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Abstract Communication and similar markets can only be understood thoroughly
if network effects are taken into account. For an oligopolistic market without com-
petition, a static mathematical model is derived. This discrete model allows to
analyse in detail marginal utility and net gain for a networkas well as its critical
sizes and limit of growth or saturation. They are described in terms of connection
values and price that might depend on the network size. Moreover, a generalisation
of Metcalfe’s law is shown.

JEL Classification C0, D4, D7, L1, L68, L86, L96

Key words network – externalities – mathematical model – difference equation –
Metcalfe’s law

1 Introduction

The study of complex networked systems with an origin in sociology, biology,
ecology, physics, technology (especially, information technology), and other fields
has become topical again in the last decade. In particular, methods of dynamical
systems and graph theory as well as probabilistic methods have been employed
in order to develop models and to construct tools for a betterunderstanding, pre-
diction or control of the behaviour of such networks, their temporal evolution,
and spatial distribution. For a review, we refer to Newman (2003), Newmanet al.
(2006), Strogatz (2001), and the literature cited therein.

Networks also very often arise in economics although the mathematical de-
scription seems rather to be in an early stage here. Network effects play, however,
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an important role in the understanding of e.g. communication markets where con-
sumer decisions depend upon the behaviour of other consumers and the availability
of (real or fictitious) connections of a certain value. For a discussion of assump-
tions, implications, and limits of the network effect theory, we refer to Weitzelet
al. (2000). For earlier results on the analysis of network externalities in economics,
we refer to Economides (1996) and the references cited therein.

The effect of networks in markets such as telecommunicationand fax, internet,
video cassette recorders, electricity, railroads etc. hasrecently been analysed in
detail by some authors.

So, in Park (2004), an oligopolistic market for newly introduced durable prod-
ucts with network externalities is described by means of a dynamic structural
model for the consumer’s choice and producer’s pricing. Thedynamic aspect is
taken into account by considering characteristic values atdifferent time periods.
Markov processes, the Bellmann equation, and the parameteridentification from
statistic moment equations form the mathematical background. Based upon this
model, Park explains the superiority of the VHS format over the Betamax format.

Ohashi (2003) presents a hedonic approach in order to explain the development
of the price index for video cassette recorders.

The U.S. fax market has been considered by Shapiro and Varian(1998). They
distinguish between three possible network equilibria: the trivial one where no net-
work exists, an equilibrium with a small network size where potential consumers
are not willing to pay too much as they expect only a small network, and an equi-
librium with a large network size where prices are low as the good only has a small
value for new users. The analysis relies upon the comparisonof the demand and
the supply curve. However, the model is rather simple: the demand is supposed to
be a quadratic function of the network’s size whereas the supply is constant and
thereby independent of the network’s size.

A similar approach can be found in Economides and Himmelberg(1995). The
authors again distinguish between the zero size, intermediate size, and large size
network equilibria within an appropriate range of prices. As the latter one is Pareto
optimal, it is expected that the market will choose this large size equilibrium.
Moreover, small networks (with network sizes below a critical mass) cannot be
observed. The model suggested by the authors relies upon a network externalities
function.

Schoder (2000) analyses network effects for telecommunication services, es-
pecially diffusion phenomena such as critical mass. The probabilistic model there
is based upon the master equation approach and is applied to the question of supe-
riority of one attitude over others.

The U.S. as well as Korean fax market has also been consideredin Lim et al.
(2003), and a new diffusion model describing network externalities in telecommu-
nication services has been proposed. Beside the critical mass, the authors discuss
the late-take off and other phenomena.

We may distinguish between real or fictitious networks: In a fictitious network,
goods and services are exchanged whereas in a real network also other objects are
exchanged such as data packets within a communication network. An essential
property of real networks is that they are determined by a specific technological
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standard. The participation in a communication network forinstance requires to
possess an apparatus that is compatible with those used by the other participants
of the network. Moreover, we find central networks with only afew sources but
many sinks as well as local networks in which any node may act as a source and a
sink. In this paper, we focus on local real networks.

The static model suggested here is a discrete deterministicone that relies upon
difference equations. It takes into account connection diversity (links between dif-
ferent nodes may have different connection values). The connection value and
price function, however, which are assumed to be givena priori, can result from
probabilistic considerations. The model suggested might easily be extended to in-
corporate dynamical aspects.

It is important to distinguish between direct versus indirect network effects.
Whereas direct network effects are demand-side user externalities, indirect effects
are supply-side user externalities due to e.g. decreasing unit prices. In our model,
direct externalities as well as the consumer’s expectationare incorporated by the
user’s utility and the connection values. Indirect externalities can be described by
the price function.

