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Delone set: point set Λ in Rd , with R > r > 0 such that

I each ball of radius r contains at most one point of Λ
(uniformly discrete)

I each ball of radius R contains at least one point of Λ
(relatively dense)

(Aka “separated nets”. Can also live in Hd , (Qp)d ...)

crystallographic disordered
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Relation between Delone sets:

Λ
bd∼ Λ′ (bounded distance equivalent):

There is g : Λ→ Λ′ bijective with

∃C > 0 ∀x ∈ Λ : |x − g(x)| < C

Lemma
Bounded distance equivalence is an equivalence relation.
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Example: Two rectangular lattices Λ,Λ′. Is Λ
bd∼ Λ′?
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Dirk Frettlöh Bounded distance equivalence of cut-and-project sets



Dimension 1

Question: Let Λ,Λ′ ⊂ R. When is Λ
bd∼ Λ′? Always?

No:

Examples:

I {. . .− 3,−2,−1, 0, 1, 2, 3, . . .} 6bd∼ {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .}
I {. . .− 3,−2,−1, 0, 2, 4, 6, . . .} 6bd∼ {. . .− 6,−4,−2, 0, 1, 2, 3, . . .}

Density matters. Preliminary definition:

dens(Λ) := lim
r→∞

1

2r
#(Λ ∩ [−r , r ]),

if it exists. Does not need to exist:

0 2 4 6 8 10 12 14 16 18

Oscillates between 2
3 and 5

6 .
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Question: If dens(Λ)=dens(Λ′), is Λ
bd∼ Λ′?

Theorem (Duneau-Oguey 1990)

Let Λ,Λ′ be periodic. Then dens(Λ)=dens(Λ′) implies Λ
bd∼ Λ′.

(True even in Rd for d ≥ 2)

Interesting examples are non-periodic.

Theorem (Kesten 1966)

Let ξ ∈ [0, 1], 0 ≤ a < b ≤ 1 and define

Λ := {k ∈ Z | a ≤
(
kξ mod 1

)
< b}.

Then the deficiency D(n) := #(Λ ∩ [1, n])− n(b − a) is bounded,
if and only if b − a = kξ mod 1 for some k ∈ Z.

(if-part: Hecke 1921, Ostrowski 1927)
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Dirk Frettlöh Bounded distance equivalence of cut-and-project sets



Choose ξ ∈ [0, 1] irrational, let 0 < b ≤ 1 and define

Λb := {k ∈ Z | 0 ≤
(
kξ mod 1

)
< b}.

Then the deficiency D(n) := #(Λ ∩ [1, n])− nb is bounded, if and
only if b = kξ mod 1 for some k ∈ Z.

1

b

The image shows {(k , kξ mod 1) | k = 0, 1, 2, . . .}.

In particular:

I Deficiency bounded ⇔ Λb
bd∼ 1

bZ,

I Any b 6= kξ mod 1 yields a (nonperiodic!) Delone set Λb such

that Λb 6
bd∼ cZ. Even when dens(Λb) exists!
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Higher Dimensions

Cool! Alexey Garber and I started to study some problems in this
field. E.g.

1. Are the vertices of the Penrose tiling bounded distance
equivalent to some lattice?

2. Which cut-and-project sets are bounded distance equivalent to
some lattice?

3. Which substitution tilings (resp. their vertex sets) are
bounded distance equivalent to some lattice?
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Recall: Interesting examples are non-periodic.
Like the Penrose tiling:
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The Penrose tiling is indeed non-periodic:
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Theorem (F-Garber 2011 unpublished)

If Λ is a linearly repetitive Delone set in R2, then Λ
bil∼ Z2.

(where
bd∼ implies

bil∼)

Theorem (Aliste-Prieto, Coronel, Gambaudo 2011)

If Λ is a linearly repetitive Delone set in Rd , then Λ
bil∼ Zd .

Corollary (F-Garber 2011 unpublished)

Let ΛP be the vertices of the Penrose tiling. ΛP
bil∼ Z2.

Theorem (Solomon 2007)

ΛP
bd∼ cZ2.

Theorem (Deuber-Simonovits-Sós 1995)

ΛP
bd∼ cZ2.

