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1. Lattices, Delone sets, basics
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Delone set: point set Λ in Rd , with R > r > 0 such that
I each ball of radius r contains at most one point of Λ

(uniformly discrete)
I each ball of radius R contains at least one point of Λ

(relatively dense)

(Aka “separated nets”. Can also live in Hd , (Qp)d ...)

lattice
(crystallographic) disordered
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Lattice in Rd : integer span of d linearly independent vectors
v1, . . . , vd .

Example: Z2, integer span of
(

1
0

)
,
(

0
1

)
,

A Delone set Λ in Rd is crystallographic, if there are v1, . . . , vd
(linearly independent) such that

Λ = Λ + vi (1 ≤ i ≤ d)

lattice crystallographic, but not a lattice
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Two relations between Delone sets:

Λ
bil∼ Λ′ (bilipschitz equivalent):

There is f : Λ→ Λ′ bijective with

∃c > 0 ∀x , y ∈ Λ
1

c
|x − y | ≤ |f (x)− f (y)| ≤ c |x − y |

(i.e. f and f −1 are Lipschitz continuous)

Λ
bd∼ Λ′ (bounded distance equivalent):

There is g : Λ→ Λ′ bijective with

∃C > 0 ∀x ∈ Λ : |x − g(x)| < C
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Example: Two rectangular lattices Λ,Λ′. Is Λ
bd∼ Λ′?
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Dirk Frettlöh Average lattices for quasicrystals



Some basic results:

Lemma (1)

Bilipschitz equivalence and bounded distance equivalence are
equivalence relations.

Lemma (2)

Let Λ,Λ′ be Delone sets in Rd . If Λ
bd∼ Λ′, then Λ

bil∼ Λ′.
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2. Dimension one
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Theorem (Duneau-Oguey 1990)

Let Λ,Λ′ be Delone sets in R (with Euclidean metric).

Then Λ
bil∼ Λ′.

Proof (by image): Show Λ
bil∼ Z.

Let Λ = {. . . , λ−1, λ0, λ1, λ2, . . .}, λi < λi+1. Plot (i , λi ):

1 2 3 4

λ1
λ2

λ3

λ4

0λ
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Let Λ,Λ′ ⊂ R. When is Λ
bd∼ Λ′? Always? No:

Examples:

I {. . .− 3,−2,−1, 0, 1, 2, 3, . . .} 6bd∼ {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .}
I {. . .− 3,−2,−1, 0, 2, 4, 6, . . .} 6bd∼ {. . .− 6,−4,−2, 0, 1, 2, 3, . . .}

Density matters. Preliminary definition (”central density”):

dens(Λ) := lim
r→∞

1

2r
#(Λ ∩ [−r , r ]),

if it exists. Does not need to exist:

0 2 4 6 8 10 12 14 16 18

Oscillates between 2
3 and 5

6 .
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Dirk Frettlöh Average lattices for quasicrystals



Question: If dens(Λ)=dens(Λ′), is Λ
bd∼ Λ′?

Theorem (Duneau-Oguey 1990)

Let Λ,Λ′ be crystallographic. Then dens(Λ)=dens(Λ′) implies

Λ
bd∼ Λ′. (True even in Rd for d ≥ 2)

Interesting examples are non-periodic.

Theorem (Kesten 1966)

Let ξ ∈ [0, 1], 0 ≤ a < b ≤ 1 and define

Λ := {k ∈ Z | a ≤
(
kξ mod 1

)
< b}.

Then the deficiency D(n) := #(Λ ∩ [1, n])− n(b − a) is bounded,
if and only if b − a = kξ mod 1 for some k ∈ Z.

(if-part: Hecke 1921, Ostrowski 1927)
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Choose ξ ∈ [0, 1] irrational, let 0 < b ≤ 1 and define

Λb := {k ∈ Z | 0 ≤
(
kξ mod 1

)
< b}.

