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Introduction

The purpose of this paper is to introduce a new emerging area of research – the theory of path
homology on digraphs, that is also known as GLMY-homology.

There exists a number of ways to define the notion of homology for graphs and digraphs, for example,
clique homology ([6], [33]) or singular homology ([3], [33], [37]). However, the path homology
has certain advantages as it enjoys adequate functorial properties with respect to graph-theoretical
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operations, such as morphisms of digraphs, Cartesian products, joins, homotopy etc. The notion of
path homology has a rich mathematical content, and I hope that it will become a useful tool in various
areas of pure and applied mathematics.

Sections 1 and 3 contain a survey of the results obtained in [18], [20], [22], [26], [29], [30], while the
results of Sections 2, 4, 5 and 6 are entirely new.

For further reading on this subject and related topics I recommend [1], [2], [4], [5], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [19], [21], [23], [24], [25], [27], [28], [31], [32], [35], [36].
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1 Spaces of ∂-invariant paths

The material of this section is based on [20] and [22].

1.1 Paths and the boundary operator

Let V be a finite set whose elements will be called vertices. For any p ≥ 0, an elementary p-path
is any sequence i0, ..., ip of p + 1 vertices of V (allowing repetitions). Fix a field K and denote by
Λp = Λp (V,K) the K-linear space that consists of all formal K-linear combinations of elementary
p-paths in V . Any element of Λp is called a p-path.

An elementary p-path i0, ..., ip as an element of Λp will be denoted by ei0...ip . For example, we have

Λ0 = 〈ei : i ∈ V 〉, Λ1 = 〈eij : i, j ∈ V 〉, Λ2 = 〈eijk : i, j, k ∈ V 〉

Any p-path u can be written in a form u =
∑

i0,i1,...,ip∈V ui0i1...ip ei0i1...ip , where ui0i1...ip ∈ K.

Definition. Define for any p ≥ 1 a linear boundary operator ∂ : Λp → Λp−1 by

∂ei0...ip =
p∑

q=0

(−1)q ei0...îq ...ip
, (1.1)

where ̂means omission of the index. Set Λ−1 = {0} and define ∂ : Λ0 → Δ−1 by ∂ = 0.

For example, ∂ei = 0, ∂eij = ej − ei and ∂eijk = ejk − eik + eij .

Lemma 1.1. [20], [22, Lemma 2.1] We have ∂2 = 0.

Proof. Indeed, for any p ≥ 2 we have

∂2ei0...ip =
p∑

q=0

(−1)q ∂ei0...îq ...ip

3



=
p∑

q=0

(−1)q




q−1∑

r=0

(−1)r ei0...îr ...îq ...ip
+

p∑

r=q+1

(−1)r−1 ei0...îq ...îr ...ip





=
∑

0≤r<q≤p

(−1)q+r ei0...îr ...îq ...ip
−

∑

0≤q<r≤p

(−1)q+r ei0...îq ...îr ...ip
.

After switching q and r in the last sum we see that the two sums cancel out, whence ∂2ei0...ip = 0.
This implies ∂2u = 0 for all u ∈ Λp.

Hence, we obtain a chain complex Λ∗ (V ):

0 ← Λ0
∂
← Λ1

∂
← . . .

∂
← Λp−1

∂
← Λp

∂
← . . .

Definition. An elementary p-path ei0...ip is called regular if ik 6= ik+1 for all k = 0, ..., p − 1, and
irregular otherwise.

Let Ip be the subspace of Λp spanned by irregular p-paths ei0...ip . We claim that ∂Ip ⊂ Ip−1. Indeed,
if ei0...ip is irregular then ik = ik+1 for some k. We have

∂ei0...ip = ei1...ip − ei0i2...ip + ...

+ (−1)k ei0...ik−1ik+1ik+2...ip + (−1)k+1 ei0...ik−1ikik+2...ip (1.2)

+ ... + (−1)p ei0...ip−1 .

By ik = ik+1 the two terms in the middle line of (1.2) cancel out, whereas all other terms are
non-regular, whence ∂ei0...ip ∈ Ip−1.

Hence, ∂ is well-defined on the quotient spaces Rp := Λp/Ip, and we obtain the chain complex
R∗ (V ):

0 ← R0
∂
← R1

∂
← . . .

∂
← Rp−1

∂
← Rp

∂
← . . .

By setting all irregular p-paths to be equal to 0, we can identify Rp with the subspace of Λp spanned
by all regular paths. For example, if i 6= j then eiji ∈ R2 and

∂eiji = eji − eii + eij = eji + eij

because eii = 0 inR2.

1.2 Chain complex Ω∗

Definition. A digraph (directed graph) is a pair G = (V,E) of a set V of vertices and E ⊂
{V × V \ diag} is a set of arrows (directed edges). If (i, j) ∈ E then we write i→ j.

Definition. Let G = (V,E) be a digraph. An elementary p-path i0...ip on V is called allowed if
ik → ik+1 for any k = 0, ..., p − 1, and non-allowed otherwise.

Let Ap = Ap (G) be K-linear subspace of Λp spanned by allowed elementary p-paths:

Ap = 〈ei0...ip : i0...ip is allowed〉.

The elements of Ap are called allowed p-paths. Since any allowed path is regular, we have Ap ⊂ Rp.

We would like to build a chain complex based on subspaces Ap of Rp. However, the spaces Ap are
in general not invariant for ∂. For example, in the digraph

a
• −→

b
• −→

c
•
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we have eabc ∈ A2 but ∂eabc = ebc − eac + eab /∈ A1 because eac is non-allowed.

Consider the following subspace of Ap

Ωp ≡ Ωp (G) := {u ∈ Ap : ∂u ∈ Ap−1} .

We claim that ∂Ωp ⊂ Ωp−1. Indeed, u ∈ Ωp implies ∂u ∈ Ap−1 and ∂ (∂u) = 0 ∈ Ap−2, whence
∂u ∈ Ωp−1.

Definition. The elements of Ωp are called ∂-invariant p-paths.

Thus, we obtain a chain complex Ω∗ = Ω∗ (G) :

0 ← Ω0
∂
← Ω1

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . . (1.3)

By construction we have Ω0 = A0 and Ω1 = A1, while in general Ωp ⊂ Ap.

Proposition 1.2. [20] If dimΩn ≤ 1 then Ωp = {0} for all p ≥ n + 1.

We say that a pair a, b forms a double arrow if a→ b and b→ a.

Proposition 1.3. [20] If G contains no double arrow and dimΩn ≤ 2 then Ωn = {0} for all p ≥ n+2.

1.3 Path homology

Definition. Path homologies of G are defined as the homologies of the chain complex Ω∗ (G):

Hp = Hp (G) = ker ∂|Ωp

/
Im ∂|Ωp+1 .

For a vector space U over K we write
|U | = dimK U.

Define the Betti numbers of G by
βp = βp(G) = |Hp| .

For any N ∈ N define the Euler characteristic of G of the order N by

χ(N) = χ(N)(G) =
N∑

p=0
(−1)p |Ωp| .

If the sequence {Ωp} is finite in the sense that Ωp = {0} for large enough p, then, for large enough N ,

χ(N) = χ :=
∞∑

p=0

(−1)p |Ωp| =
∞∑

p=0

(−1)p βp.

Proposition 1.4. If X and Y are two disjoint digraphs then

βp (X t Y ) = βp (X) + βp (Y ) . (1.4)

Proof. Clearly, any allowed elementary p-path on X t Y is contained in X or Y . It follows that the
same property is true for ∂-invariant paths, so that

Ωp (X t Y ) = Ωp (X)⊕ Ωp (Y ) .

Hence, the same identity holds for homology groups, whence (1.4) follows.
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Proposition 1.5. We have β0 (G) = #of connected components of G.

Proof. It suffices to prove that if G is connected then β0 = 1. We have β0 = |Ω0| − |∂Ω1| . Let the
set of vertices of G be {1, ..., n} so that |Ω0| = n. Since Ω1 is spanned by all arrows eij , i → j, the
space ∂Ω1 is spanned by all differences ej − ei where i → j. Since there is an edge path between
the vertex 1 and any other vertex i, it follows that ∂Ω1 contains ei − e1 for any vertex i > 1. These
n − 1 elements of ∂Ω1 are linearly independent while any other difference ej − ei is expressed as
(ej − e1)− (ei − e1) . Hence, |∂Ω1| = n− 1 and β0 = 1.

1.4 Digraph morphisms

Let X and Y be two digraphs. For simplicity of notations, we denote the sets of vertices of X and Y
by the same letters X resp. Y .

Definition. A mapping f : X → Y between the sets of vertices of X and Y called a digraph map (or
morphism) if

a→ b on X ⇒ f (a) → f (b) or f (a) = f (b) on Y.

In other words, any arrow of X under the mapping f either goes to an arrow of Y or collapses to a
vertex of Y .

We say that a digraph Y is a subgraph of a digraph X if the sets of vertices and arrows of Y are
subset of the sets of vertices and arrows of X , respectively. In this case we have a natural inclusion
i : Y → X that is clearly a digraph morphism. A subgraph Y of X is called induced if, for any two
vertices a, b of Y such that there is an arrow a→ b in X , there is also an arrow a→ b in Y .

To give another example of a morphism, assume that a vertex set of a digraph X splits into a disjoint
union of n subsets A1, ..., An, and construct a digraph Y of n vertices a1, ..., an that is obtained from
X by merging all the vertices from Ai into a single vertex ai of Y . More precisely, we have an arrow
ai → aj in Y if and only if there are x ∈ Ai and y ∈ Aj such that x→ y in X.

An example of a merging map μ

We have a natural merging map μ : X → Y such that μ (x) = ai for any x ∈ Ai. Clearly, a merging
map is a digraph morphism that keeps any arrow x → y if x and y belong to different sets Ai and
collapses an arrow x→ y into a vertex if x, y belong to the same Ai.

Any digraph morphism f : X → Y induces a mapping f∗ : Λn (X)→ Λn (Y ) as follows: first set

f∗ (ei0...in) = ef(i0)...f(in),

and then extend f∗ by linearity to all of Λn (X).

Proposition 1.6. Let f : X → Y be a digraph morphism. Then the induced mapping f∗ : Λn (X)→
Λn (Y ) extends to a chain mapping f∗ : Ωn (X) → Ωn (Y ) and, hence, to homomorphism f∗ :
Hn (X)→ Hn (Y ) .
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Proof. If ei0...in is irregular then f∗ (ei0...in) is also irregular. Therefore, f∗ maps the space In (X) of
irregular paths on X into In (Y ). It follows that f∗ mapsRn (X) = Λn (X) /In (X) intoRn (Y ).

Next, f∗ maps the space An (X) of allowed paths into An (Y ): if ei0...in is allowed then ik → ik+1

for all k, which implies that either f (ik)→ f (ik+1) for all k and, hence, f∗ (ei0...in) is also allowed,
or f (ik) = f (ik+1) for some k so that f∗ (ei0...in) is irregular, thus f∗ (ei0...in) = 0.

Clearly, f∗ commutes with ∂, which implies that f∗ maps Ωn (X) into Ωn (Y ) and f∗ is a chain
mapping. Consequently, we obtain a homomorphism of homology groups f∗ : Hn(X)→ Hn(Y ).

Further examples of digraph morphisms will be given in Sections 1.8 and 2.3.

1.5 Examples of ∂-invariant paths

A triangle is a sequence of three distinct vertices a, b, c

such that a→ b→ c, a→ c.

It determines a 2-path eabc ∈ Ω2 because eabc ∈ A2

and ∂eabc = ebc − eac + eab ∈ A1.

A square is a sequence of four distinct vertices a, b, b′, c

such that a→ b→ c, a→ b′ → c while a 6→ c.

It determines a 2-path u = eabc − eab′c ∈ Ω2 because
u ∈ A2 and

∂u = (ebc − eac + eab)− (eb′c − eac + eab′)

= eab + ebc − eab′ − eb′c ∈ A1.

An m-square is a sequence of m + 3 distinct vertices

a, b0, b1, ..., bm, c

such that a→ bk → c ∀k = 0, . . . ,m, while a 6→ c.

An m-square determines ∂-invariant 2-paths

uij = eabic − eabjc ∈ Ω2 for all i, j = 0, ...,m,

and among them the following m paths are linearly independent:

u0j = eab0c − eabjc, j = 1, ...,m.

Clearly, an 1-square is a square in the above sense. Any m-square with m ≥ 2 is called a multisquare.

A p-simplex (or p-clique) is a configuration of p + 1

distinct vertices, say, 0, 1, ..., p, such that i→ j ∀i < j.

It determines a p-path e01...p ∈ Ωp.

Here is a 3-simplex:

A p-snake is a configuration of p + 1

distinct vertices, say 0, 1, . . . , p, with

the following arrows:

i→ i + 1 for all i = 0, ..., p − 1,

i→ i + 2 for all i = 0, ..., p − 2.
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In particular, any triple i (i + 1) (i + 2) forms a triangle for i = 0, . . . , p − 2.

A p-snake determines a ∂-invariant p-path e01...p. Indeed, this path is obviously allowed, and its
boundary

∂e01...p =
p∑

q=0
(−1)q e0...(q−1)(q+1)...p

is also allowed because q − 1→ q + 1. Hence, ei0...ip ∈ Ωp.

A toy snake

Clearly, a p-simplex contains a p-snake.

A 3-cube is a sequence of 8 vertices 0, 1, 2, 3, 4, 5, 6, 7,
connected by arrows as shown here:

A 3-cube determines a ∂-invariant 3-path

u = e0237 − e0137 + e0157 − e0457 + e0467 − e0267 ∈ Ω3

because u ∈ A3 and

∂u = (e013 − e023) + (e157 − e137) + (e237 − e267)

− (e046 − e026)− (e457 − e467)− (e015 − e045) ∈ A2.

A trapezohedron of order m ≥ 2 is

a configuration of 2m + 2 distinct

vertices

a, b, i0, . . . , im−1, j0, . . . , jm−1

with 4m arrows:
a→ ik, jk → b

and
ik → jk, ik → jk+1,

for all k = 0, . . . ,m − 1, where k is

understood mod m.

The trapezohedron gives rise to the following ∂-invariant 3-path:

τm =
m−1∑

k=0

(
eaikjkb − eaikjk+1b

)
. (1.5)

Indeed, τm is clearly allowed, and its boundary is also allowed because

∂τm =
m−1∑

k=0

∂
(
eaikjkb − eaikjk+1b

)

=
m−1∑

k=0

(
eikjkb − eikjk+1b

)
−

m−1∑

k=0

(
eaikjk

− eaikjk+1

)
(1.6)

−
m−1∑

k=0

(
eajkb − eajk+1b

)
+

m−1∑

k=0

(eaikb − eaikb) , (1.7)
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where the both sums in (1.6) are allowed, while both sums in (1.7) vanish.

A trapezohedron of order m = 2 is shown here:

In this case we have

τ2 = eai0j0b − eai0j1b + eai1j1b − eai1j0b.

A trapezohedron of order m ≥ 3 can be realized as a convex polyhedron in R3 with flat faces. For
example, a trapezohedron of order m = 3 coincides with a 3-cube:

In this case we have

τ3 = eai0j0b − eai0j1b + eai1j1b − eai1j2b

+eai2j2b − eai2j0b,

and τ3 coincides (up to a sign)
with the aforementioned 3-path
determined by a 3-cube.

A trapezohedron of order m = 4
is a tetragonal trapezohedron:

In this case we have

τ4 = eai0j0b − eai0j1b + eai1j1b − eai1j2b

+eai2j2b − eai2j3b + eai3j3b − eai3j0b.

1.6 Examples of spaces Ωp and Hp

Here is a triangle as a digraph:

We have Ω1 = 〈e01, e02, e12〉, Ω2 = 〈e012〉.

Since ker ∂|Ω1 = 〈e01 − e02 + e12〉 and

e01 − e02 + e12 = ∂e012,

it follows that H1 = {0}.

Ωp = {0} for p ≥ 3 and Hp = {0} for p ≥ 2.

Here is a square as a digraph:

We have Ω1 = 〈e01, e02, e13, e23〉, Ω2 = 〈e013 − e023〉.

Since ker ∂|Ω1 = 〈e01 − e02 + e13 − e23〉 and

e01 − e02 + e13 − e23 = ∂ (e013 − e023)

it follows that H1 = {0}.

Ωp = {0} for p ≥ 3 and Hp = {0} for p ≥ 2.
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Here is a 4-cycle that is called a diamond:

We have Ω1 = 〈e02, e03, e12, e13〉,

H1 = ker ∂|Ω1 = 〈e02 − e03 − e12 + e13〉

Ωp = {0} and Hp = {0} for all p ≥ 2.

Consider a hexagon with two diagonals:

Here Ω2 = 〈e013 − e023, e014 − e024〉,

H1 = 〈e13 − e53 + e54 − e14〉,

Ωp = {0} for p ≥ 3 and Hp = {0} for p ≥ 2.

Consider an octahedron based on a diamond:

Space Ω2 is spanned by 8 triangles:

Ω2 = 〈e024, e034, e025, e035, e124, e134, e125, e135〉,

H2 = 〈e024 − e034 − e025 + e035 − e124 + e134 + e125 − e135〉

Ωp = {0} for p ≥ 3 and Hp = {0} for p = 1 and p ≥ 3.

Consider an octahedron based on a square:

Ω2 = 〈e024, e025, e014, e015, e234, e235, e134, e135, e013 − e023〉

Ω3 = 〈e0234 − e0134, e0235 − e0135〉, Ωp = {0} ∀p ≥ 4

We have ker ∂|Ω2 = 〈u, v〉 where

u = e024 + e234 − e014 − e134 + (e013 − e023)

v = e025 + e235 − e015 − e135 + (e013 − e023)

but H2 = {0} because

u = ∂ (e0234 − e0134) and v = ∂ (e0235 − e0135) .

In fact, Hp = {0} for all p ≥ 1.

Consider a 3-cube:

Space Ω2 is spanned by 6 squares:

Ω2 = 〈e013 − e023, e015 − e045, e026 − e046,

e137 − e157, e237 − e267, e457 − e467〉

Space Ω3 is spanned by one 3-cube:

Ω3 = 〈e0237 − e0137 + e0157 − e0457 + e0467 − e0267〉

Ωp = {0} for all p ≥ 4 and Hp = {0} for all p ≥ 1.

1.7 An example of computation of Ωp and Hp

Consider a square with a diagonal:

We have Ω0 = A0 = 〈e0, e1, e2, e3〉, |Ω0| = 4,

Ω1 = A1 = 〈e01, e02, e13, e23, e30〉, |Ω1| = 5,
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and A2 = 〈e013, e023, e130, e230, e301, e302〉, |A2| = 6. To determine Ω2, let us first compute
∂|A2 modA1:

∂e013 = e13 − e03 + e01 = −e03 modA1

∂e023 = e23 − e03 + e02 = −e03 modA1

∂e130 = e30 − e10 + e13 = −e10 modA1

∂e230 = e30 − e20 + e23 = −e20 modA1

∂e301 = e01 − e31 + e30 = −e31 modA1

∂e302 = e02 − e32 + e30 = −e32 modA1

We have

D := matrix of ∂|A2 modA1 =











e013 e023 e130 e230 e301 e302

e03 −1 −1 0
e10 −1
e20 −1
e31 −1
e32 0 −1











and
Ω2 = ker ∂|A2 modA1 = nullspace D = 〈e013 − e023〉.

One can show that {Ωp} = 0 for all p ≥ 3 (which also follows from Proposition 1.2) and, hence,
{Hp} = 0 for all p ≥ 3.

Let us compute H1 and H2. We have for the basis in Ω1:

∂e01 = −e0 + e1

∂e02 = −e0 + e2

∂e13 = −e1 + e3

∂e23 = −e2 + e3

∂e30 = e0 − e3

Therefore,

D := matrix of ∂|Ω1 =









e01 e02 e13 e23 e30

e0 −1 −1 0 0 1
e1 1 0 −1 0 0
e2 0 1 0 −1 0
e3 0 0 1 1 −1









and
ker ∂|Ω1 = nullspace D = 〈e01 + e13 − e02 − e23, e01 + e13 + e30〉.

Similarly, for the basis in Ω2 we have

∂ (e013 − e023) = (e13 − e03 + e01)− (e23 − e03 + e02) = e01 + e13 − e02 − e23

whence
Im ∂|Ω2 = 〈e01 + e13 − e02 − e23〉 and ker ∂|Ω2 = {0} .

It follows that H2 = {0} and

H1 = ker ∂|Ω1/ Im ∂|Ω2 = 〈e01 + e13 + e30〉.

