersect at a specific value of c. Then they
must coincide because of uniqueness of solutions to initial value problems to form
a heteroclinic orbit.
We also observe that there are orbits connecting the source wb = (b, 0) to the saddle
w− = (0, 0). These are also travelling waves for the original PDE, but as we will
see, the corresponding solutions of the PDE (2.22) do not enjoy the same favorable
stability properties as the saddle-to-saddle connection. Moreover, they occur over
a whole interval of c-values since wb has a two dimensional unstable manifold and
w− has a one-dimensional stable manifold.
The classical example for such waves is the Fisher equation ([22, Ch.11.4],[10,
Ch.4.4] for which, unfortunately, there is no general explicit formula for the trav-
elling wave solution (except for the nontypical speed c = 5√

6
, see [24]).

Example 2.18 (The Fisher equation). On assumes logistic growth of a population
and diffusion

(2.55) ut = uxx + u(1− u), x ∈ R, t ≥ 0,

with the travelling wave ODE given by

(2.56) 0 = v′′ + cv′ + v(1− v).

The steady states are v0 = 0 and v1 = 1 with f ′(v0) = 1, f ′(v1) = 1. From Lemma
2.16 we immediately infer for the system (2.48) that

(2.57)

v+ :=

(
1
0

)
is a saddle,

v− :=

(
0
0

)
is





an unstable node, c < −2,
a spiral source, −2 < c < 0,
a spiral sink, 0 < c < 2,
a stable node, 2 < c.

We are looking for a connection from v− to the saddle v+ and we restrict to c < 0
since the case c > 0 follows by reflection (cf. Lemma 2.8). Moreover, since the
equation models populations, we are only interested in solutions that have u(ξ) ≥ 0
for all ξ ∈ R. The phase diagram reveals that the stable manifold of the saddle
(approaching v+ through negative values of v′) originates from the unstable node/
spiral source at v− . The positivity condition on v excludes the case of a spiral
source for −2 < c < 0. Therefore, we have a whole family of connecting orbits
v(·, c) for parameter values c ≤ −2 (by a limit argument one can show that the orbit
from v− to v+ is also nonegative for c = −2). In view of the phase portraits near
an unstable node it is also reasonable to expect that the connecting orbit leaves v−
in the direction of the eigenvector that belongs to the ’slowest eigenvalue’. In view

of (2.50) and (2.51) this direction is y− =

(
λ−
1

)
where λ− = 1

2

(
−c−

√
c2 − 4

)
.

In the critical case c⋆ = −2 we have λ− = λ+ = 1.
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Since we find a whole family of positive travelling waves (c ≤ −2), it is a natural
question to ask, which one of these appears in the longtime dynamics of the PDE
(2.54) when initial data u(·, 0) = u0(·) far from the true waves are given. This is a
delicate matter which depends sensitively on the behavior of the data u0 at ±∞.
In a sense the critical wave at c = −2 is the ’most stable’ one concerning these
conditions (see the discussion in [22, Ch.11.2]).

2.5. Examples of nonlinear wave equations. As in Section 2.3 for the para-
bolic case, we now consider some nonlinear versions of the linear wave equations
from Section 2.2.

Example 2.19. Consider the nonlinear wave equation

(2.58) utt = uxx − sin u, x, t ∈ R

Exercise 2.20. Show that the general equation

Autt = Kuxx − T sin(u), A,K, T > 0

can be cast into the form (2.58) by suitable transformations.

The travelling wave ODE for (2.58) reads

(2.59) (c2 − 1)v′′ = − sin(v).

In the following we assume |c| 6= 1. The only steady states of the corresponding
first order system are wn = (vn, 0) = (nπ, 0), n ∈ Z. As in Lemma 2.16 saddles
occur for even values of n, while wn are centers for odd values of n (this, however,
does not follow from Lemma 2.16). We look for an explicit solution that connects
w2 to w0.
An explicit solution may be found by the energy method: multiply by v′ and
integrate,

(c2 − 1)v′′v′ =(c2 − 1)[
1

2
(v′)2]′ = [cos(v)]′ = − sin(v)v′,

const =
c2 − 1

2
v′(ξ)2 − cos(v(ξ)) ∀ξ ∈ R.

Since we want a solution with v(ξ) → 0, v′(ξ) → 0 as ξ → ∞ (resp.v(ξ) → 2π,
v′(ξ) → 0 as ξ → −∞ ) we find the constant const = −1. Thus we have to solve

(2.60) (v′)2 =
2

1− c2
(1− cos(v)), ξ ∈ R.

Since the left-hand side is nonnegative and 1 − cos(v) ≥ 0 the only case left is
|c| < 1. Then a solution to (2.60) is found by separation of variables as

(2.61) v⋆(ξ) = 4arctan (exp(− ξ√
1− c2

)), ξ ∈ R.

The corresponding travelling waves u(x, t) = v⋆(x− ct) exist for all |c| < 1.
Demo: c = 1

2
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As shown above the system (2.59) has a conserved quantity E(v, v′) = c2−1
2

(v′)2 −
cos(v). Hence the phase plane consists of the level curves of E, apart from homo-
clinic orbits there are also continua of periodic orbits which lead to wave trains.

The next example contains third order spatial derivatives. It is derived by simpli-
fying equations for water waves and to approximately describe the propagation of
solitary waves, compare [31, Ch.13.11].

Example 2.21 (The Korteweg-de Vries (KdV) equation). The equation is the
following

(2.62) ut = −uux − uxxx, x ∈ R

with travelling wave ODE

(2.63) 0 = cv′ − 1

2
(v2)′ − v′′′.

Integrating once leads to

(2.64) v′′ = cv − 1

2
v2 = v(c− 1

2
v) =: f(v).

We took the integration constant to be zero since we look for solutions satisfying
v(ξ) → 0 and v′′(ξ) → 0 as ξ → ±∞.
Equation (2.64) can be handled completely by the energy method since it has the
conserved quantity

(2.65) E(v) =
1

2
(v′)2 + P (v), P (v) = −

∫ v

0

f(s)ds = − c
2
v2 +

1

6
v3.

Here P is the potential satisfying P ′ = −f , and (2.64) may be considered as the
Newtonian dynamics of a particle of mass 1 moving in the potential P . The first
order system has a homoclinic orbit connecting (0, 0) to itself which belongs to the
energy level E(v) = 0 and, for c > 0, is explicitly given by

(2.66) v(ξ) = 3c sech2(

√
c

2
ξ), ξ ∈ R.

Thus the KdV equation has a whole family of solitary waves given by

u(x, t) = 3c sech2(

√
c

2
(x− ct)), c > 0.

Demo: travelling wave and phase plane diagram for KdV

2.6. Travelling waves in parabolic systems.

Example 2.22 (FitzHugh-Nagumo system). Consider the 2-dimensional FitzHugh-
Nagumo system

ut =

(
1 0
0 ρ

)
uxx +

(
u1 − 1

3
u31 − u2

ε(u1 + a− bu2)

)
, x ∈ R, t ≥ 0,(2.67)
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with u = u(x, t) ∈ R2 and positive ρ, a, b, ε ∈ R, [11]. For the parameters ρ = 0.1,
a = 0.7, ε = 0.08 it is well-known that (2.67) has travelling pulse solutions for
b = 0.8 and travelling front solutions for b = 3. Unfortunately, in both cases there
are no explicit representations neither for the wave profile w⋆ nor for their velocities
c⋆. However, we know some approximations of the velocities in both cases. The
pulse travels at velocity c⋆ = −0.7892 and the front at velocity c⋆ = −0.8557.
In fact, the value of b determines the number of steady states of (2.67) (for b small
we have only one steady state but for b large we have three).

The next Lemma improves Lemma 2.6 by showing that the convergence of a trav-
elling wave to its limits implies the convergence of derivatives. In fact, if v satisfies
the travelling wave ODE (2.23) and v± = limξ→±∞ v(ξ) exist, then the following
Lemma applies to h(ξ) = −f(v(ξ)), ξ ∈ R and shows

f(v±) = 0, lim
ξ→±∞

v′(ξ) = 0.

Lemma 2.23. Let A ∈ Rm,m have only eigenvalues with positive real part and
suppose v ∈ C2(R,Rm) and c ∈ R solve the second order ODE

(2.68) Av′′ + cv′ = h ∈ C(R,Rm),

such that both limits limξ→±∞ h(ξ) and limξ→±∞ v(ξ) exist. Then the following
equalities hold

(2.69) lim
ξ→±∞

h(ξ) = 0 = lim
ξ→±∞

v′(ξ).

Proof. It is sufficient to prove the result for the positive axis R+ = [0,∞), then the
result for the negative axis follows by reflection since we have made no assumption
on the sign of c. First multiply (2.68) by A−1 to obtain

(2.70)
v′′ + cA−1v′ = A−1h =: r,

lim
ξ→∞

r(ξ) = A−1 lim
ξ→∞

h(ξ) =: r+.

All solutions of (2.70) can be written as follows

(2.71) v(ξ) = V1(ξ)α1 + V2(ξ)α2 + v3(ξ), ξ ∈ R, α1, α2 ∈ Rm,

where

(
V1 V2
V ′
1 V ′

2

)
∈ R2m,2m forms a fundamental system of the first order equation

obtained from (2.70) and v3 is a special solution of the inhomogenous equation.
We will construct v3 in the following form

(2.72) v3(ξ) =

∫ ∞

0

G(ξ, η)r(η)dη, ξ ∈ R

with a suitable Green’s matrix G. We will use the boundedness of v to show that
v3(ξ) is the dominant part in (2.71) and that |v3(ξ)| → ∞ as ξ → ∞ if r+ 6= 0.
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c > 0: Take V1(ξ) = Im, V2(ξ) = Aexp(−cA−1ξ) and

(2.73) G(ξ, η) =

{
1
c
A (Im − exp(−cA−1(ξ − η))) , 0 ≤ η ≤ ξ,

0, ξ < η.

One easily verifies that V1, V2 generate fundamental solutions and that v3
satisfies the inhomogeneous equation (2.70) as well as v3(0) = v′3(0) = 0.

Let us note that all eigenvalues of A−1 have positive real part, hence
there exists ρ1 > 0 such that Re(µ) < −ρ1 for all eigenvalues µ of −A−1.
By a well-known result (see Numerical Analysis of Dynamical Systems,
for example) we then have a constant C > 0 such that

(2.74) |exp(−τA−1)| ≤ Cexp(−ρ1τ), τ ≥ 0.

Since V1, V2 and v itself are bounded, equation (2.71) implies that v3 is
bounded. We now assume r+ 6= 0 and show that |v3(ξ)| ≥ Cξ for ξ large
which is a contradiction. Given ε > 0, take ξε so large that

|r(ξ)− r+| ≤ ε for all ξ ≥ ξε.

Then we estimate with (2.74)

|v3(ξ)| ≥
∣∣∣∣
∫ ξ

ξε

G(ξ, η)dηr+

∣∣∣∣−
∣∣∣∣
∫ ξε

0

G(ξ, η)r(η)dη

∣∣∣∣

−
∣∣∣∣
∫ ξ

ξε

G(ξ, η)(r(η)− r+)dη

∣∣∣∣

≥
∣∣∣∣∣
A

c

[
ηIm − A

c
exp(−cA−1(ξ − η))

]ξ

ξε

r+

∣∣∣∣∣

−ε
∫ ξ

ξε

|G(ξ, η)|dη −
∫ ξε

0

|G(ξ, η)|dη‖r‖∞

≥ξ − ξε
c

|Ar+| −
2C|A|2|r+|

c2
− ε(ξ − ξε)

2C|A|
c

− 2|A|C‖r‖∞ξε
c

.

Since |Ar+| > 0, the third term can be absorbed into the first one by tak-
ing ε sufficiently small, which then dominates the second and the fourth
one by taking ξ − ξε sufficiently large. This shows that v3 is unbounded,
a contradiction.

Finally, we obtain from (2.71)

v′(ξ) = V ′
2(ξ)α2 + v′3(ξ), ξ ∈ R.

The first term decays exponentially due to (2.74). The second term is

v′3(ξ) =

∫ ξ

0

exp(−cA−1(ξ − η))r(η)dη.
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With (2.74) we estimate v′3 as follows

|v′3(ξ)| ≤
∫ ξ/2

0

|G(ξ, η)|dη‖r‖∞ +

∫ ξ

ξ/2

|G(ξ, η)||r(η)|dη

≤C
{∫ ξ/2

0

exp(−cρ1(ξ − η))dη‖r‖∞ +

∫ ξ

ξ/2

exp(−cρ1(ξ − η))dη sup
η≥ξ/2

|r(η)|
}

≤ C

cρ1

{(
exp(−cρ1ξ

2
)− exp(−cρ1ξ)

)
‖r‖∞

+

(
1− exp(−cρ1ξ

2
)

)
sup
η≥ξ/2

|r(η)|
}
.

Since r+ = 0 and c, ρ1 > 0 all terms on the right-hand side converge to
zero as ξ → ∞.

c = 0: The fundamental matrices are V1(ξ) = Im, V2(ξ) = ξIm and Green’s
matrix is given by

(2.75) G(ξ, η) =

{
(ξ − η)Im, η ≤ ξ,

0, η > ξ.

Assume r+ 6= 0 and for a given ε > 0 take ξε such that |r(η)− r+| ≤ ε for
all η ≥ ξǫ. Then we estimate

|v3(ξ)| ≥|
∫ ξ

ξε

(ξ − η)dη r+|

−|
∫ ξ

ξε

(ξ − η)(r+ − r(η))dη| − |
∫ ξε

0

(ξ − η)r(η)dη|

≥1

2
(|r+| − ε)(ξ − ξε)

2 − ‖r‖∞ξε(ξ −
1

2
ξε).

By taking ε sufficiently small and letting ξ → ∞, we find that v3 grows
quadratically if r+ 6= 0. This is stronger than α1 + V2(ξ)α2 which grows
at most linearly, and contradicts the boundedness of v3.

Equation (2.68) has the simple form v′′ = r and we have to show that
limξ→∞ r(ξ) = 0 and the existence of limξ→∞ v(ξ) imply limξ→∞ v′(ξ) = 0.
Without loss of generality we can assume m = 1. Then the mean value
theorem implies that

v(n+ 1)− v(n) = v′(θn) for some θn ∈ (n, n + 1).

Since v(n) and v(n + 1) have the same limit, we infer v′(θn) → 0 as
n→ ∞. Therefore, for n ≤ ξ ≤ n+ 1

|v′(ξ)| ≤|v′(ξ)− v′(θn)|+ |v′(θn)|
≤ sup

η∈[n,n+1]

|v′′(η)||ξ − θn|+ |v′(θn)|



22

≤ sup
η∈[n,n+1]

|v′′(η)|+ |v′(θn)| → 0 as n→ ∞.

c < 0: As in case c > 0 we use the fundamental matrices V1(ξ) = Im and
V2(ξ) = Aexp(−cA−1ξ), however the Green’s matrix is no longer a trian-
gular kernel

(2.76) G(ξ, η) =
A

c

{
Im − exp(cA−1η), η ≤ ξ,

exp(cA−1(η − ξ))(Im − exp(cA−1ξ)), η > ξ.

Note that (2.74) and c < 0 imply for some constant C1 > 0 the estimate

(2.77) |G(ξ, η)| ≤ C1

{
1, η ≤ ξ,

exp(−|c|ρ1(η − ξ)), η > ξ.

Therefore, the integral in (2.72) exists and yields the estimate

|
∫ ∞

0

G(ξ, η)r(η)dη| ≤
∫ ∞

0

|G(ξ, η)|dη‖r‖∞ ≤ C1(ξ +
1

ρ1|c|
)‖r‖∞.

It is then straightforward to verify that (2.72) yields a solution of (2.68)
which grows at most linearly with ξ. Therefore, the dominant term in
(2.71) is

|V2(ξ)α2| = |exp(−cA−1ξ)Aα2| ≥ exp(|c|ρ1ξ)|Aα2|.
Since v is bounded we conclude that α2 = 0. Let us assume r+ 6= 0 and
estimate v3 from below with ξε chosen as in the previous cases:

|v3(ξ)| ≥|
∫ ∞

ξε

G(ξ, η)dη r+| − |
∫ ξε

0

G(ξ, η)r(η)dη|

−|
∫ ∞

ξε

G(ξ, η)(r+ − r(η))dη|.

For the first integral we find
∫ ∞

ξε

G(ξ, η)dη =
A

c

[
ηIm − A

c
exp(cA−1η)

]ξ

ξε

−A
c
(Im − exp(cA−1ξ))

[
A

c
exp(cA−1(η − ξ))

]∞

ξ

=
A

c

{
(ξ − ξε)Im +

A

c
(Im − exp(cA−1ξε))

}
,

so that for some constants C1, C2 > 0

(2.78) |
∫ ∞

ξε

G(ξ, η)r+dη| ≥ C1|ξ − ξε||Ar+| − C2.



23

For the third term we obtain from (2.77)

|
∫ ∞

ξε

G(ξ, η)(r+ − r(η))dη ≤ε
∫

ξε

|G(ξ, η)|dη

≤ε(C1(ξ − ξε) + c2).

This term can be absorbed into (2.78) by taking ε sufficiently small. Fi-
nally, equation (2.77) also leads to an estimate of the second term

|
∫ ξε

0

G(ξ, η)r(η)dη| ≤C1ξε‖r‖∞.

Summing up, if r+ 6= 0 we get a linearly growing lower bound for v3(ξ)
which contradicts the boundedness of v.

Finally we have to show v′(ξ) → 0 as ξ → ∞. For this note that from
(2.76) we have

v′3(ξ) = −
∫ ∞

ξ

exp(cA−1(η − ξ))r(η)dη.

This yields the estimate

|v′3(ξ)| ≤ sup
η≥ξ

|r(η)|
∣∣∣∣
∫ ∞

ξ

exp(cA−1(η − ξ))dη

∣∣∣∣

≤ sup
η≥ξ

|r(η)|
∫ ∞

ξ

exp(−ρ1|c|)dη =
1

ρ1|c|
sup
η≥ξ

|r(η)|,

which shows v′(ξ) = v′3(ξ) → 0 as ξ → ∞ and finishes the proof.

�

Remark 2.24. We notice that the convergence of v(ξ) as ξ → ±∞ was only used
to derive v′(ξ) → 0 in case c = 0. All other conclusions work under the hypothesis
that v is bounded.

2.7. Waves in complex-valued systems in one space dimension. Quite a
few models in Physics lead to PDEs for complex-valued functions

(2.79) u : R× [0,∞) → C, (x, t) → u(x, t).

We just mention the well-known Schrödinger equation from quantum mechanics.
There u is a wave function with complex amplitude, the absolute value |u(x, t)| of
which may be interpreted as the probability of finding the ’particle’ at position x
at time t.
In this subsection we consider equations of the type

(2.80) ut = auxx + g(x, |u|)u, x ∈ R, t ∈ R,

where a ∈ C and g : R2 → C is a smooth function. In case Re(a) > 0 the
equation is of parabolic type while in case a = i it is of wave type (the Schrödinger
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equation). This can be seen from the real-valued version of (2.80), which reads
(with a = a1 + ia2, u = u1 + iu2, g = g1 + ig2):

(2.81)

(
u1
u2

)′
=

(
a1 −a2
a2 a1

)(
u1
u2

)

xx

+

(
g1 −g2
g2 g1

)
(x, |u|)

(
u1
u2

)
.

We consider some characteristic examples:

Example 2.25 (Linear Schrödinger equation (LSE)).

(2.82) a = i, g(x, |u|) = −iV (x), x ∈ R, V : R → R potential.

Note that in Physics one usually writes

i~Ψt = − ~2

2µ
∆Ψ+ V (x)Ψ

where ~ is Planck’s reduced constant and Ψ is the wave function. Dividing by i~
and scaling the space variable allows to reduce this to (2.80),(2.82). We prefer to
keep the pure time derivative ut on the left-hand side in order not to change our
general evolution equation (2.1).

Example 2.26 (Nonlinear Schrödinger equation (NLS)).

(2.83) a = i, g(x, |u|) = β|u|p, β = ib, b ∈ R, p ≥ 2.

For p = 2 we have the cubic nonlinear Schrödinger equation (CNLS).

Example 2.27 (The Gross-Pitaevskii equation (GPE)). This is a mixture of LSE
and the cubic NLS and supposed to describe so-called Bose-Einstein condensates:

(2.84) a =
1

2
i, g(x, |u|) = −iV (x) + β|u|2, β = ib, b ∈ R.

Example 2.28 (Complex Ginzburg-Landau equation). This equation occurs in
applications to superconductivity, in nonlinear optics, and in laser physics:

(2.85) rm Im(a) 6= 0,Re(a) > 0, g(x, |u|) = µ+ β|u|2 + γ|u|4,
where typically µ ∈ R but β, γ ∈ C. In the case given here, the nonlinearity has
quintic terms, therefore it is called the quintic complex Ginzburg-Landau equation
(QCGL).

Rather than travelling waves we look for a standing oscillating pulse (sometimes
called an oscillon)

(2.86) u(x, t) = exp(−iθt)v(x), x ∈ R, t ≥ 0, 0 ≤ θ < π.

Insert this into (2.80) and obtain

−iθe−iθtv(x) = ae−iθtv′′(x) + g(x, |v|)e−iθtv(x),

which leads to the oscillating pulse ODE

(OPODE) 0 = av′′ + iθv + g(x, |v|)v.
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Example 2.29 (The cubic NLS). With p = 2 and (2.83), equation (OPODE)
reads

(2.87) 0 = v′′ + θv + b|v|2v.
We realize that (2.87) is very similar to the travelling wave ODE (2.64) of the KdV
equation, and we find real-valued solutions from the conserved quantity

E(v, v′) =
1

2
v′2 + P (v),

P (v) =

∫ v

0

θs+ bs3ds =
1

2
θv2 − 1

4
bv4.

Note that we expect v(x) → 0 as x → ±∞, hence the constant of integration is
taken to be zero and we solve E(v, v′) = 0. In fact the ansatz

(2.88) v(x) = c1sech(c2x), x ∈ R

leads to the condition −θ = c22, c
2
1 = 2

b
. Hence we assume b > 0 and find the

solution

v(x) =

√
2

b
sech(c2x), x ∈ R,

where c2 > 0 is an arbitrary parameter. With θ from above, the travelling waves
are then given by the formula

(2.89) u(x, t) =

√
2

b
exp(ic22t)sech(c2x), x, t ∈ R.

Let us recall that we found oscillating waves since the nonlinear operator

F (u) = auxx + g(x, |u|)u, u ∈ C2(R,C)

satisfies the equivariance condition

F (eiθu) = eiθF (u), u ∈ C2(R,C), θ ∈ C.

In the travelling wave case we had

F (u) = Auxx + f(u), u ∈ C2(R,Rm),

and equivariance with respect to translations

F (u(· − γ)) = [F (u)](· − γ), γ ∈ R.

The notion of equivariance will be formulated in abstract terms in Section 3.
Note that this translation equivariance also holds for the complex equations NLS
and QCGL, but not for the LSE and GPE which both contain a space dependent
potential.
For the first two equations it is therefore reasonable to look for solutions which
travel and oscillate simultaneously

(2.90) u(x, t) = e−iθtv(x− ct), x, t ∈ R.
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Plugging this into the autonomous complex equation

(2.91) ut = auxx + g(|u|)u,
leads to the travelling and oscillating wave ODE (TWOSODE)

(TWOSODE) 0 = av′′ + cv′ + (g(|v|) + iθ)v, x ∈ R, v(x) ∈ C.