Then the deficiency D(n) := #(Λ ∩ [1, n])− nb is bounded, if and
only if b = kξ mod 1 for some k ∈ Z.

1

b

The image shows {(k , kξ mod 1) | k = 0, 1, 2, . . .}.
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Proof (by image) of if-part: (F-Gähler 2011, Duneau-Oguey 1990):

1

b

The ”only if”-part of Kesten yields Delone sets Λb that are not
bounded distance equivalent to any cZ. Even when dens(Λb)
exists!
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Higher dimensions:

Theorem (Bogopolski 1997)

Any two Delone sets in Hd (d ≥ 2) are bounded distance
equivalent, hence bilipschitz equivalent.

Theorem (Burago-Kleiner, C. McMullen 1998)

There are Delone sets Λ in Rd (d ≥ 2) such that Λ 6bil∼ Zd .

Cool! Alexey and I decided to study some problems in this field.
E.g.

1. Are the vertices of the Penrose tiling bounded distance
equivalent to some lattice?

2. Which substitution tilings are
bd∼ to some lattice?

3. Which cut-and-project sets are
bd∼ to some lattice?
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3. Aperiodic patterns
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Recall: Interesting examples are non-periodic.
Like the Penrose tiling:

Two ways to generate a Penrose tiling:
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Substitution Tilings

Factor    2
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Penrose Substitution
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Important: substitution matrix of some substitution σ (here for
two tile types T1,T2):

Mσ =

(
#{tiles of type T1 in σ(T1)} #{tiles of type T1 in σ(T2)}
#{tiles of type T2 in σ(T1)} #{tiles of type T2 in σ(T2)}

)

First example: Mσ =

(
2 2
1 3

)
Penrose tiling: Mσ =

(
1 1
1 2

)

Facts:

I The leading eigenvalue η of Mσ equals λd (λ the inflation
factor, d the dimension)

I The (right) eigenvector corr. to η contains the relative
frequencies of the tile types.

I The left eigenvector corr. to η contains the areas of the tile
types.
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First example:

I Eigenvalues 4 and 1. Inflation factor 2, and 4 = 22.

I Right eigenvector
(

1
1

)
, hence T1 and T2 have equal frequency.

I Left eigenvector (1, 2): T2 has twice the area as T1.

Penrose substitution:

I Eigenvalues 3+
√

5
2 = ( 1+

√
5

2 )2 and 3−
√

5
2 .

Inflation factor τ = 1+
√

5
2 (golden mean)

I Right eigenvector
(

1
τ

)
,

hence frequency(T1) : frequency(T2) = τ : 1.

I Left eigenvector (1, τ): area(T2) = τ area(T1).

For much more examples visit the zoo of substitution tilings:
tilings.math.uni-bielefeld.de
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A one-dimensional example:
a

b

a ab

b ba a a

I Mσ =
(

2 3
1 2

)
I Inflation factor 2 +

√
3

I length(a) = 1, length(b) =
√

3

I frequency(a) : frequency(b) =
√

3 : 1
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Cut-and-Project Sets

E|| = Rd π1←− Rd × Re π2−→ Re = E⊥
∪ ∪ ∪
Λ Γ W

I Γ a lattice in
Rd × Re

I π1, π2 projections
I π1|Γ injective
I π2(Γ) dense

I W compact
(”window”,
somehow nice, e.g.
∂W has zero
measure)

Then Λ = {π1(x) | x ∈ Λ, π2(x) ∈W } is a (regular)
cut-and-project set (CPS).

The star map : ? : π1(Λ)→ Re , x? = π2 ◦ π1
−1(x)
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2(l  , l   )2
*

(1,1)

window

E

E||
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Star map: If x is some endpoint of some interval on the line, x? is
the preimage of x in W , on the vertical line.
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The last one uses d = e = 1 (E|| = R1,E⊥ = R1).