As we have seen, computation of the spaces Ωp (G) and Hp (G) amounts to computing ranks and
null-spaces of matrices. We currently use for numerical computation of Hp (G,F2) a C++ program
written by Chao Chen in 2012.
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Problem 1.7. Devise an efficient algorithm/software for computation of the spaces Ωp for arbitrary
digraphs, possibly avoiding null-spaces of large matrices. Such algorithms exist for Ω2 and Ω3. Are
there simpler ways of computing directly dimΩp without computing the bases of Ωp?

1.8 Structure of Ω2

As we know, Ω0 = 〈ei〉 consists of all vertices and Ω1 = 〈eij : i→ j〉 consists of all arrows.

Definition. Let us call a semi-arrow any pairs (x, y) of distinct vertices x, y such that x 6→ y but
x→ z → y for some vertex z. We write in this case x ⇀ y

Theorem 1.8. [21, Proposition 2.9], [20].

(a) We have |Ω2| = |A2| − s where s is the number of semi-arrows.

(b) The space Ω2 is spanned by all triangles eabc, squares eabc − eab′c and double arrows eaba.

Proof. (a) Recall that
A2 = span {eabc : abc is allowed}

and
Ω2 = {v ∈ A2 : ∂v ∈ A1} = {v ∈ A2 : ∂v = 0modA1} .

If abc is allowed then ab and bc are arrows, whence

∂eabc = ebc − eac + eab = −eac modA1.

If a = c or a→ c then eac = 0modA1. Otherwise ac is a semi-arrow, and in this case

eac 6= 0 modA1.

For any v ∈ A2, we have
v =

∑

{a→b→c}

vabceabc

from which it follows that

∂v = −
∑

{a→b→c,a⇀c}

vabceac modA1.

The condition ∂v = 0modA1 is equivalent to
∑

{a→b→c, a⇀c}

vabceac = 0modA1,

which in turn is equivalent to
∑

b∈V

vabc = 0 for any semi-arrow ac. (1.8)

The number of the equations in (1.8) is exactly s, and they all are linearly independent for different
semi-arrows, because a triple abc determines at most one semi-arrow. Hence, Ω2 is obtained fromA2

by imposing s linearly independent conditions, which implies |Ω2| = |A2| − s.

(b) Any allowed 2-path ω can be represented as a sum of elementary 2-paths eijk with i → j → k
multiplied with a scalar c 6= 0. If k = i then eijk is a double arrow. If i 6= k and i→ k then eijk is a
triangle. Subtracting from ω all double arrows and triangles, we can assume that ω has no such terms
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any more. Then, for any term eijk in ω we have i 6= k and i 6→ k. Fix such a pair i, k and consider
any vertex j with i→ j → k. Assume that eijk enters ω with a coefficient cj 6= 0. Set

ωik =
∑

j

cjeijk (1.9)

so that ω =
∑

ik ωik. It suffices to verify that each ωik is a linear combination of squares. The 1-path
∂ω is the sum of 1-paths of the form

∂ (cjeijk) = cjeij − cjeik + cjejk.

Since ∂ω is allowed but eik is not allowed, the term cjeik should cancel out after we sum up all such
terms over all possible j, that is, ∑

j

cj = 0. (1.10)

Denote by {j0, j1, ..., jm} the sequence of all possible vertices j with i→ j → k so that we obtain an
m-square:

An m-square {i, {jl}
m
l=0 , k}

Then we obtain from (1.9)

ωik =
m∑

l=0

cjl
eijlk =

m∑

l=1

cjl
(eijlk − eij0k)

because by (1.10)

cj0 = −
l∑

l=1

cjl
.

We conclude that ωik is a linear combination of squares.

Example 1.9. Let the digraph G be an m-square shown on the above picture. It has one semi-arrow
i ⇀ k so that s = 1. Since |A2| = m + 1, we conclude that |Ω2| = m. Indeed, the basis in Ω2 is
given by the sequence of m squares {eij0k − eijlk}

m
l=1 .

Observe that a triangle eabc and a double arrow eaba are images of a square e013− e023 under merging
maps (cf. Subsection 1.4) as shown on these pictures:

a merging map from a square onto a triangle

e013 − e023 7→ eabc − eacc = eabc

a merging map from a square onto a double arrow

e013 − e023 7→ eaba − eaaa = eaba

Hence, we can rephrase Theorem 1.8 as follows: Ω2 is spanned by squares and their morphism images.
Or: squares are basic shapes of Ω2.
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1.9 Path complex

The material of this section is based on [20], [22] and [26]. We discuss here the notion of path complex
that unifies digraphs and simplicial complexes.

Definition. A path complex on a finite set V is a collection P of elementary paths on V such that if
i0i1...ip−1ip ∈ P then also i1...ip and i0...ip−1 belong to P .

For example, each digraph G = (V,E) gives rise to a path complex P that consists of all allowed
elementary paths, that is, of the paths i0 → i1 → ... → ip. In general, all paths in a path complex P
are also called allowed.

The above definitions of ∂-invariant paths, spaces Ωp and Hp go through without any change to general
path complexes in place of digraphs because they are based on the notion of allowed paths only. In
fact, most of the results that are proved for path homology theory for digraphs remain true also for a
more general setting of path complexes.

Let us recall the definition of an abstract simplicial complex.

Definition. A simplicial complex with the set of vertices V is a collection S of subsets of V such that
if σ ∈ S then any subset of σ is also an element of S .

Let us enumerate all elements of V so that any subset σ of V can be regarded as a path i0...ip with
i0 < i1 < .... < ip. The above definition means that if i0...ip ∈ S then also any sub-path ik0 ...ikq

with 0 ≤ k0 < k1 < ... < kq ≤ p belongs to S . Hence, a simplicial complex S is a path complex,
and the theory of path homologies applies for S .

In this case, Ap consists of linear combinations of all p-dimensional simplexes in S and Ωp = Ap

because ∂ei0...ip is always allowed if ei0...ip is allowed. Hence, the path homology theory of a path
complex S coincides with the simplicial homology theory of S .

Schematic relation between path complexes, digraphs and simplicial complexes

Let S be a simplicial complex with the vertex set V as above. Define a digraph GS as follows: the
vertex set of GS is S , and for two simplexes a, b ∈ S we have an arrow a → b provided a ⊃ b and
|a| = |b|+1, that is, when b is a face of a of codim = 1. The digraph GS is called the Hasse diagram
of S .

If S is realized geometrically as a collection of simplexes in Rn then GS can be realized on the set of
vertices BS consisting of barycenters of the simplexes of S as on the picture. The relation between
simplicial homology Hsimpl with the path homology H is given by the following theorem.

Theorem 1.10. [26, Corollary 5.4] We have

Hsimpl
∗ (S) ∼= H∗ (GS) .
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1.10 Triangulation as a closed path

Given a closed oriented n-dimensional manifold M , let T be its triangulation, that is, a partition into
n-dimensional simplexes. Denote by V = {0, 1, ...} the set of all vertices of the simplexes from T
and by E – the set of all edges, so that (V,E) is a graph embedded on M .

Let us introduce make each edge (i, j) ∈ E into an arrow i → j if i < j and into j → i if
i > j. Then each simplex from T becomes a digraph-simplex. Denote by

−→
T the set of all digraph

simplexes constructed in this way. That is, i0...in ∈
−→
T if i0...in is a monotone increasing sequence

that determines a simplex from T . Clearly, any such path i0...ip is allowed.

For any simplex from T with the vertices i0...in define the quantity σi0...in to be equal to 1 if the
orientation of the simplex i0...in matches the orientation of the manifold M , and−1 otherwise. Then
consider the following allowed n-path on the digraph G = (V,E):

σ =
∑

i0...in∈
−→
T

σi0...inei0...in . (1.11)

Lemma 1.11. [20] The path σ is closed, that is, ∂σ = 0, which, in particular, implies that σ is
∂-invariant.

Proof. Observe that ∂σ is a linear combination with coefficients ±1 of the terms ej0...jn−1 where the
sequence j0, ..., jn−1 is monotone increasing and forms an (n− 1)-dimensional face of one of the
n-simplexes from T .

In fact, every (n− 1)-face arises from two n-simplexes,

say, from

A = j0...jk−1ajk...jn−1 and B = j0...jl−1bjl...jn−1.

That is, the n-simplexes A and B have a common

(n− 1)-dimensional face j0...jn−1.

We have
∂ej0...jk−1ajk...jn−1 = ... + (−1)k ej0...jk−1jk...jn−1 + ... .

Since interchanging the order of two neighboring vertices in an n-simplex changes its orientation, we
have

σj0...jk−1ajk...jn−1 = (−1)k σaj0...jk−1jk...jn−1 .

Multiplying the above lines, we obtain

∂(σAeA) = ... + σaj0...jn−1ej0...jn−1 + ... ,

and in the same way
∂(σBeB) = ... + σbj0...jn−1ej0...jn−1 + ...

However, the vertices a and b are located on the opposite sides of the face j0...jn−1, which implies that
the simplexes aj0...jn−1 and bj0...jn−1 have the opposite orientations relative to that of M . Hence,

σaj0...jn−1 + σbj0...jn−1 = 0,

which means that the term ej0...jn−1 cancels out in the sum ∂(σAeA + σBeB) and, hence, in ∂σ. This
proves that ∂σ = 0.

The closed path σ defined by (1.11) is called a surface path on M .

There is a number of examples when a surface path σ happens to be exact, that is, σ = ∂v for some
(n + 1)-path v. In this case v is called a solid path on M because v represents a “solid” shape whose
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boundary is given by a surface path. If σ is not exact then σ determines a non-trivial homology class
from Hn (G) and, hence, represents a “cavity” in triangulation T .

Example 1.12. M = S1. A triangulation of S1 is a polygon, and the corresponding digraph G is
called cyclic.

On each edge (i, j) of a polygon we choose

an arrow i→ j arbitrary (not necessarily if i < j).

We have

σ =
∑

i→j

σijeij

where we have σij = 1 if the arrow i→ j goes

counterclockwise, and σij = −1 otherwise.

For the digraph on the picture we have

σ = e01 − e21 + e23 + e34 − e54 + e50.

If a polygon G is a triangle or a square then Ωp = {0} for p ≥ 3 and Hp = {0} for all p ≥ 1.
Otherwise we have the following statement.

Proposition 1.13. [20] If a polygon G is neither a triangle nor a square then Ωp = {0} and Hp = {0}
for all p ≥ 2 while H1 = 〈σ〉.

Proof. We have Ωp = {0} for all p ≥ 2 by Theorem 1.8. Hence, dim Hp = 0 for p ≥ 2. For the Euler
characteristic, we have

χ = dimΩ0 − dimΩ1 = 0.

Since also
χ = dim H0 − dim H1

and dim H0 = 1, we obtain dim H1 = 1.

It remains to see that σ is a non-zero element of H1. The path σ is closed by Lemma 1.11. In this case
this can also be seen directly because by construction we have σi(i+1) − σ(i+1)i ≡ 1 whence, for any
vertex i,

(∂σ)i =
∑

j∈V

(
σji − σij

)
= σ(i−1)i + σ(i+1)i − σi(i−1) − σi(i+1) = 1− 1 = 0.

Finally, σ 6= 0 in H1 because Im ∂|Ω2 = {0} .

Example 1.14. Let M = Sn and let a triangulation of the n-sphere Sn be given by the surface of an
(n + 1)-simplex.

Then G is a (n + 1)-simplex digraph.

On this picture n = 2 and

σ = e123 − e023 + e013 − e012 = ∂e0123

so that e0123 is a solid path representing

a tetrahedron.

For an arbitrary n we also have σ = ∂e0...n+1 so that e0...n+1 is a solid path representing an (n + 1)-
simplex.
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Example 1.15. Let M = S2 and let a triangulation of S2 be given by an octahedron (see also
Subsection 1.6). Consider two cases of numbering of vertices and, respectively, orientation of arrows.

An octahedron based on a square:

We have H2 = {0} ; it is easy to see that

σ = e024 − e025 − e014 + e015 − e234

+e235 + e134 − e135

= ∂ (e0134 − e0234 + e0135 − e0235)

Hence, v = e0134 − e0234 + e0135 − e0235

is a solid path and the octahedron

represents a solid shape.

An octahedron based on a diamond:

We have H2 = 〈σ〉 where

σ = e024 − e034 − e025 + e035 − e124

+e134 + e125 − e135

so that this octahedron represents

a cavity.

Example 1.16. Let M = S2 and let a triangulation of S2 be given by an icosahedron:

Chose a numbering of vertices as shown here

and arrows i→ j if i ∼ j and i < j.

We have |V | = 12, |E| = 30, H1 = {0} ,

and H2 = 〈σ〉 where

σ = −e0 1 9 + e0 1 2 − e1 2 11 + e0 2 6 + e0 5 9

−e0 5 6 + e5 6 10 − e1 3 9 + e1 3 11 − e2 6 7

+e6 7 10 − e2 7 11 − e3 4 9 + e3 4 8 − e4 8 10

+e3 8 11 − e4 5 9 + e4 5 10 + e7 8 10 − e7 8 11.

Hence, the icosahedron represents a cavity.

Conjecture 1.17. For icosahedron dim H2 (G) = 1 for any numbering of the vertices.

Conjecture 1.18. For a general triangulation of Sn, the homology group Hn (G) is either trivial or
is generated by σ. All other homology groups Hp (G) are trivial.

1.11 Homological dimension

In this section K = F2.
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Definition. Define the homological dimension of a digraph G by

dimh G = sup {k : |Hk (G)| > 0} .

Let G be a polygon (a cyclic digraph).

If G is neither triangle nor square,

then |H1| = 1 and |Hp| = 0 for p ≥ 2

whence dimh G = 1.

Let G be either a triangle or a square:

Then |Hp| = 0 for p ≥ 1 and dimh G = 0.

Let G be an octahedron based on a diamond:

Then |H2| = 1, |Hp| = 0 for p ≥ 3,

whence dimh G = 2.

Let us give an example of a digraph with∞ homological dimension that is due to Gabor Lippner and
Paul Horn [34]. Fix some n ≥ 5. We construct a digraph LH (n) of 2n vertices that are denoted by

1, 2, ..., n and − 1,−2, ...,−n,

and the arrows between vertices x, y in LH (n) are defined as follows:

x→ y if |y| = |x|+ 1 or if |x| = n− 1 and |y| = 2, (1.12)

so that LH (n) has 4n edges. In fact, LH (n) is obtained from the complete multipartite digraph
−→
K2, 2, ..., 2
︸ ︷︷ ︸

n

by adding the last 4 arrows.

Example 1.19. Here is the digraph LH (5) .

It is obtained from
−→
K2,2,2,2,2

by adding four arrows.

For this digraph βp > 0

provided

p = 1mod 3.

Proposition 1.20. [34] If p = 1mod (n− 2) and p ≥ n− 1 then the homology group Hp (LH (n))
is non-trivial.

Hence, for the digraph LH (n), non-trivial homology groups Hp occur for arbitrarily large p. Conse-
quently, we have

dimh LH (n) =∞.

There are digraphs with non-trivial homology group Hp for all value of p – see below Example 3.27.
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Proof. Let p = (n− 2) k + 1 for some k ≥ 1. Let us construct a family of allowed paths in LH (n)
as follows. First, consider a numerical sequence of p + 1 = (n− 2) k + 2 numbers:

1, 2, 3, ..., n − 1
︸ ︷︷ ︸

, 2, 3, ..., n − 1
︸ ︷︷ ︸

, ..., 2, 3, ..., n − 1
︸ ︷︷ ︸

, n, (1.13)

where the group 2, 3, ..., n− 1 is repeated k times, and then give arbitrarily the signs + and− to each
number in this sequence. Clearly, we obtain in this way an allowed elementary p-path in LH (n). For
any such a path u, denote by σ (u) the number of ‘−’ in u, and consider the path

ω =
∑

u

(−1)σ(u) u, (1.14)

where the summation is taken over all paths u obtained in this way from the sequence (1.13).

Let us verify that ∂ω = 0 (and, hence, ω ∈ Ωp). Indeed, let u = u0...up be one of the elementary
paths in the sum (1.14). The boundary ∂u is the sum of the terms

(−1)i u0...ui−1ui+1...up (1.15)

that are obtained from u by omitting ui. Fix some i and consider a path

ũ = u0...ui−1 (−ui) ui+1...up ,

where only the sign of ui is changed. Then ∂ũ contains also the term (1.15). However, u and ũ enter
ω with opposite signs so that the term (1.15) cancels out in the sum (1.14). Hence, we obtain ∂ω = 0.

Let us verify that ω 6= ∂v for any allowed path v, which will imply that ω determines a non-trivial
element in Hp. Assume from the contrary that ω = ∂v for some v ∈ Ap+1. For that, v has to contain
an allowed elementary p + 1-path that contains both a vertex 1 and a vertex n (otherwise, 1 and n
cannot appear in the same path (1.13)). Let

u = u0....up+1

be such an allowed elementary p + 1-path, where

|u0| = 1 and |up+1| = n.

We have ui → ui+1 and, hence, as it follows from the definition of arrows in (1.12),

|ui+1| = |ui|+ 1mod (n− 2) .

Therefore,
|up+1| = |u0|+ p + 1mod (n− 2) ,

from which it follows that
n = p + 2mod (n− 2)

and
p = 0mod (n− 2) ,

which contradicts the hypotheses.
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2 Trapezohedra and structure of Ω3

2.1 Spaces Ωp and Hp for trapezohedron

For any integer m ≥ 2, define a trapezohedron Tm of order m as follows:

Tm is a digraph of 2m + 2 vertices

a, b, i0, ..., im−1, j0, j1, ..., jm−1

and 4m arrows

a→ ik → jk → b, ik → jk+1

for all k = 0, . . . ,m − 1mod m.

A fragment of Tm is shown here:

It is clear that all allowed paths in Tm have the length ≤ 3,

whence Ωp (Tm) = {0} for all p > 3.

Proposition 2.1. For the trapezohedron Tm we have

|Ω2| = 2m, |Ω3| = 1,

and Hp = {0} for all p ≥ 1.

Proof. It is easy to detect all squares in Tm:

eaik−1jk
− eaikjk

and eikjkb − eikjk+1b, (2.16)

where k = 0, ...,m − 1. Hence, Tm contains 2m squares, and they are linearly independent. Since
there are no triangles in Tm, we conclude by Theorem 1.8 that |Ω2| = 2m.

All allowed 3-paths in Tm are as follows:

eaikjkb and eaikjk+1b,

also for all k = 0, ...,m − 1. Let us find all linear combinations of these paths that are ∂-invariant.
Consider such a linear combination

ω =
m−1∑

k=0

(
αkeaikjkb + βkeaikjk+1b

)

with coefficients αk, βk, and assume that ω is ∂-invariant. We have

∂ω =
m−1∑

k=0

∂
(
αkeaikjkb + βkeaikjk+1b

)

=
m−1∑

k=0

(
αkeikjkb + βkeikjk+1b

)
−

m−1∑

k=0

(
αkeaikjk

+ βkeaikjk+1

)
(2.17)

−
m−1∑

k=0

(
αkeajkb + βkeajk+1b

)
+

m−1∑

k=0

(αkeaikb + βkeaikb) . (2.18)

Both sums in (2.17) consist of allowed paths. In the rightmost sum in (2.18) the path eaikb is not
allowed and, hence, must cancel out, which yields

αk = −βk.
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The leftmost sum in (2.18) is then equal to

m−1∑

k=0

(
αkeajkb − αkeajk+1b

)
=

m−1∑

k=0

(αk − αk−1) eajkb,

and it must vanish as eajkb is not allowed, whence

αk = αk−1.

Setting αk ≡ α and, hence, βk = −α, we obtain that

ω = α
m−1∑

k=0

(
eaikjkb − eaikjk+1b

)
= ατm

so that Ω3 = 〈τm〉 and |Ω3| = 1.

It follows from (2.17)-(2.18) that

∂τm =
m−1∑

k=0

(
eikjkb − eikjk+1b

)
−

m−1∑

k=0

(
eaikjk

− eaikjk+1

)
6= 0.

This implies ker ∂|Ω3 = 0, whence H3 = {0} .