With the static model presented here, we can strictly deriveMetcalfe’s law and
also some generalisation. Moreover, we show that the marginal net gain is the sum
of the net gain for a new user and the net gain all old users havewhen a new
user joins a network. The latter one incorporates changes due to size-dependent
connection values and unit prices. Critical network sizes are then sizes where these
two net gains change their sign.

As an example, we consider connection values that are constant for all con-
nections but are monotonically decreasing with the network’s size and a typical
hyperbolic prize function. Decreasing connection values can be interpreted as a
model for overloading or capacity bounds or diminishing interest in the network.
We show, in particular, that the connection values are not allowed to decay faster
than 1/size in order to guarantee an expanding network.

2 Mathematical model

We consider a network ofn ∈ {2, 3, . . .} usersUi (i = 1, 2, . . . , n). The network
users take (directly or indirectly) advantage of the connections to other users. We
assume that

(H1) a connection takes only place between two users (plane network);
(H2) a connection between two users has a value only for thesetwo connected users.

As the value of the connection between the two usersUi andUj might be different
for both the users, we introduceaij being the value of the connection for userUi

(andaji being the value for userUj):

aij : Ui ←→ Uj , i, j ∈ {1, 2, . . . , n} .
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Note that1

aii = 0 for all i = 1, 2, . . . , n .

We, therefore, can associate with the network the matrix

A =









0 a12 a13 . . . a1n

a21 0 a23 . . . a2n

. . . . . .
an1 an2 an3 . . . 0









.

In general, the matrixA is unsymmetric.
If each user can connect to each other user, there are

(

n

2

)

=
n(n− 1)

2

connections in a network of sizen. If this is not the case, we may model non-
existing connections by setting its value equal zero.

Often the value of a connection depends on the network’s size. Due to e.g. an
overload, the value might be decreasing with increasing size. So the valuesaij and
the matrixA are indeed functions ofn,

aij = aij(n) , A = A(n) .

The total utility of the network of sizen for userUi is denoted byNi→(n) and
is given by thei-th row sum ofA(n),

Ni→(n) =

n
∑

j=1

aij(n) , i ∈ {1, 2, . . . , n} ,

whereasN→k(n) denotes the total value of all connections with userUk for all
other users of the network of sizen, which is thek-th column sum ofA(n),

N→k(n) =
n
∑

j=1

ajk(n) , k ∈ {1, 2, . . . , n} .

So i→ denotes all possible connectionsfrom userUi whereas→ k denotes all
possible connectionsto userUk. The total utilityN(n) of the whole network is
thus given by

N(n) =

n
∑

i,j=1

aij(n) =

n
∑

i=1

Ni→(n) =

n
∑

k=1

N→k(n) .

1 This assumption is only to hold the presentation as simple aspossible. If not only a
derivative utility but also an original utility occurs, this could be modelled by assigning it
to the valueaii for a connection with oneself, see also (H3).
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Example 1 We consider a network ofn users, in which all connections have the
same valuea(n)/2. Then

aij(n) =







0 for i = j ,

a(n)

2
for i 6= j ,

i, j ∈ {1, 2, . . . , n} .

It follows

N(n) =
a(n)

2
n(n− 1) , (1)

which coincides with Metcalfe’s law ifa = const. ut

Example 2 Often the connections differ in their values. As a simplifiedmodel we
may assume that the connection valueaij(n) within a fixed network of sizen
depends in some sense on the distance between the usersUi andUj .

Let us, for instance, assume that for each userUi there arem (0 < m < n)
other users such that the connections fromUi to these users have the valuea(n)/2
and all other connections fromUi are valued withb(n)/2. It then follows

N(n) = n

(

m
a(n)

2
+ (n−m− 1)

b(n)

2

)

,

which generalises Metcalfe’s law. ut

In a recent discussion (see Odlyzko and Tilly (2005), Briscoeet al. (2006)), the
authors claim that Metcalfe’s law is wrong and instead ofN(n) ∼ n2 the relation
N(n) ∼ n log n is proposed. However, even the latter relation can be derived from
(1) by assuminga(n) ∼ (log n)/n which models a connection value function that
is decreasing forn larger than some critical size.

Let us consider now the case that a new user joins a network ofn users. So
the new network consists ofn + 1 users. More precisely, we compare a network
of n usersceteris paribus with a network ofn + 1 users. For simplicity, we firstly
consider networks with connection values that are independent of the network’s
size and afterwards the more general case of networks with changing connection
values.