An example with d = 1, e = 2:

σ : S → ML, M → SML, L→ LML
S M LLM L M L M L S

...uses a window W that looks like a fractal:

Dirk Frettlöh Average lattices for quasicrystals



The last one uses d = e = 1 (E|| = R1,E⊥ = R1).

An example with d = 1, e = 2:

σ : S → ML, M → SML, L→ LML
S M LLM L M L M L S

...uses a window W that looks like a fractal:
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Several other substitution tilings can be obtained as CPS:
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...respectively, the vertex set of the tiling:
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Here d = 2, e = 2. Window is an octagon:

1 2

6

4

1

2

3 6
4

5

5

3
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For the Penrose pattern: slightly more complicated.

One can obtain it by projection from R2 × R2, but this requires
some further techniques.

One obtains it by projection from R2 × R3 more easily.
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A Delone set Λ in Rd is aperiodic, of there is no v ∈ Rd , v 6= 0,
such that Λ + t = Λ.

All previous examples are aperiodic. For instance the Penrose
tiling:
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Repetitive: there is r > 0 such that congruent copies of any local
patch in Λ occur in every ball of radius r .

Linearly repetitive: r depends linearly on the diameter of the
patch.
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Theorem
If Λ is some CPS such that for all x ∈ Λ holds: x? ∈ interior(W ),
then Λ is repetitive.

A substitution tiling is primitive, if there is k > 0 such that Mk
σ

has positive entries only.

Not primitive: σ : a 7→ aa, b 7→ aba. Yields for instance

· · · aaaaaaaaaabaaaaaaaaa · · ·

and Mσ =
(

2 2
0 1

)
Theorem
Primitive substitution tilings are linearly repetitive.
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4. Average lattices

(Λ has an average lattice just means:

there is some lattice Γ such that Λ
bd∼ Γ.)

(and btw: ”quasicrystal” just means CPS)
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Theorem (F-Garber 2011 unpublished)

If Λ is a linearly repetitive Delone set in R2, then Λ
bil∼ Z2.

Theorem (Aliste-Prieto, Coronel, Gambaudo 2011)

If Λ is a linearly repetitive Delone set in Rd , then Λ
bil∼ Zd .

Corollary (F-Garber 2011 unpublished)

Let ΛP be the vertices of the Penrose tiling. ΛP
bil∼ Z2.

Theorem (Solomon 2007)

ΛP
bd∼ cZ2.

Theorem (Deuber-Simonovits-Sós 1995)

ΛP
bd∼ cZ2.
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Dirk Frettlöh Average lattices for quasicrystals



Well, then let’s generalise Kesten to Rd (at least ”if”-part)

1

b

(cut-and-project sets, aka model sets, ”mathematical
quasicrystals”)

One can state the argument in purely algebraic terms:

I X an R-vector space (here X = R2),

I X = Vp + Vi (here: horizontal + vertical), W ⊂ Vi compact
set (here W = [0, b]),

I πp projection to Vp (here: ↓),

I πi projection to Vi (here: ←),

I Γ discrete cocompact subgroup (here: black and white points)
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1

b

I X an R-vector space (here X = R2),
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...then πp(Y )
bd∼ πZ (Y ).

Unfortunately, other colleagues had the same idea:
Haynes-Koivusalo 2014, Haynes-Kelly-Koivusalo 2017.

Last October I’ve learned from Alan Haynes that this was done
already in

C. Godrèche and C. Oguey:
Construction of average lattices for quasiperiodic structures by the
section method, J. Phys. France 51 (1990) 21-37
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Grepstad and Lev (2015) obtained a generalisation of Kesten’s
theorem to d dimensions. Here for d = 2:

0

1

1

4

2

3P

Slope α = (α1, α2), α1 /∈ Q, α2 /∈ Q, α1
α2

/∈ Q.