Exercise 2.30. Determine for the NLS a wave that oscillates and travels by solving
(TWOSODE) via the ansatz (2.90) with

(2.92) v(ξ) = c1exp(ic2ξ)sech(c3ξ), ξ ∈ R.

Solution: With the abbreviations

ε = exp(ic2ξ), σ = sech(c3ξ), τ = tanh(c3ξ)

we obtain

ε′ =ic2ε, σ′ = −c3jτσ, τ ′ = c3σ
2, σ2 = 1− τ2

v′ =c1(ic2εσ − εc3τσ) = v(ic2 − tc3), v′′ = v(ic2 − c3τ)
2 − vc23σ

2,

v′′−icv′ + (b|v|2 + θ)v = v(ic2 − c3τ)
2 − c23vσ

2 − icv(ic2 − c3τ) + (bc21σ
2 + θ)v

=v[−c22 + cc2 + θ] + ivτ [−2c2c3 + cc3] + v[c23τ
2 − c23σ

2 + bc21σ
2]

=v[−c22 + cc2 + c23 + θ] + ivτc3[c− 2c2] + vσ2[bc21 − 2c23].

Hence we arrive at the relations

c = 2c2, c1 = c3

√
2

b
, θ = −c22 − c23

and at the travelling and oscillating wave

u(x, t) = exp(−iθt)v(x− 2c2t) = c3

√
2

b

exp(ic2x+ i(c23 − c22)t)

cosh(c3(x− 2c2t))
.

Since the parameters c1, c2, c3 can be chosen arbitrarily this formula yield a three-parameter

family of waves.

2.8. Selected waves in more than one space dimension. In this final sub-
section we consider reaction diffusion in systems in d ≥ 2 space dimensions:

(2.93) ut = A∆u+ f(u), x ∈ Rd, t ≥ 0, u(x, t) ∈ Rm,

where A ∈ Rm,m is assumed to have eigenvalues with positive real part and
f ∈ C1(Rm,Rm). For v in a suitable function space (e.g. H2(RdRm) or v ∈
C2

unif(R
d,Rm)) the operator F given by

[F (v)](x) = A∆v(x) + f(v(x)), x ∈ Rd

satisfies for γ ∈ Rd

[F (v)](x− γ) = F (v(· − γ))(x), x ∈ Rd.

We look for a travelling wave of the form

(2.94) u(x, t) = v(kTx− ωt),

with wave vector k ∈ Rd, frequency ω ∈ R and one dimensional profile v : R → Rd.
Solutions of this form are called planar waves since their value is constant in the
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hyperplane k⊤ and they travel in direction k. A short computation reveals that
(2.94) defines a solution of (2.93) if v, k and ω satisfy

(PWODE) 0 = A|k|2v′′ + ωv′ + f(v),

compare equation (TWODE). Usually, one normalizes |k| = 1, so that (PWODE)
agrees with (TWODE) in one space dimension.
But in Rd, d ≥ 2 it is also possible to have rotations determined by the orthogonal
group

(2.95) O(Rd) = {Q ∈ Rd,d : QTQ = Id}.
The orthogonal group acts on functions v : Rd → Rm as follows

(2.96) vQ(x) = v(QTx), x ∈ Rd, Q ∈ O(Rd).

Lemma 2.31. The operator F (v) = A∆v + f(v) satisfies for sufficiently smooth
v : Rd → Rm the condition

(2.97) F (vQ)(x) = (F (v))(QTx), x ∈ Rd, Q ∈ O(Rd).

Proof. It remains to show for the Laplacian

∆vQ(x) = (∆v)(QTx), x ∈ Rd.

In fact, the chain rule shows

DivQ(x) =
d∑

j=1

Djv(Q
Tx)(QT )ji,

DℓDivQ(x) =

d∑

j,k=1

DkDℓv(Q
Tx)(QT )kℓ(Q

T )ji

D2
i vQ(x) =

d∑

j,k=1

DkDjv(Q
Tx)(QT )jiQik,

∆vQ(x) =
d∑

i=1

D2
i vQ(x) =

d∑

j,k=1

DkDjv(Q
Tx)

d∑

i=1

(QT )jiQik

=

d∑

j,k=1

DkDjv(Q
Tx)δjk =

d∑

j=1

D2
jv(Q

Tx) = ∆v(QTx).

�

Example 2.32 (The Barkley model). The following equations were set up by
Barkley as a model for excitable media that show the occurence and parametric
behavior of spiral waves. For m = 2, d = 2 they read

(2.98) ut =

(
1 0
0 d2

)
∆u+

(
1
ε
u1(1− u1)(u1 − u2+b

a
)

g(u1)− u2

)
.
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Here u1 is the activator which diffuses with constant 1 and u2 is the inhibitor which
diffuses at a much smaller rate 0 < d2 ≪ 1. The nonlinearity in the first compo-
nent is of cubic shape as in the Nagumo or the FitzHugh Nagumo equation, see
(2.31),(2.67). However, the position u2+b

a
of the intermediate steady state depends

on the inhibitor and the parameters a, b > 0. The constant ε > 0 is assumed to
be small so that the dynamics of the activator become fast. There are 2 common
choices for the nonlinearity in the second equation

g(w) = w, or g(w) = w3, w ∈ R.

The following figures show a simulation with parameters

d2 =
1

10
, a =

3

4
, b =

1

100
, ε =

1

50
,

and initial data

u1(x, 0) =

{
0, x1 ≤ 0,
1, x1 > 0,

, u2(x, 0) =

{
0, x2 ≤ 0,
a
2
, x2 > 0

.

We observe that a spiral wave develops that seems to rotate about the origin.

Let us make the observation from this example more precise. We consider the
solution that develops as t→ ∞ as a rigidly rotating wave, i.e. a function

(2.99) u(x, t) = v⋆(Q
T (t)x), Q(t) =

(
cos(ω⋆t) − sin(ω⋆t)
sin(ω⋆t) cos(ω⋆t)

)
,

where v⋆ : R2 → Rm is the profile of the wave and ω⋆ is its frequency of rotation
or its angular velocity. In order to match this with the pictures observed, imagine
that we fix a specific feature of the profile, e.g. the tip of the spiral, which at time
t = 0 is located at x⋆ ∈ R2. At time t > 0 we will find the same feature at position
x(t) where

QT (t)x(t) = x⋆, i.e. x(t) = Q(t)x⋆.

Therefore, the profile rotates counterclockwise if ω⋆ > 0 and clockwise if ω⋆ < 0.
Next we set up the equation satisfied by the profile v⋆ of a rigidly rotating wave.
First note that the rotation Q(t) in (2.99) may be written as the exponential of a
simple skew-symmetric matrix

Q(t) = exp(tS), S =

(
0 −ω⋆

ω⋆ 0

)
.

For a general skew-symmetric matrix S ∈ Rd,d, S = −ST the matrix Q = exp(S)
is orthogonal, since

QTQ = exp(S)T exp(S) = exp(ST )exp(S) = exp(−S)exp(S) = exp(0) = Id.

In Section 3 we will put this relation into the more general framework of Lie groups
and Lie algebras.
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Proposition 2.33. Let S ∈ Rd,d be skew-symmetric and let

(2.100) u(x, t) = v(exp(−tS)x), x ∈ Rd, t ≥ 0

be a solution of the parabolic system (2.93). Then the profile v solves the equation

(2.101) 0 = A∆v(x) + vx(x)Sx+ f(v(x)), x ∈ Rd.

Conversely, if v satisfies (2.101) then (2.100) defines a solution of the system (2.93).

Proof. Using Lemma 2.31 and the orthogonality of exp(tS), the proof follows from
the straightforward calculation

ut(x, t) =− vx(exp(−tS)x)Sexp(−tS)x,
A∆u(x, t) =(A∆v)(exp(−tS)x),
f(u(x, t)) =(f ◦ v)(x, t),

and the substitution y = exp(−tS)x. �

Remark 2.34. Note that vx ∈ Rm,d is the total derivative so that equation (2.101)
contains a first order term with unbounded coefficients Sx. One may also write
this term as 〈Sx,∇v(x)〉 where ∇v = vTx is the gradient and the inner product

is defined as 〈Sx,∇v〉 =
∑d

i=1(Sx)iDiv. Using the skew-symmetry we can also
rewrite this term as follows

(vx(x)Sx)i =
d∑

j=1

Djvi(x)(Sx)j =
d∑

j,k=1

Djvi(x)Sjkxk

=
∑

j<k

Djvi(x)Sjkxk −
∑

j>k

Djvi(x)Skjxk

=
∑

j<k

Sjk(xkDjvi − xjDkvi)(x), i = 1, . . . , m.

The expression shows that one takes angular derivatives of the v-components in the
(xj , xk) plane (as indicated by xkDj − xjDk) with velocity Sjk.

Of course, a rotating wave need not rotate about the origin, in general. For exam-
ple, if we have a rotating wave as in (2.100), then for any x0 ∈ Rd the function

u0(x, t) := u(x− x0, t) = v(exp(−tS)(x− x0)), x ∈ Rd, t ≥ 0

also solves (2.93). Defining the shifted profile by

v0(x) = v(x− x0), x ∈ Rd,

we obtain the following representation for the wave rotating about x0

u0(x, t) = v0(x0 + exp(−tS)(x− x0)), x ∈ Rd, t ≥ 0.

The wave now satisfies u0(x, 0) = v0(x), and the shifted profile v0 solves the equa-
tion

(2.102) 0 = A∆v0 + v0,xS(x− x0) + f(v0), x ∈ Rd.
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Hence rotating waves always come in families, a topic that we will take up in a
more systematic way in Section 3.
The generalization of the complex valued system (2.80) to d dimensions is

(2.103) ut = α∆u+ g(|u|)u, x ∈ Rd, u(x, y) ∈ C,

where α ∈ C,Re(α) > 0 and g : R → C is smooth. Now the operator

F (u) = α∆u+ g(|u|)u
satisfies the equivariance condition

F (eiθu) = eiθF (u), θ ∈ R.

Therefore we expect to find oscillating waves

(2.104) u(x, t) = e−iθtv(x).

Inserting this into (2.103) leads to the oscillating wave PDE

(OWPDE) 0 = α∆v + iθv + g(|v|)v, x ∈ Rd.

Example 2.35 (The quintic Ginzburg-Landau equation).

(2.105) ut = α∆u+ u(µ+ β|u|2 + γ|u|4).
The example shows a spinning soliton solution for the parameter settings

(2.106) α =
1

2
(1 + i), µ =

1

2
, β =

5

2
+ i, γ = −1 − 1

10
i,

whereas a perturbation to β = 13
5
+ i with all other parameters kept fixed, leads to

a rotating spiral solution.

Example 2.36 (λ− ω system). These systems are of the form (2.103) with

g(r) = λ(r) + iω(r), e.g. λ(r) = 1− r2, ω(r) = −r2.
Of course this is a special case of a cubic Ginzburg Landau equation, but the name
λ − ω-system has become customary, in particular in mathematical Biology, see
[22]. For the particular choice here, the simulation shows a rigidly rotating spiral
wave developing.

We note an observation for the spinning wave solutions of Example 2.35. The
simulations suggest that the associated profile v⋆ : R2 → C has the property

(2.107) eiθv⋆(x) = v⋆(Rθx), x ∈ R2, θ ∈ R,

where (compare (2.99))

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Therefore, the respresentation of the rotating wave is not unique, but can be given
in two different ways

u(x, t) = e−iθtv⋆(x) = v⋆(R−θtx).
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Finally, we consider the QCGL (2.105) in d = 3 space dimensions with the param-
eter setting from (2.106). We find rotating waves that are of the form

u(x, t) = v⋆(exp(−tS)x), x ∈ R3, t ∈ R

with some skew-symmetric matrix S ∈ R3,3. In the example shown, the wave
rotates about the z-axis, hence we have

S =



0 −ω 0
ω 0 0
0 0 0


 , exp(−tS) =




cos(ωt) sin(ωt) 0
− sin(ωt) cos(ωt) 0

0 0 1


 .

3. Equivariant evolution equations, relative equilib-

ria, and Lie groups

3.1. The concept of equivariance and relative equilibria. Before turning to
the abstract concept of equivariance let us show that the waves observed in Section
2 may be viewed as steady states in an appropriate comoving frame.
Consider the initial value problem (also called the Cauchy problem) associated
with the parabolic system (2.22),

(3.1)
ut =Auxx + f(u), x ∈ R, t ≥ 0,

u(x, 0) =u0(x), x ∈ R.

If u solves this equation, then v : R× [0,∞) → Rm defined by

(3.2) u(x, t) = v(x− ct, t) or v(ξ, t) = u(ξ + ct, t)

solves the equation

ut(x, t) =(−cvξ + vt)(x− ct, t) = Auxx(x, t) + f(u(x, t))

=Avξ,ξ(x− ct, t) + f(v(x− ct, t)).

Replacing x− ct = ξ ∈ R, we obtain that v solves the Cauchy problem

(3.3)
vt =vξ,ξ + cvξ + f(v), ξ ∈ R, t ≥ 0,

v(ξ, 0) =u0(ξ), ξ ∈ R.

We call this the comoving frame system. Note that a travelling wave (v⋆, c⋆) now
appears as a steady state of (3.3). In particular, the stability of travelling waves
(w.r.t. perturbations of initial values) for the original system is reduced to studying
the stability of a steady state for the comoving frame equation. This will be the
topic of Section 5.
We set up the comoving frame equations for our further examples from (2.80) and
(2.93) in Section 2.
With

u(x, t) = e−iθtv(x, t)
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the comoving version of (2.80) is

(3.4) vt = αvxx + iθv + g(x, |v|)v.
For the reaction-diffusion system (2.93) in d dimensions the transformation

(3.5) u(x, t) = v(exp(−tS)x, t), x ∈ Rd, v(x, t) ∈ Rm

leads to the comoving frame equation

(3.6) vt = A∆v + vxSx+ f(v),

for which the profile of a rigidly rotating wave (2.100) appears as a steady state,
see Proposition 2.33.

Exercise 3.1. Set up the comoving frame equation for the complex autonomous
equation (2.91) such that travelling and oscillating waves appear as equilibria, cf.
(TWOSODE).

In a nonrigorous sense, the underlying mechanism of these transformations is the
following:
Consider a general evolution equation

(3.7) ut = F (u),

where F : Y ⊆ X → X with suitable function spaces Y ⊆ X. The operator F
has the additional property that it commutes with some subgroup ΓX ⊆ GL(X)
of linear homeomorphisms

(3.8) F (Γu) = ΓF (u), u ∈ Y, Γ ∈ ΓX .

Equation (3.7) is then called equivariant with respect to ΓX . A relative equilibrium
of (3.7) is defined as a solution of (3.7) of the following form

(3.9) u(t) = Γ(t)v⋆, t ∈ R,

where v⋆ ∈ Y and Γ : R → ΓX is a given function such that u(t) = Γ(t)v⋆ has some
smoothness properties. It will be important in the following to require just this
pathwise smoothness, rather than smoothness of the map Γ : R → ΓX ⊆ GL(X)
where GL(X) is equipped with the operator topology.

Example 3.2. Consider the system (2.22) and embed it into the setting above by
defining

(3.10)

Y =H2(R,Rm), X = L2(R,Rm),

F (u) =Auxx + f(u), u ∈ X,

(Γu)(x) =u(x− γ), x ∈ R, u ∈ X for some γ ∈ R.

Obviously, the translation operator Γ is an isometry of X. For the nonlinearity
f ∈ C1(Rm,Rm) one needs the condition f(0) = 0 to show that u(·) ∈ H1 implies
f(u(·)) ∈ L2 (cf. Example 3.37). With Γ(t)v = v(· − γ(t)) a relative equilibrium is
of the form

u(·, t) = v(· − γ(t)).
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Since it solves the system (2.22) we find

0 = Avxx + vxγt(t) + f(v), x ∈ R.

Taking the inner product with vx we obtain

0 = (vx, Avxx)L2 + (vx, vx)L2γt(t) + (v, f(v))L2,

from which we conclude γt(t) = c, t ∈ R for some c ∈ R (note that (vx, vx)L2 > 0,
since the only constant function in L2(R,Rm) is identically zero). Hence, γ(t) =
ct+ b for some b ∈ R, and the relative equilibrium is a travelling wave

u(x, t) = v⋆(x− ct), v⋆(ξ) = v(ξ − b), ξ ∈ R.

As in this example the group ΓX of transformations is the image of a homomor-
phism (also called an action) a : G → GL(X) from a group (G, ◦) into GL(X),
i.e. a(g1 ◦ g2) = a(g1)a(g2) for all g1, g2 ∈ G. In the case above, the group is
(G, ◦) = (R,+) and the action assigns to any γ ∈ R the translation of functions
defined by a(γ)u(·) = u(· − γ), u ∈ L2(R,Rm). Such an action is also called a
representation of G on X.
More interesting examples occur with rotating waves, cf.(2.95), (2.96):

X = L2(Rd,Rm), G = O(Rd) (the orthogonal group)

[a(g)u](x) = u(gTx), x ∈ Rd, u ∈ X, g ∈ G.

In this case the group is no longer a linear space but a manifold. Moreover, as the
example shows, we want to take for fixed u ∈ Y derivatives of the map

g ∈ G→ a(g)u ∈ X.

The appropriate mathematical framework for this is the theory of Lie groups and
Lie algebras which in turn requires some familiarity with the calculus of manifolds.
This will be the topic of the following sections.

3.2. Lie groups and manifolds. There are quite a few classical texts on the the-
ory of Lie groups and Lie algebras, see [17],[6],[27],[30]. A particularly elementary
and constructive approach to the subject via linear matrix groups is provided by
[25], which we partly follow. The latter reference also contains a brief introduction
into the analysis on manifolds. The general theory of Banach manifolds (where
charts map into a Banach space rather than into a finite dimensional space) may
be found in the rather abstract book [19]. For application of symmetries to partial
differential equations we refer to [7], [13], [9].

Definition 3.3. A group (G, ◦) is called a Lie group if it is a finite-dimensional
C∞-manifold, for which the composition

(3.11) comp :
G×G → G,
(g, γ) → g ◦ γ
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and the inverse

(3.12) inv :
G → G,
g → g−1

are C∞-maps.

Remarks. 1. Instead of C∞-manifolds one may also work in the category of Cω-
manifolds where coordinate transformations between different charts are required
to be real analytic (i.e. have a locally convergent power series). This is the approach
taken in [25], see Section 3.3.
2. Definition 3.3 implies that multiplication from the left Lg = comp(g, ·) and
from the right Rγ = comp(·, γ) are C∞-maps. These operation are given by

(3.13) Lg :
G → G
γ → g ◦ γ = Lg(γ)

, Rγ :
G → G
g → g ◦ γ = Rγ(g)

.

Below we recall some notions from the analysis on manifolds. Let us first consider
an example where the manifold structure is trivial.

Example 3.4. Let X be a real finite-dimensional Banach space and let

(3.14) GL(X) = {g ∈ L[X ] : g is invertible}
be the set of linear automorphisms. Of course, we may identify X with Rk, k =
dim(X), L[X ] with the space of k×k-matrices and GL(X) with the set of invertible
matrices. Then G = GL(X) is a group with respect to composition (or multiplica-
tion of matrices), called the general linear group on X. Since G is an open subset
of L[X ] it inherits its topology and the notions of differentiability from this finite
dimensional space of dimension k2 (in the setting of manifolds below, one has the
charts (IU , U), where U ⊆ GL(X) is open and IU : U → GL(X) is the identity on
U). The composition comp(g, γ) = gγ satisfies for h1, h2 ∈ L[X ]

comp(g + h1, γ + h2) = comp(g, γ) + h1γ + gh2 + h1h2.

Since h1h2 = O(‖h1‖2+‖h2‖2), we find the total derivative d comp(g, γ) ∈ L[L[X ]×
L[X ], L[X ]] to be

(3.15) d comp(g, γ)(h1, h2) = h1γ + gh2,

and the partial derivatives dLg(γ) ∈ L[L[X ], L[X ]], dRγ(g) ∈ L[L[X ], L[X ]] to be
as follows

dLg(γ) = Lg, ∀γ ∈ G, dRγ(g) = Rγ, ∀g ∈ G.

Therefore the derivatives of Lg and Rγ are constant and their higher derivatives
vanish. Furthermore, for the inverse we have from the geometric series for h ∈ L[X ]
small,

inv(g + h) = (g + h)−1 = (I + g−1h)−1g−1

= (I − g−1h +O(‖h‖2))g−1 = inv(g)− g−1hg−1 +O(‖h‖2),
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hence

(3.16) [d inv(g)]h = −g−1hg−1, h ∈ L[X ].

We may also write this as d inv(g) = −Lg−1 ◦Rg−1.

Definition 3.5. A Ck-manifold of dimension n is a Hausdorff topological space
M together with a family of pairs (Uα, ϕα), α ∈ A with the following properties

(M1) For all α ∈ A, Uα ⊆M , the map

ϕα : Uα → ϕα(Uα) =: Vα ⊆ Rn

is a homeomorphism, and Vα is open in Rn.
(M2) For any pair α, β ∈ A with Uα ∩ Uβ 6= ∅, the coordinate transformation

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → Vβ

is of class Ck.
(M3) M =

⋃
α∈A Uα.

Some remarks concerning this classical definition are in order.

Remarks. 1. Charts: The pairs (Uα, ϕα) are called charts (or cordinate maps)
of the manifold. They play the same role for manifolds as geographical maps do
for the earth. Correspondingly, every collection of charts satisfying (M1)-(M3), is
also called an atlas of M . If an atlas contains all possible charts compatible with
the given atlas by (M1),(M2), then it is called maximal. It is common to write the
images of charts as

ϕα(p) = x(p) = (x1(p), x2(p), . . . , xn(p)), p ∈ Uα,

and to call the maps x1, . . . , xn local coordinates at p ∈ M .
2. Smoothness: In the definition above we assume k ≥ 1. From (M2) we find
that ϕβ ◦ ϕ−1

α has a Ck-inverse given by ϕα ◦ ϕ−1
β on ϕβ(Uβ ∩ Uα), hence it is a

diffeomorphism. If these coordinate transformations have smoothness C∞ or even
Cω, then M is called a C∞ resp. a Cω-manifold.
3. Topology: Definition 3.5 assumes the topology on M to be given and to be
Hausdorff. It is possible to avoid this assumption and assume that just a family
of charts (Uα, ϕα) is given such that ϕα : Uα ⊆ M → Vα ⊆ Rn are one-to-one
and conditions (M2),(M3) hold. Then one can generate a topology on M by all
pre-images ϕ−1

α (V ) with α ∈ A and V ⊆ Vα open. It remains to verify that the
topology created in this way is Hausdorff. Note, however, that some references
don’t require M to be Hausdorff at all (cf. [19]).
4. Banach manifolds: Using the calculus of Frechét-derivatives for maps be-
tween Banach spaces (see e.g. [5]), one can easily replace the space Rn in Axioms
(M1),(M2) of Definition 3.5 by an arbitrary Banach space X. In this way one
obtains a so-called Banach manifold modeled over X, see [19]. This generalization
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is in fact useful for our applications as the following example shows:
Consider a travelling front u(x, t) = v⋆(x− ct) of (2.22) with

lim
ξ→−∞

v⋆(ξ) = v− 6= v+ = lim
ξ→∞

v⋆(ξ).

For this solution an appropriate function space is the affine space

M = v⋆ + L2(R,Rm),

where v⋆ ∈ C1
b (R,R

m) is chosen such that

lim
ξ→±∞

v⋆(ξ) = v±, v⋆,ξ ∈ H1(R,Rm).

The charts consist of open sets U ⊆ L2(R,Rm) and the mappings

ϕU :
v⋆ + U → U
v⋆ + v → v.