Let us show that H2 = {0} . Since dim Im ∂|Ω3 = 1, it suffices to show that

dimker ∂|Ω2 = 1. (2.19)

Consider the following general element of Ω2:

u =
m−1∑

k=0

αk

(
eaik−1jk

− eaikjk

)
+ βk

(
eikjkb − eikjk+1b

)

with arbitrary coefficients αk, βk. We have

∂u =
m−1∑

k=0

αk

(
eaik−1

+ eik−1jk
− eaik − eikjk

)
+ βk

(
ejkb + eikjk

− ejk+1b − eikjk+1

)

=
m−1∑

k=0

(αk+1 − αk) eaik +
m−1∑

k=0

(
βk − βk−1

)
ejkb

+
m−1∑

k=0

(βk − αk) eikjk
+

m−1∑

k=0

(αk+1 − βk) eikjk+1
.

The condition ∂u = 0 is equivalent to

αk+1 = αk = βk = βk−1 for all k = 0, ....,m − 1

which implies (2.19).

Finally, we determine |H1| by means of the Euler characteristic

χ = |Ω0| − |Ω1|+ |Ω2| − |Ω3| = (2m + 2)− 4m + 2m− 1 = 1.

Hence, we obtain
|H0| − |H1|+ |H2| − |H3| = 1,

which yields |H1| = 0.
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2.2 A cluster basis in Ωp

We start with the following definition.

Definition. A p-path v =
∑

vi0...ipei0...ip is called an (a, b)-cluster if all the elementary paths ei0...ip

with non-zero values of vi0...ip have i0 = a and ip = b. A path v is called a cluster if it is an
(a, b)-cluster for some a, b.

Lemma 2.2. Any ∂-invariant p-path is a sum of ∂-invariant clusters.

Proof. Let v ∈ Ωp. For any points a, b ∈ V , denote by va,b the sum of all terms vi0...ipei0...ip with
i0 = a and ip = b.

Then va,b is a cluster and v =
∑

a,b∈V

va,b, that is,

v is a sum of clusters. Let us prove that each
non-zero cluster va,b is ∂-invariant.

Since v is allowed, also all non-zero terms vi0...ipei0...ip are allowed, whence va,b is also allowed. Let
us prove that ∂va.b is allowed, which will yield the ∂-invariance of va.b. The path va,b is a linear
combination of allowed paths of the form eai1...ip−1b. We have

∂eai1...ip−1b = ei1...ip−1b + (−1)p eai1...ip−1 +
p−1∑

k=1

(−1)k eai1..îk...ip−1b.

The terms ei1...ip−1b and eai1...ip−1 are clearly allowed, while among the terms eai1..îk...ip−1b there may
be non-allowed. In the full expansion of

∂v =
∑

a,b∈V

∂va,b

all non-allowed terms must cancel out. Since all the terms eai1..îk...ip−1b form a (a, b)-cluster, they
cannot cancel with terms containing different values of a or b. Therefore, they have to cancel already
within ∂va,b, which implies that ∂va,b is allowed.

Definition. For any p-path v =
∑

vi0...ipei0...ip define its width ‖v‖ as the number of non-zero
coefficients vi0...ip .

Definition. A ∂-invariant path ω is called minimal if ω cannot be represented as a sum of other
∂-invariant paths with smaller widths.

Example 2.3. A square ω = eabc − eab′c has width 2 and is minimal because eabc and eab′c having
width 1 are not ∂-invariant.

Let a, {b0, b1, b2} , c be a 2-square. The following path

ω = eab0c + eab1c − 2eab2c

is ∂-invariant, has width 3 but is not minimal because it can be represented as a sum of two squares:

ω = (eab0c − eab2c) + (eab1c − eab2c),

where each square has width 2.

Lemma 2.4. Every ∂-invariant cluster is a sum of minimal ∂-invariant clusters.
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Proof. Let ω be a ∂-invariant cluster that is not minimal. Then we have

ω =
n∑

k=1

ω(k), (2.20)

where each ω(k) is a ∂-invariant path with
∥
∥ω(k)

∥
∥ < ‖ω‖ . By Lemma 2.2, each ω(k) is a sum of

clusters ω
(k)
a,b , and it is clear from the definition of ω

(k)
a,b that

‖ω(k)
a,b‖ ≤ ‖ω

(k)‖.

Hence, we can replace in (2.20) each ω(k) by
∑

a,b ω
(k)
a,b and, hence, assume without loss of generality

that all terms ω(k) in (2.20) are ∂-invariant clusters.

If some ω(k) in this sum is not minimal then we replace it further with a sum of ∂-invariant clusters
with smaller widths. Continuing this procedure we obtain in the end a representation ω as a sum of
minimal ∂-invariant clusters.

Proposition 2.5. The space Ωp has a basis that consists of minimal ∂-invariant clusters.

Proof. Indeed, letM denote the set of all minimal ∂-invariant clusters in Ωp. By Lemma 2.4, every
element of Ωp is a sum of elements ofM. Choosing inM a maximal linearly independent subset,
we obtain a basis in Ωp.

2.3 Structure of Ω3

We use here the trapezohedra Tm and associated trapezohedral paths τm defined in Sections 1.5 and
2.1 (see (1.5)), that are ∂-invariant 3-paths for all m ≥ 2. We prove here in Theorem 2.10 that if G
contains no multisquare (see Subsection 1.5) then Ω3 (G) has a basis that consists of trapezohedral
paths and their morphism images.

We start with some examples.

Example 2.6. Here is a merging map from T2 onto a 3-snake:

The trapezohedral path τ2 is given by

τ2 = e0123 − e0153 + e0453 − e0423,

and its merging image is the 3-path

v = e0123 − e0133 + e0233 − e0223 = e0123,

that is, the 3-path e0123 associated with a 3-snake.
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Example 2.7. Here is a merging morphism of T3 (=a 3-cube) onto a pyramid:

The cubical 3-path is given by

τ3 = e0237 − e0137 + e0157 − e0457 + e0467 − e0267

and its merging image of τ3 is the following ∂-invariant 3-path in a pyramid:

v = e0234 − e0134 + e0144 − e0444 + e0444 − e0244 = e0234 − e0134.

Example 2.8. Consider another merging morphism of T3 onto a prism:

The merging image of τ3 is the following ∂-invariant 3-path in the prism:

u = e0233 − e0133 + e0153 − e0453 + e0423 − e0223

= e0153 − e0453 + e0423.

Example 2.9. Here is a merging morphism μ : T4 → G where the digraph G is a broken cube that is
shown in the right panel:

The path τ4 in the present notation is given by

τ4 = e0159 − e0169 + e0269 − e0279 + e0379 − e0389 + e0489 − e0459,

and the merging image of τ4 is the following ∂-invariant 3-path on the broken cube:

v = e0158 − e0168 + e0268 − e0278 + e0378 − e0388 + e0488 − e0458

= e0158 − e0168 + e0268 − e0278 + e0378 − e0458. (2.21)
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One can show that Ω3 (G) = 〈v〉 .

The next theorem describes the structure of Ω3 (G) for a general digraph G but under the following
hypothesis:

G contains neither multisquares nor double arrows. (2.22)

Under the hypothesis (2.22), Ω2 (G) has a basis that consists of triangles and squares. The condition
(2.22) implies that if a→ b→ c and a 6→ c then there is at most one b′ 6= b such that a→ b′ → c.

Theorem 2.10. Under the hypothesis (2.22), there is a basis in Ω3 (G) that consists of trapezohedral
paths τm with m ≥ 2 and their merging images.

Hence, trapezohedra are basic shapes for Ω3.

Proof. By Proposition 2.5, Ω3 has a basis that consists of minimal ∂-invariant clusters. Let a path
ω ∈ Ω3 be a minimal ∂-invariant (a, b)-cluster. It suffices to prove that ω is a merging image of one
of the trapezohedral paths τm up to a constant factor.

Denote by P the set of all elementary terms eaijb of ω. Clearly, the number |P | of elements in P is
equal to ‖ω‖. We claim that, for any eaijb ∈ P ,

either a→ j or a↗ j

where the notation a↗ j means that a and j form a diagonal of a square.

Indeed, if a 6→ j then the term eajb appearing in

∂eaijb is non-allowed and should be cancelled in

∂ω by the boundary of another elementary 3-path

from P that can only be of the form eai′jb with

a→ i′ → j

Hence, a and j form diagonal of a square a, i, i′, j.

By hypothesis (2.22), the vertex i′ with these properties is unique. Hence, in this case we have

ω = ceaijb − ceai′jb + ... (2.23)

for some scalar c 6= 0. In the same way, we have

either i→ b or i↗ b.

and, for some eaij′b ∈ P and c 6= 0,

ω = ceaijb − ceaij′b + ... . (2.24)

If for some path eaijb ∈ P we have both conditions

a→ j and i→ b

then eaijb is ∂-invariant and, by the minimality of ω,

ω = const eaijb.

Since eaijb is in this case a 3-snake, the path ω is a

merging image of τ2.

Next, we can assume that, for any path eaijb ∈ P , we have

a 6→ j or i 6→ b
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which is equivalent to
a↗ j or i↗ b. (2.25)

Define a graph structure on P with edges of two types (i) and (ii) as follows: for two distinct elements
eaijb and eai′j′b of P we write

eaijb
(i)
∼ eai′j′b if a↗ j and j = j′.

and

eaijb
(ii)
∼ eai′j′b if i↗ b and i′ = i.

Clearly, both relations
(i)
∼ and

(ii)
∼ are symmetric. We refer to the relations

(i)
∼ and

(ii)
∼ as the edges in P

of the first and, respectively, second type.

Cases eaijb
(i)
∼ eai′j′b and eaijb

(ii)
∼ eai′j′b

By the hypothesis (2.22), for any eaijb ∈ P there is at most one edge of the first type and at most one
edge of the second type. In particular, the degree of any vertex of the graph (P,∼) is at most 2.

Fix a path eaijb ∈ P. By the above argument, if a ↗ j then there exists eai′jb ∈ P such that

eaijb
(i)
∼ eai′jb and ω satisfies (2.23). Similarly, if i ↗ b then there exists eaij′b ∈ P such that

eaijb
(ii)
∼ eaij′b and ω satisfies (2.24). In particular, the degree of any vertex of the graph P is at least

1.

Let us prove that the graph (P,∼) is connected. If P not connected then P is a disjoint union of its
connected components {Pk}

n
k=1 where n > 1. Denote by ω(k) the sum of all elementary terms of ω

lying in Pk, with the same coefficients as in ω, so that

ω =
n∑

k=1

ω(k). (2.26)

Let us verify that each ω(k) is ∂-invariant. Clearly, ω(k) is allowed, and let us prove that ∂ω(k) is
allowed. Indeed, let ∂ω(k) contain a non-allowed term. The latter comes from the boundary ∂eaijb

of some elementary term eaijb of ω(k) and, hence, is either eaib or eajb, let it be eaib, which means
i 6→ b. The term eaib cancels out in ∂ω, which can only happen when ω contains another term of the
form eaij′b. However, then

eaijb ∼ eaij′b

so that eaij′b belongs to the same connected component Pk and, hence, must be an elementary term
of ω(k). This proves that ∂ω(k) is allowed and, hence, ω(k) is ∂-invariant.

If the number n of the terms in (2.26) is greater than 1 then the number of vertices in each Pk is strictly
less that that in P , which implies ‖ωk‖ < ‖ω‖ . However, in this case the representation (2.26) is not
possible because ω is minimal. Hence, n = 1 and P is connected.

Since each vertex of P has at most two adjacent edges, there are only two possibilities:
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(A) P is a simple closed polygon;

(B) P is a linear graph.

Consider first the case (A). In this case every vertex of

P has two edges: exactly one edge of each type (i), (ii).

Thus, the number of edges is even, let 2m, and P has

necessarily the following form:

eai0j0b
(ii)
∼ eai0j1b

(i)
∼ eai1j1b

(ii)
∼ . . .

(i)
∼ eaim−1jm−1b

(ii)
∼ eaim−1j0b

(i)
∼ eai0j0b (2.27)

for some vertices {ik}
m−1
k=0 and {jk}

m−1
k=0 of G. Note that necessarily m ≥ 2 because if m = 1 then

(2.27) becomes

eai0j0b
(ii)
∼ eai0j1b

(i)
∼ eai0j0b,

which is impossible because edges of different types between the same vertices of P do not exist.

Since all the terms in (2.27) enter ω with the same coefficients ±c (cf. (2.23) and (2.24)), we see that

ω = c(eai0j0b − eai0j1b + eai1j1b − eai1j2b + ... + eaim−1jm−1b − eaim−1j0b). (2.28)

If all vertices a, {ik}
m−1
k=0 , {jk}

m−1
k=0 , b are

distinct then they form a trapezohedron Tm:

In this case we have by (1.5) and (2.28)

ω = cτm.

If some of these vertices coincide then the

configuration (2.27) is a merging image of

Tm, and ω is a merging image of cτm.

Consider now the case (B) . In this case the linear graph P has two end vertices of degree 1, while all
other vertices have degree 2. Depending on the type of edges at the end vertices of P , we have two
essentially different subcases:

case (B1):

the end vertices of P have edges
of different types.

case (B2):

the end vertices of P both have
edges of type (ii)

(the case of type (i) is similar).

Consider first the case (B1) when the graph P must have the form

eai0j0b
(ii)
∼ eai0j1b

(i)
∼ eai1j1b

(ii)
∼ eai1j2b

(i)
∼ . . .

(ii)
∼ eaim−1jmb

(i)
∼ eaimjmb. (2.29)

Consequently, we have

ω = c
(
eai0j0b − eai0j1b + eai1j1b − eai1j2b + ...− eaim−1jmb + eaimjmb

)
. (2.30)

Since
∂ω = c (−eaj0b + eaimb)modA2 (2.31)
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and ∂ω ∈ A2, we must have either eaj0b = eaimb or both eaj0b and eaimb are allowed, that is,

a→ j0 and im → b. (2.32)

In the former case we have j0 = im whence (2.32) follows again so that (2.32) is satisfied in both
cases.

We claim that in the case (B1) the configuration (2.29) is a merging image of Tm+2.

Indeed, denote the vertices of Tm+2

also by a, {ik}
m+1
k=0 , {jk}

m+1
k=0 , b, and

map all the vertices of Tm+2, except

for im+1, jm+1, to the vertices of G

with the same names; then merge

im+1 7→ j0 and jm+1 7→ b.

The arrows

a→ im+1, im → jm+1, im+1 → jm+1

in Tm+2 are mapped to the arrows

a→ j0, im → b, j0 → b

in G (cf. (2.32)), while the arrows im+1 → j0 and jm+1 → b go to vertices. It follows that this
mapping of Tm+2 into G is a digraph morphism. Since by (1.5)

τm+2 = (eai0j0b−eai0j1b)+(eai1j1b−eai1j2b)+...+(eaimjmb−eaimjm+1b)+(eaim+1jm+1b−eaim+1j0b),

the image of τm+2 is the following path, where we replace im+1 by j0 and jm+1 by b:

u = (eai0j0b − eai0j1b) + (eai1j1b − eai1j2b) + ... + (eaimjmb − eaimbb) + (eaj0bb − eaj0j0b)

= eai0j0b − eai0j1b + eai1j1b − eai1j2b + ...− eaim−1jmb + eaimjmb.

Comparison with (2.30) shows that ω = cu, that is, ω is a merging image of cτm+2.

For example, in the case m = 1, this merging morphism of T3 is shown here:

Clearly, it coincides with the merging morphism of Example 2.8 mapping a 3-cube onto a prism.

Consider now the case (B2) when the graph P has the form

eai0j0b
(ii)
∼ eai0j1b

(i)
∼ eai1j1b

(ii)
∼ eai1j2b

(i)
∼ . . .

(i)
∼ eaim−1jm−1b

(ii)
∼ eaim−1jmb, (2.33)

so that

ω = c(eai0j0b − eai0j1b + eai1j1b − eai1j2b + ... + eaim−1jm−1b − eaim−1jmb). (2.34)

Since
∂ω = c (−eaj0b + eajmb)modA2,
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it follows that either j0 = jm or
a→ j0 and a→ jm. (2.35)

However, j0 = jm is not possible because it would imply that

eai0j0b
(i)
∼ eaim−1j0b

and the line graph P would close into a polygon, which gives the case (A). Hence, (2.35) is satisfied.
We claim that the configuration (2.33) is then a merging image of Tm+1.

Indeed, we denote the vertices of Tm+1

also by a, {ik}
m
k=0 , {jk}

m
k=0 , b, and then

map all the vertices of Tm+1, except for

im, to the vertices of G with the same

names; then map im to a.

Clearly, the following arrows

im → j0 and im → jm

in Tm+1 are mapped to the arrows

a→ j0 and a→ jm

in G as in (2.35), and the arrow a → im goes to a vertex. Hence, we obtain a merging morphism of
Tm+1 into G. Since by (1.5)

τm+1 = (eai0j0b−eai0j1b)+(eai1j1b−eai1j2b)+...+(eaim−1jm−1b−eaim−1jmb)+(eaimjmb−eaimj0b),

the image of τm+1 is the following path, where we replace im by a:

v = (eai0j0b − eai0j1b) + (eai1j1b − eai1j2b) + ... + (eaim−1jm−1b − eaim−1jmb) + (eaajmb − eaaj0b)

= eai0j0b − eai0j1b + eai1j1b − eai1j2b + ... + eaim−1jm−1b − eaim−1jmb.

Comparison with (2.34) shows that ω = cv so that ω is a merging image of cτm+1

For example, in the case m = 3, the above morphism is equivalent to the merging morphism of
Example 2.9 mapping T4 onto a broken cube. In the case m = 2 we obtain the following merging
image of a 3-cube:

Problem 2.11. Prove Theorem 2.10 in the general case without the hypothesis (2.22).

Problem 2.12. Devise an algorithm for computing a basis in Ω3 based on Theorem 2.10.

Problem 2.13. State and prove similar results for Ω4. Are the basic shapes in Ω4 given by polyhedra
in R4? Devise an algorithm for computing a basis in Ω4. The same questions for Ωp with p > 4.
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3 Künneth formulas

The material in this section is based on [22] and [29].

3.1 Cross product of paths

Given two finite sets X,Y , consider their product

Z = X × Y = {(a, b) : a ∈ X and b ∈ Y } .

Let z = z0z1...zr be a regular elementary r-path on Z, where zk = (ak, bk) with ak ∈ X and bk ∈ Y .
We say that z is stair-like if, for any k = 1, ..., r, either ak−1 = ak or bk−1 = bk is satisfied. That
is, any couple zk−1zk of consecutive vertices is either vertical (when ak−1 = ak) or horizontal (when
bk−1 = bk).

Given a stair-like path z on Z, define its projection
onto X as an elementary path x on X obtained from
z by removing Y -components in all the vertices of z
and then by collapsing in the resulting sequence any
subsequence of repeated vertices to one vertex.

In the same way define projection of z onto Y and
denote it by y.
The projections x = x0...xp and y = y0...yq are regular elementary paths, and p + q = r.

Every vertex (xi, yj) of the path z can be represented
as a point (i, j) of Z2 so that the path z is represented
by a staircase S (z) in Z2 connecting (0, 0) and (p, q).

Define the elevation L (z) of z as the number of cells in Z2
+ below the staircase S (z).

For given elementary regular paths x on X and y on Y , denote by Σx,y the set of all stair-like paths z
on Z whose projections on X and Y are respectively x and y.

Definition. Define the cross product of the paths ex and ey as a path ex × ey on Z as follows:

ex × ey =
∑

z∈Σx,y

(−1)L(z) ez (3.36)

and extend it by linearity to all u ∈ Rp (X) and v ∈ Rq (Y ) so that u× v ∈ Rp+q (Z).

Example 3.1. Let us denote the vertices on X by letters a, b, c etc and the vertices on Y by integers
1, 2, 3, etc so that the vertices on Z can be denoted as a1, b2 etc as the fields on a chessboard. Then
we have
ea × e12 = ea1 a2, eab × e1 = ea1 b1

eab × e12 = ea1 b1 b2 − ea1 a2 b2

eab × e123 = ea1 b1 b2 b3 − ea1 a2 b2 b3 + ea1 a2 a3 b3

eabc × e123 = ea1 b1 c1 c2 c3 − ea1 b1 b2 c2 c3 + ea1 b1 b2 b3 c3

+ea1 a2 b2 c2 c3 − ea1 a2 b2 b3 c3 + ea1 a2 a3 b3 c3

Lemma 3.2. [29, Proposition 4.4] If u ∈ Rp (X) and v ∈ Rq (Y ) where p, q ≥ 0, then

∂ (u× v) = (∂u)× v + (−1)p u× (∂v) . (3.37)
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3.2 Cartesian product of digraphs

Denote a digraph and its set of vertices by the same letters to simplify notation. Given two digraphs
X and Y , define their Cartesian product as a digraph Z = X�Y as follows:

• the set of vertices of Z is X × Y , that is, the vertices of Z are the couples (a, b) where a ∈ X
and b ∈ Y ;

• the edges in Z are of two types: (a, b) → (a′, b) where a → a′ (a horizontal edge) and
(a, b)→ (a, b′) where b→ b′ (a vertical edge):

b′• . . .
(a,b′)
• →

(a′,b′)
• . . .

