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» Basics
» Dimension 1

» Higher dimensions
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Delone set: point set A in RY, with R > r > 0 such that

» each ball of radius r contains at most one point of A
(uniformly discrete)

» each ball of radius R contains at least one point of A
(relatively dense)

(Aka “separated nets”. Can also live in H?, (Q,)9...)
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Delone set: point set A in RY, with R > r > 0 such that

» each ball of radius r contains at most one point of A
(uniformly discrete)

» each ball of radius R contains at least one point of A
(relatively dense)
(Aka “separated nets”. Can also live in H?, (Q,)9...)

crystallographic disordered

Dirk Frettloh Bi-Lipschitz equivalence and bounded distance equivalence



Two relations between Delone sets:
AN (bilipschitz equivalent):
There is f : A — N\ bijective with
1
Fe>0 Vxyeh —Ix—yl<|f(x) = fly)l < clx —yl

(i.e. f and =1 are Lipschitz continuous)
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Two relations between Delone sets:
AN (bilipschitz equivalent):

There is f : A — N\ bijective with

Jdc>0 Vx,yeA %|x—y| <F(x) = f(y) < clx —y|
(i.e. f and 1 are Lipschitz continuous)
AN (bounded distance equivalent):

There is g : A — N bijective with

IC>0 VxelA: |x—gx)|<C
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. bd
Example: Two rectangular lattices A, \'. Is A ~ A'?
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. bd
Example: Two rectangular lattices A, \'. Is A ~ A'?
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. bd
Example: Two rectangular lattices A, \'. Is A ~ A'?
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Some basic results
Lemma (1)

Bilipschitz equivalence and bounded distance equivalence are
equivalence relations.
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Some basic results

Lemma (1)

Bilipschitz equivalence and bounded distance equivalence are
equivalence relations.

Lemma (2)
Let A,N be Delone sets in RY. If A2 N, then A2 A,
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Warmup: Dimension 1

Lemma (3)

Let A, N be Delone sets in R (with Euclidean metric).
Then N 2 N,
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Warmup: Dimension 1

Lemma (3)

Let A, N be Delone sets in R (with Euclidean metric).

Then AN

Proof (by image): Show A Xz

Let A = { cey A1, A0, AL, A2, - .}, Ai < Ajy1. Plot (i, )\,‘)Z

-
g
-
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Let A, C R. When is A %3 A’? Always? No:

Examples:
b
» {...—3,-2,-1,0,1,2,3,..} £ {...,—6,-4,-2,0,2,4,6,...}
> {...—3,-2,-1,0,2,4,6,...} £ {...—6,-4,-2,0,1,2,3,.. .}
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Let A, C R. When is A %3 A’? Always? No:

Examples:
b
» {...—3,-2,-1,0,1,2,3,..} £ {...,—6,-4,-2,0,2,4,6,...}
> {...—3,-2,-1,0,2,4,6,...} £ {...—6,-4,-2,0,1,2,3,.. .}

Density matters. Preliminary definition:

dens(A) := lim %#(/\ﬂ [—r,r]),

r—oo 2r

if it exists.
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Let A, C R. When is A %3 A’? Always? No:

Examples:
b
» {...—3,-2,-1,0,1,2,3,..} £ {...,—6,-4,-2,0,2,4,6,...}
> {...—3,-2,-1,0,2,4,6,...} £ {...—6,-4,-2,0,1,2,3,.. .}

Density matters. Preliminary definition:

dens(A) := lim %#(/\ﬂ [—r,r]),

r—oo 2r
if it exists. Does not need to exist:

001900660101+ 0+ 01000
10 12 14 16 18

0 2 4 6 8

Oscillates between % and %.

Bi-Lipschitz equivalence and bounded distance equivalence
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Question: If dens(A)=dens(A\’), is A 2 A7

Lemma
Let A, N be periodic. Then dens(\)=dens(N\') implies \ 2N
(True even in RY for d > 2)

Interesting examples are non-periodic.
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Question: If dens(A)=dens(A\’), is A 2 A7

Lemma
Let A, N be periodic. Then dens(\)=dens(N\') implies \ 2N
(True even in RY for d > 2)

Interesting examples are non-periodic.