Obviously, the coordinate transformation ϕU1
◦ ϕ−1

U2
= IX is arbitrarily smooth on

ϕU1
((v⋆ + U1) ∩ (v⋆ + U2)) = U1 ∩ U2. One may argue, that it is easier to reduce

the affine case to the linear case by writing the PDE in terms of v rather than
u = v⋆ + v. However, this will make the right-hand side space-dependent and thus
introduce complications with the representation of the shift group. Even in this
simple case, it seems worthwhile to use the general calculus of Banach manifolds.

Definition 3.6. Let M be an m-dimensional and N be an n-dimensional Ck-
manifold with atlases (ϕα, Uα), α ∈ A and (ψβ , Vβ), β ∈ B, respectively. Then
a function f : M → N is called of class C l, l ≤ k, if f is continuous and all
coordinate transformations satisfy

(3.17) ψβ ◦ f ◦ ϕ−1
α ∈ C l(ϕα(Uα ∩ f−1(Vβ)),R

n), α ∈ A, β ∈ B.

Of course, we do not only want to define differentiability but also the derivatives
(or tangent maps) themselves. This, however, needs some preparation on tangent
spaces (see below).
If M,N are manifolds as in Definition 3.6 then one defines the product manifold as
the Hausdorff topological space

M ×N = {(p, q) : p ∈M, q ∈ N},
endowed with the product topology and with the charts

ϕα ⊗ ψβ :
Uα × Vβ → Rm × Rn

(p, q) → (ϕα(p), ψβ(q)),
α ∈ A, β ∈ B.

This construction obviously satisfies the properties (M1)-(M3) in Definition 3.5 and
M × N becomes an m + n-dimensional manifold with the product atlas defined
above.
Summarizing we have recalled all notions necessary for the abstract Definition 3.3
of a Lie group.
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3.3. Lie groups of matrices and their Lie algebras. The most important
type of Lie groups are subgroups of the general linear group from Example 3.4.

Definition 3.7. Let X be a finite-dimensional Banach space. Every subgroup G
of the general linear group GL(X) is called a linear group.

Let ‖ · ‖ be the norm on X, then we use on L[X ] the associated operator norm
‖g‖ = sup{‖gx‖ : x ∈ X, ‖x‖ ≤ 1}. Since X is finite-dimensional, all norms in X
and L[X ] are equivalent.
Our goal is to recognize every linear group as a Lie group. Let us first consider
some standard examples.

Example 3.8 (The orthogonal group). The orthogonal group in Rd already ap-
peared with rotating waves in (2.95), Lemma 2.31,

(3.18) O(Rd) = {g ∈ L[Rd] : gTg = Id}.
Since | det(g)| = 1 for g ∈ O(Rd), we can decompose O(Rd) into two connected
components, the special linear group

(3.19) SO(Rd) = {g ∈ L[Rd] : gTg = Id, det(g) = 1},
and its counterpart

SO−(Rd) = {g ∈ L[Rd] : gTg = Id, det(g) = −1}.
Note that SO(Rd) is a linear group itself, but SO−(Rd) is not. For d = 2, the group
SO(Rd) contains rotations

(3.20) SO(R2) =

{(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ (−π, π]

}
,

while SO−(R2) contains reflections

SO−(R2) =

{(
cos θ sin θ
sin θ − cos θ

)
: θ ∈ (−π, π]

}
.

In dimensions d ≥ 3 the group SO(Rd) is no longer Abelian.

Example 3.9 (The Euclidean group). Every affine transformation T : Rd → Rd

that preserves the Euclidean distance (i.e. |Tp1 − Tp2|2 = |p1 − p2|2 ∀p1, p2 ∈ Rd)
is of the form

Tp = Qp+ b for some Q ∈ O(Rd), b ∈ Rd.

The composition of two such transformations leads to

(T1 ◦ T2)p =Q1(T2p) + b1 = Q1(Q2p+ b2) + b1 = Q1Q2p +Q1b2 + b1,

hence the group operation is

(3.21) (Q1, b1) ◦ (Q2, b2) = (Q1Q2, Q1b2 + b1).

These transformations form the Euclidean group

E(Rd) = {(Q, b) : Q ∈ O(Rd), b ∈ Rd}.
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Taking Q ∈ SO(Rd) one obtains the special Euclidean group SE(Rd). Because of the
group operation (3.21) (which differs from the standard operation on the product
of two groups) the resulting group is called a semidirect product and written as

E(Rd) = O(Rd)⋉ Rd, SE(Rd) = SO(Rd)⋉Rd.

It is convenient to represent the group SE(Rd) as a subgroup of GL(Rd+1),

(3.22) SE(Rd) =

{(
Q b
0 1

)
: Q ∈ SO(Rd), b ∈ Rd

}
.

For the isomorphism between the two representations note that the matrix multi-
plication (

Q1 b1
0 1

)(
Q2 b2
0 1

)
=

(
Q1Q2 Q1b2 + b1
0 1

)

is compatible with the group operation (3.21). We conclude that one may view
an affine transformation in Rd as the restriction of a linear transformation in Rd+1

from (3.22) to the affine subspace Rd × {1} of Rd+1.

For the construction of charts on a linear group we use the exponential map defined
by

(3.23) exp :
L[X ] → GL(X),
A → exp(A) =

∑∞
j=0

1
j!
Aj .

In particular, we need the (local) inverse of this map, that is the logarithm of a
matrix.

Proposition 3.10. The following properties hold:
(a) det(exp(A)) = exp(tr(A)) for all A ∈ L[X ],
(b) the exponential function maps a neighborhood of 0 ∈ L[X ] homeomor-

phically onto a neighborhood of IX ∈ GL(X). More precisely, the series

(3.24) log(B) =

∞∑

j=1

(−1)j−1

j
(B − IX)

j

converges for ‖B − IX‖ < 1. For every A ∈ L[X ] with ‖A‖ < log(2) we
have ‖exp(A)− IX‖ < 1 as well as

(3.25) log(exp(A)) = A,

and for every B ∈ L[X ] with ‖B − IX‖ < log(2)
1+log(2)

we have ‖ log(B)‖ <
log(2) as well as

(3.26) exp(log(B)) = B.

Proof. Assertion (a) is a special case of Liouville’s Theorem for linear ordinary
differential systems y′(t) = A(t)y(t), t ∈ R. If Y (t) denotes a fundamental ma-
trix of this system, then d(t) = det(Y (t)) solves the differential equation d′(t) =
tr(A(t))d(t). For the proof of (b), note that the geometric series

∑∞
j=1 ‖B − IX‖j
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is a convergent majorant of the log-series (3.24) for ‖B − IX‖ < 1. Moreover, for
‖A‖ < log 2 we have

‖exp(A)− IX‖ = ‖
∞∑

j=1

1

j!
Aj‖ ≤

∞∑

j=1

‖A‖j
j!

= exp(‖A‖)− 1 < 1.

Hence, log(exp(A)) is defined by (3.24), and the proof of the functional equation
(3.25) can be transferred from the scalar to the matrix case. In a similar way, we
have for ‖B − IX‖ < log(2)

1+log(2)
,

‖ log(B)‖ ≤
∞∑

j=1

‖B − IX‖j =
‖B − IX‖

1− ‖B − IX‖
< log(2),

and (3.26) follows again as in the scalar case. Both relations (3.25),(3.26) together
show that exp is a homeomorphism from a ball of radius log(2) about 0 onto
its image. The image is a neighborhood of IX since it contains a ball of radius
log(2)1 + log(2). �

Remarks. 1. The logarithm may be defined as an analytic function in a much
larger domain than the ball of radius 1 around IX where the power series (3.24)
converges. For example, it is well-known from complex analysis that the log-
function has a holomorphic extension from the positive real axis (0,∞) to the slit
domain C \ (−∞, 0]. This is called the principal branch of the log-function, it has
the property

(3.27) log(z) = log(r) + iθ, where z = rexp(iθ), r > 0, θ ∈ (−π, π).
For any matrix B ∈ L[X ] with σ(B)∩ (−∞, 0] = ∅ one can choose a simple closed
contour C in C\(−∞, 0] which encloses the spectrum σ(B) and define the logarithm
of B via the so-called functional calculus

(3.28) log(B) =
1

2πi

∫

C
log(z)(zIX −B)−1dz.

Let us show that (3.28) agrees with (3.24) if ‖B − IX‖ < 1. In order to see this,
use Cauchy’s theorem and replace C in (3.28) by a circle Cr = {z ∈ C : |z−1| = r}
with ‖B − IX‖ < r < 1. The geometric series

(zIX −B)−1 = (z − 1)−1(IX − (z − 1)−1(B − IX))
−1 =

∞∑

j=0

(z − 1)−j−1(B − IX)
j

converges uniformly for |z − 1| ≥ r. When we insert this into (3.28) (with Cr
instead of C), we can interchange the series with the integral and obtain log(B) =∑∞

j=0 bj(B − IX)
j, where by Cauchy’s formula,

bj =
1

2πi

∫

Cr
log(z)(z − 1)−j−1dz =

1

j!

[
dj

dzj
log

]
(1) =

(−1)j−1

j
.
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The construction via (3.28) works in general for any simply connected domain in
C for which a holomorphic extension exists. With this one can show that for every
element B ∈ GL(X) there exists a linear operator A such that exp(A) = B. Just
take a suitable ray ̺θ = {rexp(iθ) : r ≥ 0} which does not intersect σ(B) and
then use (3.28) with the holomorphic extension of log to C \ ̺θ. However, there
is a caveat. The linear operator A need not be real in general (although the local
power series (3.24) gives a real operator), and there is no holomorphic extension
of this log-function to the whole of GL(X).
2. An alternative way of deriving (3.25) from the scalar complex case is via diag-
onalization. For example, assume A to be diagonalizable, i.e. A = Sdiag(λj)S

−1,
and obtain |λj| ≤ ‖A‖ < log(2). The power series for exp shows exp(A) =
Sdiag(exp(λj))S−1 and by equation (3.24),

log(exp(A)) = S log(diag(exp(λj)))S
−1 = Sdiag(log(exp(λj)))S

−1 = A.

In the general case one selects a sequence of diagonalizable matrices converging to
the given matrix and uses a limit argument. A similar reasoning works for (3.26).

Next we show that the special orthogonal group SO(Rd) from (3.19) is the image
under the exponential function of the linear group of skew symmetric matrices

(3.29) so(Rd) = {S ∈ L[Rd] : ST = −S}.
For the two-dimensional case (3.20) this follows from

(3.30) Rθ =

(
cos θ − sin θ
sin θ cos θ

)
= exp(Sθ) for Sθ = θ

(
0 −1
1 0

)
.

The relation (3.30) is easily seen by either using the series representations for
sin, cos, exp or by diagonalizing Sθ. From Proposition 3.10 and (3.30) we conclude
Sθ = log(Rθ) provided ‖Sθ‖2 = |θ| < log 2.

Proposition 3.11. For every g ∈ SO(Rd) there exists S ∈ so(Rd) such that

(3.31) g = exp(S), σ(S) ⊆ i[−π, π].
If the eigenvalues exp(iθj) of g satisfy maxj|θj | < log 2, then (3.31) holds for
S = log g.

Proof. We use the normal form theorem for normal matrices (see [16, Cor.2.5.11])
and note that skew symmetric and orthogonal matrices are normal, i.e. gTg = ggT ):
for every g ∈ SO(n) there exists Q ∈ O(Rd) such that

QTgQ = diag(Rθ1 , . . . , Rθp,±1, . . .± 1),

where θj ∈ (0, π). Since det(g) = 1 we infer that there is an even number of
−1’s among the d− 2p values ±1. Collecting these in matrices Rπ = −I2 and the
remaining 1’s in R0 = I2, we can write the normal form as

QT gQ = diag(Rθ1, . . . , Rθk , 1⋆),
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where θj ∈ [0, π], j = 1, . . . , k = ⌊d
2
⌋ and

1⋆ =

{
1, d odd,
∅, d even.

From (3.30) we obtain QTgQ = exp(S̃) for

S̃ = diag(Sθ1, . . . , Sθk , 0⋆), 0⋆ =

{
0, d odd,
∅, d even.

Finally, S = QS̃QT is in so(Rd) and satisfies

exp(S) = Qexp(S̃)QT = g.

By Proposition 3.10 the matrix S above agrees with log(g) defined in (3.24), if

log 2 > ‖S‖2 = ‖QS̃QT‖2 = ‖S̃‖2 = maxj=1,...,k|θj|.
�

Let us define the tangent space of a Lie group without recourse to the general
theory of manifolds. The connection to this theory will be discussed in Section 3.4.

Definition 3.12. Let G ⊆ GL(X) be a linear group with unit element 1. We
define the tangent space of G at 1 to be

(3.32) T
1

G = {(1, v) : ∃ ε > 0, g ∈ C1((−ε, ε), G) with g(0) = 1, g′(0) = v}.
The subset

(3.33) g = {v ∈ L[X ] : (1, v) ∈ T
1

G}
is called the Lie algebra of G.

Remark 3.13. The element 1 in the pairs of T
1

G is included in order to keep
track of the point where the tangent space is located. This will be important when
we consider the tangent space TgG at an arbitrary point g ∈ G, see Section 3.4.
Of course we can (and actually will) identify the Lie algebra with the tangent space
T
1

G.

The notion of Lie algebra is motivated by the following proposition.

Proposition 3.14. The Lie algebra g of a linear group G has the following prop-
erties.

(i) g is a real vector space,
(ii) if µ1, µ2 ∈ g, then the commutator satisfies

(3.34) [µ1, µ2] := µ1µ2 − µ2µ1 ∈ g,

(iii) The bracket [·, ·] is skew symmetric [µ1, µ2] = −[µ2, µ1] and satisfies the
Jacobi identity

(3.35) [[µ1, µ2], µ3] + [[µ2, µ3], µ1] + [[µ3, µ1], µ2] = 0 ∀µ1, µ2, µ3 ∈ g.



42

Remark 3.15. An abstract Lie algebra is a real vector space V endowed with a
skew-symmetric bilinear bracket operation

[·, ·] : V × V → V,

which satisfies the Jacobi identity.

Proof. (i): Let g1(·), g2(·) be C1-curves in G with

gj(0) = 1, g′j(0) = µj, j = 1, 2.

For α1, α2 ∈ R consider the curve g3(t) = g1(α1t)g2(α2t) for |t| small and note
g(0) = 1 as well as

g′(t) = α1g
′
1(α1t)g2(α2t) + α2g1(α1t)g

′
2(α2t), g′(0) = α1µ1 + α2µ2,

hence α1µ1 + α2µ2 ∈ g.
(ii): Let g1, g2 be as above and consider for fixed |τ | small

g(t) = g1(τ)g2(t)g1(τ)
−1, |t| small.

Then g(0) = 1 and g′(0) = g1(τ)g
′
2(0)g1(τ)

−1 = g1(τ)µ2g1(τ)
−1. Setting λ(τ) =

g1(τ)µ2g1(τ)
−1 we obtain from (3.16)

λ′(τ) = g′1(τ)µ2g1(τ)
−1 − g1(τ)µ2g1(τ)

−1g′1(τ)g1(τ)
−1,

and therefore λ′(0) = µ1µ2 − µ2µ1 ∈ g.
(iii) The Jacobi identity is verified by using the definition (3.34) in the expression
on the left-hand side of (3.35) and expanding terms. �

Corollary 3.16. The Lie algebra of the special orthogonal group SO(Rd) is the
additive group so(Rd) of skew-symmetric matrices.

Proof. Let g(·) be a C1-curve in SO(Rd) with g(0) = Id. Differentiating g(t)Tg(t) =
Id at t = 0 yields

0 = g′(t)Tg(t) + gT (t)g′(t), 0 = g′(0)T + g′(0),

hence g′(0) ∈ so(Rd). Conversely, let S ∈ so(Rd) and define g(t) = exp(tS), t ∈ R.
Then we have g(0) = Id and since S and ST = −S commute,

g(t)Tg(t) = exp(tS)Texp(tS) = exp(tST )exp(tS) = exp(t(S + ST )) = Id.

Finally, det(exp(S)) = exp(tr(S)) = 1 by Proposition 3.10 (a). �

The following Theorem shows the general role of the exponential function.

Theorem 3.17. Let G ⊆ GL(X) be a linear group and g be its Lie algebra. Then
exp maps g into G.

Proof. Let n = dim(g) and let {µ1, . . . , µn} be a basis of g. Further, let gj(·) be a
C1-curve in G with tangent vector µj at 1, and define the mapping g by

g :
Rn → G,

x = (xj)
n
j=1 → g1(x1) · · · gn(xn).
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Then we choose a subspace Y of L[X ] with L[X ] = g ⊕ Y and extend g to the
mapping

f :
Rn ⊗ Y → L[X ],
(x, y) → g(x)(IX + y).

Clearly, f satisfies f(0, 0) = IX and a straightforward calculation shows

Df(0, 0)(x, y) =
n∑

j=1

xjµj + y, x ∈ Rn, y ∈ Y.

By our choice of Y , the linear map Df(0, 0) is invertible. The inverse function
theorem shows that f has a C∞-smooth local inverse

f−1(B) = (f−1
1 (B), f−1

2 (B)) ∈ Rn × Y, B ∈ U(IX) ⊆ L[X ].

In particular, by the definition of f ,

(3.36) f−1
2 (g(x+ τz)(IX + y)) = y, x, z ∈ Rn, y ∈ Y, τ ∈ R small.

Differentiating (3.36) at τ = 0, we obtain for small x ∈ Rn, y ∈ Y ,

(3.37) Df−1
2 (g(x)(IX + y))(Dxg(x)z)(IX + y) = 0.

This relation is linear in z, hence it does not only hold for small z but for all
z ∈ Rn.
For z ∈ Rn the map τ → g(x + τz)g(x)−1 defines a smooth curve in G passing
through 1 with tangent vector

(3.38) A(x)z :=

[
d

dτ
g(x+ τz)g(x)−1

]

|τ=0

= (Dxg(x)z)g(x)
−1 ∈ g.

For x = 0 we obtain the linear map A(0) : Rn → g,

A(0)z = Dxg(0)z =
n∑

j=1

zjµj.

This map is invertible, hence A(x) : Rn → g is also invertible for small x by the
Banach perturbation lemma. With A(x) from (3.38) we can write (3.37) as

Df−1
2 (g(x)(IX + y))(A(x)z)g(x)(IX + y) = 0

for all z ∈ Rn and small x ∈ Rn, y ∈ Y . Since A(x) is invertible we can replace
A(x)z by an arbitrary element µ ∈ g, and since f is a local diffeomorphism, we
can replace g(x)(IX + y) by an arbitrary element B in a neighborhood U(IX):

(3.39) Df−1
2 (B)µB = 0 ∀µ ∈ g, B ∈ U(IX).

For a given µ ∈ g consider now the curve B(τ) = exp(τµ) in L[X ]. From (3.39)
we find for small |τ |,

0 = Df−1
2 (exp(τµ))µexp(τµ) =

d

dτ

[
f−1
2 (exp(τµ))

]
,
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hence f−1
2 (exp(τµ)) = f−1

2 (exp(0µ)) = f−1
2 (IX) = 0. By the definition of f , this

shows exp(τµ) = g(f−1
1 (exp(τµ))) ∈ G for |τ | in some interval (−τ0, τ0). For a

general τ ∈ R we take k ∈ N such that |τ |
k
< τ0 and find from the functional

equation of the exponential function

exp(τµ) = exp(k
τ

k
µ) =

(
exp(

τ

k
µ)
)k

∈ G.

�

Note that this proof uses a local coordinate system near 1 (defined by f), where
elements of the group G are identified by a vanishing component of the inverse (
f−1
2 (B) = 0). Despite this construction, we do not consider the Lie group G as

a submanifold of GL(X). In particular, the topology on G will not be defined as
the relative topology of G in GL(X). The reason is, that a neighborhood of 1
in GL(X) may contain further pieces of the group that do not arise as images of
points near zero under f . The following example illustrates this situation.

Example 3.18. With the rotation matrices from (3.30) and two real numbers
a, b > 0 define the linear group

(3.40) Ga,b =

{
M(τ) =

(
Raτ 0
0 Rbτ

)
: τ ∈ R

}
⊆ GL(R4).

Geometrically, we may think of this group as a curve on the 2-torus

T2 =

{(
Rτ1 0
0 Rτ2

)
: τ1, τ2 ∈ R

}
⊆ GL(R4),

which rotates with speed a about one axis and with speed b about the second.
If a

b
∈ Q then the curve is closed (and so is the Lie group) and Ga,b may be

considered as a submanifold of T2. However, if a
b
/∈ Q, then Ga,b is dense in T2,

and any GL(R4)-neigborhood of a fixed element M(τ) ∈ Ga,b contains an infinity
of branches of Ga,b which accumulate on M(τ).

One can in fact show that the group topology and the relative topology of G in
L[X ] coincide if the groupG is closed (see the Closed subgroup theorem [25, Section
2.7]).
Keeping this warning in mind, we now define a topology and charts on a linear
group G which turn G into a C∞-manifold (in fact, it is of type Cω). This is
achieved by using the relative topology of g in L[X ] and the exponential map for
parametrization.
Let us write balls in g as

Bg(0, ε) = {µ ∈ g : ‖µ‖ < ε}.
Definition 3.19. Let G be a linear group. A set U ⊆ G is called a neighborhood
of an element g ∈ G if there exists an ε > 0 such that

Uε(g) := {gexp(µ) : µ ∈ Bg(0, ε)} ⊆ U .
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A set M ⊆ G is called open if it is a neighborhood of each of its elements.

It is not difficult to verify that this generates a topology on G, called the group
topology. Moreover, the topology is Hausdorff: take two different elements g1, g2 ∈
G and then estimate for µ1, µ2 ∈ g,

‖g1exp(µ1)− g2exp(µ2)‖ ≥ ‖g1 − g2‖ − ‖g1(1− exp(µ1))‖ − ‖g2(1− exp(µ2))‖

Since the exponential function is continuous, the right hand side becomes positive
if ‖µ1‖ and ‖µ2‖ are sufficiently small. Hence Uε(g1) and Uε(g2) do not intersect
for small ε.
For a chart on Uε(1) with ε < log(2) we use the local log-function from Proposition
3.10

ϕε,1 = log :
Uε(1) → Bg(0, ε)

γ = exp(µ) → log(γ) = µ
.

The map is one-to-one by Proposition 3.10. A chart near an arbitrary point g ∈ G
is given by

(3.41) ϕε,g = ϕε,1 ◦ Lg−1 : Uε(g) → Bg(0, ε), ϕε,g(gexp(µ)) = µ.

A coordinate transformation (see condition (M2))

ϕε2,g2 ◦ ϕ−1
ε1,g1 = ϕε2,g2 ◦ Lg−1

2
◦ Lg1 ◦ ϕ−1

ε1,g1 = log(g−1
2 g1exp(·))

is of type C∞ on its domain of definition ϕε1,g1(Uε1(g1)∩Uε2(g2)) which is an open
subset of Bg(0, ε1). Finally, the covering property G =

⋃
g∈G,ε<log 2 Uε(g) is obvious.

Let us summarize the result.

Proposition 3.20. With the topology according to Definition 3.19 and the charts
defined in (3.41) every linear group G in GL[X ] is a Lie group.

