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Technische Fakultät
Universität Bielefeld

MathCryst 2017 Manila
22. May 2017
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1. Aperiodic tilings

A tiling is a covering of R2 that is also a packing.

I.e., a tiling is a collection of (usually compact) sets that cover R2

without overlap (except at the boundary).

A tiling is aperiodic if no translation maps the tiling to itself.
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An aperiodic tiling: the Penrose tiling
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Aperiodic
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Aperiodic
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A simple way to generate aperiodic tilings: substitution tilings.

Substitution tiling with substitution factor 2, and two prototiles:

Factor    2

Substitution matrix here M =
(
2 2
1 3

)
.

Fact: if λ is the substitution factor, then λ2 is the largest
eigenvalue of the substitution matrix.
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Dirk Frettlöh Quasicrystals and symmetry



2. Substitution tilings with tiles in infinitely many orientations

Usually, tiles occur in finitely many different orientations only.
Not always. Cesi’s example (1990):

A substitution σ is primitive, if for any tile T there is k ≥ 1 such
that σk(T ) contains all tile types.

So this substitution is not primitive.
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Conway’s Pinwheel substitution (1991):

1

2
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1

2

. . .

α

The angle α is
irrational; that is,
α /∈ πQ.

Hence all multiples
of α are different.
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Obvious generalizations: Pinwheel (n, k)

3

1

3

2

n = 3, k = 1 n = 3, k = 2
etc.
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Another example:

(+ obvious generalizations)
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C. Goodman-Strauss, L. Danzer (ca. 1996):
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Pythia (m, j), here: m = 3, j = 1.
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3. Dense Tile Orientations (DTO)

For all examples: the orientations are dense in [0, 2π[.

Even more: The orientations are equidistributed in [0, 2π[.

Theorem (F. ’08)

In each primitive substitution tiling with tiles in infinitely many
orientations, the orientations are equidistributed in [0, 2π[.

Recall: (αj)j is equidistributed in [0, 1[, if for all 0 ≤ a < b < 1
holds:

lim
n→∞

1

n

n∑
j=1

1[a,b](αj) = b − a
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Theorem (F. ’08)

In each primitive substitution tiling with tiles in infinitely many
orientations, the orientations are equidistributed in [0, 2π[.

Here: in a tiling T = T1,T2, . . . the orientations of the tiles are
equidistributed, if for all 0 ≤ a < b < 2π

lim
n→∞

1

n

n∑
j=1

1[a,b](α(Tj)) =
b − a

2π

where α(Tj) is the angle of tile Tj (wrt some fixed copy of Tj).

Because the sum is not absolutely convergent, the order matters!

Here it is OK to order the tiles wrt distance from 0.
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Proof needs:

Weyl’s criterion: (an) equidistributed mod 1 iff

∀ ` ∈ Z \ {0} : lim
n→∞

1

n

n∑
j=1

e2πi`aj = 0.

Perron’s Theorem: M ∈ Rn×n ≥ 0 (i.e., non-negative entries
only) and Mk > 0 for some k, then

I There is a biggest eigenvalue µ ∈ R with µ > 0

I µ has a positive eigenvector v

I lim
n→∞

1
µnM

n exists, the columns are multiples of v

I If 0 ≤ A ≤ M, A 6= M, then the biggest eigenvalue of A is less
than µ.
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Sketch of proof: Let M be the substitution matrix, with biggest
eigenvalue µ.

Let A(`) =

(Mkm∑
j=1

e iα(Tj )`

)
km

(` ∈ Z)

be the matrix containing the orientations α(Tj) times `.
(Hence A(0) = M).

By irrationality of the angles

|A(`)|n ≤ Mn and |A(`)|n 6= Mn (from some n on)

We need to show:

lim
n→∞

(A(`)n)km
(Mn)km

= 0
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We show:

lim
n→∞

(A(`)n)km
(Mn)km

= 0

by:

∣∣∣∣(A(`)n)km
(Mn)km

∣∣∣∣ ≤ (|A(`)|n)km
(Mn)km

=
(|A(`)|n)km

ηn
ηn

(Mn)km
≤ c

(
η

µ

)n
(n→∞)→ 0.