2.1 Networks with connection values that are independent of the network’s size

If the connection values are independent of the network’s size, we find for the
associated matrix of connection values

A(n + 1) =















a1n+1

a2n+1

A(n)
...

ann+1

an+11 an+12 . . . an+1n 0















.
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Moreover, we obtain

N(n + 1) = N(n) + Nn+1→(n + 1) + N→n+1(n + 1) ,

i.e. the total utility of the network withn + 1 users equals the total utility of the
network withn usersplus the total value for the new(n + 1)-th userplus the total
value all connections to the new user have for all old users. The marginal utility is
thus given by2

∆N(n) := N(n + 1)−N(n) = Nn+1→(n + 1) + N→n+1(n + 1) (2)

and is the sum of the total valueNn+1→(n + 1) for the new user as he or she can
connect to all old users plus the total valueN→n+1(n + 1) all old users have as
they can now connect to the new user.

Example 3 We assumeaij(n) ≡ a/2 for i 6= j with a > 0 andaii(n) ≡ 0. It
follows

Nn+1→(n + 1) = N→n+1(n + 1) =
an

2

as there aren connections to and from the new userUn+1. Hence, the marginal
utility is given by

∆N(n) = an .

ut

Let p be the price of a good for one user. In general,p is a (monotonically
decreasing) function ofn. The expenses for a network of sizen are then given by
K(n) = np(n) and the total net gain of the network is given by

G(n) = N(n)−K(n) = N(n)− np(n) .

Here we assume that

(H3) the good is ofno value without the network,

although it would easily be possible to incorporate a positive value of the good in
the absence of the network.

For the marginal net gain, it follows

∆G(n) = ∆N(n)−∆
(

np(n)
)

,

where

∆
(

np(n)
)

:= (n + 1)p(n + 1)− np(n) = p(n + 1) + n∆p(n) . (3)

To be precise, the marginal net gain above is the difference between the net gain
of a network of sizen + 1 and the net gain of another network of sizen ceteris
paribus.

2 Here and in the following let∆y(n) := y(n+1)−y(n) for any quantityy that depends
on the network sizen.
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From (2) and (3), we conclude

∆G(n) = Nn+1→(n + 1)− p(n + 1) + N→n+1(n + 1)− n∆p(n)

=: Gn+1→(n + 1) + G→n+1(n + 1) . (4)

Here,Gn+1→(n + 1) = Nn+1→(n + 1) − p(n + 1) denotes the net gain for the
new userUn+1, whereasG→n+1(n+1) = N→n+1(n+1)−n∆p(n) denotes the
net gain for all old usersU1, . . . , Un whenUn+1 joins the network.

The new user will only be willing to enter the network if

Gn+1→(n + 1) > 0 , (5)

which is a condition for the size of the network and determines the break-even
point. On the other hand, the old network will be willing to accept a new user only
if

G→n+1(n + 1) ≥ 0 , (6)

which is in particular true ifp = p(n) is constant or monotonically decreasing
such that∆p(n) ≤ 0.

Obviously, the smallest integer for which both the conditions (5) and (6) are
fulfilled is a minimum size of the network.

Example 4 (Example 3 continued)
(a) Let p(n) ≡ p be independent ofn. This might be the case for a well-

established network. Then

∆G(n) = an− p , Gn+1→(n + 1) =
an

2
− p , G→n+1(n + 1) =

an

2
.

A new user will be willing to join the network if

n >
2p

a
.

There will beno restriction on the network’s size ifp ≤ a/2 as thenn > 1 ≥
2p/a. However, the valuea/2 for one connection is, in general, below the price
for a good that allows to connect to each member of the network.

(b) Let now

p(n) = pmin +
pmax − pmin

n
, 0 ≤ pmin < pmax . (7)

This is a typical price function that decreases with the number of consumers
(cf. Figure 1) following the principle of economies of scale. It follows

Gn+1→(n + 1) =
an

2
−

(

pmin +
pmax − pmin

n + 1

)

as well as

G→n+1(n + 1) =
an

2
− n∆p(n) =

an

2
+

pmax − pmin

n + 1
.
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Fig. 1 Price function in Example 3

For large networks, we thus have asymptotically

Gn+1→(n + 1) ∼
an

2
− pmin , G→n+1(n + 1) ∼

an

2
, ∆G(n) ∼ an− pmin .

Note that the total net gain of all old users due to the joiningof the new user is
nonnegative:G→n+1(n + 1) ≥ 0. This remains true for arbitrary monotonically
decreasing price functions as then∆p(n) ≤ 0.