3.4. Tangent maps, tangent bundle, and flows on manifolds. We proceed
with the general theory of manifolds and relate it to the previous construction for
linear groups.
Let us first define the tangent space. Consider an n-dimensional C1-manifold M
and a point p ∈ M . Suppose that (Uα, ϕα) is a chart with p ∈ Uα and v(t) ∈
M, |t| < ε is a C1-curve in M with v(0) = p (see Definition 3.6 for the meaning
of C1). Such a curve always exists, since one can take v(t) = ϕ−1

α (z(t)) where
z(t), |t| < ε is a smooth curve in Vα = ϕα(Uα) ⊆ Rn satisfying z(0) = ϕα(p)).
Then we form the tangent vector of the image curve

d

dτ
(ϕα(v(τ)))|τ=0 ∈ Rn.

If two such curves vj ∈ C1((−εj , εj)M), j = 1, 2 satisfy d
dτ
(ϕα ◦ v1(τ))|τ=0 =

d
dτ
(ϕα ◦ v2(τ))|τ=0, then we call them equivalent and write v1 ∼ v2 (we suppress
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the dependence of this relation on p). This notion is independent of the chart
containing p, since for another index β we have by the chain rule

(3.42)

d

dτ
(ϕβ ◦ v(τ))|τ=0 =

d

dτ
(ϕβ ◦ ϕ−1

α ◦ ϕα ◦ v(τ))|τ=0

=D(ϕβ ◦ ϕ−1
α )(ϕα(p))

d

dτ
(ϕα ◦ v(τ))|τ=0.

Note that the transformation matrix D(ϕβ ◦ϕ−1
α )(ϕα(p)) is invertible and indepen-

dent of v.

Definition 3.21. For an n-dimensional manifold M and p ∈M the set

(3.43) TpM = {(p, [v]∼) : v ∈ C1((−ε, ε),M), v(0) = p}
with the equivalence class

[v]∼ = {w ∈ C1((−ε, ε),M) : ε = ε(w) > 0, w(0) = p, v ∼ w}
is called the tangent space of M at p.

Note that the domain (−ε(w), ε(w)) of the curve may vary within the equivalence
class [v]∼.
We turn TpM into a linear space with the help of the map

(3.44) dϕα(p) :
TpM → Rn

(p, [v]∼) → d
dτ
(ϕα(v(τ)))|τ=0.

By construction, this map is well-defined and one-to-one. It is also onto, since for a
given v0 ∈ Rn we can take v(τ) = ϕ−1

α (ϕα(p)+τv0) and then find dϕα(p)(p, [v]∼) =
d
dτ
(ϕα(p)+τv0)|τ=0 = v0. Hence dϕα(p) is a bijection. For a, b ∈ R and (p, [v1]∼), (p, [v2]∼) ∈

TpM one defines

(3.45) a (p, [v1]∼)+ b (p, [v2]∼) = dϕα(p)
−1(a dϕα(p)(p, [v1]∼)+ b dϕα(p)(p, [v2]∼)).

This definition turns out to be independent of the chart at p, and in this way
TpM becomes a vector space isomorphic to Rn. Therefore, it is convenient to
suppress the notation of equivalence classes and simply write (p, v) ∈ TpM (or
even v ∈ TpM) instead of (p, [v]∼) ∈ TpM .

Definition 3.22. Let M be an n-dimensional C1-manifold. Then

(3.46) TM =
⋃

p∈M
TpM

is called the tangent bundle of M .

The tangent bundle TM can be given the structure of a manifold by defining the
charts (Uα,Φα), α ∈ Λ as follows

Uα ={(p, v) : p ∈ Uα, (p, v) ∈ TpM}
Φα(p, v) =(ϕα(p), dϕα(p)(p, v)) ∈ Rn × Rn, (p, v) ∈ Uα.
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Note that

Φα : Uα → Vα × Rn

is bijective. Moreover the change of coordinates is

Φβ ◦ Φ−1
α :

(Vα ∩ Vβ)× Rn → Vβ × Rn

(x, y) → (ϕβ ◦ ϕ−1
α (x), dϕβ(p)(p, [dϕα(p)

−1(y)]2)),

where p = ϕ−1
α (x) and [·]2 indicates the second component of the preimage. From

the chain rule (3.42) we finally obtain the formula

(3.47) Φβ ◦ Φ−1
α (x, y) = (ϕβ ◦ ϕ−1

α (x), D(ϕβ ◦ ϕ−1
α )(x)y).

This formula is suggestive to keep in mind because it combines the original coordi-
nate change with its derivative applied to a tangent vector. If M is a Ck-manifold
then the tangent bundle TM becomes a Ck−1-manifold. In this way one can con-
tinue to form higher order tangent bundles T 2M = T (TM) and so on.

Definition 3.23. Let M ,N be Ck-manifolds ( k ≥ 1) with tangent bundles TM ,
TN and let f : M → N be of class C1 according to Definition 3.6. Then the
tangential of f at p ∈ M (also called the derivative of f at p ∈ M) is defined as
the map

(3.48) df(p) :
TpM → Tf(p)N

(p, [v]∼) → (f(p), [f(v)]∼)

Remark 3.24. By Definition 3.6 a C1-curve v(·) in M with v(0) = p is mapped
into a C1-curve w(·) = f(v(·)) in N satisfying w(0) = f(p). Therefore, (f(p), [f(v)]∼)
is an element of Tf(p)N .
In the literature the notation Tpf is also frequently used for the tangential map
of f at p. However, we prefer to write df(p) since the tangential map is a direct
generalization of the total derivative to manifolds. For example, let M ⊆ Rm and
N ⊆ Rn be open subsets with the trivial charts ϕm = Im and ϕn = In, respectively.
Then we find

(3.49) df(p)(p, v) = (f(p), Df(p)v), v ∈ Rm

with the Jacobian Df(p) ∈ L[Rm,Rn] of f at p, since

d

dτ

[
ϕn ◦ f(ϕ−1

m (ϕm(p) + τv))
]
|τ=0

=
d

dτ
f(p+ τv)|τ=0 = Df(p)v.

Definition 3.25. Let M be a Ck-manifold where 1 ≤ k ≤ ∞. A Cr-vector field
on M with 0 ≤ r ≤ k − 1 is a map

(3.50) f :
M → TM
p → f(p)

,

which satisfies f(p) ∈ TpM for all p ∈M and which is of type Cr.
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With this notion we can consider initial value problems on the manifold M

(3.51) p′(τ) = f(p(τ)), τ ∈ R, p(0) = p0,

where p0 ∈ M is given and f is a C1-vector field on M . Note that we use the sug-
gestive notation p′(τ) in (3.51) instead of the tangential map dp(τ) as in Definition
3.23. Moreover, the differential equation in (3.51) is autonomous since the vector
field does not depend explicitly on time.
The following theorem is the extension of the classical local Picard-Lindelöf theo-
rem to initial value problems on manifolds.

Theorem 3.26. Let M be a Ck-manifold (k ≥ 2) and f : M → TM be a Ck−1-
vector field. Then the for any p0 ∈ M there exists an ε > 0 sucht that the initial
value problem (3.51) has a unique solution p ∈ Ck−1((−ε, ε),M).

A proof in the analytical case may be found in [25, Section 4.3]. The reference [19,
IV, § 2] provides not only the local theorem 3.26 for Banach manifolds but also the
standard further results such as maximal continuation of local solutions, continuous
and differentiable dependence on initial conditions etc. The proof essentially works
by applying the classical theorem in the coordinates provided by the charts.
For our purposes it is important to study flows on Lie groups.

3.5. The exponential function for general Lie groups. Our aim is to gen-
eralize the exponential function via the differential equation

(3.52)
d

dt
exp(tA) = exp(tA)A, exp(0) = I.

Note that this differential equation has a natural meaning in the setting of a linear
group and its Lie algebra where the right-hand side of (3.52) is just composition
in L[X ] (cf. (3.23)). However, in the setting of an abstract group we must define
the vector field in (3.52) in a proper way, i.e. the multiplication of elements from
G with elements of the Lie algebra g.

Definition 3.27. Let (G, ◦) be a Lie group, then the tangent space T
1

G of G at 1
is called the Lie algebra associated with G and denoted by g. For every µ ∈ g we
call

(3.53) gµ = dLg(1)µ, µg = dRg(1)µ.

the vector fields induced by right resp. left multiplication with µ.

Let us comment on this definition. The name of a Lie algebra will be justified by
Proposition 3.28 below.
According to Definition 3.21, an element µ ∈ g is of the form (1, [v]∼) with v(·)
a path in G passing through 1 at t = 0. This notation slightly deviates from the
notation in Definition 3.12 for linear groups where the element 1 was excluded
from the symbol. However, as in the remark following Definition 3.12 we can
always identify g with {v : (1, v) ∈ g}
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We also note that dLg(1) is a linear map from T
1

G = g into TgG (cf. Definition
3.23), so that (3.53) defines a smooth vector field on G. Using µ = (1, [v]∼) we
may also write the vector field as follows

(3.54) gµ :=
d

dτ
(g ◦ v(τ))|τ=0, µg :=

d

dτ
(v(τ) ◦ g)|τ=0.

The following proposition is the analog of Proposition 3.14.

Proposition 3.28. Let (G, ◦) be a Lie group with tangent space T
1

G = {1} × g.
Then the following holds:

(i) For µj = (1, [vj ]∼) ∈ g, αj ∈ R, j = 1, 2 the linear combination may be
written as

α1µ1 + α2µ2 =
d

dτ
(v1(α1τ) ◦ v2(α2τ))|τ=0 .

(ii) The vector space g is a Lie algebra with respect to the bracket

[µ1, µ2] =
d

dτ

(
v1(τ)µ2v1(τ)

−1
)
|τ=0

.

Proof. (i): Let ϕα be a chart at 1, then the definition (3.45) implies

α1µ1 + α2µ2 =dϕα(1)
−1(α1dϕα(1)µ1 + α2dϕα(1)µ2)

=dϕα(1)
−1(α1

d

dτ
(ϕα(v1(τ))) + α2

d

dτ
(ϕα(v2(τ))))|τ=0

=dϕα(1)
−1 d

dτ
(ϕα(v1(α1τ)) + (ϕα(v2(α2τ)))|τ=0

=dϕα(1)
−1 d

dτ
(ϕα(v1(α1τ) ◦ v2(α2τ)))|τ=0

=dϕα(1)
−1dϕα(1)

d

dτ
(v1(α1τ) ◦ v2(α2τ))|τ=0

=
d

dτ
(v1(α1τ) ◦ v2(α2τ))|τ=0.

(ii): Similar to the proof of Proposition 3.14 (ii), one considers for fixed τ the
curve v(t) = v1(τ)v2(t)v1(τ)

−1 which satisfies v′(0) = v1(τ)µ2v1(τ)
−1 =: λ(τ).

Then one differentiates λ at τ = 0. The details will be omitted. �

Theorem 3.29. Let (G, ◦) be a Lie group with Lie algebra g. Then there exists a
unique C∞-map

(3.55) exp : g → G,

such that for all µ ∈ g and τ ∈ R

(3.56)
d

dτ
exp(τµ) = exp(τµ)µ.

For all µ ∈ g, τ1, τ2 ∈ R the map satisfies

(3.57) exp((τ1 + τ2)µ) = exp(τµ1) ◦ exp(τ2µ).
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Proof. With the vector field g → gµ from (3.53), we apply Theorem 3.26 to the
initial value problem

p′(τ) = p(τ)µ, p(0) = 1

and obtain a locally unique solution p(τ) =: exp(τµ), |τ | < ε. The functional
equation (3.57) is proved for |τ1|, |τ2| < ε

2
in the standard way: For example, let

0 < τ1, τ2 and define the continuous function

(3.58) p(τ) =

{
exp(τµ), 0 ≤ τ ≤ τ1,

exp(τ1µ) ◦ exp((τ − τ1)µ), τ1 < τ ≤ τ1 + τ2.

Differentiating the relation Lγ ◦ Lg = Lγ◦g, at 1 yields

dLg(γ)dLγ(1) = dLg◦γ(1) : T1G→ Tg◦γG

Using this when differentiating (3.58) leads to

p′(τ) =

{
exp(τµ)µ, 0 ≤ τ ≤ τ1,

dLexp(τ1µ)(exp((τ − τ1)µ))dLexp(τ−τ1)µ))(1)µ, τ1 < τ ≤ τ1 + τ2,

=

{
p(τ)µ, 0 ≤ τ ≤ τ1,

dLp(τ)(1)µ τ1 < τ ≤ τ1 + τ2,
= p(τ)µ.

Since the right-hand side is continuous at τ = τ1, so is p′(·). By the uniqueness of
solutions to (3.56) we obtain p(τ) = exp(τ)µ for all 0 ≤ τ ≤ τ1 + τ2 and hence

exp((τ1 + τ2)µ) = p(τ1 + τ2) = exp(τ1µ) ◦ exp(τ2µ).

By symmetry we can exchange τ1 and τ2 in this relation. So far we have defined
exp(τµ) for τ in some neighborhood (−ε, ε) and proved (3.57) for τ1, τ2, τ1 + τ2 ∈
(−ε, ε).
For arbitrary τ ∈ R we select n ∈ N such that |τ | < εn and define

exp(τµ) :=
(
exp(

τ

n
µ)
)n

.

This definition is in fact independent of the choice of n. If |τ |q < ε for another
q ∈ N, then we conclude from the local validity of (3.57)

(
exp(

τ

q
µ)
)q

=
((

exp(
τ

nq
µ)
)n)q

=
((

exp(
τ

nq
µ)
)q)n

=
(
exp(

τ

n
µ)
)n

.

In a similar way, for arbitrary τ1, τ2 ∈ R select n ∈ N with 2|τ1| < εn, 2|τ2| < εn
and find

exp((τ1 + τ2)µ) =
(
exp(

τ1 + τ2
n

)
)n

=
(
exp(

τ1
n
µ)exp(

τ2
n
µ)
)n

=
(
exp(

τ1
n
µ)
)n(

exp(
τ2
n
µ)
)n

= exp(τ1µ)exp(τ2µ),

since exp( τ1
n
µ) and exp( τ2

n
µ) commute. Finally, we differentiate the relation exp((τ+

σ)µ) = Lexp(τµ) ◦ exp(σµ) at σ = 0 and obtain from the chain rule

d

dτ
exp(τµ) =

d

dσ
exp((τ + σ)µ)|σ=0 = dLexp(τµ)(exp(σµ))

d

dσ
exp(σµ)|σ=0
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=dLexp(τµ)(1)exp(0µ)µ = exp(τµ)µ.

Therefore, the differential equation is satisfied on the whole real line. �

Example 3.30 (The Euclidean group revisited). Consider the representation (3.22)
of the Euclidean group SO(Rd) as a subgroup of GL(Rd+1). The corresponding Lie
algebra is given by

(3.59) se(Rd) =

{(
S a
0 0

)
: S ∈ so(Rd), a ∈ Rd

}
.

This is quite obvious in view of Corollary 3.16. Given a C1-path p(t) =

(
Q(t) b(t)
0 1

)

in SO(Rd) with Q(0) = Id, b(0) = 0, we obtain

p′(0) =

(
Q′(0) b′(0)
0 0

)
, Q′(0)T = −Q′(0),

i.e. p′(0) ∈ se(Rd). Conversely, let µ =

(
S a
0 0

)
∈ se(Rd) and let us compute

(
Q(t) b(t)
0 1

)
:= exp(tµ) = exp

(
t

(
S a
0 0

))
.

From the initial value problem (3.56) we have Q(0) = Id, b(0) = 0 and
(
Q′(t) b′(t)
0 0

)
=

(
Q(t) b(t)
0 1

)(
S a
0 0

)
=

(
Q(t)S Q(t)a

0 0

)
.

Therefore, Q(t) = exp(tS), b′(t) = Q(t)a and by integration,

b(t) =

∫ t

0

Q(s)ds a =

∫ t

0

exp(sS)ds a.

If S is invertible, we find b(t) = S−1(exp(tS)− Id)a. This motivates to define the
analytic function

(3.60) exp1(x) :=

∞∑

j=1

xj−1

j!
=

{
ex−1
x
, x 6= 0,

1, x = 0.

With this definition we obtain for all S ∈ so(Rd)

b(t) =

∫ t

0

∞∑

j=0

1

j!
(sS)jdsa =

∞∑

j=0

1

j!

∫ t

0

sjdsSja

=

∞∑

j=0

tj+1

(j + 1)!
Sja = t

∞∑

j=1

1

j!
(tS)j−1a = texp1(tS)a.

Let us summarize the final formula (which in fact holds for all S ∈ Rd,d),

(3.61) exp

(
t

(
S a
0 0

))
=

(
exp(tS) texp1(tS)a

0 1

)
, t ∈ R.
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3.6. Characterization of relative equilibria. Let us return to the general evo-
lution equation (3.7) from Section 3.1, i.e.

(3.62) ut = F (u),

under the following assumptions

(A1) (X, ‖ · ‖X) is a Banach space, (Y, ‖ · ‖Y ) is a dense subspace of X and
F : Y → X is a continuous operator.

(A2) G is a Lie group with Lie algebra g and there exists a homomorphism

(3.63) a :
G → GL(X),
γ → a(γ),

such that for all γ ∈ G, u ∈ Y

(3.64)
a(γ)(Y ) = Y,

F (a(γ)u) = a(γ)F (u).

(A3) For fixed v ∈ Y , resp. v ∈ X, the mapping

a(·)v : G→ Y (resp. X), γ → a(γ)v

is continuous.
(A4) For v ∈ Y the map a(·)v : G → X is continuously differentiable with

differential
dγ[a(γ)v] : TγG→ X.

We note that this corresponds to equivariance of (3.62) as defined in (3.8) for the
representation of G in GL(X):

ΓX = {a(g) : g ∈ G}.
As in (3.9) we define:

Definition 3.31. A relative equilibrium of (3.62) is a pair (v⋆, γ⋆) ∈ Y ×C1(R, G)
such that γ⋆(0) = 1 and

(3.65) u⋆(t) = a(γ⋆(t))v⋆(t), t ∈ R

is a solution of (3.62) on R, i.e. u⋆ ∈ C(R, Y )∩C1(R, X) and (3.62) holds on R.

In the literature, the whole group orbit

O(v⋆) = {a(γ)v⋆ : γ ∈ G}
is sometimes called a relative equilibrium. However, we prefer to keep the orbit γ⋆
on the group (normalized by γ⋆(0) = 1) as part of the definition since it satisfies a
differential equation and is to be determined in numerical computations.
In the following it will be important to consider those group actions which leave
v⋆ invariant, i.e.

(3.66) H(v⋆) = {γ ∈ G : a(γ)v⋆ = v⋆}.
Obviously, H(v⋆) is a subgroup of G.
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Definition 3.32. For any element v⋆ ∈ X the subgroup (3.66) of G is called the
isotropy subgroup (or the stabilizer) of v⋆ with respect to the group action a.

Note that with (γ⋆, v⋆) every pair (γ⋆, a(γ)v⋆), γ ∈ H(v⋆) is also a relative equilib-
rium. There are two extreme cases. If H(v⋆) = G then u⋆(t) = v⋆ for all t ∈ R.
Hence v⋆ satisfies 0 = u⋆,t = F (v⋆), i.e. v⋆ is an equilibrium of F . This case will
usually be excluded in the following, cf. the ’constant travelling waves’ in Example
2.2. The other case is H(v∗) = {1}, then we expect the profile v⋆ to be unique.
Conditions (A3) and (A4) require some smoothness of the group action. From (A3)
we conclude that the isotropy subgroup H(v⋆) is closed, hence is a Lie subgroup
of G, see the discussion following Example 3.18. It is important that we assume
a(·)v to be differentiable only if v ∈ Y . This will be illustrated by the travelling
waves example below.

Lemma 3.33. Let (A1)-(A4) be satisfied and let v ∈ Y . Then the following holds.

(i) Let g ∈ C1(J,G), J ⊆ R an open interval, then for all t ∈ J ,

(3.67) dγ[a(g(t))v]dLg(t)(1) = a(g(t))dγ[a(1)v].

(ii) The isotropy group H(v) is a Lie subgroup of G with Lie algebra

(3.68) h = N(dγ [a(1)v]) = {µ ∈ g : dγ[a(1)v]µ = 0}.
Remark 3.34. Imagine G as a sphere in R3, H(v) as one of its great circles,
passing through a pole, g as the tangent plane at the pole and within it h as the
tangent line to the great circle.

Proof. (i): Differentiate the relation

a(g(t)γ)v = a(g(t))(a(γ)v), t ∈ J, γ ∈ G

with respect to γ at 1 and obtain

dγ[a(g(t)γ)v]dLg(t)(γ) = a(g(t))dγ[a(γ)v],

dγ[a(g(t))v]dLg(t)(1) = a(g(t))dγ[a(1)v].

(ii): Let us abbreviate A = dγ[a(1)v] ∈ L[g, X ]. As noted above, H(v) is closed
and a Lie subgroup of G. By definition its Lie algebra is

h = T
1

H(v) = {p′(0) : p ∈ C1((−ε, ε), H(v)), p(0) = 1}.
Let µ = p′(0) ∈ g as in this definition. Then differentiate a(p(τ))v = v, |τ | < ε at
τ = 0:

0 =
d

dτ
(a(p(τ))v)τ=0 = (dγ[a(p(τ))v]p

′(τ))|τ=0 = Aµ,

hence h ⊆ N(A). Conversely, let µ ∈ N(A) and define p(τ) = exp(τµ), u(τ) =
a(p(τ))v. Then u(0) = v, p′(0) = µ and by Theorem 3.29 and (3.67)

u′(τ) = dγ[a(p(τ))v]dLexp(τµ)(1)µ = a(p(τ))dγ [a(1)v]µ = 0.

Therefore u(τ) = v holds for small |τ |. We conclude p(τ) ∈ H(v) for small τ and
p′(0) = µ ∈ h by definition. �
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Theorem 3.35. Let assumptions (A1)-(A4) hold and in addition assume

(A5) For every u0 ∈ Y there exists at most one solution u ∈ C1([0,∞), X) ∩
C([0,∞), Y ) of the initial value problem

(3.69) ut = F (u), t ≥ 0, u(0) = u0.

Let (v⋆, γ⋆) be a relative equilibrium of (3.62). Then there exists µ⋆ ∈ g such that

0 = F (v⋆)− dγ[a(1)v⋆]µ⋆,(3.70)

a(γ⋆(t))v⋆ = a(exp(tµ⋆))v⋆, t ≥ 0.(3.71)

If H(v⋆) = {1} then µ⋆ is unique and γ⋆(t) = exp(tµ⋆). Conversely, let µ⋆ ∈
g, v⋆ ∈ Y satisfy (3.70). Then v⋆ and γ⋆(t) = exp(tµ⋆) are a relative equilibrium
of (3.62).

Remark 3.36. The theorem shows that a relative equilibrium can always be written
with a group orbit of the form γ⋆(t) = exp(tµ⋆) for some µ⋆ ∈ g and that the pair
(v⋆, µ⋆) satisfies a modified stationary equation (3.70). Therefore, the theorem
reduces the search for relative equilibria to solving equation (3.70) for v⋆ ∈ Y ,
µ⋆ ∈ g. We will show that the abstract form (3.70) comprises all our defining
equations for travelling, oscillating or rotating waves in Section 2.

Proof. Let (v⋆, γ⋆) be a relative equilibrium and define u⋆(t) = a(γ⋆(t))v⋆. Then
the chain rule shows

(3.72)
a(γ⋆(t))F (v⋆) = F (a(γ⋆(t))v⋆) = F (u⋆(t)) = u⋆,t(t)

=
d

dt
(a(γ⋆(t))v⋆) = dγ[a(γ⋆(t))v⋆]γ

′
⋆(t),

where γ′⋆(t) ∈ Tγ⋆(t)G. Since dLγ⋆(t)(1) : T1G → Tγ⋆(t)G is bijective, we can define
µ0(t) ∈ g via γ′⋆(t) = dLγ⋆(t)(1)µ0(t). From (3.67) and (3.72) we find

F (v⋆) = a(γ⋆(t))
−1dγ[a(γ⋆(t))v⋆]dLγ⋆(1)µ0(t)

= dγ[a(1)v⋆]µ0(t).