↑ ↑ ↑

b• . . .
(a,b)
• →

(a′,b)
• . . .

Y � X . . . •
a

→ •
a′

. . .

It follows that any allowed elementary path in Z is stair-like.

Moreover, any regular elementary path on Z is allowed if and only if it is stair-like and its projections
onto X and Y are allowed.

It follows from definition (3.36) of the cross product that

u ∈ Ap (X) and v ∈ Aq (Y ) ⇒ u× v ∈ Ap+q (Z) . (3.38)

Furthermore, the following is true.

Lemma 3.3. [29, Proposition 4.6] If u ∈ Ωp (X) and v ∈ Ωq (Y ) then

u× v ∈ Ωp+q (Z) .

Proof. u × v is allowed by (3.38). Since ∂u and ∂v are allowed, by (3.38) also ∂u × v and u × ∂v
are allowed. By (3.37), ∂ (u× v) is also allowed. Hence, u× v ∈ Ωp+q (Z) .

Theorem 3.4. [29, Theorem 5.1] Any ∂-invariant path w on Z = X�Y admits a representation of
the form

w =
m∑

i=1

ui × vi

for some finite m, where ui and vi are ∂-invariant paths on X and Y , respectively.

3.3 Künneth formula for product

Here is the main result of this section.

Theorem 3.5. [29, Theorem 4.7] (Künneth formula for product)

Let X,Y be two finite digraphs. Then, for any r ≥ 0,

Ωr (X�Y ) ∼=
⊕

{p,q≥0:p+q=r}
Ωp (X)⊗ Ωq (Y ) , (3.39)

where the isomorphism is given by
u⊗ v 7→ u× v
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for u ∈ Ωp (X) and v ∈ Ωq (Y ).

Consequently, we have

Hr (X�Y ) ∼=
⊕

{p,q≥0:p+q=r}
Hp (X)⊗Hq (Y ) (3.40)

and
βr (X�Y ) =

∑

{p,q≥0:p+q=r}

βp (X) βq (Y ) .

Example 3.6. Let X be an interval and Y be a square:

X = a• → •b and Y =

Then Z = X�Y is a 3-cube:

We have:

Ω1 (X) = 〈eab〉, Ωp (X) = 0 for p ≥ 2,

Ω1 (Y ) = 〈e01, e13, e23, e02〉,

Ω2 (Y ) = 〈e013 − e023〉, Ωq (Y ) = 0 for q ≥ 3.

By (3.39) we obtain

Ω3 (Z) ∼= Ω1 (X)⊗ Ω2 (Y ) = 〈eab × (e013 − e023)〉.

Let us compute the cross-products:

eab × e013 = ea0 b0 b1 b3 − ea0 a1 b1 b3 + ea0 a1 a3 b3

= e0457 − e0157 + e0137

and

eab × e023 = e0467 − e0267 + e0237.

Hence, we obtain

Ω3 (Z) = 〈e0457 − e0157 + e0137 − e0467 + e0267 − e0237〉.

That is, Ω3 is generated by a single ∂-invariant 3-path that is associated with the 3-cube.

Example 3.7. Denote by T the following 3-cycle (=1-torus):

T = =

Consider the 2-torus G = T�T

that is shown here:

Let us compute Ωr (G) and Hr (G).

We have

Ω0 (T ) = 〈e0, e1, e2〉,

Ω1 (T ) = 〈e01, e12, e20〉,

Ωp (T ) = {0} for p ≥ 2.

G =
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By (3.39) we obtain Ωr = {0} for r ≥ 3 and

Ω2 (G) = Ω1 (T )⊗ Ω1 (T )

= 〈eab × e01, eab × e12, eab × e20, ebc × e01, ebc × e12,

ebc × e20, eca × e01, eca × e12, eca × e20〉.

Using

eab × eij = eai bi bj − eai aj bj

we obtain that

Ω2 (G) = 〈ea0 b0 b1 − ea0 a1 b1, ea1 b1 b2 − ea1 a2 b2, ea2 b2 b0 − ea2 a0 b0,

eb0 c0 c1 − eb0 b1 c1, eb1 c1 c2 − eb1 b2 c2, eb2 c2 c0 − eb2 b0 c0,

ec0 a0 a1 − ec0 c1 a1, ec1 a1 a2 − ec1 c2 a2, ec2 a2 a0 − ec2 c0 a0〉.

That is,

Ω2 (G) = 〈e034 − e014, e145 − e125, e253 − e203,

e367 − e347, e478 − e458, e586 − e536

e601 − e671, e712 − e782, e820 − e860〉 (3.41)

so that Ω2 (G) is generated by 9 squares.

This can be visualized using

the following embedding of G

onto a topological torus:

Let us compute the homology
groups of G. We know that

H0 (T ) = 〈e0〉, H1 (T ) = 〈e01 + e12 + e20〉, Hp (T ) = {0} for p ≥ 2.

By (3.40) we obtain

H1 (G) = H0 (T )⊗H1 (T ) + H1 (T )⊗H0 (T ) = 〈v1, v2〉

where

v1 = ea × (e01 + e12 + e20) = ea0 a1 + ea1 a2 + ea2 a0 = e01 + e12 + e20

v2 = (eab + ebc + eca)× e0 = ea0 b0 + eb0 c0 + ec0 a0 = e03 + e36 + e60.

Again by (3.40) we get
H2 (G) = H1 (T )⊗H1 (T ) = 〈u〉,

where
u = (eab + ebc + eca)× (e01 + e12 + e20) ,

Hence,

u = ea0 b0 b1 − ea0 a1 b1 + ea1 b1 b2 − ea1 a2 b2 + ea2 b2 b0 − ea2 a0 b0

+ eb0 c0 c1 − eb0 b1 c1 + eb1 c1 c2 − eb1 b2 c2 + eb2 c2 c0 − eb2 b0 c0
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+ ec0 a0 a1 − ec0 c1 a1 + ec1 a1 a2 − ec1 c2 a2 + ec2 a2 a0 − ec2 c0 a0,

that is,

u = (e034 − e014) + (e145 − e125) + (e253 − e203) + (e367 − e347) + (e478 − e458)

+ (e586 − e536) + (e601 − e671) + (e712 − e782) + (e820 − e860) . (3.42)

Finally, Hr (G) = 0 for all r ≥ 3.

3.4 An example: n-cube

Define the n-cube as follows:
n- cube = I�n = I�I�...�I︸ ︷︷ ︸

n

,

where I = {0→ 1} and n ∈ N. Hence, each vertex a of the n-cube can be identified with a binary
sequence (a1, ..., an) . For example, 0 = (0, ..., 0) and 1 = (1, ..., 1) are the corners of the n-cube.

For two vertices a, b of the n-cube, there is an arrow a→ b if bk = ak + 1 for exactly one value of k
and bk = ak for all other values of k. Denote

|a| = a1 + ... + an.

We write a � b if there is an allowed path from a to b, that is

a � b ⇔ ak ≤ bk for all k = 1, . . . , n.

For any pair a � b consider an induced subgraph Da,b of the n-cube as follows:

the vertices of Da,b are all vertices c

of I�n such that

a � c � b

and an arrow c1 → c2 exists in Da,b

exactly when this arrow exists in I�n.

Here is a 4-cube and its subgraph Da,b:

(the arrows go from top to bottom).

The mapping c 7→ c− a provides an isomorphism of Da,b onto a p-cube with

p = |b| − |a| .

Assuming that a � b, denote by Pa,b the set of all elementary allowed paths going from a to b. All
paths of Pa,b lie in Da,b, each path in Pa,b has the length p = |b| − |a|, and the total number of the
paths in Pa,b is p!.

Lemma 3.8. There is a function σ : Pa,b → {0, 1} such that the following p-path

ωa,b =
∑

x∈Pa,b

(−1)σ(x) ex (3.43)

is ∂-invariant.
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For example, in a 3-cube as shown here, we have

ω0,1 = e01,

ω0,3 = e013 − e023,

and

ω0,7 = e0137 − e0237 − e0157 + e0457 + e0267 − e0467

(cf. Example 3.6).

Proof. Without loss of generality, we can assume that a = 0, b = 1, and prove the claim by induction
in n = p. The induction basis for n = 1 is obvious. For the induction step from n to n + 1 we use
Lemma 3.3 that says that the cross product of ∂-invariant paths is ∂-invariant. Denote by 0′ = (0, 0)
and 1′ = (1, 1) the corners of the (n + 1)-cube.

Taking the cross product of the n-path

ω0,1 on I�n and the 1-path y = e01 on I,

and using (3.36), we obtain the following

∂-invariant (n + 1)-path on I�(n+1) :

ω0,1 × e01 =
∑

x∈P0,1

(−1)σ(x) ex × ey

=
∑

x∈P0,1

∑

z∈Σx,y

(−1)σ(x) (−1)L(z) ez, A path x∈P0,1 and z∈Σx,y

where z is any stair-like path on (n + 1)-cube that projects onto x and y, respectively.

Clearly, z runs over all paths P0′,1′ . Setting

σ (z) = σ (x) + L (z)mod 2

and
ω0′,1′ = ω0,1 × e01,

we obtain
ω0′,1′ =

∑

z∈P0′,1′

(−1)σ(z) ez,

which concludes the proof.

Proposition 3.9. For any p ≥ 0, we have

Ωp (n- cube) = 〈ωa,b : a � b and |b| − |a| = p〉 .

Moreover, {ωa,b} is a basis of Ωp (n- cube) .

Proof. The proof is again by induction in n. The induction basis for n = 1 is obvious. For the
induction step from n to n + 1 we use the Künneth formula (3.39). By this formula and by the
induction hypothesis, we obtain that the basis in Ωp ((n + 1)- cube) consists of the following p-paths:

{ωa,b × e01 : ωa,b ∈ Ωp−1 (n- cube)} ∪ {ωa,b × ei : ωa,b ∈ Ωp (n- cube) , i = 0, 1}

As above, the products ωa,b×e01 give us all the p-paths ω(a,0),(b,1), while ωa,b×ei give us all the p-paths
ω(a,0),(b,0) and ω(a,1),(b,1). Clearly, we obtain in this way all p-paths ωa′,b′ with a′, b′ ∈ (n + 1)-cube,
which concludes the proof.
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3.5 Augmented chain complex

In this section we use the augmented chain complexes

0← K
∂
← Λ0

∂
← . . .

∂
← Λp−1

∂
← Λp

∂
← . . . (3.44)

0← K
∂
← R0

∂
← . . .

∂
← Rp−1

∂
← Rp

∂
← . . . (3.45)

and
0← K

∂
← Ω0

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . . , (3.46)

with the added space Λ−1 = R−1 = Ω−1 = K. The operator ∂ : Λ0 → Λ−1 is define by

∂ei = e = the unity of K

which matches the definition (1.1) for p = 0.

The homology groups of (3.46) are called the reduced homology groups of G and are denoted by
H̃p(G). We have

H̃p(G) = Hp(G) for p ≥ 1 and H̃0(G) = H0(G)/K.

Define the reduced Betti numbers: β̃p(G) = dim H̃p(G). We have

β̃p(G) = βp(G) for p ≥ 1 and β̃0(G) = β0(G)− 1.

For a disjoint union X t Y of two digraphs we have by (1.4)

β̃r (X t Y ) = β̃r (X) + β̃r (Y ) + 1{r=0}. (3.47)

The augmented chain complex (3.46) as opposed to (1.3) will also be used in Subsection 6.9. In all
other places we continue using the chain complex (1.3).

3.6 A join of two digraphs

Let X,Y be two digraphs.

Definition. The join X ∗ Y of the digraphs X,Y is a digraph whose set of vertices is a disjoint union
of the sets of vertices of X and Y , and the set of arrows consists of all arrows of X and Y as well as
from all arrows x→ y where x ∈ X and y ∈ Y.

Example 3.10. For example, for the digraphs {∙, ∙} of two vertices and no arrows, we have

{0, 1} ∗ {2, 3} =

a diamond

and

∗ {4, 5} =

an octahedron
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Definition. Let p, q ≥ −1. For a p-path u on X and a q-path v on Y , define the join uv as a
(p + q + 1)-path on X ∗ Y as follows: first define it for elementary paths by

ei0...ipej0...jq = ei0...ipj0...jq ,

and then extend this definition by linearity to all u and v.

A join path ei0...ipej0...jq on X ∗ Y

If u and v are allowed on X, resp. Y, then uv is clearly allowed on Z = X ∗ Y .

Lemma 3.11. [20], [29, Lemma 2.4] (Product rule for join) For all p, q ≥ −1 and u ∈ Λp, v ∈ Λq

we have
∂ (uv) = (∂u) v + (−1)p+1 u∂v. (3.48)

If u ∈ Ωp (X) and v ∈ Ωq (Y ) then ∂u and ∂v are allowed, which implies by (3.48) that ∂ (uv) is
also allowed, that is, uv ∈ Ωp+q+1 (Z) . The product rule implies also that the join uv is well defined
for the reduced homology classes: if u ∈ H̃p (X) and v ∈ H̃q (Y ) then uv ∈ H̃p+q+1 (Z) .

3.7 Künneth formula for join

Let X,Y be two digraphs.

Theorem 3.12. [29, Theorem 3.3] (Künneth formula for join) We have the following isomorphism:
for any r ≥ −1,

Ωr (X ∗ Y ) ∼=
⊕

{p,q≥−1:p+q=r−1}
(Ωp (X)⊗ Ωq (Y )) (3.49)

that is given by the map u⊗ v 7→ uv with u ∈ Ωp (X) and v ∈ Ωq (Y ), and, for any r ≥ 0,

H̃r (X ∗ Y ) ∼=
⊕

{p,q≥0:p+q=r−1}
H̃p (X)⊗ H̃q (Y ) (3.50)

β̃r (X ∗ Y ) ∼=
∑

{p,q≥0:p+q=r−1}
β̃p (X) β̃q (Y ) . (3.51)

The identity (3.49) means that any path in Ωr (Z) can be obtained as linear combination of joins uv
where u ∈ Ωp (X) and v ∈ Ωq (Y ) with p + q + 1 = r, and (3.50) means the same for homology
classes.

Example 3.13. Let Y consist of a single vertex. In this case the join X ∗ Y is called a cone over X .
Since all homology groups H̃∗ (Y ) are trivial, the cone X ∗ Y is also homologically trivial by (3.50).
For example, the following digraphs are cones and, hence, they are homologically trivial.
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Example 3.14. Let Y consist of m vertices without arrows. Then the join X ∗ Y is called the
m-suspension of X and is denoted by susm X.

Here is an example of susm X with m = 3:

Since β̃0 (Y ) = m− 1 and β̃p (Y ) = 0

for p ≥ 1, we obtain from (3.51) that

β̃r (susm X) = (m− 1) β̃r−1 (X) .

For example, on this picture X = sus2 {∙, ∙}

whence β̃1 (X) = 1 and β̃p (X) = 0 for p 6= 1.

For G = sus3 X we have β̃2 (G) = 2 and β̃r (G) = 0 for r 6= 2.

Observe that the operation ∗ of digraphs is associative. For a sequence X1, ..., Xl of l digraphs we
obtain by induction from (3.49), (3.50) and (3.51) that

Ωr (X1 ∗X2 ∗ ... ∗Xl) ∼=
⊕

{pi≥−1: p1+p2+...+pl=r−l+1}
Ωp1 (X1)⊗ ...⊗ Ωpl

(Xl) (3.52)

H̃r (X1 ∗X2 ∗ ... ∗Xl) ∼=
⊕

{pi≥0: p1+p2+...+pl=r−l+1}
H̃p1 (X1)⊗ ...⊗ H̃pl

(Xl) (3.53)

β̃r (X1 ∗X2 ∗ ... ∗Xl) =
∑

{pi≥0: p1+p2+...+pl=r−l+1}
β̃p1

(X1) ...β̃pl
(Xl) . (3.54)

Example 3.15. Consider an octahedron Z = X1 ∗X2 ∗X3 where

X1 = {0, 1} , X2 = {2, 3} , X3 = {4, 5} .

(see Example 3.10). Then we have

Ω2 (Z) =
⊕

{pi≥−1: p1+p2+p3=2−3+1}
Ωp1 (X1)⊗ Ωp2 (X2)⊗ Ωp3 (X3)

= Ω0 (X1)⊗ Ω0 (X2)⊗ Ω0 (X3)

= 〈e0, e1〉 ⊗ 〈e2, e3〉 ⊗ 〈e4, e5〉

= 〈e024, e025, e034, e035, e124, e125, e134, e135〉

and

H2 (Z) = H̃2 (Z) =
⊕

{pi≥0: p1+p2+p3=2−3+1}
H̃p1 (X1)⊗ H̃p2 (X2)⊗ H̃p3 (X3)

= H̃0 (X1)⊗ H̃0 (X2)⊗ H̃0 (X3)

= 〈e0 − e1〉 ⊗ 〈e2 − e3〉 ⊗ 〈e4 − e5〉

= 〈e024 − e025 − e034 + e035 − e124 + e125 + e134 − e135〉.

3.8 Linear join

The material in this section is based on [30]. Given a digraph G of l vertices {1, 2, ..., l} and a
sequence X1, ..., Xl of l digraphs, define their generalized join (X1...Xl)G = XG as follows: XG is
obtained from the disjoint union

⊔
i Xi of digraphs Xi by keeping all the arrows in each Xi and by

adding arrows x→ y whenever x ∈ Xi, y ∈ Xj and i→ j in G.

The digraph XG is also referred to as a G-join of X1, ..., Xl, and G is called the base of XG.

38



The main problem to be discussed here is

how to compute the homology groups and Betti numbers of XG.

Denote by Kl a complete digraph with vertices {1, ..., l} and arrows

i→ j ⇔ i < j ,

that is, Kl is an (l − 1)-simplex. For example, K2 = {1→ 2} and K3 = {1→ 2→ 3, 1→ 3} is a
triangle.

The digraph XKl
is called a complete join of X1, ..., Xl. It is easy to see that

XKl
= X1 ∗X2 ∗ ... ∗Xl

It follows from (3.54) that, for any r ≥ 0,

β̃r (XKl
) =

∑

{pi≥0: p1+p2+...+pl=r−l+1}
β̃p1

(X1) ...β̃pl
(Xl) . (3.55)

Denote by Il the monotone linear digraph with the vertices {1, ..., l} and arrows i→ i + 1:

Il = {1→ 2→ ...→ l}. (3.56)

If G = Il then we use the following simplified notation:

(X1X2...Xl)Il
= X1X2...Xl

and refer to this digraph as a monotone linear join of X1, ..., Xl.

Clearly, X1X2...Xn can be constructed as follows: first take a disjoint union
⊔l

i=1 Xi and then add
arrows from any vertex of Xi to any vertex of Xi+1 (see Example 4.13).

In the case l = 2 we obviously have X1X2 = X1 ∗ X2 but in general X1X2...Xl is a subgraph of
X1 ∗X2 ∗ ... ∗Xl. For example, we have

{0} {1, 2} {3} = while {0} ∗ {1, 2} ∗ {3} = .

Theorem 3.16. [30] We have

H̃r (X1X2...Xl) ∼=
⊕

{pi≥0: p1+p2+...+pl=r−l+1}
H̃p1 (X1)⊗ ...⊗ H̃pl

(Xl) (3.57)

and
β̃r (X1X2...Xl) =

∑

{pi≥0: p1+p2+...+pl=r−l+1}
β̃p1

(X1) ...β̃pl
(Xl) . (3.58)

Moreover, if dimp Xi <∞ for all i, then also dimp (X1...Xl) <∞.
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It follows from comparison of (3.53) and (3.57), that the linear join X1X2...Xl and the complete join
X1 ∗X2 ∗ ... ∗Xl are homologically equivalent.

Example 3.17. Assume that one of the digraphs Xi is homologically trivial, that is, β̃p (Xi) = 0 for
all p and some i. Then by (3.58) the digraph X1X2...Xl is also homologically trivial.

Example 3.18. Assume that all digraphs Xi have no arrows. In this case the only non-trivial Betti
numbers are β̃0 (Xi), and we obtain from (3.58) that the only non-trivial Betti number of X1X2...Xl

is
β̃l−1 (X1X2...Xl) = β̃0 (X1) ...β̃0 (Xl) . (3.59)

This particular case of Theorem 3.16 was proved in [7].

