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Abstract Communication and similar markets can only be understomatighly
if network effects are taken into account. For an oligogimimarket without com-
petition, a static mathematical model is derived. This mite model allows to
analyse in detail marginal utility and net gain for a netwaskwell as its critical
sizes and limit of growth or saturation. They are descrilmeigims of connection
values and price that might depend on the network size. Merea generalisation
of Metcalfe’s law is shown.
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1 Introduction

The study of complex networked systems with an origin in @gogy, biology,
ecology, physics, technology (especially, informatiahtelogy), and other fields
has become topical again in the last decade. In particukethads of dynamical
systems and graph theory as well as probabilistic methods been employed
in order to develop models and to construct tools for a bettelerstanding, pre-
diction or control of the behaviour of such networks, themporal evolution,
and spatial distribution. For a review, we refer to Newmad®), Newmaret al.
(2006), Strogatz (2001), and the literature cited therein.

Networks also very often arise in economics although thehematitical de-
scription seems rather to be in an early stage here. Netviatte play, however,
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an important role in the understanding of e.g. communioatiarkets where con-
sumer decisions depend upon the behaviour of other consaméthe availability
of (real or fictitious) connections of a certain value. Foriscdssion of assump-
tions, implications, and limits of the network effect thgowe refer to Weitzekt
al. (2000). For earlier results on the analysis of network exkties in economics,
we refer to Economides (1996) and the references citedithere

The effect of networks in markets such as telecommunicatiaifax, internet,
video cassette recorders, electricity, railroads etc.rbasntly been analysed in
detail by some authors.

So, in Park (2004), an oligopolistic market for newly intnegd durable prod-
ucts with network externalities is described by means of madyic structural
model for the consumer’s choice and producer’s pricing. @jngamic aspect is
taken into account by considering characteristic valuatifegrent time periods.
Markov processes, the Bellmann equation, and the paramdetatification from
statistic moment equations form the mathematical backgioBased upon this
model, Park explains the superiority of the VHS format oherBetamax format.

Ohashi (2003) presents a hedonic approach in order to extpidevelopment
of the price index for video cassette recorders.

The U.S. fax market has been considered by Shapiro and @r@28). They
distinguish between three possible network equilibriattivial one where no net-
work exists, an equilibrium with a small network size wheotégmtial consumers
are not willing to pay too much as they expect only a small nekwand an equi-
librium with a large network size where prices are low as thedpnly has a small
value for new users. The analysis relies upon the compadbtre demand and
the supply curve. However, the model is rather simple: theatel is supposed to
be a quadratic function of the network’s size whereas th@lgup constant and
thereby independent of the network’s size.

A similar approach can be found in Economides and Himmel9§5). The
authors again distinguish between the zero size, intemtedize, and large size
network equilibria within an appropriate range of prices.the latter one is Pareto
optimal, it is expected that the market will choose this ¢agize equilibrium.
Moreover, small networks (with network sizes below a caitimass) cannot be
observed. The model suggested by the authors relies upawarkexternalities
function.

Schoder (2000) analyses network effects for telecommtioitaervices, es-
pecially diffusion phenomena such as critical mass. Thegddistic model there
is based upon the master equation approach and is appliee ¢ éstion of supe-
riority of one attitude over others.

The U.S. as well as Korean fax market has also been considetaah et al.
(2003), and a new diffusion model describing network extties in telecommu-
nication services has been proposed. Beside the criticed ntlde authors discuss
the late-take off and other phenomena.

We may distinguish between real or fictitious networks: Irctitfous network,
goods and services are exchanged whereas in a real networtather objects are
exchanged such as data packets within a communication retwo essential
property of real networks is that they are determined by &ifipgechnological
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standard. The participation in a communication networkifistance requires to
possess an apparatus that is compatible with those usec mghtar participants
of the network. Moreover, we find central networks with onljea sources but
many sinks as well as local networks in which any node maysatsource and a
sink. In this paper, we focus on local real networks.

The static model suggested here is a discrete deterministithat relies upon
difference equations. It takes into account connectioargity (links between dif-
ferent nodes may have different connection values). Thexettion value and
price function, however, which are assumed to be ga@niori, can result from
probabilistic considerations. The model suggested migsityebe extended to in-
corporate dynamical aspects.