With the Lie algebra h from (3.68) we decompose

g = h⊕ h⋆, µ0(t) = µ1(t) + µ⋆(t).

Since h is the null space of dγ[a(1)v⋆] by Lemma 3.33, we obtain F (v⋆) = dγ[a(1)v⋆]µ⋆(t), t ∈
R. But dγ[a(1)v⋆] : h⋆ → X is one to one, so we know that µ⋆(t) is independent of
t. Therefore, µ⋆ ≡ µ⋆(t) solves equation (3.70). In particular, in case H(v⋆) = {1}
we have that µ⋆ is unique. We postpone the proof of (3.71).
Conversely, let us assume that v⋆ ∈ Y , µ⋆ ∈ g satisfy (3.70). Then we prove that
w⋆(t) = a(g⋆(t))v⋆ with g⋆(t) = exp(tµ⋆) is a solution of (3.69) with w(0) = v⋆.
Hence by condition (A5) we obtain that u⋆(t) and w⋆(t) agree on their common do-
main of definition. In this way the postponed equation (3.71) is proved. Moreover,
in case H(v⋆) = {1} the relation a(γ⋆(t))v⋆ = a(g⋆(t))v⋆ implies γ⋆(t)−1g⋆(t) = 1
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and hence γ⋆(t) = g⋆(t) = exp(tµ⋆). Finally, showing that w⋆ solves the evolution
equation (3.64) is quite similar to the computation in (3.72):

a(g⋆(t))F (v⋆) = F (a(g⋆(t))v⋆) = F (w⋆(t)),

and by (3.67), (3.70),

w⋆,t(t) =
d

dt
(a(g⋆(t))v⋆) = dγ[a(g⋆(t))v⋆]g

′
⋆(t)

=dγ[a(g⋆(t))v⋆]dLg⋆(t)(1)µ⋆ = a(g⋆(t))dγ[a(1)v⋆]µ⋆

=a(g⋆(t))F (v⋆) = F (w⋆(t)).

With w⋆(0) = a(g⋆(0))v⋆ = a(1)v⋆ = v⋆, the proof is complete. �

3.7. Application to parabolic systems. In this section we develop the correct
functional setting showing that the travelling and rotating waves from Section 2
fit into the abstract framework of Section 3.6.

Example 3.37. Let Y = H1(R,Rm), X = L2(R,Rm) and consider the shift action

(3.73) [a(γ)u](x) = u(x− γ), x ∈ R, u ∈ Y, γ ∈ G = R.

First, a(γ) is an isometry on X which is continuous with respect to γ since (cf. [3,
Satz 2.14])

‖a(γ)v − a(γ0)v‖L2 = ‖v(·+ γ − γ0)− v‖L2 → 0 as γ → γ0.

Then we claim the following inequalities for all h ∈ R and v ∈ H1(R,Rm)

(3.74)
‖v(·+ h)− v(·)‖L2 ≤ |h|‖vx‖L2 ,

‖v(·+ h)− v(·) + vx(·)h‖L2 ≤ |h| sup
|δ|≤|h|

‖vx(·+ δ)− vx(·)‖L2.

It is sufficient to prove (3.74) for v ∈ C∞
0 (R,Rm) and then use the fact that

C∞
0 (R,Rm) is dense in both X and Y . The first inequality in (3.74) follows from

the mean value theorem using the Cauchy Schwarz inequality and Fubini’s theorem

‖v(·+ h)− v(·)‖2L2 =

∫

R

h2|
∫ 1

0

vx(x+ τh)dτ |2dx ≤

h2
∫

R

∫ 1

0

|vx(x+ τh)|2dτdx =h2
∫ 1

0

∫

R

|vx(x+ τh)|2dxdτ = h2‖vx‖2L2 .

In a similar way,

‖v(·+ h)− v(·)− vx(·)h‖2L2 ≤h2
∫ 1

0

‖vx(·+ τh)− vx(·)‖2L2dτ

≤h2 sup
|δ|≤|h|

‖vx(·+ δ)− vx(·)‖2L2.

Now let h → 0 in (3.74) and use invariance and continuity of ‖ · ‖L2 with respect
to the shift (3.73) to obtain the derivative of the action

(3.75) dγ[a(γ)v]µ = −vx(· − γ)µ, µ, γ ∈ R, v ∈ Y.
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The derivative is also continuous since vx ∈ L2(R,Rm).
In the language of semigroup theory (cf. Section 8.2), we have shown that H1 is
in the domain of the infinitesimal generator dγ[a(1)·] of the one-parameter group
a(γ), γ ∈ R (which here is a group). In fact both spaces agree. For this one has
to show that h−1(v(·+ h)− v(·)) → w in L2 as h → 0 implies v ∈ H1 and vx = w
(Exercise).

The example shows that the shift action satisfies our assumptions (A3) and (A4).
If we want to apply Theorem 3.35 to the nonlinear parabolic system (3.1) we need
more conditions on the nonlinearity.

Proposition 3.38. Let f ∈ C1(Rm,Rm) satisfy f(0) = 0. Then conditions (A1)-
(A4) hold for the action (3.73) and the operator

(3.76) (F (u))(x) = Auxx(x) + f(u(x)), x ∈ Rm, u ∈ Y

with the setting Y = H2(R,Rm) and X = L2(R,Rm).

Proof. Introduce the Nemitzky operator F associated with f ,

(F(u))(x) = f(u(x)), x ∈ R, u ∈ (Rm)R.

By the Sobolev imbedding theorem (see Appendix 8.3)

(3.77) ‖u‖L∞ ≤ ‖u‖H1, u ∈ H1(R,Rm).

Hence for a.e. x ∈ R by the mean value theorem

|f(u(x))| = |f(u(x))− f(0)| ≤ sup{|Df(v)| : |v| ≤ ‖u‖H1}|u(x)|.
Taking squares and integrating shows F(u) ∈ L2(R,Rm). In a similar way, for any
two functions u1, u2 ∈ H1(R,Rm),

(3.78) ‖F(u1)−F(u2)‖L2 ≤ K(u1, u2)‖u1 − u2‖L2 ,

where K(u1, u2) = sup{|Df(v)| : |v| ≤ max(‖u1‖H1 , ‖u2‖H1)}, i.e. the operator F
is locally Lipschitz bounded. Finally, taking derivatives one finds

(3.79)

‖F(u1)x − F(u2)x‖L2 = ‖Df(u1(·))u1,x −Df(u2(·))u2,x‖L2

≤‖(Df(u1(·))−Df(u2(·)))u1,x‖L2 + ‖Df(u2(·))(u1,x − u2,x)‖L2

≤‖(Df(u1(·))−Df(u2(·))‖L∞‖u1,x‖L2 +K(0, u2)‖u1.x − u2.x‖L2

≤ω(max(‖u1‖H1, ‖u2‖H1), ‖u1 − u2‖H1)‖u1‖H1 +K(0, u2)‖u1 − u2‖H1

with the modulus of continuity

ω(R, δ) = sup{|Df(v1)−Df(v2)| :|v1 − v2| ≤ δ, |v1|, |v2| ≤ R}.
Since ω(R, δ) → 0 as δ → 0, the operator F is even continuous when considered
as a map from H1 into H1. With the choice Y = H2, also the linear differential
operator u 7→ Auxx maps Y into X = L2 and our assertion is proved. �

In the next step we consider the multidimensional reaction diffusion system (2.93)
subject to the action of the special Euclidean group SE(Rd), see (3.22).
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Example 3.39. Consider X = L2(Rd,Rm) and the action

(3.80) [a(γ)v](x) = v(QT (x− b)), x ∈ Rd, γ =

(
Q b
0 1

)
∈ SE(Rd).

We claim that this action is continuous. By the orthogonality of Q and the trans-
formation formula, the operator a(γ) is an isometry, i.e. ‖a(γ)v‖L2 = ‖v‖L2.
Hence it is sufficient to prove continuity at γ = 1 = I3. Given ε > 0 we choose
ϕ ∈ C∞

0 (R,Rm) such that ‖v − ϕ‖L2 ≤ ε
3

and obtain

‖a(γ)v − v‖L2 ≤‖a(γ)(v − ϕ)‖L2 + ‖a(γ)ϕ− ϕ‖L2 + ‖ϕ− v‖L2

≤2

3
ε+ ‖a(γ)ϕ− ϕ‖L2 .

Now take R = 1+ sup{|x|2 : x ∈ supp(ϕ)} and |b|2 ≤ 1 and observe QT (x− b), x /∈
supp(ϕ) for |x|2 > R as well as

|QT (x− b)− x|2 ≤ |QT − 1|2R + |b|2 for |x| ≤ R.

Using the uniform continuity of ϕ this leads to

‖a(γ)ϕ− ϕ‖2L2 =

∫

Rd

|ϕ(QT (x− b))− ϕ(x)|22dx

≤C(R)ω(R, |QT − 1|2R + |b|2)) → 0,

where the constant C(R) depends on R only and

ω(R, δ) = sup{|ϕ(x)− ϕ(y)|22 : |x|2, |y|2 ≤ R, |x− y|2 ≤ δ}.
Calculating the derivative of the action (3.80) in a formal sense is rather easy (cf.
(3.6)). We consider the path (see (3.6), (3.61))

(3.81) γ(t) = exp

(
t

(
S a
0 0

))
=

(
exp(tS) b(t)

0 1

)
, b(t) =

∫ t

0

exp(τS)dτa,

passing through 1, and evaluate the derivative of a(γ(t))v at t = 0:

(3.82) (dγ(a(1)v)µ) (x) = −vx(x)(Sx+ a), x ∈ Rd, µ =

(
S a
0 0

)
∈ se(Rd).

Making this rigorous in suitable function spaces is more involved. Formula (3.82)
suggests to introduce for S ∈ so(Rd) the linear differential operator

(3.83) LSv(x) = vx(x)Sx, x ∈ Rd, v ∈ H1(Rd,Rm).

With this we define the Euclidian function space

(3.84) H1
Eucl(R

d,Rm) = {v ∈ H1(Rd,Rm) : LSv ∈ L2(Rd,Rm) ∀S ∈ so(Rd)},
which becomes a Banach space with respect to the norm

(3.85) ‖v‖2H1
Eucl

= ‖v‖2H1 + sup{‖LSv‖2L2 : S ∈ so(Rd), |S|2 ≤ 1}.
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Of course, instead of taking the supremum over all S ∈ so(Rd) with |S|2 ≤ 1, one
can simply take the maximum over a basis of the d(d−1)

2
-dimensional space so(Rd).

Proposition 3.40. The space C∞
0 (Rd,Rm) is dense in H1

Eucl(R
d,Rm) with respect

to the norm ‖ ·‖H1
Eucl

. Further, for v ∈ H1
Eucl(R

d,Rm) the Euclidean action (3.80) is
a continuously differentiable map from SO(Rd) into L2(Rd,Rm) with the derivative
given by (3.82).

Proof. In the following we will frequently omit the underlying Rn-spaces and write
H1

Eucl = H1
Eucl(R

d,Rm), L2 = L2(Rd,Rm) etc. Balls of radius R > 0 are denoted by
BR = {x ∈ Rd : |x|2 < R}. The proof of the first part adapts standard techniques
to prove density of C∞

0 in Sobolev spaces to our setting (cf. [3, 2.14,2.22,2.23,Ü8.8]).
Let

(3.86) ϕδ(x) = δ−dϕ1(δ
−1x), ϕ1 ∈ C∞

0 (B1,R)

be a Dirac sequence satisfying

(3.87) ϕ1 ≥ 0,

∫

Rd

ϕ1(x)dx = 1, ϕ1(x) = ϕ1(y) if |x|2 = |y|2.

As usual we approximate v ∈ H1
Eucl by the sequence

(3.88) vδ(x) =

∫

Rd

ϕδ(x− y)v(y)dy, x ∈ Rd.

Then vδ ∈ C∞(Rd,Rm) holds and we show that

(3.89) ‖v − vδ‖H1
Eucl

→ 0 as δ → 0.

For the norm ‖v − vδ‖H1 this follows by standard arguments, see [3, 2.22]. Hence
it is sufficient to prove

(3.90) sup{‖LS(v − vδ)‖L2 : |S|2 ≤ 1, S ∈ so(Rd)} → 0 as δ → 0.

From (3.87) we obtain

LSvδ(x) =
d

dt
vδ(exp(tS)x)|t=0

=

∫

Rd

d

dt
(ϕδ(exp(tS)(x− exp(−tS)y)))|t=0v(y)dy

=

∫

Rd

d

dt
(ϕδ(x− exp(−tS)y))|t=0v(y)dy

=

∫

Rd

d∑

j=1

Djϕδ(x− y)(Sy)jv(y)dy

=−
∫

Rd

d∑

j=1

∑

k 6=j

Sjk
∂

∂yj
(ykϕδ(x− y))v(y)dy.
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For every fixed x ∈ Rd the function y → ykϕδ(x− y) has compact support in Rd,
hence by the definition of the weak derivative

LSvδ(x) =

∫

Rd

d∑

j=1

∑

k 6=j

Sjkykϕδ(x− y)Djv(y)dy

=

∫

Rd

ϕδ(x− y)LSv(y)dy.

By the standard convolution estimate (cf. [3, Satz 2.14])

‖LS(vδ − v)‖L2 ≤
∫

Rd

ϕδ(ξ)dξ sup
|h|≤δ

‖LSv(·+ h)− LSv‖L2 .

Taking squares and the supremum over |S|2 ≤ 1 in the finite dimensional space
so(Rd) then shows (3.90).
Thus we have shown that C∞∩H1

Eucl is dense inH1
Eucl and it remains to approximate

an element v ∈ C∞ ∩ H1
Eucl by functions in C∞

0 . For that purpose take a cut-off
function χ ∈ C∞(R,R) with

χ(r)





= 1, |r| ≤ 1,
∈ [0, 1], 1 ≤ |r| ≤ 2,
= 0, |r| ≥ 2

and let
χR(x) = χ(R−1|x|2), x ∈ Rd, R > 0.

Then the function χRv has compact support and

LS(v − χRv) = (1− χR)LSv − (LSχR)v.

The skew-symmetry of S implies

(LSχR)(x) = (R|x|2)−1χ′(R−1|x|2)
d∑

j=1

xj(Sx)j = 0.

Therefore, we obtain for R→ ∞
sup
|S|2≤1

‖LS(v − χRv)‖L2 ≤ sup
|S|2≤1

‖LSv‖L2(Rd\BR,Rm) → 0.

The same convergence holds for the norm ‖ · ‖H1 and this shows our first assertion.

Next we prove a Lipschitz estimate for v ∈ H1
Eucl and γ =

(
Q b
0 1

)
,

(3.91) ‖a(γ)v − v‖L2 ≤ C‖v‖H1
Eucl

(|b|2 + |Q− 1|2) .
Since both sides are continuous with respect to ‖ · ‖H1

Eucl
it is sufficient to prove

(3.91) for v ∈ C∞
0 . By the triangle inequality,

‖a(γ)v − v‖L2 ≤
(∫

Rd

|v(QT (x− b))− v(QTx)|22dx
)1/2
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+

(∫

Rd

|v(QTx)− v(x)|22dx
)1/2

= T1 + T2.

As in Example 3.37 the first term is bounded by

T1 ≤ |QT b|2‖vx‖L2 ≤ |b|2‖v‖H1.

For the second term take S ∈ so(Rd) with Q = exp(S) (cf. Proposition 3.11) and
estimate

T 2
2 =

∫

Rd

∣∣∣∣
∫ 1

0

d

dτ
v(exp(−τS)x)dτ

∣∣∣∣
2

2

dx

=

∫

Rd

∣∣∣∣
∫ 1

0

vx(exp(−τS)x)(−S)exp(−τS)xdτ
∣∣∣∣
2

2

dx

≤
∫

Rd

∫ 1

0

|vx(exp(−τS)x)Sexp(−τS)x|22 dτdx

=

∫ 1

0

∫

Rd

|vx(exp(−τS)x)Sexp(−τS)x|22 dxdτ

=

∫

Rd

|vx(y)Sy|22 dy ≤ |S|22‖v‖2H1
Eucl

.

By Proposition 3.10 we have

|S|2 ≤ 2|Q− 1|2 if |Q− 1|2 ≤
1

2
.

Since (3.91) is trivial for |Q− 1|2 ≥ 1
2

the assertion follows.
Finally we prove (3.82). Take first v ∈ C∞

0 and consider the path (3.81) in SE(Rd).
In the following we abbreviate

(· tτx) = exp(−tτS)(x − b(tτ)).

‖t−1(a(γ(t))v − v) + LSv + vxadτ‖L2

=

∫

Rd

∣∣∣∣
∫ 1

0

t−1 d

dτ
v(· tτx) + vx(x)(Sx+ a)dτ

∣∣∣∣
2

2

dx

=

∫

Rd

∣∣∣∣
∫ 1

0

−vx(· tτx) [S(· tτx) + a] + vx(x)(Sx+ a)dτ

∣∣∣∣
2

dx

≤2

∫

Rd

∫ 1

0

|vx(x)Sx− vx(· tτx)S(· tτx)|22 + |vx(x)− vx(· tτx)|22 |a|22dτdx.

Since |(· tτx) − x|2 → 0 as t → 0 uniformly for τ ∈ [0, 1] and for x in a compact
set, the right-hand side converges to zero. For a general v ∈ H1

Eucl and ε > 0 we
choose vε ∈ C∞

0 such that ‖v − vε‖H1
Eucl

≤ ε. Then we estimate with (3.91)

‖1
t
(a(γ(t))v − v) + LSv + vxa‖L2
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≤‖1
t
(a(γ(t))(v − vε))− (v − vε)‖L2 + ‖LS(v − vε) + (vx − vx,ε)a‖L2

+‖1
t
(a(γ(t))vε − vε) + LSvε + vε,xa‖L2

≤
(
C|t|−1(|b(t)|2 + |exp(−tS)− 1|2) + |a|2

)
ε

+‖1
t
(a(γ(t))vε − vε) + LSvε + vε,xa‖L2 .

The first term is bounded by O(ε) uniformly in t 6= 0 and the second term converges
to 0 as t→ 0 for fixed ε > 0. This shows that we can bound the whole right-hand
side by O(ε) for |t| sufficiently small. This finishes the proof. �

Exercise 3.41. Recall that the infinitesimal generator of a one-parameter semi-
group T (t), t ≥ 0 in some Banach space X is given by (cf. Section 8.2)

D(A) = {v ∈ X : lim
t→0

t−1(T (t)− I)v =: Av exists}.

For every µ ∈ se(Rd) let A(µ) denote the infinitesimal generator of the semi-
group Tµ(t)v = a(exp(tµ))v, v ∈ L2(Rd,Rm), where a(γ) is the action (3.80) of the
Euclidean group on L2. Prove that

(3.92) H1
Eucl(R

d,Rm) =
⋂

{D(A(µ)) : µ ∈ se(Rd)}.
Hint: Note that the inclusion ’⊆’ follows from Propositions 3.38, 3.40.

Solution: Let v ∈ ∩{D(A(µ)) : µ ∈ se(Rd)}. For every j = 1, . . . , d let ej be the j-th Cartesian
unit vector and let vj ∈ L2 be the limit of t−1(v(·+ tej)− v(·)) in L2 as t → 0. Then we have for
every ϕ ∈ C∞

0∫

Rd

vj(x)ϕ(x)dx = lim
t→0

∫

Rd

t−1(v(x+ tej)− v(x))ϕ(x)dx

=− lim
t→0

∫

Rd

v(x)t−1(ϕ(x) − ϕ(x− tej))dx = −
∫

Rd

v(x)Djϕ(x)dx.

Hence v has a weak derivative Djv and Djv = vj . Thus we have v ∈ H1. Next consider the
L2-limit wS = limt→0 t

−1(v(exp(tS)·)− v(·)) for S ∈ so(Rd). Then we obtain for ϕ ∈ C∞

0∫

Rd

wS(x)ϕ(x)dx = lim
t→0

∫

Rd

t−1(v(exp(tS)x) − v(x))ϕ(x)dx

= lim
t→0

∫

Rd

v(x)t−1(ϕ(exp(−tS)x)− ϕ(x))dx

=−
∫

Rd

v(x)ϕx(x)Sxdx.

Now we use v ∈ H1, S = −ST and the fact that x 7→ (Sx)jϕ(x) is a function in C∞

0 to conclude

∫

Rd

vx(x)Sxϕ(x)dx =

∫

Rd

d∑

j=1

Djv(x) [(Sx)jϕ(x)] dx

=−
∫

Rd

v(x)

d∑

j=1

Dj [(Sx)jϕ(x)] dx
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=−
∫

Rd

v(x)

d∑

j=1

(Sx)jDjϕ(x)dx = −
∫

Rd

v(x)ϕx(x)Sxdx.

Comparing both equalities we obtain
∫

Rd

wS(x)ϕ(x)dx =

∫

Rd

vx(x)Sxϕ(x)dx

for all ϕ ∈ C∞

0 , hence LSv = wS ∈ L2.

The verification of the conditions (A1)-(A4) for the multidimensional operator from
Lemma 2.31 is almost a copy of Proposition 3.38.

Proposition 3.42. Let f ∈ C1(Rm,Rm) satisfy f(0) = 0. Then conditions (A1)-
(A4) hold for the action (3.80) and the operator

(3.93) (F (u))(x) = A∆u(x) + f(u(x)), x ∈ Rm, u ∈ Y

with the setting Y = Hk
Eucl(R,R

m) and X = L2(R,Rm) provided k > d
2
.

Proof. Recall the Nemitzky operator F associated with f ,

(F(u))(x) = f(u(x)), x ∈ Rd, u ∈ (Rm)R.

Since k > d
2
, the Sobolev imbedding theorem (see Appendix 8.3) implies

(3.94) ‖u‖L∞ ≤ ‖u‖Hk , u ∈ Hk(Rd,Rm).

Hence for a.e. x ∈ Rd by the mean value theorem

|f(u(x))| = |f(u(x))− f(0)| ≤ sup{|Df(v)| : |v| ≤ ‖u‖Hk}|u(x)|.
Taking squares and integrating shows F(u) ∈ L2(Rd,Rm). In a similar way, for
any two functions u1, u2 ∈ Hk(Rd,Rm),

(3.95) ‖F(u1)−F(u2)‖L2 ≤ K(u1, u2)‖u1 − u2‖L2 ,

where K(u1, u2) = sup{|Df(v)| : |v| ≤ max(‖u1‖Hk , ‖u2‖Hk)}, i.e. the operator F
is locally Lipschitz bounded. Finally, taking derivatives one finds

(3.96)

‖F(u1)x −F(u2)x‖L2 = ‖Df(u1(·))u1,x −Df(u2(·))u2,x‖L2

≤‖(Df(u1(·))−Df(u2(·)))u1,x‖L2 + ‖Df(u2(·))(u1,x − u2,x)‖L2

≤‖(Df(u1(·))−Df(u2(·))‖L∞‖u1,x‖L2 +K(0, u2)‖u1.x − u2.x‖L2

≤ω(max(‖u1‖Hk , ‖u2‖Hk), ‖u1 − u2‖Hk)‖u1‖Hk +K(0, u2)‖u1 − u2‖Hk

with the modulus of continuity

ω(R, δ) = sup{|Df(v1)−Df(v2)| :|v1 − v2| ≤ δ, |v1|, |v2| ≤ R}.
Since ω(R, δ) → 0 as δ → 0, the operator F is even continuous when considered as a
map from Hk into H1. With the choice Y = Hk

Eucl, k ≥ 2, also the linear differential
operator u 7→ A∆u maps Y into X = L2 and our assertion is proved. �
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4. Existence of travelling waves for reaction diffu-

sion systems

In this chapter we return to travelling waves in one space dimension. For the
scalar travelling wave equation (2.29) we prove existence of an orbit connecting
two steady states for nonlinearities that behave like the cubic in the Nagumo
equation (2.3). This requires to make the phase plane analysis from Section 2.4
rigorous in a specific case. Then we will comment on (but not prove) some recent
results for the general gradient case, see Proposition 2.15. The proof of existence
in the scalar case needs a rather detailed result on stable and unstable manifolds
of hyperbolic points in parameterized dynamical systems. This will be the topic of
the final Section 4.3.