Here is an example of a monotone linear join:

X = X1X2X3

where each Xi = {∙, ∙} .

Since β̃0 (Xi) = 1, it follows from (3.59) that the only non-trivial Betti number of X is β2 (X) = 1.

Example 3.19. Let the base G be a square:

We have
G = {1} {2, 3} {4}

which implies that

XG = X1 (X2 tX3) X4.

By Theorem 3.16 and (3.47) we obtain that

β̃r (XG) =
∑

{pi≥0: p1+p2+p3=r−2}
β̃p1

(X1) β̃p2
(X2 tX3) β̃p3

(X4)

=
∑

{pi≥0: p1+p2+p3=r−2}
β̃p1

(X1)
(
β̃p2

(X2) + β̃p2
(X3) + 1{p2=0}

)
β̃p3

(X4)

= β̃r (X1X2X4) + β̃r (X1X3X4) + β̃r−1 (X1X4) . (3.60)

For a general base G, if i1...ik is an arbitrary sequence of vertices in G then denote

Xi1...ik = Xi1Xi2 ...Xik .

Note that by (3.58)

β̃r (Xi1...ik) =
∑

p1+...+pk=r−(k−1)
p1,...,pk≥0

β̃p1
(Xi1) ...β̃pk

(Xik) .

Using this notation, we can rewrite (3.60) as follows: if G is a square then

β̃r (XG) = β̃r (X124) + β̃r (X134) + β̃r−1 (X14) .

Example 3.20. Let G be an octahedron based on the diamond:

We have

G = {1, 2} ∗ {3, 4} ∗ {5, 6}

whence

XG = (X1 tX2) ∗ (X3 tX4) ∗ (X5 tX6) .

By (3.55) we obtain
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β̃r (XG) =
∑

{pi≥0: p1+p2+p3=r−2}
β̃p1

(X1 tX2)β̃p2
(X3 tX4)β̃p3

(X5 tX6)

=
∑

{pi≥0: p1+p2+p3=r−2}
(β̃p1

(X1) + β̃p1
(X2) + 1{p1=0})(β̃p2

(X3) + β̃p2
(X4) + 1{p2=0})

× (β̃p3
(X5) t β̃p3

(X6) + 1{p3=0})

= β̃r(X135) + β̃r(X145) + β̃r(X235) + β̃r(X245) + β̃r(X136) + β̃r(X146)

+ β̃r(X236) + β̃r(X246)

+ β̃r−1(X13) + β̃r−1(X23) + β̃r−1(X14) + β̃r−1(X24) + β̃r−1(X15) + β̃r−1(X25)

+ β̃r−1(X35) + β̃r−1(X45) + β̃r−1(X16) + β̃r−1(X26) + β̃r−1(X36) + β̃r−1(X46)

+ β̃r−2(X1) + β̃r−2(X2) + β̃r−2(X3) + β̃r−2(X4) + β̃r−2(X5) + β̃r−2(X6) + 1{r=2}.

3.9 Subgraphs and Mayer-Vietoris exact sequence

The material of this section is based on [18].

A digraph Y is called a subgraph of a digraph X if both sets of vertices and arrows of Y are subsets
of those sets of X . Any allowed path in Y is therefore also allowed in X . Since the natural inclusion
map i : Y → X commutes with ∂, we obtain that every ∂-invariant path in Y is also ∂-invariant in X .

A converse is not always true: even if ea0...ap is an allowed path in X and all the vertices a0, . . . , ap

lie in Y , this path is not necessarily allowed in Y because some of its arrows may not be in Y .

A subgraph Y is called induced if together with two vertices a, b ∈ Y it contains also the arrow a→ b
if this arrow is present in X . For an induced subgraph Y , if ea0...ap is an allowed path in X and all
the vertices a0, . . . , ap lie in Y then ea0...ap is also allowed in Y . Consequently, if ω is a ∂-invariant
path in X and if all the vertices of ω are contained in Y then ω is also ∂-invariant in Y .

If Y1 and Y2 are two subgraphs of X then their union Y1∪Y2 is a subgraph of X whose sets of vertices
and arrows are unions of those of Y1 and Y2, respectively. In the same way one defines the intersection
Y1 ∩ Y2. If Y1 and Y2 are induced then Y1 ∩ Y2 is also induced.

Assume that a digraph X is a union of two subgraphs Y1 and Y2, that is,

X = Y1 ∪ Y2.

In particular, every arrow of X lies in Y1 or Y2. Denote

Z = Y1 ∩ Y2.

Then we have the following commutative diagram of the natural inclusions of the digraphs:

Z
i1
−→ Y1

i2 ↓ ↓j
1

Y2
j2

−→ X.

(3.61)

For any p ≥ −1 the commutative diagram (3.61) induces a commutative diagram

Rp(Z)
i1∗−→ Rp(Y1)

↓i
2
∗ ↓j

1
∗

Rp(Y2)
j2
∗−→ Rp(X),

(3.62)

41



where all homomorphisms are injective. Observe that all homomorphisms i∗ and j∗ commute with
the boundary operator ∂ and map allowed paths to the allowed ones.

Consider the following homomorphisms:

0 −→ Rp(Z)
δ
−→ Rp(Y1)⊕Rp(Y2)

γ
−→ Rp(X) −→ 0, (3.63)

where
δ (z) = (i1∗ (z) , i2∗ (z)) and γ(y1, y2) = j1

∗(y1)− j2
∗(y2) (3.64)

for all z ∈ Z and yi ∈ Yi. The map δ is evidently injective.

Lemma 3.21. [18, Lemma 3.23] In the sequence (3.63) we have Im δ = ker γ.

Proof. For any z ∈ Z we have

γ (δ (z)) = j1
∗ ◦ i1∗ (z)− j2

∗ ◦ i2∗ (z) = 0,

so that γ ◦ δ = 0 and, hence, Im δ ⊂ ker γ. To prove the opposite inclusion, observe that

ker γ =
{
(y1, y2) ∈ Rp(Y1)⊕Rp(Y2) : j1

∗(y1) = j2
∗(y2)

}
,

that is, y1 and y2 coincide as paths in X . Since y1 is a path in Y1 and y2 is a path in Y2, it follows that
y1 and y2 can be identified with the same path z in Z = Y1 ∩ Y2. It follows that δ (z) = (y1, y2) and,
hence, (y1, y2) ∈ Im δ, which finishes the proof of Im δ = ker γ.

For all (y1, y2) ∈ Rp(Y1)⊕Rp(Y2) set

∂ (y1, y2) := (∂y1, ∂y2) ∈ Rp−1(Y1)⊕Rp−1(Y2).

Also, we say that (y1, y2) is allowed if both y1, y2 are allowed.

Since i∗ and j∗ commute with the boundary operator ∂, it follows that δ and γ also commute with ∂,
that is, the following diagram is commutative:

0 0
↓ ↓

0 . . . ← Rn−1(Z)
∂
← Rn(Z)

∂
← . . .

↓δ ↓δ

0 . . . ← Rn−1(Y1)⊕Rn−1(Y2)
∂
← Rn(Y1)⊕Rn(Y2)

∂
← . . .

↓γ ↓γ

0 . . . ← Rn−1(X)
∂
← Rn(X)

∂
← . . .

↓ ↓
0 0

Indeed, for z ∈ Rn (Z) we have

δ ◦ ∂(z) =
(
i1∗ (∂z) , i2∗ (∂z)

)
=
(
∂i1∗ (z) , ∂i2∗ (z)

)
= ∂ ◦ δ(z)

and for (y1, y2) ∈ Rn(Y1)⊕Rn(Y2) we have

γ ◦ ∂ (y1, y2) = j1
∗ (∂y1)− j∗2 (∂y2) = ∂j1

∗ (y1)− ∂j∗2 (y2) = ∂ ◦ γ (y1, y2) .

Observe also that δ and γ map allowed paths to allowed ones, which follows from the same properties
of i∗ and j∗. Since δ and γ commute with ∂, it follows that δ and γ map ∂-invariant paths to ∂-invariant
ones. Hence, we obtain the following sequence of homomorphisms

0 −→ Ωp(Z)
δ
−→ Ωp(Y1)⊕ Ωp(Y2)

γ
−→ Ωp(X) −→ 0, (3.65)

where δ is injective as above.
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Lemma 3.22. [18, Lemma 3.24] In (3.65) we have Im δ = ker γ. If in addition

∀x ∈ Ωp (X) we have x = y1 + y2 for some y1 ∈ Ωp (Y1) and y2 ∈ Ωp (Y2) , (3.66)

then γ in (3.65) is surjective and (3.65) is a short exact sequence.

Proof. Since γ ◦ δ = 0, we have Im δ ⊂ ker γ. Let us prove the opposite inclusion. Let y1 ∈
Ωp(Y1) and y2 ∈ Ωp(Y2) be such that (y1, y2) ∈ ker γ, that is, j1

∗(y1) = j2
∗(y2). By Lemma

3.21, y1 and y2 can be identified with a path z ∈ Ap (Z) . Then ∂z = ∂y1 ∈ Ap−1(Y1) and
∂z = ∂y2 ∈ Ap−1(Y2), that is ∂z ∈ Ap−1(Z) and, hence, z ∈ Ωp(Z). Therefore, (y1, y2) = δ (z),
which was to be proved.

Let us prove that the map γ in (3.65) is surjective. For any x ∈ Ωp (X) we have by hypothesis that
x = y1 + y2 where y1 ∈ Ωp (Y1) and y2 ∈ Ωp (Y2) . Then we have γ (y1,−y2) = x so that γ is
surjective.

The condition (3.66) can be equivalently stated as follows: there is a basis in Ωp (X) such that any
element of this basis is a sum of elements of Ωp (Y1) and Ωp (Y2) .

Theorem 3.23. [18, Theorem 3.25] (Mayer-Vietoris exact sequence) Let

X = Y1 ∪ Y2, Z = Y1 ∩ Y2

and assume that the hypothesis (3.66) is satisfied for any p ≥ 2. Then we have a long exact sequence
of homology groups:

∙ ∙ ∙ → H̃n(Z)
δ
→ H̃n(Y1)⊕ H̃n(Y2)

γ
→ H̃n(X)

β
→ H̃n−1(Z)

δ
→ H̃n−1(Y1)⊕ H̃n−1(Y2)→ ∙ ∙ ∙

(3.67)
where δ = (i1∗, i

2
∗), γ(y1, y2) = j1

∗(y1)− j2
∗(y2), and β is a connecting homomorphism.

Proof. Note that (3.66) is trivially satisfied for p ≤ 1. Hence, this condition is satisfied for all p. By
the above construction, we have the following commutative diagram

0 0
↓ ↓

0 ... ← Ωn−1(Z)
∂
← Ωn(Z)

∂
← . . .

↓δ ↓δ

0 ... ← Ωn−1(Y1)⊕ Ωn−1(Y2)
∂
← Ωn(Y1)⊕ Ωn(Y2)

∂
← . . .

↓γ ↓γ

0 ... ← Ωn−1(X)
∂
← Ωn(X)

∂
← . . .

↓ ↓
0 0

(3.68)

where each column is a short exact sequence by Lemma 3.22. The claim follows from the zig-zag
lemma and from

H̃∗ (Ω∗(Y1)⊕ Ω∗(Y2)) ∼= H̃∗(Y1)⊕ H̃∗(Y2).

Any p-path u ∈ Rp (X) has the form

u =
∑

i0...ip

ui0...ipei0...ip

with the coefficients ui0...ip ∈ K. We say that ei0...ip (or ui0...ipei0...ip) is an elementary term of u if
ui0...ip 6= 0.

The next lemma provides sufficient conditions for the hypothesis (3.66).
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Lemma 3.24. Assume that the following two conditions are satisfied:

(i) For any p ≥ 2 and for any x ∈ Ωp (X), any elementary term of x lies in one of the subgraphs
Y1, Y2 and is allowed in this subgraph.

(ii) For any square eabc − eab′c in X , if a, b, c ∈ Yk for some k = 1, 2 then also b′ ∈ Yk.

Then the condition (3.66) is satisfied.

Proof. Fix x ∈ Ωp for some p ≥ 2. Denote by y1 the sum of all elementary terms of x that lie in Y1

and are allowed in Y1. Set y2 = x− y1. By (i), y2 is a sum of some elementary terms of x that lie in
Y2 and are allowed in Y2. Since x = y1 + y2, it suffices to verify that both y1 and y2 are ∂-invariant,
that is, ∂y1 and ∂y2 are allowed. Assume that ∂y1 is not allowed. Then ∂y1 contains a non-allowed
elementary term, say

const ei0...îq ...ip
(3.69)

(where 1 ≤ q ≤ p − 1) that comes from the boundary of a term ei0..ip of y1. This term must cancel
out in ∂x, which means that x must contain another elementary term ej0...jp with

i0...iq−1 îq iq+1...ip = j0...jq−1 ĵq jq+1...jp.

Consequently, ik = jk for all k 6= q. Hence, we obtain the following square in X:

eiq−1iqiq+1 − eiq−1jqiq+1 . (3.70)

Since iq−1, iq and iq+1 belong to Y1 then by (ii) also jq ∈ Y1. Hence, ej0...jp lies in Y1 and the
non-allowed term (3.69) cancels also in ∂y1. Therefore, ∂y1 is allowed and y1 is ∂-invariant. In the
same way also y2 is ∂-invariant.

In this picture we show a situation when

each of the paths i0...ip, j0...jp belongs

to one of the digraphs Y1, Y2, while the

condition (ii) is not satisfied: the square

(3.70) has the vertices iq−1, iq, iq+1 in Y1

while jq /∈ Y1.

Corollary 3.25. Assume that the hypothesis (3.66) is satisfied.

(a) If, for some n, the homology groups H̃n(Z) and H̃n−1(Z) are trivial, then

H̃n(X) ∼= H̃n(Y1)⊕ H̃n(Y2). (3.71)

(b) If, for some n, the homology groups H̃n(Y1), H̃n(Y2), H̃n−1(Y1), H̃n−1(Y2) are trivial, then

H̃n(X) ∼= H̃n−1(Z). (3.72)

(c) If, for some n, the homology groups H̃n−1(Y1), H̃n−1(Y2) and H̃n(Z) are trivial, then

dim H̃n (X) = dim H̃n (Y1) + dim H̃n (Y2) + dim H̃n−1 (Z) . (3.73)

44



Proof. (a) We have the following fragment of (3.67):

0 = H̃n(Z)→ H̃n(Y1)⊕ H̃n(Y2)→ H̃n(X)→ H̃n−1(Z) = 0,

whence (3.71) follows.

(b) We have the following fragment of (3.67):

0 = H̃n(Y1)⊕ H̃n(Y2)→ H̃n(X)→ H̃n−1(Z)→ H̃n−1(Y1)⊕ H̃n−1(Y2) = 0 ,

whence (3.72) follows.

(c) We have the following fragment of (3.67):

0 = H̃n(Z)→ H̃n(Y1)⊕ H̃n(Y2)
γ
→ H̃n(X)

β
→ H̃n−1(Z)→ H̃n−1(Y1)⊕ H̃n−1(Y2) = 0.

Hence, γ is injective and β is surjective, and Im γ = ker β. By the rank-nullity theorem we have

dim H̃n (X) = dimker β + dim Im β

= dim Im γ + dim Im β

= dim H̃n (Y1) + dim H̃n (Y2) + dim H̃n−1 (Z) ,

which was to be proved.

Example 3.26. Assume that Z consists of a single vertex v. In this case Y1 and Y2 are necessarily
induced subgraphs. Alternatively, one can say that X is obtained by merging digraphs Y1 and Y2

at one vertex v. Let us verify that the hypotheses (i) and (ii) of Lemma 3.24 are satisfied. For any
x ∈ Ωp (X) with p ≥ 2 consider an elementary term cei0...ip of x and show that ei0...ip lies in Y1 or
in Y2. Assume that this is not the case, that is, one of the vertices i1, ..., ip−1 is v, say v = iq, while
iq−1 and iq+1 belong to different Y1, Y2.

The path ∂ei0...ip contains the term

ei0...iq−1iq+1..ip

that is not allowed because iq−1 6→ iq+1.

This term must be cancelled in ∂x using

another elementary term of x.

However if another elementary term ej0...jp of x contains ei0...iq−1iq+1...ip in its boundary then

i0...iq−1iq+1...ip = j0...jq−1jq+1...jp

which implies jq = v because this is the only choice of jq to make j0...jp allowed. Hence, ei0...ip =
ej0...jp and the above cancellation is not possible, which proves (i).

The condition (ii) is obvious: if eabc − eab′c is a square in X and a, b, c ∈ Y1 while b′ /∈ Y1 then both
a and c must coincide with v, which is not possible.

Since H̃∗ (Z) = {0}, Corollary 3.25(a) applies in this case and yields (3.71) for all n. Consequently,
we have

β̃n(X) = β̃n(Y1) + β̃n(Y2). (3.74)

Example 3.27. Denote by Y1 the digraph LH (5) from Example 1.19. For this digraph

βp (Y1) > 0 for all p = 1mod 3.

More precisely, β1 (Y1) = 1 and βp (Y1) = 4 if p = 1mod 3 and p > 1. Set

Y2 = sus2 Y1 and Y3 = sus2 Y2.
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Using the formula β̃r (sus2 G) = β̃r−1 (G) from Example 3.14, we obtain that

βp (Y2) > 0 for all p = 2mod 3

and
βp (Y3) > 0 for all p = 0mod 3.

Let X be a digraph that is obtained from disjoint digraphs Y1, Y2 and Y3 by merging them at one
vertex. By (3.74) we obtain for all p ≥ 1

βp(X) = βp(Y1) + βp(Y2) + βp(Y3).

Since βp (Yi) > 0 for p = i mod3, it follows that

βp (X) > 0 for all p.

Hence, we obtain an example of a digraph with non-trivial homology groups Hp for all p.

Example 3.28. Let X be an octahedron as here:

Let Y1 and Y2 be induced subgraphs consisting

of the upper and lower pyramids. Then Z is the

diamond in the middle section of X .

The space Ω2 (X) is spanned by 8 triangles:

e024, e034, e025, e035, e124, e134, e125, e135,

each of them lying in Y1 or Y2, and Ωp(X) = {0}

for all p ≥ 3.

Hence, the hypothesis of Theorem 3.23 is satisfied.

Note that all H̃∗ (Y1) and H̃∗ (Y2) are trivial, while the only nontrivial group H̃p (Z) is

H1 (Z) = 〈e02 − e12 + e13 − e03〉 .

By Corollary 3.25(b) we conclude that H2(X) ∼= H1(Z). Indeed, we have seen in Example 3.15 that
H2 (X) is one-dimensional.

Example 3.29. Let Y2 be an induced connected subgraph of X such that X \ Y2 has a single vertex b
and two arrows a→ b and b→ c where a, c are distinct vertices of Y2. We assume further that a 6⇀ c
in Y2 (while in X we have either a→ c or a ⇀ c). Let us related Hp (X) to Hp (Y2) .

Denote by Y1 an induced subgraph of X with the vertices a, b, c, and set Z = Y1 ∩ Y2.

Then Z is an induced subgraph with two

vertices a and c.

Here is an example of this configuration:

Let us verify that the conditions (i) , (ii)

of Lemma 3.24 are satisfied.

Let αei0...ip be an elementary term of x ∈ Ωp (X) where p ≥ 2. Let us show that the path i0...ip
lies in Y1 or Y2. If i0...ip does not contain b then it lies in Y2. Let b be one of the vertices i0...ip, say
b = ik.

If
p = 2 and k = 1, (3.75)

then ei0...ip = eabc and the path abc is contained in Y1.
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Assume that (3.75) is not satisfied, so that either k ≥ 2 or k ≤ p− 2.

If k ≥ 2 then ei0...ip = e...ik−2ab... and ∂ei0...ip contains the term e...ik−2b... that is non-allowed and
cannot be cancelled by other terms of x.

Similarly, if k ≤ p − 2 then ei0...ip = e...bcik+2... and ∂ei0...ip contains a non-allowed term e...bik+2...

that cannot be cancelled by other terms of x. Hence, the condition (i) is satisfied.

The condition (ii) is obvious: if s is a square in X that does not lie in Y2 then s must contain the
vertex b and, hence,

s = eabc − eab′c

where b′ ∈ Y2. However, since ac is not a semi-arrow in Y2, the path ab′c cannot be allowed.

