Bi-Lipschitz equivalence and bounded distance equivalence of Delone sets

Dirk Frettlöh

Technische Fakultät Universität Bielefeld

25. Feb. 2016 joint work with Alexey Garber

A D A A B A A B A A B A

Basics

- Dimension 1
- Higher dimensions

Delone set: point set Λ in \mathbb{R}^d , with R > r > 0 such that

- each ball of radius r contains at most one point of Λ (uniformly discrete)
- each ball of radius R contains at least one point of Λ (relatively dense)

(Aka "separated nets". Can also live in \mathbb{H}^d , $(\mathbb{Q}_p)^d$...)

(日)(4月)(4日)(4日)(日)

Delone set: point set Λ in \mathbb{R}^d , with R > r > 0 such that

- each ball of radius r contains at most one point of Λ (uniformly discrete)
- each ball of radius R contains at least one point of Λ (*relatively dense*)
- (Aka "separated nets". Can also live in \mathbb{H}^d , $(\mathbb{Q}_p)^d$...)

Two relations between Delone sets:

 $\Lambda \stackrel{\text{bil}}{\sim} \Lambda'$ (bilipschitz equivalent):

There is $f : \Lambda \to \Lambda'$ bijective with

$$\exists c > 0 \quad \forall x, y \in \Lambda \quad rac{1}{c} |x - y| \leq |f(x) - f(y)| \leq c |x - y|$$

(i.e. f and f^{-1} are Lipschitz continuous)

イロト イポト イヨト イヨト

Two relations between Delone sets:

 $\Lambda \stackrel{\text{bil}}{\sim} \Lambda'$ (bilipschitz equivalent):

There is $f : \Lambda \to \Lambda'$ bijective with

$$\exists c > 0 \quad \forall x, y \in \Lambda \quad \frac{1}{c} |x - y| \le |f(x) - f(y)| \le c |x - y|$$

(i.e. f and f^{-1} are Lipschitz continuous)

 $\Lambda \stackrel{\rm bd}{\sim} \Lambda'$ (bounded distance equivalent):

There is $g : \Lambda \to \Lambda'$ bijective with

$$\exists C > 0 \quad \forall x \in \Lambda : \quad |x - g(x)| < C$$

Example: Two rectangular lattices Λ, Λ' . Is $\Lambda \stackrel{\text{bd}}{\sim} \Lambda'$?

Dirk Frettlöh Bi-Lipschitz equivalence and bounded distance equivalence

イロン イボン イヨン イヨン 三日

Example: Two rectangular lattices Λ, Λ' . Is $\Lambda \stackrel{\mathrm{bd}}{\sim} \Lambda'$?

Dirk Frettlöh Bi-Lipschitz equivalence and bounded distance equivalence

(日) (周) (注) (注) (三)

Example: Two rectangular lattices Λ, Λ' . Is $\Lambda \stackrel{\mathrm{bd}}{\sim} \Lambda'$?

Dirk Frettlöh Bi-Lipschitz equivalence and bounded distance equivalence

(日) (周) (注) (注) (三)

Example: Two rectangular lattices Λ, Λ' . Is $\Lambda \stackrel{\text{bd}}{\sim} \Lambda'$?

Dirk Frettlöh Bi-Lipschitz equivalence and bounded distance equivalence

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Example: Two rectangular lattices Λ, Λ' . Is $\Lambda \stackrel{\text{bd}}{\sim} \Lambda'$?

Dirk Frettlöh Bi-Lipschitz equivalence and bounded distance equivalence

(日) (部) (注) (注) (三)

Some basic results

Lemma (1)

Bilipschitz equivalence and bounded distance equivalence are equivalence relations.

Some basic results

Lemma (1)

Bilipschitz equivalence and bounded distance equivalence are equivalence relations.

Lemma (2)

Let Λ, Λ' be Delone sets in \mathbb{R}^d . If $\Lambda \stackrel{\mathrm{bd}}{\sim} \Lambda'$, then $\Lambda \stackrel{\mathrm{bil}}{\sim} \Lambda'$.