It is important to distinguish between direct versus inclineetwork effects.
Whereas direct network effects are demand-side user eit@s, indirect effects
are supply-side user externalities due to e.g. decreasigtices. In our model,
direct externalities as well as the consumer’s expectatierincorporated by the
user’s utility and the connection values. Indirect extéties can be described by
the price function.

With the static model presented here, we can strictly ddvigecalfe’s law and
also some generalisation. Moreover, we show that the malngét gain is the sum
of the net gain for a new user and the net gain all old users tdnan a new
user joins a network. The latter one incorporates changesalsize-dependent
connection values and unit prices. Critical network sizedlaen sizes where these
two net gains change their sign.

As an example, we consider connection values that are garfstaall con-
nections but are monotonically decreasing with the netisaize and a typical
hyperbolic prize function. Decreasing connection valuas lbe interpreted as a
model for overloading or capacity bounds or diminishingerest in the network.
We show, in particular, that the connection values are riotved to decay faster
than 1/size in order to guarantee an expanding network.

2 Mathematical model

We consider a network of € {2,3,...} usersU; (i = 1,2,...,n). The network
users take (directly or indirectly) advantage of the cotinas to other users. We
assume that

(H1) a connection takes only place between two users (platveonk);
(H2) aconnection between two users has a value only for thheseonnected users.

As the value of the connection between the two ugrsndU; might be different
for both the users, we introdueg; being the value of the connection for ugér
(anda;; being the value for usdr;):

aij:<—>Uj, i,j€{1,2,...,n}.
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Note that
a; =0 forali=1,2,...,n.

We, therefore, can associate with the network the matrix

0 a2 aiz ... ain
A= | o= 0 ao3 ... asy
Anl Ap2 Anp3 ... 0

In general, the matri¥d is unsymmetric.
If each user can connect to each other user, there are

()= "5

connections in a network of size If this is not the case, we may model non-
existing connections by setting its value equal zero.

Often the value of a connection depends on the network’s Bige to e.g. an
overload, the value might be decreasing with increasirgy Sp the values;; and
the matrixA are indeed functions of,

Qi = Qg5 (n) s A= A(’I’L) .

The total utility of the network of size for userU, is denoted byV,_.(n) and
is given by thei-th row sum ofA(n),

NZH(R)ZZQZJ(TL), iE{l,Q,...,TL},
j=1

whereasN_,;(n) denotes the total value of all connections with uSgrfor all
other users of the network of sizg which is thek-th column sum ofd(n),

N_i(n) = Zajk(n), ke{l,2,...,n}.

Soi — denotes all possible connectiofiem userU; whereas— k denotes all
possible connection® userUy. The total utility N'(n) of the whole network is
thus given by

n

N(n)= > ayn)=>Y Ni.(n)=>Y N_xn).
i=1 k=1

ij=1

! This assumption is only to hold the presentation as simpleoasible. If not only a
derivative utility but also an original utility occurs, thtould be modelled by assigning it
to the value;; for a connection with oneself, see also (H3).
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Example 1 We consider a network af users, in which all connections have the
same value(n)/2. Then

0 fori=j,
aij(n) = 1,7 €41,2,...,n}.
! ) o 45,
2
It follows
a(n)
N(n):Tn(n—l)7 Q)
which coincides with Metcalfe’s law i = const. O

Example 2 Often the connections differ in their values. As a simplifieddel we
may assume that the connection vatyg(n) within a fixed network of size:
depends in some sense on the distance between thel(samdU;.

Let us, for instance, assume that for each dgethere aren (0 < m < n)
other users such that the connections fidnto these users have the valug:)/2
and all other connections frob; are valued wittb(n)/2. It then follows

N(o) = (m 2+ (== 1) 2,

which generalises Metcalfe’s law. O

Inarecent discussion (see Odlyzko and Tilly (2005), Brestal. (2006)), the
authors claim that Metcalfe’s law is wrong and insteadVigh) ~ n? the relation
N(n) ~ nlogn is proposed. However, even the latter relation can be d&fieen
(1) by assuming(n) ~ (logn)/n which models a connection value function that
is decreasing fon larger than some critical size.

Let us consider now the case that a new user joins a networkusiers. So
the new network consists of + 1 users. More precisely, we compare a network
of n usersceteris paribus with a network ofn + 1 users. For simplicity, we firstly
consider networks with connection values that are indepenadf the network’s
size and afterwards the more general case of networks withgthg connection
values.