(Where η is eigenvalue of |A(`)|, hence η < µ)

Corollary

In each primitive substitution tiling with tiles in infinitely many
orientations, the orientations are dense in [0, 2π[.
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Which tile shapes do forbid DTO?

So far: tiles are always triangles. No surprise:

Theorem (F.-Harriss, 2013)

Let T be a tiling in R2 with finitely many prototiles (i.e., finitely
many different tile shapes). Let all prototiles be centrally
symmetric convex polygons. Then each prototile occurs in a finite
number of orientations in T .

So in particular: In a tiling consisting of parallelograms only, the
tiles occur in finitely many orientations only.
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4. Tilings with rotational symmetry and DTO

Several people (Franz Gähler, Lorenzo Sadun, Johannes
Kellendonk...) compute cohomologies of tiling spaces.

(...which means: consider the set of all tilings to a given substitution.

Define when two tilings are “close”. This yields a topological object

whose cohomologies can be computed. This is standard now for tiling

with tiles in finitely many orientations, but still challenging for tilings

with DTO.)

Since rotational symmetry causes additional problems, they
(J. Hunton, J. Savinien) asked:

Question: Are there tilings with DTO and n-fold rotational
symmetry for n ≥ 3?

Answer: Yes. At least for n ∈ {3, 4, 5, 6, 7, 8}.
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Example for n = 3 Example for n = 4
sqrt(5)

1

1

1

2
sqrt(5)

1

2

sqrt(7)

1

1
sqrt(7)
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Consider the analogues for larger n

sqrt(5)

1

1

1

2
sqrt(5)

1

2

sqrt(7)

1

1
sqrt(7)
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A tile substitution for n = 8:
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In each case we need a certain angle to be irrational. Starting from
this we need found (rediscovered?):

Theorem (F.-Say-Awen-de las Peñas 2017)

In a parallelogram with edge lengths 1 and 2, and interior angle β:
If β = 2π

n (n ≥ 4) then α /∈ πQ.

α
1

2

1
2π2

n
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Proof: Embed the parallelogram in the complex plane:

I lower left vertex: 0

I upper left vertex: ξn := e2πi/n

I upper right vertex: z := 2 + ξn

α
1

2

1
2π2

n

Idea: Show that z
|z| is not a complex root of unity.

Assume α ∈ πQ. Then

∃m : zm ∈ R ⇒
(

z
|z|)

m = ±1 ⇒
(

z
|z|
)2m

= 1

⇒
(
z·z
z·z
)m

= 1 ⇒
(
z
z

)m
= 1, i.e., z

z is a complex mth root of unity.

Clearly, z
z ∈ Q(ξn).

Theorem: All roots of unity in Q(ξn) are of the form ±ξkn .

Hence m = n or m = 2n (if m is even and n is odd)
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Dirk Frettlöh Quasicrystals and symmetry



Since arg( z
|z|) = α, we have arg( zz ) = 2α,

Altogether: 2α = 2kπ
n , hence α = kπ

n

But (see image): α < π
n (too small!),

Contradiction. Hence α /∈ πQ.
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Dimension 3

SCD tile (Schmitt-Conway-Danzer)
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Tiles can be assembled to layers, layers can be stacked.

Infinitely many orientations, but dense only in a 2-dimensional
plane, not in the sphere.
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Real DTO: the Pinwheel sandwich.
(Conway-Radin: ”Quaquaversal tilings and rotations” 1995)

Start with the following dissections:

30o

Consider thickened 3-dimensional versions:
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Stacking them (and adding one tweak) yields a tile substitution in
R3:

Based on rational angles: π
2 ,

π
6 .

But all combinations in R3 are dense on the sphere!

One of the few DTO tilings in R3 (but see Exercises)
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Thank you!
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