However, the new user will only be willing to join the networkif the net gain
Gn+1→(n + 1) is positive, i.e. if

an

2
> pmin +

pmax − pmin

n + 1
=

npmin + pmax

n + 1
.

This is fulfilled if and only if the network is large enough such that

n >
pmin

a
−

1

2
+

√

(

pmin

a
−

1

2

)2

+
2pmax

a
=: n∗ .

If e.g.pmin = a/2 thenn >
√

pmax/pmin has to be required. There isno restric-
tion on the sizen if

pmin <
3a

2
and pmax + pmin ≤ a (8)

as thenn∗ ≤ 1. Again, the valuea/2 for one connection is, in general, small
compared to the price of the good and (8) will be violated.

In Figure 2, the total net gainGn+1→(n + 1) for the new user is illustrated for
the rather realistic case thatpmin > a/2. The critical size is then the integer part
of n∗ + 1.
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Fig. 2 Total net gain for the new user in Example 3 (b)

(c) We now consider the case of a monotonically increasing price. A first ob-
servation is that the net gainGn+1→(n + 1) = an/2− p(n + 1) for the new user
will be decreasing withn if ∆p(n) > a/2. So it will be the less attractive to join
the network the larger it becomes. In view of

G→n+1(n + 1) =
an

2
− n∆p(n) < 0 ,

also the old network has no interest in new members if∆p(n) > a/2. The interest
in new members diminishes with increasingn even for∆p(n) ≤ a/2 as long as
p = p(n) is such that

∆
(

n∆p(n)
)

> 0 ,

which is a condition on the curvature of the price function. Vice versa, a network
can –by means of a suitable pricing– remain its size. Such a behaviour can be
observed for exclusive networks. ut

2.2 Networks with connection values that changes with the network’s size

If the connection valuesaij are not independent of the network’s sizen, we obtain
because ofan+1n+1 = 0 from

N(n + 1) =

n
∑

j=1

an+1j(n + 1) +

n
∑

i=1

ain+1(n + 1) +

n
∑

i,j=1

aij(n + 1)

= Nn+1→(n + 1) + N→n+1(n + 1) +

n
∑

i,j=1

aij(n + 1)
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with N(n) =
∑n

i,j=1
aij(n) the relation

∆N(n) = Nn+1→(n + 1) + N→n+1(n + 1) +

n
∑

i,j=1

∆aij(n)

instead of (2). The additional term
∑n

i,j=1
∆aij(n) reflects the difference of the

utility between a network of sizen+1 and a network of sizen due to the different
connection values: Especially for largen, the connection valueaij(n + 1) may be
less than the corresponding valueaij(n).

Similarly to (4), we find with (3)

∆G(n) = Nn+1→(n+1)−p(n+1)+N→n+1(n+1)+

n
∑

i,j=1

∆aij(n)−n∆p(n) .

This shows that the marginal net gain is again the sum of the net gainGn+1→(n+
1) = Nn+1→(n + 1)− p(n + 1) of the new user and the net gain

G→n+1(n + 1) = N→n+1(n + 1) +
n
∑

i,j=1

∆aij(n)− n∆p(n)

for the old network whenUn+1 enters it. What is different to the situation with
connection values independent ofn is the term

∑n

i,j=1
∆aij(n). As the connection

values will often be monotonically decreasing withn (Gossen’s law), this term
leads to areduction of the net gain for the old network if a new user joins it.

Again the new user will be willing to join the network only ifGn+1→(n+1) >
0. On the other hand, the old network will be willing to accept anew user only if
G→n+1(n + 1) ≥ 0.

Example 5 If all connections possess the valuea(n)/2 (see also Example 1) then

Nn+1→(n + 1) = N→n+1(n + 1) = a(n + 1)
n

2
,

∆N(n) = a(n + 1)n +
n(n− 1)

2
∆a(n) .

It follows

Gn+1→(n + 1) = a(n + 1)
n

2
− p(n + 1) , (9)

G→n+1(n + 1) = a(n + 1)
n

2
+

n(n− 1)

2
∆a(n)− n∆p(n) . (10)

In view of an overload or capacity bound, the connection values are monotoni-
cally decreasing with the network’s size. In a simple case, this behaviour might be
modelled by the function

a(n) =















amax for n ≤ n1 ,

amax −
n− n1

n2 − n1

(amax − amin) for n1 ≤ n ≤ n2 ,

amin for n2 ≤ n ,

(11)
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network size n

co
nn
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a
min

 

a(n) 

n
1
 n

2
 

Fig. 3 Connection values in Example 5

wheren1 andn2 are some specific network sizes and0 ≤ amin < amax (cf. Fig-
ure 3).