2.1 Networks with connection values that are independent of the network’s size

If the connection values are independent of the networks, sive find for the
associated matrix of connection values

Ain+1
a2n+1
An+1)= A(n)
a'rL7L+1
Ap+11 On412 - -+ Gn41n 0
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Moreover, we obtain
N(n + 1) = N(n) + N7L+1—>(n + 1) + N—>n+1(n + 1)7

i.e. the total utility of the network withw + 1 users equals the total utility of the
network withn usersplusthe total value for the newn + 1)-th userplusthe total
value all connections to the new user have for all old usdre.farginal utility is
thus given by

AN(n):=N(n+1)— N(n)=Npt1-(n+ 1)+ Nppi(n+1)  (2)

and is the sum of the total valué,;_,(n + 1) for the new user as he or she can
connect to all old users plus the total vali¥e,,,+1(n + 1) all old users have as
they can now connect to the new user.

Example 3 We assumeu;;(n) = a/2 for i # j with a > 0 anda;;(n) = 0. It

follows
an

Npt1—(n+1) = N_ppi(n+1) = -

as there ares connections to and from the new udéf, ;. Hence, the marginal
utility is given by
AN(n) =an.

Let p be the price of a good for one user. In genepais a (monotonically
decreasing) function ot. The expenses for a network of sizeare then given by
K (n) = np(n) and the total net gain of the network is given by

G(n) = N(n) — K(n) = N(n) — np(n).
Here we assume that

(H3) the good is oho value without the network,

although it would easily be possible to incorporate a pasitalue of the good in
the absence of the network.
For the marginal net gain, it follows

AG(n) = AN(n) — A(np(n)) ,
where
A(np(n)) =M+ pn+1)—npn)=phn+1)+ndpn). 3)

To be precise, the marginal net gain above is the differeet@den the net gain
of a network of sizen + 1 and the net gain of another network of sizeeteris
paribus.

2 Here and in the following lef\y(n) := y(n+1) —y(n) for any quantityy that depends
on the network size.
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From (2) and (3), we conclude

AG(n) = Ny1—(n+1) = p(n+1) + Nepyr(n + 1) — ndp(n)
= Gny1-(n+1)+Gopp1(n+1). 4)

Here,G+1-(n+ 1) = Npy1—(n + 1) — p(n + 1) denotes the net gain for the
new uset,,+1, whereass_,, 1(n+1) = N_,,+1(n+1) — nAp(n) denotes the
net gain for all old user#4, ..., U,, whenU,,; joins the network.

The new user will only be willing to enter the network if

i1 (n+1) >0, (5)

which is a condition for the size of the network and determitie break-even
point. On the other hand, the old network will be willing tacapt a new user only
if
Gont1(n+1)>0, (6)

which is in particular true ifp = p(n) is constant or monotonically decreasing
such thatAp(n) < 0.

Obviously, the smallest integer for which both the conditi@g5) and (6) are
fulfilled is a minimum size of the network.

Example 4 (Example 3 continued)
(a) Letp(n) = p be independent of. This might be the case for a well-
established network. Then

AG(n) =an—p, Gprim(n+1)= % -p, Gopti(n+1)= %.

A new user will be willing to join the network if

n> 22
a
There will beno restriction on the network’s size ip < a/2 as thenn > 1 >
2p/a. However, the value /2 for one connection is, in general, below the price
for a good that allows to connect to each member of the network
(b) Let now

Pmax — Pmin

p(n) = Pmin + # B 0 S Pmin < Pmax - (7)

This is a typical price function that decreases with the neirdf consumers
(cf. Figure 1) following the principle of economies of scdlefollows

an — i
Griio(n+1) =2 <pmin + M)

2 n+1
as well as
an an Pmax — Pmin
G, )= nAp(n) = &8 4 Pmax — Pmin
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price p

min [

network size n

Fig. 1 Price function in Example 3

For large networks, we thus have asymptotically

an an
G'rL+1—>(n + 1) ~ ? — Pmin , G—>n+1(n + 1) ~ 7 ) AG(”) ~ a1 — Pmin -

Note that the total net gain of all old users due to the joirafighe new user is
nonnegativeG_.,,+1(n + 1) > 0. This remains true for arbitrary monotonically
decreasing price functions as thap(n) < 0.