Theorem (Kesten 1966)
Let £ €[0,1], 0 < a< b<1 and define

N:={keZ|a< (ki mod1) < b}.

Then the deficiency D(n) := #(AN N [1, n]) — n(b — a) is bounded,
if and only if b— a = k& mod 1 for some k € Z.
(if-part: Hecke 1921, Ostrowski 1927)
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Choose ¢ € [0, 1] irrational, let 0 < b < 1 and define
No:={keZ|0< (k¢ mod 1)< b}.

Then the deficiency D(n) := #(AN[1, n]) — nb is bounded, if and
only if b = k& mod 1 for some k € Z.

1 °

The image shows {(k, k¢ mod 1) |k =0,1,2,...}.
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Proof (by image) of if-part: (F-Gahler 2011, Duneau-Oguey 1990):
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Proof (by image) of if-part: (F-Gahler 2011, Duneau-Oguey 1990):

In particular Kesten yields Delone sets A, that are not bounded
distance equivalent to any cZ. Even when dens(Ap) exists!
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Higher dimensional spaces

Theorem (Bogopolski 1997)

Any two Delone sets in HY (d > 2) are bounded distance
equivalent, hence bilipschitz equivalent.
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Higher dimensional spaces

Theorem (Bogopolski 1997)

Any two Delone sets in HY (d > 2) are bounded distance
equivalent, hence bilipschitz equivalent.

Theorem (Burago-Kleiner, C. McMullen 1998)

There are Delone sets \ in RY (d > 2) such that \ ?Ll zd.
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Higher dimensional spaces

Theorem (Bogopolski 1997)

Any two Delone sets in HY (d > 2) are bounded distance
equivalent, hence bilipschitz equivalent.

Theorem (Burago-Kleiner, C. McMullen 1998)
There are Delone sets \ in RY (d > 2) such that \ ?Ll zd.

Cool! Let us study some problems in this field. E.g.

1. Are the vertices of the Penrose tiling bounded distance
equivalent to some lattice?

. bd bil
2. How many equivalence classes wrt ~ resp. ~ 7
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Recall: Interesting examples are non-periodic.
Like the Penrose tiling:




Theorem (F-Garber 2011 unpublished)
If \ is a linearly repetitive Delone set in R?, then A 272,
Repetitive: there is R such that congruent copies of any local

patch in A occur in every ball of radius R.

Linear repetitive: R depends linearly on the diameter of the
patch.
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Theorem (F-Garber 2011 unpublished)
If \ is a linearly repetitive Delone set in R?, then A 272,

Repetitive: there is R such that congruent copies of any local
patch in A occur in every ball of radius R.

Linear repetitive: R depends linearly on the diameter of the
patch.

Theorem (Aliste-Prieto, Coronel, Gambaudo 2011)
If\ is a linearly repetitive Delone set in R9, then A % 7.
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Theorem (F-Garber 2011 unpublished)
If \ is a linearly repetitive Delone set in R?, then A 272,

Repetitive: there is R such that congruent copies of any local
patch in A occur in every ball of radius R.

Linear repetitive: R depends linearly on the diameter of the
patch.

Theorem (Aliste-Prieto, Coronel, Gambaudo 2011)
If\ is a linearly repetitive Delone set in R9, then A % 7.

Corollary (F-Garber 2011 unpublished)
bil

Let Ap be the vertices of the Penrose tiling. Np ~ 7Z?.
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Theorem (F-Garber 2011 unpublished)
If \ is a linearly repetitive Delone set in R?, then N ~ 7z

Repetitive: there is R such that congruent copies of any local
patch in A occur in every ball of radius R.

Linear repetitive: R depends linearly on the diameter of the
patch.

Theorem (Aliste-Prieto, Coronel, Gambaudo 2011)

bil

If N is a linearly repetitive Delone set in RY, then N ~ 7.

Corollary (F-Garber 2011 unpublished)
Let Ap be the vertices of the Penrose tiling. Ap % Z2.

Theorem (Solomon 2007)
/\p N CZ2
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Theorem (F-Garber 2011 unpublished)
If \ is a linearly repetitive Delone set in R?, then N ~ 7z

Repetitive: there is R such that congruent copies of any local
patch in A occur in every ball of radius R.