4.1. Scalar bistable reaction diffusion equations. Consider the equation

(4.1) ut = uxx + f(u), x ∈ R, t ≥ 0,

where f ∈ C1(R,R) has a cubic shape. More precisely, we assume that there exist
a ∈ (0, 1) with the following properties (see Figure)

(B1) f(0) = f(a) = f(1) = 0,
(B2) f < 0 on (0, a), and f > 0 on (a, 1),
(B3) f ′(0) < 0, and f ′(1) < 0,
(B4)

∫ 1

0
f(x)dx > 0.

In the scalar case f is always a gradient (cf. (2.44)), namely of

(4.2) F (v) =

∫ v

0

f(x)dx, v ∈ R.

From (B1)-(B4) we find that F has local maxima at x = 0, 1 and a local minimum
at x = a. Moreover, there is a unique value a⋆ ∈ (a, 1) such that F < 0 in (0, a⋆)
and F > 0 in (a⋆, 1) (see Figure). From Proposition 2.15 and (B4) we also obtain
that a travelling wave u⋆(x, t) = v⋆(x − c⋆t) of (4.1) connecting v0 = 0 to v1 = 1,
satisfies

c⋆

∫ ∞

−∞
v′⋆(x)

2dx = F (0)− F (1) = −F (1) = −
∫ 1

0

f(x)dx < 0.

Hence we look for travelling waves with c⋆ < 0.
From Section 2.3 we know that w⋆ = (v⋆, v

′
⋆)

T is a heteroclinic orbit with c = c⋆ of
the TWODE

(4.3)

(
w′

1

w′
2

)
=

(
w2

−f(w1)− cw2

)
=: G(w, c).

Accoding to Lemma 2.16 the endpoints of the heteroclinic orbit

(4.4) wj =

(
j
0

)
, j = 0, 1
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are saddles of (4.3) with eigenvalues and eigenvectors of DG(wj, c) given by

(4.5) λj± =
1

2
(−c±

√
c2 − 4f ′(vj)), j = 0, 1,

(4.6) yj± =

(
1

λj±

)
, j = 0, 1.

We consider negative values of c. Then the eigenvector y0+ belonging to the unstable
eigenvalue at w0 has positive components and points into the positive quadrant,
while the negative eigenvector −y1− belonging to the stable eigenvalue at w1 has
negative first and positive second component. Then w1−y1− also lies in the positive
quadrant but to the left of w1. The following schematic phase diagram illustrates
the situation: stable and unstable manifolds of the two saddles w0, w1 with their
tangent spaces and the vertical line w1 = a0 where a < a0 < 1 and where the
unstable manifold of w0 and the stable manifold of w1 are expected to intersect.
The following is the main result of this section.

Theorem 4.1. Let conditions (B1)-(B4) be satisfied. Then there exists

(4.7) c⋆ ∈ (−ĉ, 0), ĉ2 = 8max

(
4a−2(F (1)− F (a)),max0<v≤1

f(v)

v

)

and a solution w⋆ ∈ C1(R,R2) of system (4.3) at c = c⋆ such that

(i) limx→−∞w⋆(x) =

(
0
0

)
, limx→∞w⋆(x) =

(
1
0

)
,

(ii) w⋆(x) ∈ (0, 1)× (0,∞) for all x ∈ R.

Remark 4.2. The lower bound −ĉ is not the best possible. However, the explicit
form shows that such a bound depends only on data determined by the nonlinearity
f . In the proof we will frequently derive estimates that are uniform on compact
c-intervals. Therefore it is important to have this a-priori bound. One can also
show that the heteroclinic orbit is unique in the strip (0, 1)× (0,∞), see ??? But
we will not go into the details of the proof of such a result.

The proof of Theorem 4.1 will be divided into several steps.

Step 1: The local unstable manifold.
First, we use Theorem 4.7 from Section 4.4 to study the local unstable manifold of
w0 ∈ R2. Let P 0

+(c) : R
2 → span{y0+} denote the projector onto the unstable sub-

space of DG(w0, c) with respect to the decomposition R2 = span {y0−}⊕span {y0+}.
The dependence on c ∈ [−ĉ, 0] will frequently be suppressed in the sequel.

According to Theorem 4.7 there exist constants ρ0, K1, K2, K3, η > 0 such that for
all c ∈ [−ĉ, 0], 0 < ρ ≤ ρ0 the boundary value problem

(4.8) w′ = G(w, c) on (−∞, 0],

(4.9) P 0
+(c)w(0) = ρy0+,
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(4.10) |w(t)| ≤ ρK1 for all t ∈ (−∞, 0]

has a unique solution w = w(·, ρ, c) ∈ C1((−∞, 0],R2) which is as smooth as G
with respect to all variables. Moreover, the following estimates hold

(4.11) |w(t, ρ, c)|∞ ≤ K2e
ηt, t ≤ 0,

(4.12) |(I − P 0
+(c))w(0, ρ, c)|∞ ≤ K3ρ

2, 0 < ρ ≤ ρ0.

From (4.12), (4.9) we obtain

|w(0)− ρy0+|∞ = |(I − P 0
+(c))w(0)|∞ ≤ K3ρ

2.

We take ρ > 0 sufficiently small such that the following estimates hold:

(4.13) w1(0) ≥ ρ− |ρy0+ − w(0)|∞ ≥ ρ−K3ρ
2 ≥ ρ

2
,

(4.14) w1(0) ≤ ρ+ |ρy0+ − w(0)|∞ ≤ ρ+K3ρ
2 < a,

(4.15)

w2(0)− |c|
2
w1(0) ≥ λ+0 ρ −K3ρ

2 − |c|
2
ρ− |c|

2
K3 ρ

2

= ρ
2

{
(c2 − 4f ′(0))1/2 −K3ρ(2 + |c|)

}

≥ ρ
{
|f ′(0)|1/2 −K3ρ(1 +

|c|
2
)
}
> 0 ∀c ∈ [−ĉ, 0].

As a consequence of these estimates we have w(0, ρ, c) ∈ (0, a) × (0,∞) for all
c ∈ [−ĉ, 0] and for sufficiently small ρ > 0. From now on we fix such a ρ > 0 and
drop the depence of the solutions on ρ.

Step 2: Continuation of the local unstable manifold.
We choose values a

1
, a0, a1 such that

(4.16) a < a−1 < a0 < a1 < a∗ < 1.

The goal is to match the unstable manifold of w0 with the stable manifold of w1

on the line w1 = a0. In the following let

(4.17) w(t, c), t ∈ J(c)

be the maximally extended solution of the initial value problem

(4.18) w′ = G(w, c), w(0) = w(0, c)

in the domain

(4.19) W 0 := (0, a1)× (0,∞).

By Step 1 we know (−∞, 0] ⊂ J(c) and in fact (−∞, δ] ⊂ J(c) for all c ∈ [−ĉ, 0]
and some δ > 0 by the local existence theorem for initial value problems. We will
show that there exists a unique time T (c) ∈ J(c) ∩ (0,∞) such that

(4.20) w1(T (c), c) = a0 for all c ∈ [−ĉ, 0].
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Step 3: The energy function

Consider the energy function

(4.21) E(w) =
1

2
w2

2 + F (w1), w = (w1, w2) ∈ R2.

For t ∈ J(c) we have by (4.3)

(4.22)
d

dt
E(w(t, c)) = F ′(w1)w

′
1 + w2w

′
2 = −c w2

2(t, c).

From Step 1 we conclude

lim
t→−∞

E(w(t, c)) = E(w0) = 0,

so that(4.22) implies for all t ∈ J(c)

(4.23) E(w(t, c))

{
= 0 , c = 0,

> 0 ,−ĉ ≤ c < 0.

In case c = 0 the solution lies on the curve

(4.24) Γ = {(w1,
√
−2F (w1)) : 0 < w1 < a1},

while for c < 0 it lies above it (recall F < 0 in (0, a∗)).

Step 4: Intersection with the vertical line w1 = a0.

The function w1(·, c) is strictly monotone increasing since by
(4.3)

(4.25) w′
1(t, c) = w2(t, c) > 0, t ∈ J(c).

Let fmin = Min {f(x) : x ∈ [0, 1]}, then (4.3) implies

w′
2(t) = −f(w1(t))− cw2(t) ≤ |fmin|+ |c|w2(t), t ∈ J(c).

Hence by the Gronwall lemma (cf Appendix 8.5)

(4.26) w2(t) ≤ e|c|t(w2(0) +

t∫

0

e−|c|s ds |fmin|), t ∈ J(c) ∩ [0,∞).

The theorem on continuation of solutions leaves us with two alternatives:

Case (i): J(c) = (−∞,∞).
Then we infer from Step 3 and (4.25) for all t ≥ 0

w′
1(t) = w2(t) ≥ (−2F (w1(t)))

1/2 ≥ (−2 Max(F (w1(0)), F (a1)))
1/2 > 0.

Hence w1 grows unboundedly as t → ∞ which contradicts w1(t) < a1 for all
t ∈ J(c).

Therefore, the following holds:

Case (ii): J(c) = (−∞, t+(c)), t+(c) <∞,
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and w(t) approaches the boundary of W 0 as t → t+(c) or becomes unbounded.
The latter case is excluded by (4.26).
Moreover, w(t), t ≥ 0 lies above the curve Γ from (4.24) and thus cannot approach
the lower boundary [0, a1]×{0} of W 0. Further w1(t) is strictly increasing, so that
the left boundary {0} × [0,∞) is also excluded. We obtain

dist (w(t), {a1} × [0,∞)) → 0 as t→ t+(c).

Since w(t) lies above Γ and (4.26) holds we find

w1(t) → a1 as t→ t+(c).

Now w1 is strictly increasing which together with (4.16) and (4.14) implies that
there is a unique T (c) ∈ (0, t+(c)) satisfying (4.20). Moreover, the relation (4.25)
shows that the implicit function theorem applies to (4.20) for every fixed c ∈ [−ĉ, 0].
By the uniqueness of T (c) in (0, t+(c)) this implies T ∈ C1([−ĉ, 0], (0,∞)).

Step 5: Growth on the vertical line.
We discuss the behavior of

w2(T (c), c), c ∈ [−ĉ, 0].
By construction we have w(T (0), 0) ∈ Γ, i. e.

(4.27) w2(T (0), 0) = (−2F (a0))
1/2 > 0.

For c = −ĉ we show

(4.28) w2(T (c), c) > 2(2(F (1)− F (a)))1/2.

We let β = |ĉ|
2

and prove that

(4.29) w2(t,−ĉ) > β w1(t,−ĉ) for all t ∈ [0, T (−ĉ)].
For t = 0 this inequality follows from (4.15). Suppose there exists t0 ∈ (0, T (−ĉ)]
such that (4.29) holds on [0, t0) but w2(t0,−ĉ) = β w1(t0,−ĉ). Then from (4.7),

0 ≥ (w2 − β w1)
′(t0,−ĉ) = (−β w2 + ĉ w2 − f(w2)) (t0,−ĉ)

= w2(t0,−ĉ)
[ ĉ
2
− f(w1)

β w1
(t0,−ĉ)

]

≥ w2(t0,−ĉ)
[ ĉ
2
− 2

ĉ
Max
0<v≤1

f(v)

v

]

≥ w2(t0,−ĉ)
[ ĉ
2
− ĉ

4

]
> 0,

a contradiction. In this way inequality (4.28) and (4.7) yield

(4.30)
w2(T (−ĉ), ĉ) >

ĉ

2
a0 ≥ 2(2(F (1)− F (a))1/2

a0
a

> 2(2(F (1)− F (a)))1/2.

Step 6: The stable manifold of the target saddle.
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As in Step 1 we apply Theorem 4.7 and obtain constants ρ0, K1, K2, K3, η > 0 such
that the boundary value problem

(4.31) z′ = G(z, c), on [0,∞),

(4.32) P 1
−(z(0)− w1) = −ρy1−,

(4.33) |z(t)− w1|∞ ≤ K1 ρ for 0 ≤ t <∞
has a unique solution z(·, c) ∈ C1([0,∞), R2) depending smoothly on c ∈ [−ĉ, 0].
Moreover, the following estimates hold for all 0 < ρ ≤ ρ0

(4.34) |z(t, c)− w1| ≤ K2e
−ηt, t ≥ 0,

(4.35) |(I − P 1
−)(z(0)− w1)|∞ ≤ K3ρ

2.

Taking ρ sufficiently small (compare (4.13), (4.15)) we can guarantee

(4.36) z(0, c) ∈ (a−1, 1)× (0,∞) =: W 1.

Now let J̃(c) = (t−(c),∞) ⊇ [0,∞) be the maximal interval of existence for the
solution of (4.31) in W 1. Since z′1 = z2 > 0, z1(·, c) is strictly increasing on J̃(c).
Moreover, the solution cannot approach the lower boundary [a−1, 1]× {0} of W 1,
because z2(t, c) > 0 for t0 < t ≤ 0 and z2(t0, c) = 0 for some t0 < 0 would imply

0 = z′2(t0, c) = −cz2(t0, c)− f(z1(t0, c)) = −f(z1(t0, c)) < 0.

According to (4.22) the energy E(z(t, c)), c ∈ [−ĉ, 0] is monotone increasing with
respect to t ∈ J̃(c), hence

(4.37)
1

2
z22(t, c) + F (z1(t, c)) ≤ lim

τ→∞
E(z(τ, c)) = F (1).

with F (a) ≤ F (a−1) ≤ F (z1(t, c)) this gives the a–priori bound

(4.38) z22(t, c) ≤ 2(F (1)− F (z1(t, c))) ≤ 2(F (1)− F (a)), t ∈ J̃(c).

In particular z2(·, c) is bounded from above on J̃(c). The theorem on maximal
extension of solutions then shows

dist (z(t, c), {a−1} × [0,∞)) → 0 as t→ t−(c).

Since z1(·, c) is strictly monotone increasing and a−1 < a0 there exists a unique
T̃ (c) ∈ (t−(c), 0) such that

(4.39) z1(T̃ (c), c) = a0, −ĉ ≤ c ≤ 0.

Again, from z′1 > 0 on (t−(c), 0) and the uniqueness of T̃ (c) we infer T̃ ∈ C1([−ĉ, 0], (0,∞))
from the implicit function theorem. Moreover, (4.38) yields the estimate

(4.40) z2(T̃ (c), c) ≤ (2(F (1)− F (a)))1/2.
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Step 7: Application of the intermediate value theorem .

Consider the difference

σ(c) = w2(T (c), c)− z2(T̃ (c), c), c ∈ [−ĉ, 0].
Equations (4.40) and (4.29) show σ(−ĉ) > 0.
Moreover, at c = 0 we have by (B4)

1

2
w2

2(T (0), 0) + F (a0) = E(w0) = F (0) < F (1) =
1

2
z22(T̃ (0), 0) + F (a0),

hence
σ(0) = w2(T (0), 0)− z2(T̃ (0), 0) < 0.

Since σ(·) is continuous the intermediate value theorem gives a value c∗ ∈ (−ĉ, 0)
with σ(c∗) = 0.
Finally, it is easy to prove that

w∗(x) =

{
w(x+ T (c∗), c∗), x ≤ 0,

z(x + T̃ (c∗), c∗), x ≥ 0

is a solution of (4.3) satisfying

lim
x→−∞

w∗(x) =

(
0

0

)
, lim

x→∞
w∗(x) =

(
1

0

)
.

�

4.2. Results for gradient systems. The scalar evolution equation analyzed in
Section 4.1 is a special case of the gradient systems which already appeared in
Section 2.4

(4.41) ut = uxx +∇F (u), x ∈ R, t ≥ 0,

where F ∈ C2(Rm,R). Suppose v−, v+ ∈ Rm are two zeroes of ∇F . From Propo-
sition 2.15 we know that every solution (v∗, c∗) of the system

(4.42) 0 = v′′ + cv′ +∇F (v) in R,

(4.43) lim
ξ→−∞

v(ξ) = v−, lim
ξ→∞

v(ξ) = v+

satisfies the relation

(4.44) c∗

∞∫

−∞

|v′∗(ξ)|22 dξ = F (v−)− F (v+).

In the following we report about some recent results of Alikakos, Katzourakis [2].
The results have been adapted to our setting and may be considered as general-
izations of Theorem 4.1. The main assumption is

(K1)
0 = F (v−) < F (v+) = Max {F (v) : v ∈ Rm},

v− is a local maximum of F.



70

Note that this is almost implied by (B1)–(B4), except for the fact that F (v+) in
(K1) is a global rather than a local maximum. The assumption F (v−) = 0 is just
a normalization.

Theorem 4.3. ([2])
In addition to (K1) assume the following level set conditions. There exists α0 > 0
and for any α ∈ [−α0, 0] two convex compact and disjoint subsets M−

α ,M
+
α ⊂ Rm

such that

(K2)

F−1[α,∞) =M−
α ∪M+

α , v± ∈M±
α ,

F−1({α}) = ∂M+
α ∪ ∂M−

α ,

∂M+
α ( resp. ∂M−

α ) is of type C2 for α ∈ [−α0, 0]

( resp. α ∈ (−α0, 0)),M
−
0 = {v−}.

(K3)
∇F (v)T n(v) ≤ −γ0 < 0 ∀ v ∈ ∂M+

0 , n(v) outer normal

D2F (v) ≤ −γ0Im ∀ v ∈M+
0 .

(K4)

d

dr
F (v+ + rξ) < 0 for all r > 0, |ξ|2 = 1, α ∈ [−α0, 0)

with v+ + rξ ∈M+
α , D

2F (v−) ≤ −γ0Im.

Then there exists a value c∗ < 0 and a corresponding solution v∗ ∈ C2(R,Rm) of
(4.42), (4.43).

The proof is quite involved and will not be presented here. Note that all as-
sumptions (K2)–(K4) follow from (B1)–(B4) in the one–dimensional case if we
additionally assume F (b0) < 0, f ′ = F ′′ < 0 on [a∗, b0] for some b0 > 1. Then (K2)
holds with suitable intervals M±

α containing v− = 0, v+ = 1 and (K3), (K4) follow
from the sign constraints on F . Of course, the proof of Theorem 4.1 did not make
use of the behavior of f outside [0, 1].

An important ingredient in the proof of [2] is the energy functional associated with
(4.42)

E(v, c) =

∞∫

−∞

(1
2
|vξ|22 − F (v)

)
ecξdξ

in suitable function spaces (which enforce the integral to exist). A formal calcula-
tion shows that a critical point v of this functional satisfies for all h ∈ C∞

0 (R,Rm)
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0 =
d

dε
E(v + εh, c)|ε=0

=

∞∫

−∞

d

dε

[1
2
(vξ + εhξ, vξ + εhξ)2 − F (v + εh)(ξ)

]
|ε=0

ecξdξ

=

∞∫

−∞

((vξ, hξ)2 −∇F (v)Th)ecξdξ

= −
∞∫

−∞

( d

dξ
(vξe

cξ), h(ξ)
)
2
+∇F (v)Th(ξ)ecξ dξ

= −
∞∫

−∞

ecξ(vξξ + cvξ + f(v), h)2 dξ.

Here we used integration by parts. Since the relation above holds for all h ∈
C∞

0 (R,Rm), this implies

vξξ + cvξ + f(v) = 0 on R.

In general this procedure does not work since the functional E does not have a
global minimum in all reasonable Banach spaces. Moreover, the calculation does
not reveal how to determine the wave speed c. In fact, the authors of [2] prove
that c∗ is finally determined from the condition E(v∗, c∗) = 0.

4.3. Spectral projections and hyperbolic equilibria. As a preparation for
the parameterized stable manifold theorem in Section 4.4 and the stability theory
in Section 5 we discuss in this section parameterized families of hyperbolic matrices.
First consider a single matrix A ∈ Cm,m and decompose its spectrum σ(A) ⊂ C

into two disjoint subsets

(4.45) σ(a) = σs∪̇σu.
Take a closed contour Γ ⊂ (C \ σ(A)) which has σs in its interior but σu in its
exterior. By definition this means that

(4.46)
1

2πi

∫

Γ

(z − λ)−1dz =

{
1, λ ∈ σs,

0, λ ∈ σu
.

It is easy to construct such a contour by taking the sum of sufficiently small circles
enclosing exactly one of the finitely many values in σs. Then the matrix

(4.47) P =
1

2πi

∫

Γ

(zIm − A)−1dz ∈ Cm,m
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is called the Riesz projector (or the spectral projector) associated with
σs.
This notion is motivated by the following proposition.

Proposition 4.4. Under the assumptions above the matrix P is independent of
the choice of contour enclosing σs and excluding σs. Further, P is the unique
projector such that the subspaces

(4.48) Xs = P (Cm), Xu = (I − P )(Cm)

have the properties

(4.49) Cm = Xs ⊕Xu, A(Xs) ⊂ Xs, A(Xu) ⊂ Xu,

(4.50) σ(A|Xs
) = σs, σ(A|Xu

) = σu.

If A ∈ Rm,m and σs = σs, then P is a real projector and (4.49), (4.50) hold with
Rm = Xs ⊕Xu.

Remark: The Riesz projector (4.47) may be defined for general linear bounded
operators in a Banach space with σs being a closed subset of σ(A) (see e. g. [29,
Ch.V]). It even generalizes to closed unbounded operators in a Banach space, see
Section 5 and [29].
Proof: Cauchy’s Theorem shows that P is independent of the choice of Γ. For the
matrix case here we use the Jordan normal form

(4.51) S−1AS = J ∈ Cm,m, S = (Ss Su),

where

J =




J1
. . .

Jr
Jr+1

. . .
Jk




, Jj =




λj 1

λj
. . .
. . . 1

λj


 ∈ Cmj ,mj .

The eigenvalues have been ordered such that

(4.52) σs = {λj : j = 1, . . . , r}, σu = {λj : j = r + 1, . . . , k}, σs ∩ σu = ∅.
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With this transformation we obtain

P =
1

2πi

∫

Γ

(zIm − SJS−1)−1 dz = S
1

2πi

∫

Γ

(zIm − J)−1 dzS−1,

= S
1

2πi

∫

Γ

diag((zImj
− Jj)

−1 : j = 1, . . . , k) dzS−1.

With

Jj = λjImj
+ Ej , Ej =




0 1
0 1

. . . . . .
. . . 1

0




we find
(zImj

− Jj)
−1 = (z − λj)

−1(Imj
− (z − λj)

−1Ej)
−1

= (z − λj)
−1

mj−1∑

ν=0

(z − λj)
−νEν

j =

mj−1∑

ν=0

(z − λj)
−ν−1Eν

j .

By the construction of Γ we have the fomula

1

2πi

∫

Γ

(z − λj)
−ν−1dz =

{
1, if j = 1, . . . , r, ν = 0,

0, otherwise ,

hence

1

2πi

∫

Γ

(zImj
− Jj)

−1dz =

{
Imj

, j = 1, . . . , r,

0, j = r + 1, . . . , k
.