However, the new user will only be willing to join the netwdfkhe net gain
Grni1—(n+ 1) is positive, i.e. if

an Pmax — Pmin NPmin + Pmax

— > . —
2 Prmin + n—+1 n—+1

This is fulfilled if and only if the network is large enough $uihat

n>pmin71+ pminil 2+2pmax::n*.
a 2 a 2 a

If €.9. pmin = a/2 thenn > \/Pmax/Pmin has to be required. Thereris restric-
tion on the sizen if

3a
Pmin < ? and Pmax +pmin § a (8)

as thenn* < 1. Again, the valuez/2 for one connection is, in general, small
compared to the price of the good and (8) will be violated.

In Figure 2, the total net gaif¥,, 1, (n + 1) for the new user is illustrated for
the rather realistic case that,;,, > a/2. The critical size is then the integer part
of n* + 1.
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n+l-

Total gain for new user

network size n

Fig. 2 Total net gain for the new user in Example 3 (b)

(c) We now consider the case of a monotonically increasiimepA first ob-
servation is that the net ga#, 1. (n + 1) = an/2 — p(n + 1) for the new user
will be decreasing witu if Ap(n) > a/2. So it will be the less attractive to join
the network the larger it becomes. In view of

Goptyi(n+1)= % —ndp(n) <0,

also the old network has no interest in new membetgifn) > a/2. The interest
in new members diminishes with increasingven forAp(n) < a/2 as long as
p = p(n) is such that

A(nAp(n)) >0,

which is a condition on the curvature of the price functioicéWersa, a network
can —by means of a suitable pricing— remain its size. Suchhavi®eur can be
observed for exclusive networks. O

2.2 Networks with connection values that changes with the network’s size

If the connection values;; are not independent of the network’s sizewe obtain
because ofi;, 15,41 = 0 from

n

n n
N(n+1) = Zan-l—lj(n +1)+ Zamﬂ(n +1) + Z aij(n+1)

j=1 i=1 ij=1

n

=Npp1o(m+ 1)+ Nopp(n+1)+ > ai(n+1)
ij=1
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with N(n) = 37 ._, a;;(n) the relation

7,j=1

AN(n) = Npj1(n+ 1)+ Nopp1(n+1) Z Aa;j(n

3,7=1

instead of (2). The additional terin";_, Aa;;(n) reflects the difference of the
utility between a network of size + 1 and a network of size due to the different
connection values: Especially for largethe connection value; ; (n + 1) may be
less than the corresponding vatug(n).

Similarly to (4), we find with (3)

AG(n) = Npy1-(n+1)—pn+1)+N_pp1(n+1)+ Z Aa;;(n)—nAp(n).

3,j=1

This shows that the marginal net gain is again the sum of thgaieG,, 1, (n +
1) = Npy1—(n+ 1) — p(n + 1) of the new user and the net gain

G_ont1(n+1)=N_pt1(n+1) Z Aa;j(n) —nAp(n)

7,j=1

for the old network whert/,,; enters it. What is different to the situation with
connection values independentos the term) ", Aa,;(n). As the connection
values will often be monotonically decreasmg with(Gossen’s law), this term
leads to aeduction of the net gain for the old network if a new user joinsit.

Again the new user will be willing to join the network onlyd,, 11—, (n+1) >
0. On the other hand, the old network will be willing to accepteav user only if
G_,n_H(TL + 1) > 0.

Example 5 If all connections possess the valug:)/2 (see also Example 1) then

n
N,,H_l_,(n + 1) = N_,7L+1(’Il + 1) = a(n + 1) )

2
AN(n) = a(n+1)n+ w Aa(n) .
It follows
Gni1o(n+1) = a(n+1)g_p(n+1), (9)
Gonpr(n+1) = a(n+1) g + @ Aa(n) —ndp(n).  (10)

In view of an overload or capacity bound, the connectioneslkare monotoni-
cally decreasing with the network’s size. In a simple cdsis,liehaviour might be
modelled by the function

Gax forn <nqp,

n—mni

a(n) = (@max — @min) fOrng <n < ng, (11)

Gmax —
No — Ny

Gmin forn, <n ,
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a(n)

QD

q
max

connection value

[
El
S

network size n

Fig. 3 Connection values in Example 5

wheren; andns are some specific network sizes an& amin < Gmax (Cf. Fig-
ure 3).