Warmup: Dimension 1

Lemma (3)

Let Λ,Λ' be Delone sets in $\mathbb R$ (with Euclidean metric). Then $\Lambda\stackrel{\rm bil}{\sim}\Lambda'.$

Warmup: Dimension 1

Let $\Lambda,\Lambda'\subset\mathbb{R}.$ When is $\Lambda\overset{\mathrm{bd}}{\sim}\Lambda'?$ Always? No:

Examples:

▶ {... - 3, -2, -1, 0, 1, 2, 3, ...}
$$\stackrel{\text{bd}}{\sim}$$
 {..., -6, -4, -2, 0, 2, 4, 6, ...}
▶ {... - 3, -2, -1, 0, 2, 4, 6, ...} $\stackrel{\text{bd}}{\sim}$ {... - 6, -4, -2, 0, 1, 2, 3, ...}

Let $\Lambda, \Lambda' \subset \mathbb{R}$. When is $\Lambda \stackrel{\mathrm{bd}}{\sim} \Lambda'$? Always? No:

Examples:

▶ {... - 3, -2, -1, 0, 1, 2, 3, ...}
$$\overset{\text{bd}}{\sim}$$
 {..., -6, -4, -2, 0, 2, 4, 6, ...}
▶ {... - 3, -2, -1, 0, 2, 4, 6, ...} $\overset{\text{bd}}{\sim}$ {... - 6, -4, -2, 0, 1, 2, 3, ...}

Density matters. Preliminary definition:

dens(
$$\Lambda$$
) := $\lim_{r\to\infty} \frac{1}{2r} \#(\Lambda \cap [-r, r]),$

if it exists.

Let $\Lambda, \Lambda' \subset \mathbb{R}$. When is $\Lambda \stackrel{\mathrm{bd}}{\sim} \Lambda'$? Always? No:

Examples:

▶ {... - 3, -2, -1, 0, 1, 2, 3, ...}
$$\overset{\text{bd}}{\sim}$$
 {..., -6, -4, -2, 0, 2, 4, 6, ...}
▶ {... - 3, -2, -1, 0, 2, 4, 6, ...} $\overset{\text{bd}}{\sim}$ {... - 6, -4, -2, 0, 1, 2, 3, ...}

Density matters. Preliminary definition:

dens(
$$\Lambda$$
) := $\lim_{r\to\infty} \frac{1}{2r} \#(\Lambda \cap [-r, r]),$

if it exists. Does not need to exist:

Question: If dens(Λ)=dens(Λ'), is $\Lambda \stackrel{\text{bd}}{\sim} \Lambda'$?

Lemma

Let Λ, Λ' be periodic. Then dens(Λ)=dens(Λ') implies $\Lambda \stackrel{\mathrm{bd}}{\sim} \Lambda'$. (True even in \mathbb{R}^d for $d \geq 2$)

Interesting examples are non-periodic.

Question: If dens(Λ)=dens(Λ'), is $\Lambda \stackrel{\text{bd}}{\sim} \Lambda'$?

Lemma Let Λ, Λ' be periodic. Then dens(Λ)=dens(Λ') implies $\Lambda \stackrel{\text{bd}}{\sim} \Lambda'$. (True even in \mathbb{R}^d for $d \ge 2$)

Interesting examples are non-periodic.

Theorem (Kesten 1966) Let $\xi \in [0, 1]$, $0 \le a < b \le 1$ and define $\Lambda := \{k \in \mathbb{Z} \mid a \le (k\xi \mod 1) < b\}.$ Then the deficiency $D(n) := \#(\Lambda \cap [1, n]) - n(b - a)$ is bounded, if and only if $b - a = k\xi \mod 1$ for some $k \in \mathbb{Z}$.

(if-part: Hecke 1921, Ostrowski 1927)

Choose $\xi \in [0, 1]$ irrational, let $0 < b \le 1$ and define

$$\Lambda_b := \{k \in \mathbb{Z} \mid 0 \leq (k\xi \mod 1) < b\}.$$

Then the deficiency $D(n) := #(\Lambda \cap [1, n]) - nb$ is bounded, if and only if $b = k\xi \mod 1$ for some $k \in \mathbb{Z}$.

The image shows $\{(k, k\xi \mod 1) | k = 0, 1, 2, ...\}$.

Proof (by image) of if-part: (F-Gähler 2011, Duneau-Oguey 1990):

Proof (by image) of if-part: (F-Gähler 2011, Duneau-Oguey 1990):

In particular Kesten yields Delone sets Λ_b that are not bounded distance equivalent to any $c\mathbb{Z}$. Even when dens (Λ_b) exists!

Theorem (Bogopolski 1997)

Any two Delone sets in \mathbb{H}^d ($d \ge 2$) are bounded distance equivalent, hence bilipschitz equivalent.

Theorem (Bogopolski 1997)

Any two Delone sets in \mathbb{H}^d ($d \ge 2$) are bounded distance equivalent, hence bilipschitz equivalent.

Theorem (Burago-Kleiner, C. McMullen 1998) There are Delone sets Λ in \mathbb{R}^d $(d \ge 2)$ such that $\Lambda \overset{\text{bil}}{\sim} \mathbb{Z}^d$.

A D A A B A A B A A B A

Theorem (Bogopolski 1997)

Any two Delone sets in \mathbb{H}^d ($d \ge 2$) are bounded distance equivalent, hence bilipschitz equivalent.