(a) Let us now consider a pricep that is independent ofn which again corre-
sponds to a situation of saturation. The net gainGn+1→(n + 1) of the new user is
positive ifn is sufficiently large. Indeed, we have to require

a(n + 1)
n

2
> p .

This is shown in Figure 4. As we can see, there might be more than one critical

1

      

      

      

network size n

ut
ili

ty
 a

nd
 p

ric
e 

fo
r 

ne
w

 u
se

r

N
n+1→

(n+1) 

n
2
 n

1
 

constant price 
p 

a
max

 

a
min

 

G
n+1→

(n+1)  

<0 >0 <0 >0 

Fig. 4 Total utility and constant price for the new user in Example 5
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size of a network. It is a simple but tedious task to calculatethese characteristic
sizes from (9) and (11). For large networks, we obtain asymptotically

Gn+1→(n+1) ∼ amin

n

2
−p , G→n+1(n+1) ∼ amin

n

2
, ∆G(n) = aminn−p .

For an arbitrary functiona = a(n) (not given by (11)) and constant price, we
infer from (10) the condition

a(n + 1)
n

2
+

n(n− 1)

2
∆a(n) =

n

2
(n∆a(n) + a(n)) ≥ 0

in order to haveG→n+1(n + 1) ≥ 0. This is equivalent to the inequality

εa(n) :=
n∆a(n)

a(n)
≥ −1

for the (discrete) elasticity ofa that is in particular fulfilled ifa is monotonically
decreasing and inelastic. An example would bea(n) = 1/n with εa(n) = −1 +
1/(n + 1) and a counterexample (forn ≥ 2) is a(n) = 1/n2 with εa(n) =
−2 + (3n + 2)/(n + 1)2. Indeed, if

a(n) =
1

n1+α
for someα > 0

then for sufficiently largen

εa(n) = n2+α
(

(n + 1)−1−α − n−1−α
)

= n

(

(

n

n + 1

)1+α

− 1

)

< −1 .

Note thatεa(n)→ −(1 + α) asn→∞.
Moreover, fora(n) = a(log n)/n with a constanta > 0 (which leads to the

suggestionN(n) ∼ n logn as in Briscoeet al. (2006), Odlyzko and Tilly (2005)),
we findεa(n) > −1 and thusG→n+1(n + 1) ≥ 0.

(b) If the price itself is changing with the network’s size, the situation becomes
more complicated. In Figure 5, the price is given by the function (7). Nevertheless,
it is possible to calculate the critical network sizes from given data. In turn, one
can also calculate the price that leads to a positive net gainfor the new user if the
network is of a given size.

It remains to analyse for which sizes the net gainG→n+1(n+1) is nonnegative,
i.e

a(n + 1)
n

2
− n∆p(n) ≥ −

n(n− 1)

2
∆a(n) .

Supposing a monotonically decreasing price and a monotonically decreasing con-
nection value, such that∆p(n) ≤ 0 and∆a(n) ≤ 0, the net gainG→n+1(n + 1)
is nonnegative if again the network has reached a sufficiently large size as in the
previous case (a).

(c) The case of an increasing price follows, although somewhat more involved
here, the same lines as in Example 4. In particular, potential new members are
the less interested in joining the network the larger∆p(n) is. This can be seen
from (4). ut
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Fig. 5 Total utility and changing price for the new user in Example 5

3 Conclusions

We have shown that the primary network effect given by the marginal net gain of
the network can be divided into the net gainGn+1→ the new user has from joining
the network plus the net gainG→n+1 the old users have if a new user joins the
network. A new user will join the network only ifGn+1→ > 0 and the network
will allow the joining only if G→n+1 ≥ 0. Both conditions can only be fulfilled if
the network’s size ranges between critical sizes.

If the value of a connection varies with the size of the network, as is the case
when modelling overload, saturation or diminishing interest in the network, then
G→n+1 depends on the change in the connection values. In particular, the elas-
ticity of the functiona = a(n) of the value for each connection depending on the
network sizen has to be greater or equal−1 (if, for simplicity, the price is assumed
to be constant) in order to haveG→n+1 ≥ 0. This can be interpreted as a condition
for the connection values but also for the size of the network. So, a limit of growth
can be derived for networks in which connection values decrease with the size of
the network.

The model established here allows to calculate critical sizes for a network if the
connection values and price function are knowna priori. It also allows to model
exclusive networks that are of limited size.
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