Well. Then let us generalise Kesten’s Theorem to higher
dimensions.
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Cut-and-Project Sets

E|| = Rd π1←− Rd × Re π2−→ Re = E⊥
∪ ∪ ∪
Λ Γ W

I Γ a lattice in
Rd × Re

I π1, π2 projections
I π1|Γ injective
I π2(Γ) dense

I W compact
(”window”,
somehow nice, e.g.
∂W has zero
measure)

Then Λ = {π1(x) | x ∈ Λ, π2(x) ∈W } is a (regular)
cut-and-project set (CPS).
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2(l  , l   )2
*

(1,1)

window

E

E||
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The last one uses d = e = 1 (E|| = R1,E⊥ = R1).

An example with d = 1, e = 2:

σ : S → ML, M → SML, L→ LML
S M LLM L M L M L S

...uses a window W that looks like a fractal:

Now let us generalize Kesten to Rd (at least ”if”-part)

Dirk Frettlöh Bounded distance equivalence of cut-and-project sets



The last one uses d = e = 1 (E|| = R1,E⊥ = R1).

An example with d = 1, e = 2:

σ : S → ML, M → SML, L→ LML
S M LLM L M L M L S

...uses a window W that looks like a fractal:

Now let us generalize Kesten to Rd (at least ”if”-part)
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1

b

(looks almost like a cut-and-project set!)

One can state the argument in purely algebraic terms:

I X = Rd+1

I X = Vp + Vi (here: horizontal + vertical), W ⊂ Vi compact
set (here W = [0, b]),

I πp projection to Vp (here: ↓),

I πi projection to Vi (here: ←),

I Γ discrete cocompact subgroup (here: black and white points)
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...then πp(Y )
bd∼ πZ (Y ).

Other colleagues had the same idea: Haynes-Koivusalo 2014,
Haynes-Kelly-Koivusalo 2017.

Last October I’ve learned from Alan Haynes that this was done
already in

C. Godrèche and C. Oguey:
Construction of average lattices for quasiperiodic structures by the
section method, J. Phys. France 51 (1990) 21-37

So much on Question 2.
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Only briefly regarding Question 3:

A one-dimensional tile substitution, producing tilings of the line by
intervals. The endpoints form some Delone set.

a

b

a ab

b ba a a

I Mσ =
(

2 3
1 2

)
I Inflation factor 2 +

√
3

I length(a) = 1, length(b) =
√

3
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A one-dimensional substitution tiling with inflation factor λ is a
Pisot substitution, if all eigenvalues of Mσ other than λ are less
than one in modulus.

Theorem (F-Garber 2017 preprint)

All one-dimensional Pisot substitution tilings are bounded distance
equivalent to some lattice.

Unfortunately:

Theorem (Holton-Zamboni 1998)

All one-dimensional Pisot substitution tilings are bounded distance
equivalent to some lattice.

We did not give up....
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New result

Take some CPS Λ and give each point a weight. One convenient
way to write it: Dirac comb

δw ,Λ =
∑
x∈Λ

w(x)δx (w(x) ∈ R, δx the Dirac measure in x)

If w(x) = h(x∗) for h : W → R continuous, then δw ,Λ is called a
weighted CPS.

h

W
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Theorem (F-Garber 2017 preprint)

Let δw ,Λ be a weighted CPS with e = d = 1. Let W = [a, b],
w(x) = h(x∗) and h(a) = h(b) = 0. If h is

1. piecewise linear, or

2. twice differentiable,

then δw ,Λ is bounded distance equivalent to cµ for some c > 0,
where µ denotes the one-dimensional Lebesgue measure.

Finally, our first new result!

(At least we hope so...)

Dirk Frettlöh Bounded distance equivalence of cut-and-project sets



Theorem (F-Garber 2017 preprint)

Let δw ,Λ be a weighted CPS with e = d = 1. Let W = [a, b],
w(x) = h(x∗) and h(a) = h(b) = 0. If h is

1. piecewise linear, or

2. twice differentiable,

then δw ,Λ is bounded distance equivalent to cµ for some c > 0,
where µ denotes the one-dimensional Lebesgue measure.

Finally, our first new result! (At least we hope so...)
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More here:

D.F., Alexey Garber:
Bounded distance and bilipschitz equivalence of Delone sets,
preprint,
www.math.uni-bielefeld.de/∼frettloe/papers/bilip-draft.pdf

and references therein.

∗ ∗
∗

Thank you!
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