Consider α, 2α, 3α, . . . mod 1. Colour those red that are in the
parallelogram P. If the number of red points up to nα minus the
expected value n · area(P) is bounded, then P is a bounded
remainder set (BRS) with respect to α.
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Theorem (Grepstad-Lev 2015)

Let α = (α1, α2, . . . , αd) ∈ Rd such that αi /∈ Q and αi
αj
/∈ Q for

all 1 ≤ i < j ≤ d.
If all edges of the parallelogram P are in Zd + αZd then P is a
BRS with respect to α.

For d = 1 this is the if-part of Kesten’s theorem.

Grepstad and Lev obtain several further results, and in some sense
also the only-if-part of Kesten’s theorem.
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One can translate it to CPS and use it to show that certain
1× e-examples above are bounded distance equivalent to some
lattice.

Alexey Garber and I just succeeded in going the opposite direction:

A one-dimensional substitution tiling with inflation factor λ is a
Pisot substitution, if all eigenvalues of Mσ other than λ are less
than one in modulus. (E.g., many of the examples above:

a→ aba, b → ababa, or S → ML,M → SML, L→ LML)

Theorem (F-Garber 2017 preprint)

All one-dimensional Pisot substitution tilings are bounded distance
equivalent to some lattice.

Unfortunately:

Theorem (Holton-Zamboni 1998)

All one-dimensional Pisot substitution tilings are bounded distance
equivalent to some lattice.
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Dirk Frettlöh Average lattices for quasicrystals



One can translate it to CPS and use it to show that certain
1× e-examples above are bounded distance equivalent to some
lattice.

Alexey Garber and I just succeeded in going the opposite direction:

A one-dimensional substitution tiling with inflation factor λ is a
Pisot substitution, if all eigenvalues of Mσ other than λ are less
than one in modulus. (E.g., many of the examples above:

a→ aba, b → ababa, or S → ML,M → SML, L→ LML)

Theorem (F-Garber 2017 preprint)

All one-dimensional Pisot substitution tilings are bounded distance
equivalent to some lattice.

Unfortunately:

Theorem (Holton-Zamboni 1998)

All one-dimensional Pisot substitution tilings are bounded distance
equivalent to some lattice.
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5. Weighted CPS
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Take some CPS Λ and give each point a weight. One convenient
way to write it: Dirac comb

δw ,Λ =
∑
x∈Λ

w(x)δx (w(x) ∈ R, δx the Dirac measure in x)

If w(x) = h(x∗) for h : W → R continuous, then δw ,Λ is called a
weighted CPS.

h

W

Dirk Frettlöh Average lattices for quasicrystals



Theorem (F-Garber 2017 preprint)

Let δw ,Λ be a weighted CPS with e = d = 1. Let W = [a, b],
w(x) = h(x∗) and h(a) = h(b) = 0. If h is

1. piecewise linear, or

2. twice differentiable,

then δw ,Λ is bounded distance equivalent to cµ for some c > 0,
where µ denotes the one-dimensional Lebesgue measure.

Dirk Frettlöh Average lattices for quasicrystals



This proof relies a lot on another result by Mrs Grepstad (this one
with G. Larcher) on continuous BRS.

0

1

1

Theorem (Grepstad-Larcher 2017+)

For almost all α > 0, every polygon P ⊂ [0, 1]2 with no edge of
slope α is a BRS for the continuous irrational rotation with slope α.

In plain words: The length of the red part of the line segment
{tα mod 1 | 0 ≤ t ≤ T} does not deviate from the expected value
T/ vol(P) by more than some C > 0.
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Dirk Frettlöh Average lattices for quasicrystals



We use a certain weighted CPS tailored to the result above

Wh
W

GH

One needs to show several technical results in order to translate it
to weighted CPS.

Finally, our first new result!

(at least we hope so...)
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More in

D.F., Alexey Garber:
Bounded distance and bilipschitz equivalence of Delone sets,
preprint,
www.math.uni-bielefeld.de/∼frettloe/papers/bilip-draft.pdf

and references therein (but it is already slightly outdated).

∗ ∗
∗

Thank you!
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