Since
Hn (Z) = {0} ∀n ≥ 1 and Hn (Y1) = {0} ∀n ≥ 2,

we obtain by Corollary 3.25(a) that

Hn(X) ∼= Hn(Y2) for all n ≥ 2.

In order to determine H1 (X), observe that H̃0(Y1), H̃0(Y2) and H̃1(Z) are trivial, and we conclude
by Corollary 3.25(c) that

dim H1 (X) = dim H1 (Y1) + dim H1 (Y2) + dim H̃0 (Z) .

Next, consider three cases.

Case 1. Let a→ c. Then H1 (Y1) = {0} and H̃0 (Z) = {0} whence

dim H1 (X) = dim H1 (Y2) .

Case 2. Let a 6→ c and c→ a. Then H̃0 (Z) = {0} and

H1 (Y1) = 〈eab + ebc + eca〉 ,

whence
dim H1 (X) = dim H1 (Y2) + 1. (3.76)

Case 3. Let a 6→ c and c 6→ a. Then H1 (Y1) = {0}, dim H̃0 (Z) = 1, and we obtain again (3.76).

Example 3.30. Let Y1, Y2 be induced subgraphs of X as shown here:

The digraph X contains a ∂-invariant snake e0 1 2 ... 10 that does not lie in any of the subgraphs Y1, Y2.
Hence, the hypothesis (3.66) of Theorem 3.23 is not satisfied, and the condition (i) of Lemma 3.24
fails as well.

Example 3.31. Consider the following digraph X of 10 vertices and induced subgraphs Y1 and Y2 as
follows:
- Y1 contains the vertices {1, 2, 4, 6, 8, 9},

- Y2 contains all the vertices except for 6.

Hence, Z contains the vertices {1, 2, 4, 8, 9}.

Digraphs Y1, Y2, Z are homologically trivial,

while dim H2 (X) = 1.
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In fact, we have

H2 (X) = 〈e012 − (e014 − e034) + (e025 − e035)− ( e126 − e146)− (e259 − e269)

− (e348 − e378) + (e359 − e379)− (e469 − e489)− e789〉. (3.77)

Therefore, (3.71) fails for n = 2. The condition (3.66) fails as well because the square

e259 − e269 (3.78)

is ∂-invariant on X but it not a sum of ∂-invariant paths on Y1 and Y2.

For the same reason also the hypothesis (ii) of Lemma 3.24 fails: in the square (3.78) the vertices
2, 6, 9 belong to Y1 while 5 does not. Note that the hypothesis (i) of Lemma 3.24 is satisfied in this
case. Indeed, one can show that

Ω2 = 〈e012 , e789 , e014 − e034 , e025 − e035, e126 − e146 ,

e259 − e269, e348 − e378 , e359 − e379 , e469 − e489 〉, (3.79)

and Ωp = {0} for p > 2 so that (i) follows from the observation that every elementary term in (3.79)
lies in Y1 or Y2.

Example 3.32. Consider the following modification of the previous example with an added vertex 10
and arrows 2→ 10→ 9.

The digraphs Y1, Y2 are still homologically

trivial, while Z is a polygon so that

dim H1 (Z) = 1, Hp (Z) = {0} for p ≥ 2.

Condition (3.66) is satisfied, in particular,

because the square (3.78) is a sum of two
squares

(e2 10 9 − e269) + (e259 − e2 10 9)

lying in Y1 and Y2, respectively,

By Corollary 3.25(b) we conclude that dim H2 (X) = dim H1 (Z) = 1. Indeed, in this case H2 (X)
is also given by (3.77).

Note that the condition (ii) of Lemma 3.24 fails in this case for the same reason as in the previous
example.

4 Fixed point theorems for digraph maps

4.1 Lefschetz number and a fixed point theorem

Everywhere here K = R (or K = Q). Let fn : Ωn → Ωn be a sequence of linear mappings that
commutes with ∂, that is,

∂ ◦ fn+1 = fn ◦ ∂ (4.80)

for any n ≥ 0. In other words, the following diagram is commutative:

Ωn−1
∂
←− Ωn

∂
←− Ωn+1

↓fn−1 ↓fn ↓fn+1

Ωn−1
∂
←− Ωn

∂
←− Ωn+1 .

(4.81)
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Denote
Zn = ker ∂|Ωn , Bn = Im ∂|Ωn+1 ,

so that
Hn = Zn/Bn.

It follows from (4.80) that fn acts on Zn, Bn and Hn.

Definition. Denote shortly by f the sequence {fn} of the mappings as above. For any non-negative
integer N , define the Lefschetz number of f of order N by

L(N) (f) =
N∑

n=0
(−1)n trace fn|Ωn . (4.82)

For example, if each fn = id then

L(N) (f) =
N∑

n=0
(−1)n dimΩn = χ(N).

Proposition 4.1. The following identity holds:

L(N) (f) :=
N∑

n=0
(−1)n trace fn|Hn + (−1)N trace fN |BN

. (4.83)

Proof. Using the following identity (that will be proved in Subsection 4.2)

trace fn|Hn = trace fn|Ωn − trace fn−1|Bn−1 − trace fn|Bn , (4.84)

we obtain

N∑

n=0
(−1)n trace fn|Hn

=
N∑

n=0
(−1)n trace fn|Ωn −

N∑

n=1
(−1)n trace fn−1|Bn−1 −

N∑

n=0
(−1)n trace fn|Bn

=
N∑

n=0
(−1)n trace fn|Ωn +

N−1∑

k=0

(−1)k trace fk|Bk
−

N∑

n=0
(−1)n trace fn|Bn

=
N∑

n=0
(−1)n trace fn|Ωn − (−1)N trace fN |BN

= L(N) (f)− (−1)N trace fN |BN
,

whence (4.82) follows.

Let now f : G→ G be a digraph map, that is,

i→ j ⇒ f (i)→ f (j) or f (i) = f (j) .

In Subsection 1.4 we have defined an induced mapping f∗ : Λn → Λn as follows: first set

f∗ (ei0...in) = ef(i0)...f(in),

and then extend f to Λn by linearity. By Proposition 1.6, f∗ extends to linear mappings Ωn → Ωn

and Hn → Hn.

In this section we denote f∗ for simplicity also by f . Hence, we obtain the diagram (4.81) where all
fn = f . In particular, L(N) (f) is defined.
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Theorem 4.2. Let f : G → G be a digraph map. If, for some N ≥ 0, we have L(N) (f) 6= 0 then f
has a fixed point, that is, a vertex a such that f (a) = a.

We use the definition of a cluster from Subsection 2.2. For example, eabc − eab′c is an (a, c)-cluster
whereas eabc + eacb is not a cluster.

Lemma 4.3. In each Ωp there is an orthogonal basis (with respect to the natural inner product 〈∙, ∙〉)
that consists of clusters.

Proof. Let C be the set of all ∂-invariant clusters in Ωp. By Lemma 2.2, Ωp is spanned by C. Choosing
in C a maximal linearly independent subset, we obtain a basis B in Ωp that consists of clusters. Let us
show how to make an orthogonal basis of clusters. Let u, v be two elements from B.

Let u be an (a, b)-cluster and v be an (a′, b′)-cluster.

If (a, b) 6= (a′, b′) then clearly u⊥v.

If B has more than one (a, b)-cluster, then among all (a, b)-clusters in B, we run a Gram-Schmidt
orthogonalization process and obtain an orthogonal set of (a, b)-clusters in B. Note that during this
process all newly arising elements are again (a, b)-clusters. Doing that for all pairs (a, b) , we obtain
an orthogonal basis in Ωp that consists of clusters.

Proof of Theorem 4.2. Assume that f has no fixed point. We will prove that

trace f |Ωn = 0 for any n ≥ 0, (4.85)

which gives by (4.82) that L(N) (f) = 0 thus contradicting the hypothesis that L(N) (f) 6= 0.

By Lemma 4.3, there is an orthogonal basis u1, ..., um in Ωn, where all uk are clusters. Denote by
(cij) the matrix of the operator f : Ωn → Ωn in this basis, that is,

f (uj) =
m∑

i=1

cijui, whence cij =
〈f (uj) , ui〉

‖ui‖
2 .

Consequently, we have

trace f |Ωn =
m∑

k=1

ckk =
m∑

k=1

〈f (uk) , uk〉

‖uk‖
2 .

It remains to show that f (uk)⊥uk, which will imply (4.85). Indeed, let uk be an (a, b)-cluster, that
is, uk is a linear combination of elementary n-paths of the form

eai1...in−1b, (4.86)

where a, b are fixed while i1, ..., in−1 are variable. Then f (uk) is a linear combination of the n-paths

ef(a)f(j1)...f(jn−1)f(b), (4.87)

where j1, ..., jn−1 are variable. Since a 6= f (a), we see that the paths (4.86) and (4.87) are orthogonal,
which implies that f (uk) and uk are orthogonal, too, which was to be proved.

4.2 Rank-nullity formulas for trace

The purpose of this section is to prove the identity (4.84) – see Lemma 4.6 below. Recall that we have
a commutative diagram

Ωn−1
∂
←− Ωn

∂
←− Ωn+1

↓fn−1 ↓fn ↓fn+1

Ωn−1
∂
←− Ωn

∂
←− Ωn+1
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and
Zn = ker ∂|Ωn , Bn = Im ∂|Ωn+1 , Hn = Zn/Bn.

Lemma 4.4. We have
trace fn|Hn = trace fn|Zn − trace fn|Bn . (4.88)

Proof. Let u1, ..., ul be a basis of Bn. Choose in Zn elements v1, ..., vk so that the sequence
u1, ..., ul, v1, ..., vk is a basis of Zn. Then

fn (ui) =
l∑

j=1

aijuj

and

fn (vi) =
k∑

j=1

bijvj + terms with uj .

For the homology classes we have

fn ([vi]) =
k∑

j=1

bij [vj ] .

It follows that

trace fn|Zn =
l∑

i=1

aii +
k∑

i=1

bii = trace fk|Bn + trace fn|Hn ,

which is equivalent to (4.88).

Lemma 4.5. We have the identity

trace fn|Zn + trace fn−1|Bn−1 = trace fn|Ωn .

For example, if fn and fn−1 are the identity operators then this becomes the rank-nullity theorem for
the operator ∂:

dim Zn + dim Bn−1 = dimΩn. (4.89)

Proof. Let v1, ...vk be a basis in Zn and u′
1, ..., u

′
l be a basis in Bn−1. Choose any vector ui ∈ ∂−1 (u′

i),
that is, ∂ui = u′

i. Let us show that the sequence v1, ..., vk, u1, ..., ul is linearly independent in Ωn.

Indeed, if there is a vanishing linear combination

l∑

i=1

αiui +
k∑

j=1

βjvj = 0,
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then it follows that

0 = ∂
l∑

i=1

αiui + ∂
k∑

j=1

βjvj =
l∑

i=1

αiu
′
i + 0,

whence it follows that all αi = 0. Consequently,
∑k

j=1 βjvj = 0 and, hence, also all βj = 0.

Since by (4.89) k + l = dimΩn, it follows that the sequence v1, ..., vk, u1, ..., ul is a basis in Ωn.

Hence, for some coefficients aij and bij ,

fn (ui) =
l∑

j=1

aijuj + terms with vj (4.90)

and

fn (vi) =
k∑

j=1

bijvj .

The latter expansion contains no uj because fn (Zn) ⊂ Zn. Hence,

trace fn|Ωn =
l∑

i=1

aii +
k∑

i=1

bii.

On the other hand, we have

trace fn|Zn =
k∑

i=1

bii.

It remains to prove that

trace fn−1|Bn−1 =
l∑

i=1

aii.

Since fn−1 maps Bn−1 into itself, there are coefficients a′ij such that

fn−1

(
u′

i

)
=

l∑

j=1

a′iju
′
j . (4.91)

It follows from (4.90) that

∂fn (ui) =
l∑

j=1

aij∂uj + 0 =
l∑

j=1

aiju
′
j . (4.92)

On the other hand, using (4.80) and (4.91), we obtain that

∂fn (ui) = fn−1 (∂ui) = fn−1

(
u′

i

)
=

l∑

j=1

a′iju
′
j .

Comparison with (4.92) shows that a′ij = aij and, hence,

trace fn−1|Bn−1 =
l∑

i=1

a′ii =
l∑

i=1

aii,

which finishes the proof.

Finally, we can prove (4.84).
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Lemma 4.6. The following identity holds

trace fn|Hn = trace fn|Ωn − trace fn−1|Bn−1 − trace fn|Bn . (4.93)

Proof. By Lemma 4.4 we have

trace fn|Hn = trace fn|Zn − trace fn|Bn ,

and by Lemma 4.5
trace fn|Zn = trace fn|Ωn − trace fn−1|Bn−1 ,

which yields (4.93).

4.3 A fixed point theorem in terms of homology

Definition. Define the path dimension of a digraph G by

dimp G = sup {n : |Ωn| > 0} .

Assume that dimp G <∞. Then for any N > dimp G we have by (4.83)

L(N) (f) =
N∑

n=0

(−1)n trace f |Ωn =
N∑

n=0

(−1)n trace f |Hn . (4.94)

Recall the definition of the homological dimension:

dimh G = sup {n : |Hn| > 0} .

Theorem 4.7. Let G be a connected digraph. Let dimp G <∞ and dimh G = 0. Then any digraph
map f : G→ G has a fixed point.

Proof. The condition dimh G = 0 means that Hn = {0} for all n ≥ 1, and the connectedness means
that |H0| = 1. The space H0 is spanned by a single homology class [ea] where a is one of the vertices.
Then f (ea) = ef(a) ∼ ea so that f ([ea]) = [ea]. It follows that trace f |H0 = 1 while trace f |Hn = 0
for all n ≥ 1. By (4.94) we obtain L(N) (f) = 1 6= 0, and by Theorem 4.2 we conclude that f has a
fixed point.

The condition that a mapping f : G → G is a digraph map can be reformulated as follows. Define a
directed distance between vertices a, b of G by

−→
d (a, b) = inf{n : ∃ a path a→ i1 → ...→ in−1 → b

︸ ︷︷ ︸
n arrows

}.

Then f is a digraph map if and only if
−→
d (f(a), f(b)) ≤

−→
d (a, b) for all a, b ∈ V.

Let us relax this condition.

Problem 4.8. Devise a fixed point theorem for maps f : G→ G with
−→
d (f(a), f(b)) ≤ C

−→
d (a, b) for all a, b ∈ V,

where C > 1 is a constant.

Alternatively, one can strengthen conditions on f , assuming that f is a digraph isomorphism, which
is equivalent to

−→
d (f(a), f(b)) =

−→
d (a, b) for all a, b ∈ V.

Problem 4.9. Devise a fixed point theorem for a digraph isomorphism f : G→ G.
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4.4 Examples

Example 4.10. First consider some simple examples of digraphs satisfying the hypotheses of Theorem
4.7.

triangle square pyramid octahedron based on square

3-simplex 3-cube broken cube prism

The triviality of H∗ (that is, dimh G = 0) for each of these digraphs was mentioned in the previous
sections. The finiteness of the path dimension follows from the fact that all arrows go in the direction
of increase of numbering of the vertices so that the length of allowed paths is bounded.

Note that in all digraphs of Example 4.10, a fixed point theorem can be obtained much simpler from
the following elementary result.

Proposition 4.11. Assume that a digraph G = (V,E) satisfies the following two conditions:

(i) there is no closed elementary allowed p-path with p ≥ 2, that is, for any allowed p-path ei0...ip , we
have i0 6= ip;

(ii) there exists a vertex a such that there is an elementary allowed path from a to any other vertex x.

Then any digraph map f : G→ G has a fixed point.

Proof. Consider the sequence of sets Vn ⊂ V defined by

V0 = V, Vn+1 = f (Vn) for n ≥ 0.

By induction we have Vn+1 ⊂ Vn. Since all sets Vn are finite, we obtain that Vn+1 = Vn for large
enough n. Fix such n so that we have Vn+1 = Vn.

For each x ∈ V set xk = fk (x). Then there is an elementary allowed path from ak to xk for any
k ≥ 0.
In particular, there is an allowed path from an

to any other vertex of Vn, and that from an+1

to any other vertex of Vn+1 = Vn.

Hence, if an 6= an+1 then there are allowed
paths from an to an+1 and from an+1 to an.

Therefore, there is a closed allowed path starting and ending at an, which is not possible. Hence,
an = an+1, that is, an is a fixed point of f .

Next, we give an example of a digraph that satisfies the hypotheses of Theorem 4.7 but not those of
Proposition 4.11.

Example 4.12. Consider the following digraph G with 7 vertices and 16 arrows.
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There are closed allowed paths

0→ 2→ 1→ 0 , 5→ 0→ 6→ 5

etc. Hence, there are arbitrarily long

allowed paths. Nevertheless, one can

show that

dimp G < 6,

and that G is homologically trivial.

Hence, G satisfies the hypotheses of Theorem 4.7, and we conclude that any digraph map f : G→ G
has a fixed point.

The next example provides a large family of digraphs satisfying the hypotheses of Theorem 4.7.

Example 4.13. Given n digraphs X1, ..., Xn, define their monotone linear join X1X2...Xn as follows:
take first a disjoint union

⊔n
i=1 Xi and then add arrows from any vertex x of Xi to any vertex y of

Xi+1.

A monotone linear join X1X2...Xn

Proposition 4.14. Assume that the following two conditions are satisfied:

(i) for all i, dimp Xi <∞;

(ii) there exists i such that Xi is connected and dimh Xi = 0.

Then any digraph map f in X = X1...Xn has a fixed point.

Proof. It follows from Theorem 3.16 that the digraph X is homologically trivial and dimp X < ∞
(see also Example 3.17). Hence, the claim follows from Theorem 4.7.

Let us now consider some examples when the hypotheses of Theorem 4.7 are not satisfied.

Example 4.15. Assume that G contains a double arrow {a� b}. Then

dimp G =∞

because each Ωp contains p-paths eababab... and ebababa.... Define a map f : G→ G by

f(a) = b and f(x) = a for all x 6= a.

Clearly, f is a digraph map without fixed points. Hence, the hypotheses dimp G <∞ is essential for
Theorem 4.7.
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Example 4.16. Here are some examples of digraphs that admit digraph maps f without fixed points.
All they have dimp G <∞ but dimh G > 0.

1-torus diamond octahedron based on diamond

f =rotation f =central symmetry f =central symmetry
|H1| = 1 |H1| = 1 |H2| = 1

2-torus

f = rotation
|H1| = 2, |H2| = 1

−→
K3,3

f : 0 7→ 1 7→ 2 7→ 0, 3 7→ 4 7→ 5 7→ 3
|H1| = 2

Problem 4.17. Suppose that H1 (G) contains a non-trivial class e01 + e12 + e20 (like for 1-torus). Is
it true that there exists a digraph map f : G→ G without a fixed point?

Example 4.18. Consider the following digraph G with 7 vertices and 14 arrows:

G has the following arrows:

i→ i + 1 and i→ i + 2

where addition is considered mod7.

Let us first show that

|Ωp| = 14 for all p ≥ 1
and

|Hp| = 0 for all p ≥ 2.

This digraph can also be shown as a periodic snake:

where the vertices with the same numbers are merged (like a Möbius band).

Each elementary p-path
ωi = ei(i+1)(i+2)...(i+p) (4.95)

is snake-like and, hence, is ∂-invariant. Let us refer to any path (4.95) as a p-snake. Hence, we obtain
in Ωp already 7 linearly independent p-snakes {ωi}

6
i=0. Another group of 7 linearly independent

p-paths in Ωp is given by the boundaries ∂$i of (p + 1)-snakes

$i = ei(i+1)(i+2)...(i+p)(i+p+1).

Hence, we obtain that
Ωp = 〈ωi, ∂$i〉

6
i=0
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and dimΩp = 14. Since ∂ (∂$i) = 0, while ∂ωi are linearly independent for p ≥ 2, we obtain that

dimker ∂|Ωp = 7.

By the rank-nullity theorem we have

dim Im ∂|Ωp+1 = 14− 7 = 7,

whence Hp = {0} for all p ≥ 2. For the case p = 1 we have, in fact,

H1 = 〈e01 + e12 + e23 + e34 + e45 + e56 + e60〉 .

Hence, we have dimp G =∞ and dimh G = 0. The hypothesis dimp G <∞ of Theorem 4.7 is not
satisfied, and the conclusion of Theorem 4.7 fails as well because the digraph map f (i) = i + 1 has
no fixed point.

Problem 4.19. Devise a fixed point theorem that would work with digraphs containing double arrows.
For that we need to impose additional restriction on f : G→ G, for example, let us assume that f is
a digraph isomorphism, that is,

a→ b⇒ f (a)→ f (b) .

