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Preface

This book is based on a semester lecture course “Analysis on Graphs”
that I taught a number of years at the Department of Mathematics of the
University of Bielefeld. The purpose of the book is to provide an introduction
to the subject of the discrete Laplace operator on locally finite graphs. It
should be accessible to undergraduate and graduate students with enough
background in Linear Algebra, Analysis and elementary Probability Theory.

The book starts with elementary material at the level of 1st semester
mathematics students, and concludes with the results proved in the math-
ematical literature in 1990s. However, the book covers only some selected
topics about the discrete Laplacian and is complementary to many existing
books on similar subjects.

Let us briefly describe the contents of the book.
In Chapter 1 we give the definition and prove some basic properties of

the discrete Laplace operator such as solvability of the Dirichlet problem
and the existence of the associated random walk (= a reversible Markov
chain).

In Chapter 2 we are concerned with the eigenvalues of the Laplace op-
erator on finite graphs and their relation to the rate of convergence to the
equilibrium of the corresponding random walk.

Chapter 3 contains some estimates of the eigenvalues on finite graphs,
in particular, Cheeger’s inequality, as well as the relation of eigenvalues to
the expansion rate of subsets of graphs [37], [39].

In Chapter 4 we deal with the Laplace operator on infinite graphs
and its restriction to finite domains – the Dirichlet Laplacian. The cen-
tral topic is the relation between the eigenvalues of the Dirichlet Laplacian
and the isoperimetric properties of the graph, which is based on a version of
Cheeger’s inequality. In Section 4.5 we prove a beautiful theorem of Coulhon
and Saloff-Coste [51] about isoperimetric inequalities on Cayley graphs.

Chapter 5 is devoted to heat kernel estimates on infinite graphs, where
the heat kernel is the density of the transition probability of the random walk
with respect to the underlying measure (for example, the degree measure).
In the case of a simple random walk in Z we obtain the estimates directly
from the definition by means of Stirling’s formula. In Section 5.3 we prove
a universal Gaussian upper bound of the heat kernel that is due to Carne
[32] and Varopoulos [136] . In Section 5.4 we prove the on-diagonal upper
bound of the heat kernel of [47], [81] assuming that the graph satisfies a
Faber-Krahn inequality.
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In Sections 5.5-5.6 we prove some lower bounds of the heat kernel of
[49], [113]. In Section 5.7 we use the heat kernel techniques to prove a
universal upper bound for escape rate of the random walk on graphs with
the polynomial volume growth. This can be regarded as a far-reaching
generalization of the Hardy-Littlewood

√
n log n-estimate for the escape rate

of a simple random walk in Zm, which was obtained in 1914 (ten years
before Khinchin’s law of the iterated logarithm). For graphs with polynomial
volume growth the

√
n log n-estimate is sharp as was shown in [15].

In Chapter 6 we are concerned with the type problem that is the problem
of deciding weather the random walk is recurrent or transient. We give here
a number of analytic conditions for recurrence and transience. In particular,
the heat kernel bounds from the previous chapter lead immediately to the
celebrated theorem of Polya: the simple random walk in Zm is recurrent if
and only if m ≤ 2 (Section 6.1). A far reaching generalization of Polya’s
theorem is the Varopoulos criterion [135] for recurrence on Cayley graphs
that is presented in Section 6.2. In the remaining part of this Chapter we
prove for general graphs Nash-Williams’ [115] and volume tests for recur-
rence (the latter being a discrete version of a theorem of Cheng-Yau [33]
about parabolicity of Riemannian manifolds) as well as an isoperimetric test
for transience [72].

Chapter 7 contains exercises that were actually used for home work in
the aforementioned lecture course. Solutions to all exercises are available on
my home page.

Some remarks are due concerning the bibliography. Initially I planned
to limit myself to a minimal bibliography list containing only necessary ref-
erences from the text. However, it was suggested by an anonymous referee
that the bibliography should contain also references to the sources in adja-
cent areas thus providing a broader coverage of topics of Analysis on graphs.
Furthermore, the referee had kindly offered a long list of such references,
which greatly facilitated my work on the bibliography list. Hence, here is a
list of sources for further reading.

• Classical (combinatorial) graph theory: [31], [38], [59], [122],
[123].

• Various aspects of Analysis on graphs: [29], [45], [46], [52], [53],
[64], [65], [66], [129], [130].

• Spectral theory on graphs: [6], [19], [21], [22], [24], [27], [28],
[30], [35], [39], [40], [42], [43], [44], [45], [52], [53], [67], [70],
[90], [92], [93], [105], [106], [114], [125], [132], [133], [134].

• Potential-theoretic aspects of graphs: [63], [96], [97], [127], [137],
[139].

• Analysis on Cayley and Schreier graphs: [16], [17], [49], [51], [54],
[65], [66], [71], [83], [84], [85], [112], [118], [121], [119].

• Random processes on graphs: [9], [10], [15], [86], [120], [124],
[131], [139], [140].
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• Heat kernels on graphs: [10], [11], [12], [13], [14], [47], [48], [50],
[55], [56], [68], [69], [81], [82], [87], [88], [100], [101], [102],
[116], [126]

• Curvature on graphs: [20], [23], [41], [94], [95], [107], [108], [109].
• Homology theory on graphs: [4], [7], [60], [75], [76], [77], [78],

[79], [80].
• Analysis on metric/quantum graphs: [26], [27], [64], [67], [98].
• Analysis on fractals and ultra-metric spaces: [3], [8], [25], [64],

[73], [99], [128].
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