This shows that

(4.53) P = S




Im1

. . .
Imr

0
. . .

0




S−1

is the projector onto Xs = R(Ss) and Im − P projects onto Xu = R(Su). The
spectral properties (4.49), (4.50) then follow from (4.51) and (4.52).
In the real case A ∈ Rm,m, σs = σs we can choose a contour which is symmetric
with respect to the real axis:

Γ = {ϕ(t) : t ∈ [0, 2]}, ϕ(t) = ϕ(2− t), t ∈ [0, 2].
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Using this and setting s = 2− t for t ∈ [1, 2] leads to

P =
1

2πi

{ 1∫

0

(ϕ(t)Im − A)−1ϕ′(t)dt +

2∫

1

(ϕ(t)Im −A)−1ϕ′(t) dt

}

=
1

2πi

{ 1∫

0

(ϕ(t)Im − A)−1ϕ′(t) dt −
1∫

0

(ϕ(s)Im −A)−1ϕ′(s) ds

}

=
1

π
Im

{ 1∫

0

(ϕ(t)Im −A)−1ϕ′(t) dt

}
.

Therefore, Xs = P (Rm) and Xu = (I −P )(Rm) are real subspaces invariant under
A:

APv = A
1

2πi

∫

Γ

(zIm −A)−1dz v = PAv, v ∈ Rm.

Moreover, for v = Pv ∈ Xs + iXs we have by (4.51), (4.53)

Av = APv = SJS−1S diag(Im1
, . . . , Imr

, 0, . . . , 0)S−1v

= S diag(J1, . . . , Jr, 0, . . . , 0)S
−1v,

which proves the spectral relation (4.50).
�

In the following proposition we continue the spectral projectors for parameterized
families of matrices.

Proposition 4.5. Let Z ⊂ Rp be a domain (open, connected) andM ∈ Ck(Z,Rm,m), k ≥
0 be a matrix family satisfying

(4.54) σ(M(ζ)) ∩ iR = ∅ for all ζ ∈ Z.

Then there exists a projector–valued function Ps ∈ Ck(Z,Rm,m) with the following
properties

(4.55) M(ζ)Xs(ζ) ⊂ Xs(ζ) for Xs(ζ) = R(Ps(ζ)), ζ ∈ Z,

(4.56) rank (Ps(ζ)) = ms is independent of ζ ∈ Z,

(4.57) σ(M(ζ)|Xs(ζ)) = σ(M(ζ)) ∩ {z ∈ C : Re z < 0}, ζ ∈ Z.

For any compact subset Z0 ⊆ Z there exist constants K,α > 0 such that for all
ζ ∈ Z0, t ≥ 0

(4.58) |exp(tM(ζ))Ps(ζ)|+ |exp(−tM(ζ)) (Im − Ps(ζ))| ≤ K e−αt.
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Remark: Ps(ζ) is called the stable projector associated withM(ζ). Correspond-
ingly, Pu(ζ) = I − Ps(ζ) is the unstable projector which satisfies M(ζ)Xu(ζ) ⊂
Xu(ζ) for Xu(ζ) = R(Pu(η)) as well as

σ(M(ζ)|Xu(ζ)) = σ(M(ζ)) ∩ {z ∈ C : Re z > 0} for ζ ∈ Z.

Instead of taking iR as the line separating σ(M(ζ)) into two parts, one can take
any contour Γ which is symmetric with respect to the real axis and runs from
R− i∞ to R+ i∞.

Proof: Let us first consider a compact set Z0 ⊆ Z. Then there exists R > 0 such
that for all ζ ∈ Z0

(4.59) |λ| < R, Re λ < − 1

R
for all λ ∈ σ(M(ζ)), Re λ < 0.

If this is not true we find sequences ζn ∈ Z0, λn ∈ σ(M(ζn)), vn ∈ Cm such that

|vn| = 1, M(ζn)vn = λnvn, Re λn → 0 or |λn| → ∞.

Since |λn| ≤ sup
ζ∈Z0

|M(ζ)| <∞ we conclude Re λn → 0 as n→ ∞. Taking suitable

subsequences we find a value ζ = lim
n→∞

ζn ∈ Z0 such that M(ζ) has an eigenvalue

in iR, which contradicts (4.54). With R from (4.59) the semicircle Γ defined by

ϕ(t) = − 1

R
+ iR(2t− 1), 0 ≤ t ≤ 1,

ϕ(t) = − 1

R
+R exp

(
iπ
(
t− 1

2

))
, 1 ≤ t ≤ 2,

encloses all stable eigenvalues of M(ζ), ζ ∈ Z0. Hence, by Proposition 4.4 the
projector satisfying (4.55), (4.57) is

(4.60) Ps(ζ) =
1

2πi

∫

Γ

(zIm −M(ζ))−1 dz, ζ ∈ Z0.

The formula also shows that Ps is of class Ck.
From the spectral property (4.57) we infer

|λ| < 1 for all λ ∈ σ(exp(M(ζ))Ps(ζ)) ∪ σ(exp(−M(ζ))Pu(ζ)).

Therefore, for every ζ0 ∈ Z there exists a norm | · |0 in Rm (depending on ζ0) such
that for the subordinate matrix norm | · |0
(4.61) |exp(M(ζ0))Ps(ζ0)|0, |exp(−M(ζ0))Pu(ζ0)|0 < 1.

Since M and Ps depend continuously on ζ , we find a neighborhood U(ζ0) ⊂ Z such
that for some α0 > 0

(4.62) |exp(M(ζ))Ps(ζ)|0, |exp(−M(ζ)Pu(ζ)|0 ≤ e−α0 < 1 ∀ ζ ∈ U(ζ0).
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By the submultiplicativity of | · |0 we obtain for all n ∈ N, ζ ∈ U(ζ0)

(4.63) |exp(nM(ζ)Ps(ζ))|0, |exp(−nM(ζ)Pu(ζ))|0 ≤ e−nα0 .

Finally, every t ≥ 0 is of the form t = n + τ, 0 ≤ τ < 1 which leads to

(4.64) |exp(tM(ζ)Ps(ζ))|0, |exp(−tM(η)Pu(ζ))|0 ≤ K0 e
−tα0 , ζ ∈ U(ζ0)

with K0 = sup {|exp(τM(ζ))Ps(ζ)|0 + |exp(−τM(ζ))Pu(ζ)|0 : τ ∈ [0, 1], ζ ∈
U(ζ0)}.
Since we can cover Z0 with finitely many neighborhoods U(ζj), j = 1, . . . , N and
since all norms in Cm are equivalent, the estimate (4.64) yields the assertion (4.58).
Next we exhaust Z by a growing sequence of compact subsets

Zn =
{
ζ ∈ Z : dist(ζ, ∂Z) ≥ 1

n
, |ζ | ≤ n

}
, Zn ⊆ Zn+1 ⊆ . . . ⊆ Z.

The corresponding projectors Ps,n(ζ), ζ ∈ Zn satisfy

Ps,k(ζ) = Ps,n(ζ) ∀ k ≥ n, ζ ∈ Zn

by the uniqueness of stable projectors. For a fixed ζ ∈ Z we take the first n =
n(ζ) ∈ N such that ζ ∈ Zn and define Ps(ζ) = Ps,n(ζ). In this way Ps : Z → Rm,m

is a Ck–smooth projector–valued mapping satisfying (4.55), (4.57) for all ζ ∈ Z.
Finally, our result applies to any compact curve Z0 in Z. Since Z is connected and
the rank of a projector is a continuous function, condition (4.56) is proved.

�

4.4. Stable and unstable manifolds of equilibria. Let us first recall some
notions for dynamical systems of the form

(4.65) v̇ = f(v), where f ∈ Ck(Ω,Rm), k ≥ 1,Ω ⊆ Rm open .

In the following let Φt(v0), t ∈ J(v0) denote the maximally extended solution of
(4.65) satisfying v(0) = v0 ∈ Ω.

Definition 4.6. (Notions of invariance)

(i) A set M ⊆ Ω is called
– positive invariant, if v0 ∈ M implies [0,∞) ⊆ J(v0) and Φt(v0) ∈
M for all t ≥ 0,

– negative invariant, if v0 ∈M implies (−∞, 0] ⊆ J(v0) and Φt(v0) ∈
M for all t ≤ 0,

– invariant, if it is positive and negative invariant.
(ii) Let M ⊂ Ω be compact and invariant, and let V ⊇ M be a neighborhood

of M . Then the stable set of M with respect to V is

W V
s (M) = {v0 ∈ V : [0,∞) ⊂ J(v0), Φt(v0) ∈ V ∀ t ≥ 0,

lim
t→∞

dist(Φt(v0),M) = 0}
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and the unstable set of M with respect to V is given by

W V
u (M) = {v0 ∈ M : (−∞, 0] ⊂ J(v0), Φt(v0) ∈M ∀t ≤ 0,

lim
t→−∞

dist(Φt(v0),M) = 0}.

For V = Ω we obtain the global stable resp. unstable manifold

Ws(M) =WΩ
s (M), Wu(M) = WΩ

u (M).

Note than in general

W V
s (M)

6=
⊂ Ws(M) ∩ V.

A typical example where these sets differ, is given by a saddle M = {v+} for which
a homoclinic orbit {v(t)}t∈R of (4.65) exists (cf. Section 2.4 for examples). Then
W V

s (M) ∩ V also contains an initial piece {v(t) : t ≤ T−}.
In the following we consider a parameterized system

(4.66) v̇ = f(v, ζ), f ∈ Ck(Rm × Rp,Rm), k ≥ 1

and denote its t–flow by Φt(·, ζ).
Let Z ⊆ Rp be a domain such that for all ζ ∈ Z the following properties hold

(4.67) f(0, ζ) = 0,

(4.68) σ(Dvf(0, ζ)) ∩ iR = ∅.
For simplicity we do not only assume the steady state but also the stable and
unstable subspaces of M(ζ) := Dvf(0, ζ) to be independent of ζ ∈ Z, i.e. we have
Rm = Xs ⊕Xu such that for all ζ ∈ Z

(4.69) M(ζ)Xs ⊆ Xs, Re λ < 0 for all λ ∈ σ(M(ζ)|Xs
),

(4.70) M(ζ)Xu ⊆ Xu, Re λ > 0 for all λ ∈ σ(M(ζ)|Xu
).

Let Ps resp. Pu = Im − Ps be the corresponding projectors onto Xs resp. Xu.
Later we show how this situation can be achieved in the proof of Theorem 4.1.

Theorem 4.7. (Parameterized stable manifold theorem) Let the assumptions
above hold and let Z0 ⊂ Z be open and bounded with Z̄0 ⊆ Z. Then there ex-
ist zero neighborhoods Vs ⊆ Xs, Vu ⊆ Xu, V ⊆ Rm with Vs ⊕ Vu ⊆ V and a
function hu ∈ Ck(Vs × Z0, Vu) such that the following holds.

(i) For every vs ∈ Vs, ζ ∈ Z0 the boundary value problem

(4.71) v′ = f(v, ζ) on [0,∞),

(4.72) Psv(0) = vs, v(t) ∈ V for all t ≥ 0,

has a unique solution v = v(·, vs, ζ) ∈ Ck+1([0,∞), V ).
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(ii) For the function hu : Vs, ζ ∈ Z0 → Xu defined by

(4.73) v(0, vs, ζ) = vs + hu(vs, ζ), vs ∈ Vs, ζ ∈ Z0,

the following assertions hold

(4.74)
{vs + hu(vs, ζ) : vs ∈ Vs} = W V

s (0, ζ) ∩ (Vs ⊕ Vu) =

{v0 ∈ Vs ⊕ Vu : Φt(v0, ζ) ∈ V ∀ t ≥ 0, Φt(v0, ζ) → 0 as t→ ∞}.
(iii) There exist constants K, η > 0 such that for all vs ∈ Vs and ζ ∈ Z0,

(4.75) |v(t, vs, ζ)| ≤ K e−ηt, t ≥ 0,

(4.76) Dvhu(0, ζ) = 0,

(4.77) |D2
vhu(vs, ζ)| ≤ K (in case k ≥ 2).

Before proving the theorem let us interpret the result. Equation (4.74) shows that
the local stable manifold is the graph of the function hu : Xs → Xu which inherits
its smoothness from the vector field f . Because of (4.76) the manifold is tangent
to Xs at 0, i.e. T0 W v

s (0, ζ) = Xs, see Definition 3.21.
Note also that instead of a single chart we have a single parametrizing map vs →
vs + hu(vs, ζ), which is a submersion and hence the inverse of a chart. The local
stable manifold is therefore a submanifold of Rm (see e. g. [5, Ch.VIII,9] for the
general theory). However, the global stable manifold Ws(0, ζ) is not necessarily a
submanifold of Rm and the general manifold concept (see Definition 3.5) is needed.
A common procedure is to write

(4.78) Ws(0, ζ) = ∪
t≤0

Φt(W
V
s (0, ζ))

and to define the chart in a neighborhood U of some Φ−T (v0), T > 0, by applying
the local chart in W V

s (0, ζ) to ΦT (U).
We mention that (4.74) characterizes only the intersection of the local stable
manifold with the product neighborhood Vs ⊕ Vu. It is possible to arrange that
V = Vs ⊕ Vu. However, this requires a rather careful geometric construction and
is not needed for our application.
Finally, let us formulate the analogous result for the local unstable manifold which
holds unter the assumptions of Theorem 4.7. This result can be obtained by
reversing time in (4.71) and then applying the stable manifold theorem.
There exists hs ∈ Ck(Vu × Z0, Vs) with the following properties:

(i’) for every vu ∈ Vu, ζ ∈ Z0 the boundary value problem

(4.79)
v′ = f(v, ζ) on (−∞, 0]

Puv(0) = vu, v(t) ∈ V for all t ≤ 0

has a unique solution v(·, vu, ζ) ∈ Ck+1((−∞, 0], V ).
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(ii’) For all vu ∈ Vu, ζ ∈ Z0,

(4.80) v(0, vu, ζ) = vu + hs(vu, ζ),

(4.81)
{vu + hs(vu, ζ) : vu ∈ Vu} = W V

u (0, ζ) ∩ (Vs ⊕ Vu) =

{v0 ∈ Vs ⊕ Vu : Φt(v0, ζ) ∈ V ∀ t ≤ 0, lim
t→−∞

Φt(v0, ζ) = 0}.

(iii’) There exist constants K, ζ > 0 such that for all vu ∈ Vu and ζ ∈ Z0,

(4.82) |v(t, vu, ζ)| ≤ K eηt, t ≤ 0,

(4.83) Dvhs(0, ζ) = 0,

(4.84) |D2
vhs(vu, ζ)| ≤ K (in case k ≥ 2).

Proof of Theorem 4.7. We apply the parameterized Lipschitz inverse mapping The-
orem 8.3 with the following settings:

X =C1
b([0,∞),Rm), ‖v‖X = ‖v‖∞ + ‖v′‖∞,

Y =Cb([0,∞),Rm)×Xs, ‖(r, vs)‖Y = ‖r‖∞ + ‖vs‖,
Λ =Z0 × Vs, λ = (ζ, v0s),

L(λ)v =(v′ −Dvf(0, ζ)v, Psv(0)),

F (v, λ) =(Dvf(0, ζ)v − f(v, ζ),−v0s).
Let us first show that the assumptions (i)-(iii) of Theorem 8.3 are satisfied for
suitable constants δ, ℓ, ρ.
Assumption (i): Let A = A(ζ) = Df(0, ζ) for ζ ∈ Z. In the following we
will suppress the dependence on ζ ∈ Z whenever appropriate. A solution v ∈
C1

b([0,∞),Rm) of the initial value problem

(4.85) v′ + Av = r ∈ Cb([0,∞),Rm), Psv(0) = vs ∈ Xs

is given by the formula

(4.86) v(t) = exp(tA)vs +
∫ ∞

0

G(t, s)r(s)ds, t ≥ 0

with the Green’s function

(4.87) G(t, s) =

{
exp((t− s)A)Ps, 0 ≤ s ≤ t,

exp((t− s)A)(Ps − I), 0 ≤ t < s.

By Proposition 4.5 there exist constants K,α ≥ 0 such that for all τ ≥ 0,ζ ∈ Z0

(4.88) ‖exp(τA)Ps‖+ ‖exp(−τA)(Ps − I)‖ ≤ Kexp(−ατ).
Because of these estimates the integral in (4.86) exists and the following estimate
holds

‖v(t)‖ ≤K
(

exp(−αt)‖vs‖+
∫ ∞

0

exp(−α|t− s|)‖r‖∞ds
)
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≤K
(

exp(−αt)‖vs‖+
2

α
‖r‖∞

)

It is not difficult to verify that (4.86) actually solves (4.85). Then from the differ-
ential equation we find

‖v′(t)‖ ≤ ‖A‖∞,Z0
‖v(t)‖+ ‖r(t)‖, ‖A‖∞,Z0

= sup
ζ∈Z0

‖A(ζ)‖.

We have shown that v ∈ X holds and satisfies the estimate

‖v‖X ≤ ℓ(‖r‖∞ + ‖vs‖), ℓ = 1 +K(1 + ‖A‖∞,Z0
)Max(

2

α
, 1).

It remains to be shown, that v is the unique bounded solution of (4.85). Since the
problem is linear it is enough to show that any solution w ∈ X of the homogeneous
problem (4.85) is trivial. For this purpose, first note that

w(t) = exp(tA)w(0) = exp(tA)(I − Ps)w(0).

Since the projectors commute with A we obtain from (4.88)

‖(I − Ps)w(0)‖ =‖(I − Ps)
2w(0)‖ = ‖(I − Ps)exp(−tA)w(t)‖

=‖exp(−tA)(I − Ps)w(t)‖ ≤ Kexp(−αt)‖w‖∞.
Since w is bounded this shows (I − Ps)w(0) = 0 if we let t → ∞. Therefore,
w(t) = exp(tA)(I − Ps)w(0) = 0 holds for all t ≥ 0. �

5. Stability of travelling waves in parabolic systems

In this chapter we study the stability of relative equilibria with respect to per-
turbations of initial data. This will not be done in the abstract framework of
Section 3.5. Rather we will work with an Abelian Lie group which simplifies the
analysis considerably. We will partly follow the approach in [18, Ch.4] where our
main application is to travelling waves in parabolic systems as in Section 2.3. The
equivariance of the evolution equation implies that the linearized operator of the
comoving frame equation (3.3) has eigenvalues on the imaginary axis. The dimen-
sion of the corresponding invariant subspace is at least the dimension of the Lie
group. In the Abelian case there is only the zero eigenvalue.

A key assumption of the nonlinear stability theorem requires the linearization to
have no further eigenvalues on the imaginary axis and all other parts of the spec-
trum (essential or point spectrum) to be in the left half plane and strictly bounded
away from the imaginary axis.
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The subsequent sections will therefore be devoted to the spectral theory of second
order differential operators on the whole real line.

5.1. Stability with asymptotic phase. As in Section 2.3 we consider a para-
bolic system

(5.1) ut = Auxx + f(u), x ∈ R, t ≥ 0

with A ∈ Rm,m positive definite and f : Rm → Rm sufficiently smooth. Moreover,
assume that there exists a travelling wave solution

(5.2) u(x, t) = v⋆(x− c⋆t), x ∈ R, t ∈ R,

where v⋆ ∈ C2
b (R,R

m) and

(5.3) lim
ξ→±∞

v⋆(ξ) = v±, f(v±) = 0.

Then v⋆ is an equilibrium of the comoving frame equation (3.3) from Section 3.1,

(5.4) vt = Avξξ + c⋆vξ + f(v), ξ ∈ R, t ≥ 0,

(5.5) v(·, 0) = u0.

Definition 5.1. The travelling wave (v⋆, c⋆) is called

– orbitially stable w.r.t. a norm || ||Y in a Banach space Y iff the fol-
lowing condition holds: for all ε > 0 there exists δ > 0 such that every
solution v(·, t) of (5.4), (5.5) with u0 − v⋆ ∈ Y, ||u0 − v⋆||Y ≤ δ satisfies

(5.6) inf
γ∈R

||v(·, t)− v⋆(· − γ)||Y ≤ ε ∀t ≥ 0,

– asymptotically stable with asymptotic phase, if it is orbitally stable
and for any u0 with ||u0 − v⋆||Y ≤ δ there exists γ = γ(u0) ∈ R such that

(5.7) ||(v(·, t)− v⋆(· − γ(u0))||Y → 0 as t→ ∞.

Note that we did not specify Y yet.
Suitable function spaces will be Y = H1(R,Rm) or Y = C1

unif (R,R
m). Moreover,

we defined stability in terms of the transformed equation (5.4). For the original
equation with

v(ξ, t) = u(ξ + c⋆t, t),

condition (5.6) translates into

ε ≥ inf
γ∈R

||(v(·+ c⋆t, t)− v⋆(· − γ)|| = inf
γ∈R

||u(·, t)− v⋆(· − γ)||Y ,

and
||u(·, t)− v⋆(· − c⋆t− γ(u0))||Y → 0 as t→ ∞.

Before starting the general theory, let us make some heuristic arguments that pave
the way for the theory.
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1. Asymptotic behaviour of v⋆ By Lemma 2.6 the function w⋆ =
(
v⋆
v′⋆

)
is

an orbit connecting w− =
(
v−
0

)
to w+ =

(
v+
0

)
for the system

(5.8) w′ = G(w) =

(
w2

−c⋆A−1 w2 −A−1 f(w1)

)
.

We have the Jacobians
(5.9)

DG(w) =

(
0 Im

−A−1 Df(w1) −c⋆A−1

)
, DG(w±) =

(
0 Im

−A−1 Df(v±) −c⋆A−1

)
.

Our first lemma guarantees hyperbolicity of DG(w±) uniformly in some
parameters.

Lemma 5.2. Suppose the matrices A,B ∈ Rm,m satisfy

(5.10) xTAx > 0 > xTBx ∀x ∈ Rm, x 6= 0.

Then there exists ε > 0 such that the matrix family
(5.11)

M(τ, c) =

(
0 Im

−A(τ)−1B −cA(τ)−1

)
, A(τ) = τ Im + (1− τ)A, τ ∈ [−ε, 1 + ε]

satisfies the assumptions of Proposition 4.5 with ζ = (τ, c), Z = (−ε, 1+
ε) × R. The corresponding projectors Ps(ζ) and Pu(ζ) = I − Ps(ζ) both
have rank m.

Proof. Take ε > 0 such that for all τ ∈ [−2ε, 1 + 2ε]

(5.12) xTA(τ)x = τxTx+ (1− τ)xTAx > 0 for all x 6= 0.

Let λ ∈ C be an eigenvalue of M(τ, c) with eigenvector
(
x
y

)
∈ C2m, then

we find form (5.11)

(5.13) y = λx, (λ2A(τ) + cλIm +B)x = 0.

Note that
(
x
y

)
6= 0 implies x 6= 0 in this case. Equation (5.13) is the

characteristic equation of the differential operator

Lv = A(τ)v′′ + cv′ +Bv.

Suppose that (5.13) holds for some λ = iω, ω ∈ R and
x = x1 + i x2, then multiply by xH and take the real part

0 = −ω2(xT1A(τ)x1 + xT2 A(τ)x2) + xT1Bx1 + xT2Bx2.

However, the right–hand side is negative due to (5.10) and (5.12). This
proves condition (4.54) of Proposition 4.5. In order to determine the
common rank of Ps(ζ), Pu(ζ), it suffices to choose the special parameter
set τ = 1, c = 0. Then (5.13) reads

(5.14) λ2x = −Bx.