(a) Let us now consider a prigethat is independent of which again corre-
sponds to a situation of saturation. The net gajn.1_. (n + 1) of the new user is
positive ifn is sufficiently large. Indeed, we have to require

a(n—l—l)g >p.

This is shown in Figure 4. As we can see, there might be more a@ha critical

Gn+1 R (n+1)
<0 >0 <0 >0
@
2]
S
2 /
[} 1
= p -
8 constant price i
Q 1
°© ‘ ‘
s | !
o ! |
= 1
S ‘ !
> I
£ N, (n+1) ! !
5 | 1
! 1
a L o g — o o e e e L (D
max i |
8y PF-mmmmmm e e e e
min | X
1 n, n,

network size n

Fig. 4 Total utility and constant price for the new user in Example 5
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size of a network. It is a simple but tedious task to calculagse characteristic
sizes from (9) and (11). For large networks, we obtain asgtigatly

n n
Gn+1~>(n+ ]-) ~ Amin 5 -D, GHnJrl(n“i’ 1) ~ Amin 5 5

For an arbitrary functiom = a(n) (not given by (11)) and constant price, we
infer from (10) the condition

n(n—1)
2
in order to have~_,,+1(n + 1) > 0. This is equivalent to the inequality

nAa(n)
= >
ga(n) o) 2 1
for the (discrete) elasticity af that is in particular fulfilled ifa is monotonically
decreasing and inelastic. An example woulddfe) = 1/n with e,(n) = —1 +
1/(n + 1) and a counterexample (for > 2) is a(n) = 1/n? with e,(n) =
-2+ (3n+2)/(n+ 1)% Indeed, if

AG(n) = aminn—p.

a(n+1) g + Aa(n) = g (nAa(n) +a(n)) >0

a(n) = for somea > 0

then for sufficiently large.

ea(n) =n*T ((n+1)"""*—n"1"%) =n (( r )Ha — 1) < 1.

n+1

Note thatz,(n) — —(1 + «) asn — oo.

Moreover, fora(n) = a(logn)/n with a constant > 0 (which leads to the
suggestionV(n) ~ nlogn as in Briscoeet al. (2006), Odlyzko and Tilly (2005)),
we finde,(n) > —1and thusG_,,,11(n+ 1) > 0.

(b) If the price itself is changing with the network’s sizeetsituation becomes
more complicated. In Figure 5, the price is given by the fiomc(7). Nevertheless,
it is possible to calculate the critical network sizes froiveg data. In turn, one
can also calculate the price that leads to a positive netfgaihe new user if the
network is of a given size.

It remains to analyse for which sizes the net g@in,, ;1 (n+1) is nonnegative,
e n(n—1)

aln+1) g —nAp(n) > — Aa(n) .

Supposing a monotonically decreasing price and a monatyibecreasing con-
nection value, such thatp(n) < 0 andAa(n) < 0, the net gairG_.,,+1(n + 1)
is nonnegative if again the network has reached a suffigi¢entye size as in the
previous case (a).

(c) The case of an increasing price follows, although sonagwiore involved
here, the same lines as in Example 4. In particular, polemtia members are
the less interested in joining the network the larggi(n) is. This can be seen
from (4). O
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utility and price for new user

network size n

Fig. 5 Total utility and changing price for the new user in Example 5

3 Conclusions

We have shown that the primary network effect given by theginat net gain of
the network can be divided into the net gé&in. ;. the new user has from joining
the network plus the net gaifi_,,,; the old users have if a new user joins the
network. A new user will join the network only @,,; 1, > 0 and the network
will allow the joining only if G_,,+1 > 0. Both conditions can only be fulfilled if
the network’s size ranges between critical sizes.

If the value of a connection varies with the size of the nekyeas is the case
when modelling overload, saturation or diminishing ingtri@ the network, then
G_.n+1 depends on the change in the connection values. In parithelas-
ticity of the functiona = a(n) of the value for each connection depending on the
network sizen has to be greater or equal (if, for simplicity, the price is assumed
to be constant) in orderto ha¢e_.,, 1 > 0. This can be interpreted as a condition
for the connection values but also for the size of the netw®dk a limit of growth
can be derived for networks in which connection values dezavith the size of
the network.

The model established here allows to calculate criticaissfar a network if the
connection values and price function are kncavpriori. It also allows to model
exclusive networks that are of limited size.
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