Theorem (Burago-Kleiner, C. McMullen 1998) There are Delone sets Λ in \mathbb{R}^d $(d \ge 2)$ such that $\Lambda \not\sim^{\text{bil}} \mathbb{Z}^d$.

Cool! Let us study some problems in this field. E.g.

- 1. Are the vertices of the Penrose tiling bounded distance equivalent to some lattice?
- 2. How many equivalence classes wrt $\stackrel{\text{bd}}{\sim}$ resp. $\stackrel{\text{bil}}{\sim}$?

Recall: Interesting examples are non-periodic. Like the Penrose tiling:

If Λ is a linearly repetitive Delone set in \mathbb{R}^2 , then $\Lambda \stackrel{\text{bil}}{\sim} \mathbb{Z}^2$.

Repetitive: there is R such that congruent copies of any local patch in Λ occur in every ball of radius R.

Linear repetitive: *R* depends linearly on the diameter of the patch.

If Λ is a linearly repetitive Delone set in \mathbb{R}^2 , then $\Lambda \stackrel{\text{bil}}{\sim} \mathbb{Z}^2$.

Repetitive: there is R such that congruent copies of any local patch in Λ occur in every ball of radius R.

Linear repetitive: *R* depends linearly on the diameter of the patch.

Theorem (Aliste-Prieto, Coronel, Gambaudo 2011)

If Λ is a linearly repetitive Delone set in \mathbb{R}^d , then $\Lambda \stackrel{\mathrm{bil}}{\sim} \mathbb{Z}^d$.

If Λ is a linearly repetitive Delone set in \mathbb{R}^2 , then $\Lambda \stackrel{\text{bil}}{\sim} \mathbb{Z}^2$.

Repetitive: there is R such that congruent copies of any local patch in Λ occur in every ball of radius R.

Linear repetitive: *R* depends linearly on the diameter of the patch.

Theorem (Aliste-Prieto, Coronel, Gambaudo 2011) If Λ is a linearly repetitive Delone set in \mathbb{R}^d , then $\Lambda \stackrel{\text{bil}}{\sim} \mathbb{Z}^d$.

Corollary (F-Garber 2011 unpublished)

Let Λ_P be the vertices of the Penrose tiling. $\Lambda_P \stackrel{\text{bil}}{\sim} \mathbb{Z}^2$.

If Λ is a linearly repetitive Delone set in \mathbb{R}^2 , then $\Lambda \stackrel{\text{bil}}{\sim} \mathbb{Z}^2$.

Repetitive: there is R such that congruent copies of any local patch in Λ occur in every ball of radius R.

Linear repetitive: *R* depends linearly on the diameter of the patch.

Theorem (Aliste-Prieto, Coronel, Gambaudo 2011) If Λ is a linearly repetitive Delone set in \mathbb{R}^d , then $\Lambda \stackrel{\text{bil}}{\sim} \mathbb{Z}^d$.

Corollary (F-Garber 2011 unpublished)

Let Λ_P be the vertices of the Penrose tiling. $\Lambda_P \stackrel{\text{bil}}{\sim} \mathbb{Z}^2$.

Theorem (Solomon 2007) $\Lambda_P \stackrel{\text{bd}}{\sim} c\mathbb{Z}^2.$

(日)(4月)(4日)(4日)(日)

If Λ is a linearly repetitive Delone set in \mathbb{R}^2 , then $\Lambda \stackrel{\text{bil}}{\sim} \mathbb{Z}^2$.

Repetitive: there is R such that congruent copies of any local patch in Λ occur in every ball of radius R.

Linear repetitive: *R* depends linearly on the diameter of the patch.

Theorem (Aliste-Prieto, Coronel, Gambaudo 2011) If Λ is a linearly repetitive Delone set in \mathbb{R}^d , then $\Lambda \stackrel{\text{bil}}{\sim} \mathbb{Z}^d$.

Corollary (F-Garber 2011 unpublished)

Let Λ_P be the vertices of the Penrose tiling. $\Lambda_P \stackrel{\text{bil}}{\sim} \mathbb{Z}^2$.

Theorem (Solomon 2007)

 $\Lambda_P \stackrel{\mathrm{bd}}{\sim} c\mathbb{Z}^2.$

Theorem (Deuber-Simonovits-Sós 1995) $\Lambda_P \stackrel{\rm bd}{\sim} c\mathbb{Z}^2.$

(日)(4月)(4日)(4日)(日)

Well, then let's generalise Kesten to \mathbb{R}^d (at least "if"-part)

(cut-and-project sets, aka model sets, "mathematical quasicrystals")

Well, then let's generalise Kesten to \mathbb{R}^d (at least "if"-part)

(cut-and-project sets, aka model sets, "mathematical quasicrystals")

One can state the argument in purely algebraic terms:

- X an \mathbb{R} -vector space (here $X = \mathbb{R}^2$),
- X = V_p + V_i (here: horizontal + vertical), W ⊂ V_i compact set (here W = [0, b]),
- π_p projection to V_p (here: \downarrow),
- π_i projection to V_i (here: \leftarrow),
- F discrete cocompact subgroup (here: black and white points)

- X an \mathbb{R} -vector space (here $X = \mathbb{R}^2$),
- X = V_p + V_i (here: horizontal + vertical), W ⊂ V_i compact set (here W = [0, b]),
- π_p projection to V_p (here: \downarrow),
- π_i projection to V_i (here: \leftarrow),
- Γ discrete cocompact subgroup (here: black and white points)

- X an \mathbb{R} -vector space (here $X = \mathbb{R}^2$),
- X = V_p + V_i (here: horizontal + vertical), W ⊂ V_i compact set (here W = [0, b]),
- π_p projection to V_p (here: \downarrow),
- π_i projection to V_i (here: \leftarrow),
- F discrete cocompact subgroup (here: black and white points)

•
$$Y = \pi_i^{-1}(W) \cap \Gamma$$
 (here: white points),

$$\blacktriangleright \Lambda = \pi_p(Y)$$

- ► Z subgroup of X with $V_p + Z = X$, $Z \cap \Gamma$ compact (here "lattice direction" for projection)
- π_Z corresponding projection etc...

...then
$$\pi_p(Y) \stackrel{\mathrm{bd}}{\sim} \pi_Z(Y)$$
.

Other colleagues had the same idea: Haynes-Kelly-Weiss 2014, Haynes-Koivusalo 2015+.

...then $\pi_p(Y) \stackrel{\mathrm{bd}}{\sim} \pi_Z(Y)$.

Other colleagues had the same idea: Haynes-Kelly-Weiss 2014, Haynes-Koivusalo 2015+.

Last October I've learned from Alan Haynes that this was done already in

C. Godrèche and C. Oguey:

Construction of average lattices for quasiperiodic structures by the section method, *J. Phys. France* 51 (1990) 21-37

So much on Question 1.

Regarding Question 2:

How many equivalence classes wrt $\stackrel{\mathrm{bd}}{\sim}$ resp. $\stackrel{\mathrm{bil}}{\sim}$?

Theorem (Magazinov 2010)

There are $|\mathbb{R}|$ equivalence classes of Delone sets in \mathbb{R}^d wrt $\stackrel{\text{bil}}{\sim}$.

Theorem (Garber 2009)

There are $|\mathbb{R}|$ equivalence classes of Delone sets in \mathbb{R}^d wrt $\stackrel{\text{bd}}{\sim}$.

Regarding Question 2:

How many equivalence classes wrt $\stackrel{\mathrm{bd}}{\sim}$ resp. $\stackrel{\mathrm{bil}}{\sim}$?

Theorem (Magazinov 2010)

There are $|\mathbb{R}|$ equivalence classes of Delone sets in \mathbb{R}^d wrt $\stackrel{\text{bil}}{\sim}$.

Theorem (Garber 2009)

There are $|\mathbb{R}|$ equivalence classes of Delone sets in \mathbb{R}^d wrt $\stackrel{\text{bd}}{\sim}$.

Proof: (of 2nd result, sketch) It is easy to show that each Delone set in \mathbb{R}^d is bounded distance equivalent to some subset of $r\mathbb{Z}^d$, where r is the radius of uniformly discreteness.

 $(|\mathbb{R}| \text{ many values of } r) imes (|\mathbb{R}| \text{ many subsets of } \mathbb{Z}^d) = |\mathbb{R}|.$

(this shows 'at most $|\mathbb{R}|$ many'. Density yields 'at least $|\mathbb{R}|$ many')

Further research:

- "Only if"-part of Kesten's Theorem
- ► Let $\Lambda_1 \stackrel{\rm bil}{\sim} \Lambda_2$. Is $\Lambda_2 \stackrel{\rm bil}{\sim} \Lambda_1 \cup \Lambda_2$? Under which conditions?
- Let $\Lambda \stackrel{\text{bd}}{\sim} \mathbb{Z}^2$, $\Lambda = \Lambda_1 \cup \Lambda_2$, $\Lambda_1 \stackrel{\text{bd}}{\sim} \Lambda_2$. Is $\Lambda_1 \stackrel{\text{bd}}{\sim} \sqrt{2}\mathbb{Z}^2$?
- ▶ ...

More in

D.F., Alexey Garber: Bounded distance and bilipschitz equivalence of Delone sets, preprint,

www.math.uni-bielefeld.de/~frettloe/papers/bilip-draft.pdf

and references therein.

* *

Thank you!

A D A A B A A B A A B A