83

Due to (5.10) the eigenvalues µj ∈ C of −B, j = 1, . . . , m (repeated
according to multiplicity) satisfy Re µj > 0. Hence the quadratic eigen-
value problem (5.14) has eigenvalues λj,± = ±√

µj, where
√· is the

principle branch of the complex square root. These eigenvalues satisfy
Re λj,− < 0 < Re λj,+, j = 1, . . . , m, so that both projectors Ps, Pu have
rank m. �

Lemma 5.2 applies to DG(w±) from (5.9) if

(5.15) xTDf(v±) x < 0 ∀x 6= 0.

Remark 5.3. In the gradient case (4.41) this condition holds if the Hes-
sians D2F (v±) = Df(v±) are negative definite, i.e. v± are local minima
as in Theorem 4.3.

From (5.15) we infer that w± are saddles of (5.8). Then the Theorem
4.7 on stable and unstable manifolds shows that for suitable constants
C, η > 0

(5.16)
|w⋆(ξ)− w+| ≤ C e−ηξ, ξ ≥ 0,
|w⋆(ξ)− w−| ≤ C eηξ, ξ ≤ 0.

For the original wave v⋆ this implies

(5.17) |v⋆(ξ)− v±| + |v′⋆(ξ)| ≤ C e−η|ξ|, ξ ∈ R±.

Moreover, we obtain for ξ ∈ R±

|w′
⋆(ξ)| =

∣∣∣∣∣

(
v′⋆(ξ)
v′′⋆ (ξ)

)∣∣∣∣∣ = |G(w⋆(ξ), c⋆)|

= |G(w⋆(ξ), c⋆)−G(w±, c⋆| ≤ C|w⋆(ξ)− w±| ≤ C e−η|ξ|.

Hence, also the second derivative v′′⋆ (ξ) decays exponentially. If v⋆ ∈
Ck(R,Rm) one can proceed in this way and conclude

(5.18) |v(j)⋆ (ξ)| ≤ C e−η|ξ| for ξ ∈ R±, j = 1, . . . , k.

In particular, the derivatives v(j)⋆ lie in the Sobolev spacesW k−j,p(R,Rm), p ∈
N for j = 1, . . . , k.

2. The linearized operator
The linearization of (5.4) at v = v⋆ is

(5.19) vt = Lv = Avξξ + c⋆vξ +Df(v⋆)v.
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We expect this equation to govern the dynamics of (5.4), (5.5) close to
v⋆. For example, let

u0 = v⋆ + v0, v(·, t) = v⋆ + w(·, t)
for v0, w(·, t) small. Then we find

vt = wt = Av⋆,ξξ + c⋆ v⋆,ξ + f(v⋆) + A wξξ + c⋆ wξ + f(v⋆ + w)− f(v⋆)

= L w + f(v⋆ + w)− f(v⋆)−Df(v⋆)w

= L w +R(w, v⋆),

and we expect the remainder R(w, v⋆) to be small if w is small. Differen-
tiating the equation

(5.20) 0 = Av⋆,ξξ + cv⋆,ξ + f(v⋆(ξ)), ξ ∈ R

with respect to ξ we obtain

(5.21) 0 = A(v⋆,ξ)ξξ + c(v⋆,ξ)ξ +Df(v⋆(ξ))v⋆,ξ = Lv⋆,ξ.
Hence v⋆,ξ is in the kernel of L in any reasonable function space, compare
the exponential decay (5.17), (5.18).

Another way to derive (5.21) is to note that vγ(ξ) = v⋆(ξ − γ), ξ ∈ R

solves (5.20) for all γ ∈ R and then differentiate with respect to γ at
γ = 0.

The eigenvalue zero of L is the reason why we cannot expect asmptotic
stability in the classical Lyapunov sense but only asymptotic stability
with asymptotic phase.

Our final example shows that the kernel of the linearized operator may have di-
mension > 1 if the Lie group of equivariance has dimension > 1.

Example 5.4. Consider the comoving frame equation (2.87) for the cubic NLS,
(see Example 2.26, (2.80), (2.83))

(5.22) ut = i uxx + i |u|2u,
given by the ansatz u(x, t) = e−iθ⋆t v(x− c⋆t, t) as follows

(5.23) vt = i vxx + c⋆vx + i θ⋆v + i v|v|2.
Equation (5.23) has a two–parameter family of equilibria

(5.24) v⋆(ξ) = c3
√
2 exp(ic2ξ) sech(c3ξ), c⋆ = 2c2, θ⋆ = −c22 − c23.

Since the right–hand side of (5.23) is equivariant with respect to the action

(5.25) [a(γ1, γ2)v](x) = e−iγ1v(x− γ2), x ∈ R
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the whole family

(5.26) v⋆(γ1, γ2) := a(γ1, γ2)v⋆, γ ∈ R2

yields equilibria of (5.23).
Let us write (5.23) as a real system with the settings

v = v1 + iv2, |v|2 = v21 + v22 , J =

(
0 −1
1 0

)

(
v1
v2

)

t

= J

(
v1
v2

)

xx

+ c⋆

(
v1
v2

)

x

+ θ⋆J

(
v1
v2

)
+

(
−v2 |v|
v1 |v|

)
= L0v +R(v).

5.2. Spectral theory for second order operators. The previous considera-
tions suggest to study the spectrum of second order operators

(5.27) Lu = Auxx +B(x)ux + C(x)u, x ∈ R, u : R → Rm,

where

(5.28) A ∈ Rm,m, xT (A+ AT )x ≥ α0 |x|2 ∀ x ∈ Rm for some α0 > 0,

(5.29) B,C ∈ Cb(R,R
m,m),

(5.30) B(x) → B±, C(x) → C± as x→ ±∞.

Note B = c⋆I, C(x) = Df(v⋆(x)), C± = Df(v±) in the traveling wave case.
Consider

L : D(L) ⊂ X → X

for the cases
D(L) = H2(R,Rm), X = L2(R,Rm),

D(L) = C2
unif(R,R

m), X = C0
unif(R,R

m).

Definition 5.5. Let X be a Banach space and

L : D(L) ⊂ X → X

be a linear operator.

(i) L is called closed, if
(D(L) ∋ un → u ∈ X, Lun → r (n→ ∞)) implies

u ∈ D(L), Lu = r.
(ii) Let L : D ⊂ X → X be closed.

The resolvent set is defined by

ρ(L) ={s ∈ C : sI − L : D(L) → X is bijective and there exists K > 0

with ||(sI −L)−1 h||X ≤ K ||h||X}.
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Further we define:

spectrum: σ(L) = C \ ρ(L),
point spectrum: σp(L) = {s ∈ σ(L) : sI − L is Fredholm of index 0 and s is an
eigenvalue of finite algebraic multiplicity},
eigenvalues: s ∈ σ(L) with N(sI −L) 6= {0},
algebraic multiplicity: alg(s) = sup

k∈N
dim N((sI − L)k),

essential spectrum: σess(L) = σ(L) \ σp(L).

Example 5.6. X = C[0, 1], || ||X = || ||∞, Lu = au, a ∈ C[0, 1] with a strictly
monotone increasing. Then we have

ρ(L) = C \ [a(0), a(1)], σp(L) = ∅, σess(L) = [a(0), a(1)].

Suppose there exists u ∈ X, s ∈ [a(0), a(1)] with au = Lu = su. This yields
u(x) = 0 for x ∈ [0, 1]\{x̄} where a(x̄) = s. Since u is continuous we obtain u ≡ 0.
Hence there is no point spectrum.

If L is closed, then D(L) becomes a Banach space with respect to the graph norm

(5.31) ||u||D(L) = ||u||X + ||Lu||X, u ∈ D(L),
and L : (D(L), || ||D(L)) → (X, || ||X) is bounded.

Lemma 5.7. Let (5.28), (5.29) be satisfied. Then

L = A∂2x +B∂x + C : D(L) = H2(R,Rm) → L2(R,Rm)

is closed.
Moreover, there exist ε0, C1, C0 > 0 such that for all

s ∈ Ω0 = {s ∈ C : |s| ≥ C0, |arg(s)| ≤ π/2 + ε0},
the equation (sI − L)u = h+ gx, u ∈ H2, h ∈ L2, g ∈ H1 implies

(5.32)
|s| ||u||2 + ||ux||2 ≤ C1(||g||2 +

1

|s| ||h||
2),

|s|2 ||u||2 + |s| ||ux||2 + ||uxx||2 ≤ C1(||h||2 + |s| ||g||2 + ||gx||2).
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Proof. Let us first show that (5.32) implies closedness of L. Suppose Lun = hn → h
in L2, un → u in L2. Pick s0 ∈ Ω0 and observe

(5.33) (s0I − L)un = s0un − hn → s0u− h in L2.

Then by (5.32)

|s0|2 ||un − um||2 + |s0| ||un,x − um,x||2 + ||un,xx − um,xx||2

≤ C1||s0(un − um)− (hn − hm)||2.
Hence un is a Cauchy sequence in H2 and for some ũ ∈ H2

||un − ũ||H2 → 0.

Since un → u in L2 we obtain u = ũ ∈ H2, ||un − u||H2 → 0.
Therefore, from (5.33)

s0u− h = lim
n→∞

(s0I −L)un = s0u−Lu and Lu = h.

a-priori estimate

Let (sI−L)u = h+gx in R, u ∈ H2, h ∈ L2, g ∈ H1. Multiply by uH and integrate

(u, su)− (u,Auxx) = (u,Bux) + (u, Cu) + (u, h) + (u, gx).

Use integration by parts (note that C∞
0 is dense in Hk, k ≥ 0) and obtain

(5.34) s||u||2 + (ux, Aux) = (u,Bux) + (u, Cu) + (u, h)− (ux, g).

In the following we frequently use Young’s inequality

(5.35) ab ≤ α

4
a2 +

1

α
b2 ∀ a, b ∈ R, α > 0.

Take abolute values in (5.34) and find

(5.36)

|s| ||u||2 ≤ ||A||∞ ||ux||2 + ||B||∞ ||u|| ||ux||+ ||C||∞ ||u||2
+ ||u|| ||h||+ ||ux|| ||g||

≤ K0||ux||2 +K1||u||2 + ||u|| ||h||+ 1

2
||g||2.

Take the real part in (5.34),

Re s ||u||2 + α0||ux||2 ≤ ||B||∞ ||u|| ||ux||+ ||C||∞||u||2 + ||u|| ||h||+ ||ux|| ||g||

≤ α0

4
||ux||2 +

1

α0

||B||2∞ ||u||2

+ ||C||∞ ||u||2 + ||u|| ||h||+ α0

4
||ux||2 +

1

α0

||g||2.

We obtain

(5.37) Re s ||u||2 + α0

2
||ux||2 ≤ K2 ||u||2 + ||u|| ||h||+ 1

α0
||g||2.
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Case 1: Re s ≥ |Im s|, Re s > 0, |s| ≥ 2
√
2 K2.

Since 0 < Re s ≤ |s| ≤
√
2 Re s, equation (5.37) implies

|s|√
2
||u||2 + α0

2
||ux||2 ≤

|s|
2
√
2
||u||2 + 1

α0
||g||2 + |s|

4
√
2
||u||2 +

√
2

|s| ||h||2,

|s|
4
√
2
||u||2 + α0

2
||ux||2 ≤

1

|α0|
||g||2 +

√
2

|s| ||h||2 (cf. (5.32)).

Case 2: |Im s| ≥ Re s ≥ 0.
Use (5.37) in (5.36) and note Re s ≥ 0,

(5.38)

|s| ||u||2 ≤ 2||A||∞
α0

(K2 ||u||2 + ||u|| ||h|| +
1

α0
||g|2)

+K1 ||u||2 + ||u|| ||h||+ 1

2
||g||2

≤ K3(||u||2 + ||u|| ||h||+ ||g||2).

Take |s| > 2 K3, then K3 ≤ |s|
2

and

|s| ||u||2 ≤ |s|
2

||u||2 +K3||g||2 +
|s|
4
||u||2 + K2

3

|s| ||h||2,

(5.39)
|s|
4

||u||2 ≤ K4(||g||2 +
||h||2
|s| ).

Insert this into (5.37), take |s| ≥ 4K2,

α0

2
||ux||2 ≤ K2 ||u||2 + |s|

4
||u||2 + 1

|s| ||h||
2 +

1

α0

||g||2

≤ |s|
2

||u||2 + 1

|s| ||h||
2 +

1

α0
||g||2

≤ 2K4(||g||2 +
||h||2
|s| ) +

1

|s| ||u||
2 +

1

α0
||g||2

≤ K5(
||h||2
|s| + ||g||2).

Combining this with (5.39) yields (5.32).

Case 3: Re s ≤ 0, |Re s| ≤ ε|Im s|.
Take the imaginary part in (5.34) to find by (5.37)

|Im s| ||u||2 ≤ ||A||∞ ||ux||2 +K1||u||2 + ||u|| ||h||+ 1

2
||g||2

≤ ||A||∞
2

α0
(|Re s| ||u||2 +K2||u||2 + ||u|| ||h||+ 1

α0
||g||2).
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For ε 2
α0

||A||∞ ≤ 1
2

we end up with

|Im s| ||u||2 ≤ K6(||u||2 + ||u|| ||h||+ ||g||2).
Since

|s| ≤ (1 + ε2)1/2|Im s|,
we obtain

(5.40) |s| ||u||2 ≤ K6(1 + ε2)1/2(||u||2 + ||u|| ||h||+ ||g||).
Now we proceed as in case 2 after (5.38).
Finally, (5.32) and (sI − L)u = h+ gx imply by (5.32)

||uxx||2 = || − A−1(−su+Bux + Cu+ h+ gx)||2

≤ K7(|s|2 ||u||2 + ||ux||2 + ||h||2 + ||gx||2)
≤ K8(|s| ||g||2 + ||h||2 + ||h||2 + ||gx||2).

Combining this with the first part of (5.32) shows the second part of (5.32). �

Remark 5.8. Equation (5.32) implies that there exists K > 0 such that

||u||2H1 ≤ K(||g||2 + ||h||2) ∀ s ∈ Ω0.

In particular, there are no eigenvalues in Ω0. We will later show that sI−L, s ∈ Ω0

is indeed Fredholm of index 0. Then (5.32) implies Ω0 ⊂ ρ(L).

5.3. Fredholm properties and essential spectrum.

5.4. Linear evolution equations with second order operators.

5.5. The nonlinear stability theorem. see [8, Ch.4.2], [14, Ch.5.4], [18], [26]
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6. Numerical analysis of travelling waves

7. Travelling waves in Hamiltonian PDEs

8. Appendix

In this appendix we summarize various results from functional analysis and its
applications which are used throughout the text.

8.1. Linear functional analysis. We assume that the reader is familiar with
standard concepts from linear functional analysis as in [3], [29], for example. Here
we collect some extra results that are useful when transforming matrices resp.
operators into block diagonal form.

Lemma 8.1 (The Sylvester equation). Let X1, X2 be Banach spaces and Λ1 ∈
L[X1, X1], Λ2 ∈ L[X2, X2]. Then the Sylvester equation

(8.1) Λ1P − PΛ2 = R ∈ L[X2, X1]

has a unique solution P ∈ L[X2, X1] for every R ∈ L[X2, X1] if the spectra of Λ1

and Λ2 are disjoint.

Proof. Since the spectra σ(Λ1) and σ(Λ2) are compact and disjoint we find a simple
closed contour Γ ⊆ C which has σ(Λ1) in its interior but has σ(Λ2) in its exterior.
Then we claim that

(8.2) P =
1

2πi

∫

Γ

(zI − Λ1)
−1R(zI − Λ2)

−1dz

solves (8.1). Equation (8.2) is also known as Rosenblum’s formula, cf [28]. In
fact, insert P from (8.2) into (8.1) and use the resolvent identities Λj(zI−Λj)

−1 =
−I + z(zI − Λj)

−1, j = 1, 2 to find

Λ1P − PΛ2 =
1

2πi

∫

Γ

−R(zI − Λ2)
−1dz +

1

2πi

∫

Γ

(zI − Λ1)
−1Rdz

By Cauchy’s theorem the first integral vanishes since (zI−Λ2)
−1 is holomorphic in

the interior of Γ, and the second integral gives R since the complete spectrum of Λ1

lies in the interior of Γ. As for uniqueness, suppose that P ∈ L[X2, X1] solves the
homogeneous Sylvester equation (8.1). Then we obtain (zI−Λ1)P−P (zI−Λ2) = 0
for all z ∈ C and hence

P (zI − Λ2)
−1 = (zI − Λ1)

−1P ∀z ∈ Γ.

By integration we find

P =
1

2πi

∫

Γ

(zI − Λ1)
−1Pdz =

1

2πi

∫

Γ

P (zI − Λ2)
−1dz = 0.

�
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Under the assumptions of Lemma 8.1 the so called Sylvester operator

(8.3) S :

{
L[X2, X1] 7→ L[X2, X1],

P → Λ1P − PΛ2

is a linear homeomorphism. The boundedness of S−1 follows from the inverse
operator theorem but may also be read off directly from Rosenblum’s formula
(8.2). The inverse of its norm

(8.4) ‖S−1‖−1
L[L[X2,X1],L[X2,X1]]

= sep(Λ1,Λ2)

is also called the separation of Λ1 and Λ2, see [12, Chap.7]. Take, for example,
a perturbed pair Mj ∈ L[Xj , Xj] satisfying ‖M1 − λ1‖ + ‖M2 − Λ2‖ ≤ ε. Then
the perturbed operator SεP =M1P −PM2 satisfies ‖S −Sε‖ ≤ ε. By the Banach
Lemma Sε is invertible provided ε < sep(Λ1,Λ2) and the inverse satisfies
The quadratic extension of the Sylvester equation is the Riccati equation.

Lemma 8.2 (Riccati equation).

8.2. Semigroup theory. [20], [23], [14]

8.3. Sobolev spaces. [1]

8.4. Calculus in Banach spaces. The following result is a parameterized ver-
sion of a Lipschitz inverse mapping theorem

Theorem 8.3 (Parameterized Lipschitz inverse mapping theorem). Let X, Y, Z be
Banach spaces, let Bδ(0) = {x ∈ X : ‖x‖ ≤ δ}, δ > 0 be a ball in X and let Λ ⊆ Z
be open. Further, let operators

L ∈ Ck(Λ, L[X, Y ]), F ∈ Ck(Bδ(0)× Λ, Y ), k ≥ 0

and constants ℓ > 0, ρ ≥ 0 be given with the following properties:

(i) The maps L(λ) ∈ L[X, Y ], λ ∈ Λ are homeomorphisms and

(8.5) ‖L(λ)−1‖L[X,Y ] ≤ ℓ ∀λ ∈ Λ.

(ii) For all x1, x2 ∈ Bδ(0) and λ ∈ Λ

(8.6) ‖F (x1, λ)− F (x2, λ)‖ ≤ ρ‖x1 − x2‖.
(iii) The constants satisfy ρℓ < 1 and

(8.7) ‖F (0, λ)‖ ≤ (ℓ−1 − ρ)δ ∀λ ∈ Λ.

Then the equation

(8.8) L(λ)x+ F (x, λ) = 0

has a unique solution x = x(λ) ∈ Bδ(0) for each λ ∈ Λ and the solution func-
tion satisfies x(·) ∈ Ck(Λ, Bδ(0)). Moreover, the following inequality holds for all
x1, x2 ∈ Bδ(0) and λ ∈ Λ

(8.9) ‖x1 − x2‖ ≤ ℓ

1− ℓρ
‖L(λ)x1 + F (x1, λ)− (L(λ)x2 + F (x2, λ))‖.
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Proof. Let us rewrite (8.8) as a fixed point equation

(8.10) x = −L(λ)−1F (x, λ) =: T (x, λ).

From (8.5) and (8.6) we have for all x1, x2 ∈ Bδ(0), λ ∈ Λ

(8.11) ‖T (x1, λ)− T (x2, λ)‖ ≤ ℓ‖F (x1, λ)− F (x2, λ)‖ ≤ ℓρ‖x1 − x2‖.
Using this and (8.7) shows that for all x ∈ Bδ(0),

‖T (x, λ)‖ ≤‖T (0, λ)‖+ ‖T (x, λ)− T (0, λ)‖
≤ℓ‖F (0, λ)‖+ ℓρ‖x‖
≤ℓ(ℓ−1 − ρ)δ + ℓρδ = δ.

Hence T (·, λ) maps Bδ(0) into itself and is a contraction with constant q = ℓρ < 1.
Thus (8.10) has a unique solution x(λ) ∈ Bδ(0) for all λ ∈ Λ. Moreover, from
(8.5),(8.6), we obtain the following estimate for all x1, x2 ∈ Bδ(0), λ ∈ Λ

‖x1 − x2‖ ≤‖x1 − T (x1, λ)− (x2 − T (x2, λ))‖+ ‖T (x1, λ)− T (x2, λ)‖
≤ℓ‖L(λ)x1 + F (x1, λ))− (L(λ)x2 + F (x2, λ))‖+ ρℓ‖x1 − x2‖,

which implies (8.9). Setting x1 = 0, x2 = x(λ) in (8.9) yields

(8.12) ‖x(λ)‖ ≤ ℓ

1− ℓρ
‖F (0, λ)‖, λ ∈ Λ.

In case k = 0 we also obtain continuity of x(·) at λ0 ∈ Λ from (8.9)

‖x(λ)− x(λ0)‖ ≤ ℓ

1− ℓρ
‖L(λ)x(λ0) + F (x(λ0), λ)‖

=
ℓ

1− ℓρ
‖(L(λ)− L(λ0))x(λ0) + F (x(λ0), λ)− F (x(λ0), λ0)‖.

By the continuity of L and F , the right-hand side converges to zero as λ→ λ0. In
case k ≥ 1 the Ck-smoothness of x(·) follows as in the implicit function theorem
for Frechét differentiable functions. For completeness we indicate the first step.
Assuming x(·) to be differentiable in Λ, we find from differentiating the equation

0 =L(λ)x(λ) + F (x(λ), λ), λ ∈ Λ

formally

0 =(DL(λ)h)x(λ) + L(λ)Dx(λ)h +DxF (x(λ), λ)Dx(λ)h

+DλF (x(λ), λ)h for h ∈ Z.

Hence we expect the derivative d0 := Dx(λ0) at λ = λ0 to satisfy the equation

(8.13) (L(λ0) +DxF (x(λ0), λ0))d0h = −(DL(λ0)h)x(λ0)−DλF (x(λ0), λ0)h.
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With (8.5),(8.6) one shows that the operator L(λ0) + DxF (x(λ0), λ0) ∈ L[X, Y ]
on the left of (8.13) is a linear homeomorphism, and then defines d0 ∈ L[Z,X ] via
(8.13). With this definition one continues to show

x(λ0 + h)− x(λ0)− d0h = o(‖h‖), h ∈ Z,

which proves that Dx(λ0) exists and coincides with d0. Higher derivatives are then
obtained by further differentiation of (8.13). �

8.5. Analysis on manifolds.

8.6. The Gronwall Lemma.
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Figure 2.4. Phase plane for the Nagumo example with values b = 1
4

and c = −0.4, −0.35, c⋆, −0.3, −0.2, 0
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Figure 2.5. Phase plane for the Nagumo example with values b = 1
4

and c = 0, 0.2, 0.3, c⋆, 0.36, 0.4
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Figure 2.6. Phase plane for the Fisher example c = c⋆ = −2

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

w1

w2

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

w1

w2

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

w1

w2

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

w1

w2

Figure 2.7. Phase plane for the Fisher example c = −3,−1, 1, 3
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Figure 2.9. Pulse in the Korteweg-de Vries (KdV) equation: c = 1
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