Problem 4.20. Assume that G is connected, dimh G = 0 and that G has no double arrow. Prove or
disprove the claim that any digraph map f : G → G has a fixed point. Of course, the main interest
here lies in the case when

dimp G =∞.

Example 4.21. Here is a candidate for a positive example with dimp G =∞.

This is the above snake with

an additional vertex 7 such that

7→ i for all i ∈ {0, ..., 6} .

For this digraph

dimh G = 0 and dimp G =∞.

Problem 4.22. Prove that any digraph map f : G→ G for the above digraph has a fixed point.

Example 4.23. Here is a candidate for a counterexample.

For this digraph we have

dimh G = 0 and dimp G =∞.

All spaces Ωp are non-trivial
because G contains a periodic
snake

e01234560123456...

Problem 4.24. Construct for this digraph a digraph map f without fixed points (or prove a fixed point
theorem for this digraph). Simple rotations f (i) = i + a mod8 are not digraph maps here. For
example, for f (i) = i + 4 the arrow 0→ 3 goes to 4 6→ 7, for f (i) = i + 5 the arrow 5→ 0 goes to
2 6→ 5.

Problem 4.25. Devise convenient sufficient conditions for dimp G <∞.
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5 Combinatorial curvature of digraphs

5.1 Motivation

Let Γ be a finite planar graph. There is the following old notion of a combinatorial curvature Kx at
any vertex x of Γ:

Kx = 1−
deg (x)

2
+
∑

f3x

1
deg (f)

, (5.96)

where the sum is taken over all faces f containing x and deg (f) denotes the number of vertices of f .
For example, if all faces are triangles then we obtain

Kx = 1−
deg (x)

2
+

degΔ (x)
3

, (5.97)

where degΔ (x) is the number of triangles having x as a vertex.

In general, denoting by V , E and F the number of vertices, edges and faces of Γ and observing that

∑

x

deg (x) = 2E and
∑

x

∑

f3x

1
deg (f)

=
∑

f

∑

x∈f

1
deg (f)

= F,

we obtain ∑

x

Kx = V − E + F = χ.

We try to realize this idea on digraph: to “distribute” the Euler characteristic over all vertices and,
hence, to obtain an analog of the Gauss curvature that satisfies the Gauss-Bonnet theorem.

5.2 Curvature operator

Let G = (V,E) be a finite digraph and K = R. We would like to generalize (5.96) to arbitrary
digraphs, so that the faces in (5.96) should be replaced by the elements of a basis in Ωp. However, the
result should be independent of the choice of a basis.

Fix p ≥ 0. Any function f : V → R on the vertices induces an linear operator

Tf : Rp → Rp

by
Tfei0...ip = (f (i0) + ... + f (ip)) ei0...ip .

For example, for a constant function f = 1 on V , we have T1ei0...ip = (p + 1) ei0...ip and, hence,

T1ω = (p + 1) ω for any ω ∈ Rp. (5.98)

If f = 1x where x ∈ V , then

T1xei0...ip = mei0...ip , where m is the number of occurrences of x in i0, ..., ip. (5.99)

Fix in Rp an inner product 〈∙, ∙〉. For example, this can be a natural inner product when all regular
elementary paths ei0...ip form an orthonormal basis in Rp.
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Let Πp : Rp → Ωp be the orthogonal
projection onto Ωp.

Considering Tf as an operator from Ωp

toRp, we obtain the following operator
in Ωp:

T ′
f := Πp ◦ Tf : Ωp → Ωp.

Definition. Define the incidence of f and Ωp by

[f, Ωp] := trace T ′
f .

Definition. For any ω =
∑

ωi0...ipei0...ip ∈ Ωp define the incidence of f and ω by

[f, ω] := 〈Tfω, ω〉

Lemma 5.1. For any orthogonal basis {ωk} in Ωp we have

[f, Ωp] =
∑

k

[f, ωk]

‖ωk‖
2 . (5.100)

Proof. It suffices to prove (5.100) for orthonormal basis when ‖ωk‖ = 1 for all k. By the definition
of the trace, we have

trace T ′
f =

∑

k

〈
T ′

fωk, ωk

〉
.

Moreover, for every ω ∈ Ωp we have

〈
T ′

fω, ω
〉

= 〈ΠpTfω, ω〉 = 〈Tfω, Πpω〉 = 〈Tfω, ω〉 = [f, ω]

from which (5.100) follows.

Definition. For any N ∈ N define the curvature operator K(N) : RV → R of order N by

K(N)f =
N∑

p=0

(−1)p

p + 1
[f, Ωp] .

If Ωp = {0} for all p > N , then write K
(N)
f = Kf .

5.3 The Gauss-Bonnet formula

For f = 1x with x ∈ V , we write

[x, Ωp] := [1x, Ωp] and [x, ω] := [1x, ω] ,

If {ωk} is an orthogonal basis of Ωp, then by (5.100)

[x, Ωp] =
∑

k

[x, ωk]

‖ωk‖
2 . (5.101)
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If the inner product is natural so that
{
ei0...ip

}
is orthonormal then by (5.99)

[
x, ei0...ip

]
= m, where m is the number of occurrences of x in i0, ..., ip.

For example,
[a, eabca] = 2, [b, eabca] = 1, [d, eabca] = 0.

In this case, for ω =
∑

ωi0...ipei0...ip we have

[x, ω] =
∑

i0...ip∈V

(
ωi0...ip

)2 [
x, ei0...ip

]
.

Definition. For any N ∈ N define the curvature of order N at a vertex x by

K(N)
x := K(N)1x =

N∑

p=0

(−1)p

p + 1
[x, Ωp] .

Set also
K

(N)
total =

∑

x∈V

K(N)
x .

Recall that the Euler characteristic is given by

χ(N) :=
N∑

p=0

(−1)p dimΩp.

Proposition 5.2. (Gauss-Bonnet) For any choice of the inner product in Rp and for any N we have

K
(N)
total = χ(N).

Proof. Since
∑

x∈V 1x = 1, we obtain that

K
(N)
total =

∑

x∈V

K(N)
x =

∑

x∈V

K(N)1x = K(N)1 =
N∑

p=0

(−1)p [1, Ωp]
p + 1

.

On the other hand, by (5.98)

[1, ω] = 〈T1ω, ω〉 = (p + 1) ‖ω‖2 .

If {ωk} is an orthogonal basis in Ωp then by (5.100)

[1, Ωp] =
∑

k

[1, ωk]

‖ωk‖
2 = (p + 1) dimΩp,

which implies

K
(N)
total =

N∑

p=0

(−1)p dimΩp = χ(N).

Remark 5.3. If Ωp = {0} for all p > N then

χ :=
N∑

p=0

(−1)p dimΩp =
N∑

p=0

(−1)p dim Hp.
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Remark 5.4. It can happen that Ωp 6= {0} for all p. An example of such a digraph is given in Example
1.19. A simpler example is G = {a� b} . For this digraph we have

Ω0 = 〈ea, eb〉, Ω1 = 〈eab, eba〉, Ω3 = 〈eaba, ebab〉, Ω4 = 〈eabab, ebaba〉 , etc,

so that |Ωp| = 2 for all p ≥ 0. Indeed, eaba ∈ A2 and

∂eaba = eba − eaa + eab = eba + eab ∈ A1

so that eaba ∈ Ω2. Similarly, eabab ∈ A3 and

∂eabab = ebab − eaab + eabb − eaba = ebab − eaba ∈ A2

so that eabab ∈ Ω3, etc.

If Ωp 6= {0} for all p, then one can always truncate the chain complex to make it finite by setting
ΩN+1 = {0} for some N :

0 ← Ω0
∂
← Ω1

∂
← . . .

∂
← ΩN−1

∂
← ΩN ← 0

and work with homology groups of this complex. This corresponds to declaring all paths of length
> N non-allowed.

5.4 Examples of computation of curvature

Let us fix in Rp the natural inner product. Using the orthonormal basis {ei} in Ω0 we obtain

[x, Ω0] =
∑

i

[x, ei] = 1

and, using the orthonormal basis {eij} with i→ j in Ω1, we obtain

[x, Ω1] =
∑

i→j

[x, eij ] = deg (x) .

Therefore,

K(1)
x = 1−

deg (x)
2

and, for any N ≥ 1,

K(N)
x = 1−

deg (x)
2

+
N∑

p=2

(−1)p

p + 1
[x, Ωp] . (5.102)

By Theorem 1.8, in the absence of double arrows the space Ω2 has always a basis of triangles and
squares (but this basis is not necessarily orthogonal).

For a triangle eabc ∈ Ω2 we have

[x, eabc] =

{
1, x ∈ {a, b, c}
0, otherwise

(5.103)

and for a square eabc − eab′c ∈ Ω2

[x, eabc − eab′c] =






2, x ∈ {a, c}
1, x ∈ {b, b′}
0, otherwise

(5.104)
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In particular, if G has no square then Ω2 has a basis {ωk} that consists of all triangles in G. This basis
is orthonormal and

[x, Ω2] =
∑

k

[x, ωk] = degΔ (x) := #triangles containing x.

It follows that

K(2)
x = 1−

deg (x)
2

+
degΔ (x)

3
,

which matches with (5.97).

Example 5.5. Let G be a linear digraph, for example,

∙ ∙ ∙ • → • ← • → • . . .

Then by (5.102) we have Kx = 1
2 for the endpoints, and Kx = 0 for the interior points.

Example 5.6. Let G be a cyclic digraph (polygon) different from triangle or square:

Then we have Ωp = {0} for p > 1.

Hence by (5.102), for any vertex x,

Kx = 1−
deg (x)

2
= 0.

and Ktotal = 0. Note also that χ = |Ω0| − |Ω1| = 6− 6 = 0.

Example 5.7. Consider a dodecahedron (with any orientation of edges):

We have |Ω0| = 20, |Ω1| = 30, |Ω2| = 0,

and |H1| = 11, |Hp| = 0 for p > 1.

Then, for any vertex x,

Kx = 1−
deg (x)

2
= −

1
2

and Ktotal = −10.

For comparison, note that χ = 1− 11 = 20− 30 = −10.

Example 5.8. Let G be a triangle. We have Ω2 = 〈e012〉 and Ωp = {0} for p > 2.

Hence, for each vertex x,

Kx = 1−
deg (x)

2
+

degΔ (x)
3

=
1
3
.

and Ktotal = 1. For comparison, χ = |Ω0| − |Ω1|+ |Ω2| = 3− 3 + 1 = 1.

Example 5.9. Let G be a square. Then Ω2 = 〈e013 − e023〉 and Ωp = {0} for p > 2.

Since ‖e013 − e023‖
2 = 2, we obtain

[0, Ω2] = 1
2 [0, e013 − e023] = 1, [3, Ω2] = 1

[1, Ω2] = 1
2 [1, e013 − e023] = 1

2 , [2, Ω2] = 1
2 .

62



It follows that

K3 = K0 = 1−
deg (0)

2
+

1
3

=
1
3
, K2 = K1 = 1−

deg (1)
2

+
1
6

=
1
6
,

and Ktotal = 1 = χ.

Example 5.10. Let G be a 3-simplex:

We have

Ω2 = 〈e012, e013, e023, e123〉, Ω3 = 〈e0123〉

Ωp = {0} for p > 3.

It follows that, for any vertex x,

[x, Ω2] = degΔ (x) = 3 and [x, Ω3] = 1

whence

Kx = 1−
deg (x)

2
+

[x, Ω2]
3
−

[x, Ω3]
4

=
1
4

and Ktotal = 1 = χ.

Example 5.11. Let G be an n-simplex, that is, a digraph with a set of vertices {0, 1, ..., n} and edges
i→ j whenever i < j. Then, for any p = 0, 1, ..., n

Ωp = Ap = 〈ei0...ip : i0 < i1 < ... < ip〉

so that dimΩp =
(
n+1
p+1

)
. It follows that, for any vertex x,

[x, Ωp] = #
{
ei0...ip such that x ∈ {i0, ..., ip}

}
=
(
n
p

)
,

and

Kx =
n∑

p=0

(−1)p

(
n
p

)

p + 1
.

Change j = p + 1 gives

(n + 1) Kx =
n+1∑

j=1

(−1)j−1
(n + 1)

(
n

j−1

)

j
=

n+1∑

j=1

(−1)j−1 (n+1
j

)
= 1,

whence

Kx =
1

n + 1
and Ktotal = 1.

Example 5.12. Let G be a bipyramid:

We have |Ω0| = 5, |Ω1| = 9,

Ω2 = 〈e013, e123, e023, e014, e124, e024, e012〉

Ω3 = 〈e0123, e0124〉

and |Ωp| = 0 for p ≥ 4.

Hence,

χ = |Ω0| − |Ω1|+ |Ω2| − |Ω3| = 5− 9 + 7− 2 = 1.
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Let us compute the curvature:

x [x, Ω2] [x, Ω3] 1− deg(x)
2 + [x,Ω2]

3 − [x,Ω3]
4 = Kx

3, 4 3 1 1− 3
2 + 3

3 −
1
4 = 1

4

0, 1, 2 5 2 1− 4
2 + 5

3 −
2
4 = 1

6

Consequently, Ktotal = 2
4 + 3

6 = 1.

Example 5.13. Let G be a 3-cube. We have

Ω2 = 〈e013 − e023, e015 − e045, e026 − e046,
e137 − e157, e237 − e267, e457 − e467〉

(note that this basis in Ω2 is orthogonal),

Ω3 = 〈e0237 − e0137 + e0157 − e0457 + e0467 − e0267〉,

χ = |Ω0| − |Ω1|+ |Ω2| − |Ω3| = 8− 12 + 6− 1 = 1,

Let us compute the curvature:

x [x,Ω2] [x,Ω3] 1− deg(x)
2 + [x,Ω2]

3 − [x,Ω3]
4 = Kx

0, 7 6
2 = 3 6

6 = 1 1− 3
2 + 3

3 −
1
4 = 1

4

1, 2, 3, 4, 5, 6 4
2 = 2 2

6 = 1
3 1− 3

2 + 2
3 −

1
12 = 1

12 = 1
12

Consequently, Ktotal = 2
4 + 6

12 = 1 = χ.

Example 5.14. Consider on octahedron based on a diamond:

We have

Ω2 = 〈e024, e034, e025, e035, e124, e134, e125, e135〉

and Ωp = {0} for all p ≥ 3.

For any vertex x we obtain

[x, Ω2] = degΔ (x) = 4

whence

Kx = 1−
deg (x)

2
+

degΔ (x)
3

= 1−
4
2

+
4
3

=
1
3

and Ktotal = 6
3 = 2 = χ.

Example 5.15. Here is yet another octahedron, based on a square, but with the opposite orientation
of the edges 2 ∼ 5 and 3 ∼ 5. In this case we have to orthogonalize the bases:

Ω2 = 〈e014, e015, e024, e052, e134, e153, e234, e523,
e013 − e023, e013 − e053, e524 − e534〉

= 〈e014, e015, e024, e052, e134, e153, e234, e523,
e013 − e023, e013 + e023 − 2e053, e524 − e534〉

Ω3 = 〈e0153, e0523, e5234, e0134 − e0234,
e0534 − e0134 − e0524〉

= 〈e0153, e0523, e5234, e0134 − e0234,
e0134 + e0234 − 2e0534 + 2e0524〉

Ω4 = 〈e05234〉, Ωp = {0} for p ≥ 5.

In fact, Ω4 is generated by a 4-snake 05234.
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Here is computation of the curvature:

x [x,Ω2] [x,Ω3] [x,Ω4] 1− deg(x)
2 + [x,Ω2]

3 − [x,Ω3]
4 + [x,Ω4]

5 = Kx

0 4 + 2
2 + 6

6 = 6 2 + 2
2 + 10

10 = 4 1 1− 4
2 + 6

3 −
4
4 + 1

5 = 1
5

1 4 + 1
2 + 1

6 = 14
3 1 + 1

2 + 1
10 = 8

5 0 1− 4
2 + 14/3

3 −
8/5
4 = 7

45

2 4 + 1
2 + 1

6 + 1
2 = 31

6 2 + 1
2 + 5

10 = 3 1 1− 4
2 + 31/6

3 −
3
4 + 1

5 = 31
180

3 4 + 2
2 + 6

6 + 1
2 = 13

2 3 + 2
2 + 6

10 = 23
5 1 1− 4

2 + 13/2
3 −

23/5
4 + 1

5 = 13
60 = 13

60

4 4 + 2
2 = 5 1 + 2

2 + 10
10 = 3 1 1− 4

2 + 5
3 −

3
4 + 1

5 = 7
60

5 4 + 4
6 + 2

2 = 17
3 3 + 8

10 = 19
5 1 1− 4

2 + 17/3
3 −

19/5
4 + 1

5 = 5
36

We have
χ = |Ω0| − |Ω1|+ |Ω2| − |Ω3|+ |Ω4| = 6− 12 + 11− 5 + 1 = 1

and
Ktotal = 1

5 + 7
45 + 31

180 + 13
60 + 7

60 + 5
36 = 1 = χ.

Example 5.16. Consider the following digraph G that is given by an m-square:

The space Ω2 consists of squares eabic − eabjc and their linear combinations, while Ωp = {0} for all
p > 2. It is easy to see that Ω2 has the following basis:

Ω2 = 〈eab0c − eabjc〉
m
j=1 (5.105)

so that |Ω2| = m and

Ktotal = χ = |Ω0| − |Ω1|+ |Ω2| = (m + 3)− 2 (m + 1) + m = 1.

Orthogonalization of (5.105) gives the following orthogonal basis for Ω2:

ω1 = eab0c − eab1c

ω2 = eab0c + eab1c − 2eab2c

...

ωi = eab0c + ... + eabi−1c − ieabic

...

ωm = eab0c + ... + eabm−1c −meabmc

We have
[a, ωi] = [c, ωi] = ‖ωi‖

2 = i (i + 1)

while

[bj , ωi] =






0, j > i
1, j < i
j2, j = i

,

which implies

[a, Ω2] =
m∑

i=1

[a, ωi]

‖ωi‖
2 = m (5.106)
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and

[bj , Ω2] =
m∑

i=1

[bj , ωi]
i (i + 1)

=
j2

j (j + 1)
+

m∑

i=j+1

1
i (i + 1)

= 1−
1

m + 1
=

m

m + 1
. (5.107)

It follows that

Kc = Ka = 1−
deg (a)

2
+

[a, Ω2]
3

= 1−
m + 1

2
+

m

3
=

1
2
−

m

6

and

Kbj
= 1−

deg (bj)
2

+
[bj , Ω2]

3
=

m

3 (m + 1)
.

Example 5.17. Consider a rhombicuboctahedron:

It has 24 vertices, 48 edges, and 26 faces,
among them 8 triangular and 18 rectangular.

Let us make it into a digraph G by choosing
direction i→ j on an edge (i, j) if i < j.
Then each face becomes a triangle or square.

For this digraph |H2| = 1 and Hp = {0} for
p = 1 and p > 2.

We have |Ω2| = 26 and Ωp = {0} for p ≥ 3.
Ω2 is generated by 8 triangles and 18 squares:

Ω2 = 〈e023, e178, e456, e9 10 11, e12 14 15, e13 19 20, e16 17 18, e21 22 23,

e018 − e038, e0 1 13 − e0 12 13, e0 2 14 − e0 12 14, e1 7 19 − e1 13 19, e236 − e246,

e2 4 16 − e2 14 16, e3 6 11 − e3 8 11, e4 5 17 − e4 16 17, e5 10 11 − e5 6 11, e5 10 22 − e5 17 22,

e7 8 11 − e7 9 11, e7 9 21 − e7 19 21, e9 10 22 − e9 21 22, e12 13 20 − e12 15 20,

e14 15 18 − e14 16 18, e15 18 23 − e15 20 23, e17 22 23 − e17 18 23, e19 20 23 − e19 21 23〉,

while the generator of H2 is a signed sum of all these 2-paths.

This basis in Ω2 is orthogonal. Hence, we compute the curvature:

x= 0,11,23 1,3,4,6,8,9,12,13,15,16,18,20,21 2,5,7,14,17,19,22 10

[x,Ω2]= 1 + 6
2 = 4 1 + 4

2 = 3 1 + 5
2 = 7

2 1 + 3
2 = 5

2

1− deg(x)
2 + [x,Ω2]

3 = 1− 4
2 + 4

3 1− 4
2 + 3

3 1− 4
2 + 7/2

3 1− 4
2 + 5/2

3

Kx = 1
3 = 0 = 1

6 = −1
6

It follows that
Ktotal = 3

3 + 7
6 −

1
6 = 2.