Linear repetitive: R depends linearly on the diameter of the
patch.

Theorem (Aliste-Prieto, Coronel, Gambaudo 2011)

If N is a linearly repetitive Delone set in RY, then A ~ 279,

Corollary (F-Garber 2011 unpublished)
bil

Let Ap be the vertices of the Penrose tiling. Np ~ 7Z?.

Theorem (Solomon 2007)
/\p N CZ2

Theorem (Deuber-Simonovits-Sés 1995)
/\p N CZ2
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Well, then let's generalise Kesten to RY (at least "if’-part)

1 .
°
* ° L4 i °
° . * o °
° ° o i °
blo e ____ B s ® )
° o o o © o
o Q Q o
e} Qs >

(cut-and-project sets, aka model sets, " mathematical
quasicrystals”)
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Well, then let's generalise Kesten to RY (at least "if’-part)

(cut-and-project sets, aka model sets, " mathematical
quasicrystals”)

One can state the argument in purely algebraic terms:

» X an R-vector space (here X = R?),
X =V, + V; (here: horizontal + vertical), W C V; compact
set (here W =0, b]),

» Tp projection to V, (here: ),

v

» m; projection to V; (here: <),

» [ discrete cocompact subgroup (here: black and white points)
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v

X an R-vector space (here X = R?),

X =V, + V; (here: horizontal + vertical), W C V; compact
set (here W =0, b]),

Tp projection to V, (here: ),

m; projection to V; (here: <),

I discrete cocompact subgroup (here: black and white points)

v

v

v

v
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v

X an R-vector space (here X = R?),

X =V, + V; (here: horizontal + vertical), W C V; compact
set (here W =0, b)),

Tp projection to V, (here: ),

m; projection to V; (here: ),

v

I discrete cocompact subgroup (here: black and white points)
Y =77 (W) NT (here: white points),

N =mp(Y)

Z subgroup of X with V, +Z =X, ZNT compact (here
"lattice direction” for projection)

w7z corresponding projection etc...

vV v v v VY

v
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..then m,o(Y) % 72(Y).

Other colleagues had the same idea: Haynes-Kelly-Weiss 2014,
Haynes-Koivusalo 2015+4.
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..then m,o(Y) % 72(Y).

Other colleagues had the same idea: Haynes-Kelly-Weiss 2014,
Haynes-Koivusalo 2015+4.

Last October I've learned from Alan Haynes that this was done
already in

C. Godréche and C. Oguey:
Construction of average lattices for quasiperiodic structures by the
section method, J. Phys. France 51 (1990) 21-37

So much on Question 1.
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Regarding Question 2:
. bd bil
How many equivalence classes wrt ~ resp. ~ ?
Theorem (Magazinov 2010)
. . bil
There are |R| equivalence classes of Delone sets in RY wrt ~.

Theorem (Garber 2009)

. . bd
There are |R| equivalence classes of Delone sets in RY wrt <.

Dirk Frettloh Bi-Lipschitz equivalence and bounded distance equivalence



Regarding Question 2:
: bd bil
How many equivalence classes wrt ~ resp. ~ ?
Theorem (Magazinov 2010)
. . bil
There are |R| equivalence classes of Delone sets in RY wrt ~.

Theorem (Garber 2009)
There are |R| equivalence classes of Delone sets in RY wrt 2

Proof. (of 2nd result, sketch) It is easy to show that each Delone
set in RY is bounded distance equivalent to some subset of rZ9,
where r is the radius of uniformly discreteness.

(|R| many values of r) x (|R| many subsets of Z%) = |R].

(this shows 'at most |R| many’. Density yields 'at least |R| many’)
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Further research:
» "Only if'-part of Kesten's Theorem
> Let /\1 P Ay 1s A Ay U /\2? Under which conditions?
> Let A X Z2 A= NA1UNAy, Ay ES /\2 Is /\1 \fZ2?

> ...
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More in

D.F., Alexey Garber:
Bounded distance and bilipschitz equivalence of Delone sets,

preprint,
www.math.uni-bielefeld.de/~frettloe/papers/bilip-draft.pdf

and references therein.

Thank you!
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