For comparison

χ = |Ω0| − |Ω1|+ |Ω2| = 24− 48 + 26 = 2

= |H0| − |H1|+ |H2| .

Example 5.18. Consider the following pyramid:
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Let us make it into a digraph G by choosing
direction i→ j on an edge i ∼ j if i < j.

We have |Ω0| = 8, |Ω1| = 18,

Ω2 = 〈e017, e027, e037, e047, e057, e067, e012, e023,
e034, e045, e056, e127, e237, e347, e457, e567〉

Ω3 = 〈e0127, e0237, e0347, e0457, e0567〉

Ωp = {0} for p ≥ 4.

Let us compute the curvature:

x [x,Ω2] [x,Ω3] 1− deg(x)
2 + [x,Ω2]

3 − [x,Ω3]
4 = Kx

0, 7 11 5 1− 7
2 + 11

3 −
5
4 = − 1

12

1, 6 3 1 1− 3
2 + 3

3 −
1
4 = 1

4

2, 3, 4, 5 5 2 1− 4
2 + 5

3 −
2
4 = 1

6

It follows that Ktotal = − 2
12 + 2

4 + 4
6 = 1. For comparison χ = 8− 18 + 16− 5 = 1.

Example 5.19. Let us compute the curvature of icosahedron (cf. Example 1.16):

Here we choose arrow i→ j if i ∼ j and i < j.

We have

|H1| = 0, |H2| = 1, |Hp| = 0 for p > 2

|Ω0| = 12, |Ω1| = 30, |Ω2| = 25, |Ω3| = 6,

|Ω4| = 1 and Ωp = {0} for p ≥ 5.

Hence,
χ = |H0| − |H1|+ |H2|

= |Ω0| − |Ω1|+ |Ω2| − |Ω3|+ |Ω4| = 2.

Here are the orthogonal bases in Ω2, Ω3, Ω4:

Ω2 = 〈e0 1 9, e0 1 2, e1 2 11, e0 2 6, e0 5 9, e0 5 6, e5 6 10, e1 3 9, e1 3 11, e2 6 7,

e6 7 10, e2 7 11, e3 4 9, e3 4 8, e4 8 10, e3 8 11, e4 5 9, e4 5 10, e7 8 10, e7 8 11,

e0 1 11 − e0 2 11, e0 5 10 − e0 6 10, e2 6 10 − e2 7 10, e3 4 10 − e3 8 10, e0 2 7 − e0 6 7〉

Ω3 = 〈e0 1 2 11, e0 5 6 10, e3 4 8 10, e0 2 6 7, e2 6 7 10 , −e0 6 7 10 + e0 2 7 10 − e0 2 6 10 〉

Ω4 = 〈e0 2 6 7 10〉
since the path e0 2 6 7 10 is
“snake like” and, hence,
is ∂-invariant.

Computation of the curvature:

x= 0 1 2 3, 11
[x,Ω2]= 6+4

2= 8 5+1
2=11

2 5+4
2= 7 5+2

2= 6
[x,Ω3]= 3+3

3= 4 1 3+2
3=11

3 1
[x,Ω4]= 1 0 1 0

∑4
p=0 (−1)p [x,Ωp]

p+1 1−5
2+8

3−
4
4+1

5 1−5
2+11/2

3 −
1
4 1−5

2+7
3−

11/3
4 +1

5 1−5
2+6

3−
1
4

Kx =11
30 = 1

12 = 7
60 =1

4
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4, 5, 8 6 7 9 10
5+1

2=11
2 5+3

2=13
2 5+3

2=13
2 5 5+6

2= 8
1 3+2

3=11
3 2+2

3=8
3 0 3+3

3= 4
0 1 1 0 1

1−5
2+11/2

3 −
1
4 1−5

2+13/2
3 −

11/3
4 +1

5 1−5
2+13/2

3 −
8/3
4 +1

5 1−5
2+5

3 1−5
2+8

3−
4
4+1

5

= 1
12 = − 1

20 =1
5 =1

6 =11
30

Note that K6 = − 1
20 < 0.

The total curvature:

Ktotal = 11
30 ∙ 2 + 1

12 ∙ 4 + 7
60 + 1

4 ∙ 2−
1
20 + 1

5 + 1
6 = 2.

Example 5.20. Let us compute the curvature of the 2-torus G = T�T , where T = {0→ 1→ 2→ 0} .

Here is the 2-torus G embedded onto

a topological torus:

In Example 3.7 we have computed the

basis in Ω2 (G) as follows (see (3.41)):

Ω2 (G) = 〈e034 − e014, e145 − e125, e253 − e203,

e367 − e347, e478 − e458, e586 − e536

e601 − e671, e712 − e782, e820 − e860〉.

This basis in Ω2 (G) is orthogonal and ‖ω‖2 = 2 for any element ω of the basis. Besides, for any
vertex x, we have [x, ω] = 2 for two of ω, [x, ω] = 1 for two of ω, and [x, ω] = 0 for the rest of ω.
Hence,

[x, Ω2] =
∑

ω

[x, ω]

‖ω‖2
=

2 ∙ 2 + 2 ∙ 1
2

= 3

and, for any x ∈ G,

Kx = 1−
deg (x)

2
+

[x, Ω2]
3

= 1−
4
2

+
3
3

= 0.

Example 5.21. Consider the digraph G from Example 4.18. This digraph has 7 vertices {0, ..., 6}

and 14 arrows as follows:

i→ i + 1 and i→ i + 2

where addition is considered mod7.

Fix p ≥ 1 and consider for any i = 0, ..., 6

the following ∂-invariant p-path

ωi = ei(i+1)(i+2)...(i+p)

and (p + 1)-path

$i = ei(i+1)(i+2)...(i+p)(i+p+1).

It was shown in Example 4.18 that dimΩp = 14 and that the space Ωp has a basis 〈ωi, ∂$i〉
6
i=0 .

Let us now compute the curvature K
(N)
x . The sequence {ωi} is orthonormal, but {∂$i} is not, which

is clear from

∂$i = ωi+1 +
p∑

q=1

(−1)q e
i...̂i+q...(i+p+1)

+ (−1)p+1 ωi.
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Let us replace each ∂$i with

vi = ∂$i − (−1)p+1 ωi − ωi+1 =
p∑

q=1

(−1)q e
i...̂i+q...(i+p+1)

.

Then we obtain that Ωp has an orthogonal basis {ωi, vi}
6
i=0.

By symmetry, [x, ωi] is the same for all vertices x and i. Since

∑

x,i

[x, ωi] = 7 (p + 1) ,

and ‖ωi‖ = 1, we obtain
∑

i

[x, ωi]

‖ωi‖
2 = p + 1.

For vi we have ∑

x,i

[x, vi] = 7 (p + 1) p

and ‖vi‖
2 = p whence

∑

i

[x, vi]

‖vi‖
2 =

(p + 1) p

p
= p + 1.

Hence,
[x, Ωp] = 2 (p + 1) ,

which implies that

K(N)
x = 1 +

N∑

p=1

(−1)p 2 = (−1)N .

Hence,
{
K(N)

}
is a periodic sequence in N .

Problem 5.22. Describe classes of strongly regular digraphs having a non-trivial periodic sequence{
K(N)

}∞
N=1

.

5.5 Computation of [x, Ω2]

Recall that Ω2 has always a basis that consists of triangles, double arrows and squares. All different
triangles and double arrows in G are always linearly independent and mutually orthogonal. Moreover,
they are orthogonal to all squares. However, squares may be not mutually orthogonal in general.

In a special case when G contains no multisquares, are all squares orthogonal (and, hence, linearly
independent). Indeed, if two squares are not orthogonal then they must have the same elementary
term, say, eabc − eab′c and eabc − eab′′c, which yields a 2-square a, {b, b′, b′′} , c (cf. Subsection 1.5).

Let us introduce the following notation:

degl(x) = # {double arrows a� b : x ∈ {a, b}} ,

degΔ(x) = #{triangles eabc : x ∈ {a, b, c} ,

deg�1
(x) = #

{
squares eabc − eab′c : x ∈

{
b, b′
}}

,

deg�2
(x) = # {squares eabc − eab′c : x ∈ {a, c}} .
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Lemma 5.23. Assume that G contains no multisquares. Then, for any vertex x ∈ G,

[x, Ω2] = 3 degl(x) + degΔ(x) +
1
2

deg�1
(x) + deg�2

(x). (5.108)

Proof. Let {ωn} be the sequence of all double arrows, triangles and squares in Ω2. By hypothesis,
the sequence {ωn} forms an orthogonal basis in Ω2.

Any double arrow a� b induces two independent elements eaba and ebab of Ω2. Clearly, we have

[x, eaba] + [x, ebab] =

{
3, x ∈ {a, b}
0, otherwise.

Hence,
∑

ωn is a double arrow

[x, ωn]

‖ω‖2
= 3degl(x). (5.109)

For a triangle eabc ∈ Ω2 we have

[x, eabc] =

{
1, x ∈ {a, b, c}
0, otherwise

and, hence,
∑

ωn is a triangle

[x, ωn]

‖ω‖2
= degΔ(x). (5.110)

For a square eabc − eab′c ∈ Ω2 we have

[x, eabc − eab′c] =






2, x ∈ {a, c}
1, x ∈ {b, b′}
0, otherwise

.

Hence,
∑

ωn is a square

[x, ωn]

‖ω‖2
=

1
2

deg�1
(x) + deg�2

(x).

Since {ωn} is an orthogonal basis that consists of all double arrows, triangles and squares, we obtain

[x, Ω2] =
∑

n

[x, ωn]

‖ωn‖
2 = 3degl(x) + degΔ(x) +

1
2

deg�1
(x) + deg�2

(x).

Example 5.24. For the prism as shown here we have:

degΔ (x) = 1 for all x;

deg�1
(0) = 0, deg�2

(1) = 2

deg�1
(1) = 1, deg�2

(1) = 1

deg�1
(2) = 2, deg�2

(2) = 0

deg�1
(3) = 2, deg�2

(3) = 0

deg�1
(4) = 1, deg�2

(4) = 1

deg�1
(5) = 0, deg�2

(5) = 2.

Consequently, we obtain by (5.108)

[x, Ω2] =






3, x = 0, 5
5
2 , x = 1, 4
2, x = 2, 3

.
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Since Ω3 = 〈e0125 − e0145 + e0345〉 , Ω4 = {0} and

[x, Ω3] =
1
3






3, x = 0, 5
2, x = 1, 4
1, x = 2, 3

,

it follows that

Kx = 1−
deg(x)

2
+

[x, Ω2]
3
−

[x, Ω3]
4

=






1
4 , x = 0, 5
1
6 , x = 1, 4
1
12 , x = 2, 3

.

Example 5.25. Consider a rhombic dodecahedron:

The arrows along the edges point in
direction of the higher vertex number.

The faces give rise to 12 squares
forming a basis in space Ω2, and
Ωp = {0} for all p ≥ 3.

For x ∈ {0, 13} we have deg(x) = 3,

deg�1
(x) = 0, deg�2

(x) = 3,

whence [x, Ω2] = 3 and

Kx = 1− 3
2 + 3

3 = 1
2 .

For x ∈ {3, 5, 6, 7, 9, 10} we have deg (x) = 3, deg�1
(x) = 2, deg�2

(x) = 1, whence [x, Ω2] = 2
and

Kx = 1− 3
2 + 2

3 = 1
6 .

Finally, for x ∈ {1, 2, 4, 8, 11, 12} we have deg (x) = 4, deg�1
(x) = 2, deg�2

(x) = 2, whence
[x, Ω2] = 3 and

Kx = 1− 4
2 + 2

3 = 0.

Example 5.26. Consider a trapezohedron Tm as in Subsection 2.1. By Proposition 2.1, the space Ω2

is spanned by 2m squares as follows:

Ω2 =
〈
eaik−1jk

− eaikjk
, eikjkb − eikjk+1b

〉m−1

m=0
;

also, Ω3 = 〈τm〉 , where

τm =
m−1∑

k=0

(
eaikjkb − eaikjk+1b

)
,

and Ωp = {0} for all p ≥ 4.

For all vertices we have degΔ (x) = 0.

For x ∈ {a, b} we have deg�1
(x) = 0,

deg�2
(x) = m, whence [x, Ω2] = m.

Since deg (x) = m and

[x, Ω3] =
[x, τm]

‖τm‖
2 =

m

m
= 1,

we obtain
Ka = Kb = 1− m

2 + m
3 −

1
4 = 3

4 −
m
6 .

For all other vertices x ∈ {ik, jk} we have

deg�1
(x) = 2, deg�2

(x) = 1,
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whence [x, Ω2] = 2. Since deg (x) = 3 and

[x, Ω3] =
[x, τm]

‖τm‖
2 =

2
m

,

we obtain
Kx = 1− 3

2 + 2
3 −

1/m
4 = 1

6 −
1

4m .

The total curvature
Ktotal = 2

(
3
4 −

m
6

)
+ 2m

(
1
6 −

1
4m

)
= 1

matches the Euler characteristic χ = 1.

Example 5.27. Consider a broken cube from Example 2.9. Then we have:

Ω2 is spanned by 6 squares and 2 triangles,

Ω3 = 〈e0158 − e0168 + e0268 − e0278 + e0378 − e0458〉

and Ωp = {0} for p ≥ 4.

For x = 0 we have deg�1
(0) = 0, deg�2

(0) = 4,

degΔ (0) = 0 whence [0, Ω2] = 4.

Since deg (0) = 4 and [0, Ω3] = 1, it follows that

K0 = 1− 4
2 + 4

3 −
1
4 = 1

12 .

For x ∈ {1, 2, 6} we have deg�1
(x) = 2, deg�2

(0) = 1, degΔ (x) = 0 whence [x, Ω2] = 2. Since
deg (x) = 3 and [x, Ω3] = 1

3 , it follows that

Kx = 1− 3
2 + 2

3 −
1/3
4 = 1

12 .

For x ∈ {3, 4} we have deg�1
(x) = 2, deg�2

(x) = 0, degΔ (x) = 1 whence [x, Ω2] = 2. Since
deg (x) = 3 and [x, Ω3] = 1

6 , it follows that

Kx = 1− 3
2 + 2

3 −
1/6
4 = 1

8 .

For x ∈ {5, 7} we have deg�1
(x) = 1, deg�2

(x) = 1, degΔ (x) = 1 whence [x, Ω2] = 5/2. Since
deg (x) = 3 and [x, Ω3] = 1

3 , it follows that

Kx = 1− 3
2 + 5/2

3 −
1/3
4 = 1

4 .

Finally, for x = 8 we have deg�1
(8) = 0, deg�2

(8) = 3, degΔ (8) = 2 whence [8, Ω2] = 5. Since
deg (8) = 5 and [8, Ω3] = 1, it follows that

K8 = 1− 5
2 + 5

3 −
1
4 = − 1

12 .

Example 5.28. Consider again a rhombicuboctahedron (see Example 5.17). We have for all vertices

deg(x) = 4 and degΔ(x) = 1.

All squares are linearly independent and

Ω3 = {0} (cf. Example 5.17).

For x = 11: deg�1
(x) = 0, deg�2

(x) = 3,

[x, Ω2] = 4, Kx = 1− 4
2 + 4

3 = 1
3 .

For x = 19: deg�1
(x) = 1, deg�2

(x) = 2,

[x, Ω2] = 7
2 , Kx = 1− 4

2 + 7/2
3 = 1

6 .

For x = 13: deg�1
(x) = 2, deg�2

(x) = 1,

[x, Ω2] = 3, Kx = 1− 4
2 + 3

3 = 0.
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For x = 10 we have deg�1
(x) = 3, deg�2

(x) = 0, whence [x, Ω2] = 5
2 and

Kx = 1− 4
2 + 5/2

3 = −1
6 .

Consider now a general case when G may contain multisquares. Fix a semi-arrow a ⇀ c and denote
by {bi}

m
i=0 the sequence of all vertices bi such that a→ bi → c. Let m ≥ 1. Then we have an m-square

σ = {a, {bi}
m
i=0 , c} (5.111)

that gives rise the following to the following family of squares

{
eabic − eabjc : 0 ≤ i < j ≤ m

}
(5.112)

(cf. Subsection 1.5 and Example 5.16).

An m-square
The family (5.112) contains m linearly independent squares, for example, they are

{eab0c − eabic}
m
i=1 . (5.113)

As in Example 5.16, let {ωi}
m
i=1 be an orthogonalization of the sequence (5.113). Using the compu-

tations (5.106) and (5.107) of Example 5.16 we obtain

m∑

i=1

[x, ωi]

‖ωi‖
2 =






m, x ∈ {a, c}
m

m+1 , x ∈ {bi}
m
i=0

0, otherwise.
(5.114)

For any m-square σ as in (5.111), denote

[x, σ] =






m, x ∈ {a, c}
m

m+1 , x ∈ {bi}
m
i=0

0, otherwise,
(5.115)

so that

[x, σ] =
m∑

i=1

[x, ωi]

‖ωi‖
2 . (5.116)

Proposition 5.29. For any vertex x ∈ G, we have

[x, Ω2] = 3 degl(x) + degΔ(x) +
∑

σ is an m-square
m≥1

[x, σ] . (5.117)

Proof. Indeed, each m-square contributes m linearly independent elements to Ω2, and different
multiple squares give rise to mutually orthogonal elements. Hence, using in each multiple square an
orthogonal basis and adding to them all double arrows and triangles, we obtain an orthogonal basis in
Ω2. Hence, combining (5.101), (5.109), (5.110) and (5.116), we obtain (5.117).

Let us prove the following identity for [x, σ] that may be useful for computer assisted computations.
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Lemma 5.30. Let sij = eabic − eabjc be all squares in an m-square σ as in (5.112). Then we have,
for all x,

[x, σ] =
1

m + 1

∑

0≤i<j≤m

[x, sij ]. (5.118)

Proof. Indeed, if x ∈ {a, c} then [x, sij ] = 2 and the number of terms in the above sum is m(m+1)
2 ,

so that the right hand side of (5.118) equals to m as well as the left hand side. If x = bk then

[x, sij ] =

{
1, i = k or j = k,
0, otherwise

and the number of 1’s in the sum (5.118) is m, so that the right hand side of (5.118) equals to m
m+1

as well as the left hand side. Finally, if x does not belong to {a, c, bk} then the both sides of (5.118)
vanish.

For any vertex x denote

degm�1
(x) = # {m-squares {a, {bj} , c} : x ∈ {bj}}

and
degm�2

(x) = # {m-squares {a, {bj} , c} : x ∈ {a, c}} .

Corollary 5.31. For any x ∈ G we have

[x, Ω2] = 3 degl(x) + degΔ(x) +
∑

m≥1

(
m

m + 1
degm�1

(x) + m degm�2
(x)). (5.119)

Proof. Indeed, this follows from (5.115) and (5.117).

Clearly, the identity (5.108) is a particular case of (5.119) in the case when all m-squares are 1-squares.

Example 5.32. Consider a randomly generated digraph:

We have |Ω0| = 15, |Ω1| = 39,

|Ω2| = 28, |Ω3| = 4, Ωp = {0} for p ≥ 4,

|H1| = 2, |H2| = 1, Hp = {0} for p ≥ 3.

In particular,

χ = |H0| − |H1|+ |H2|

= |Ω0| − |Ω1|+ |Ω2| − |Ω3| = 0.

Here are the bases in Ω2, Ω3:

Ω2 = 〈 e13 2 14 − e13 12 14, e13 2 14 − e13 9 14, e0 2 14 − e0 9 14, e1 4 3 − e1 6 3,

e1 4 13 − e1 6 13, e5 0 6 − e5 1 6, e7 2 14 − e7 9 14, e9 1 4 − e9 12 4,

e10 1 4 − e10 12 4, e10 7 2 − e10 11 2, e10 11 3 − e10 14 3, e11 0 9 − e11 7 9 ,

e11 5 1 − e11 7 1, e12 4 3 − e12 14 3, e12 7 1 − e12 14 1,

e7 9 1, e9 12 14, e9 14 1, e10 7 1, e10 11 7, e10 12 7, e10 12 14, e10 14 1,

e11 0 2, e11 3 5, e11 5 0, e11 7 2, e13 9 12〉

Ω3 = 〈e10 11 7 2 , e13 9 12 14 , e10 12 7 1 − e10 12 14 1, e11 0 2 14 − e11 0 9 14 + e11 7 9 14 − e11 7 2 14 〉.

Note that the above basis in Ω2 is not orthogonal: it contains a 2-square

σ = {13→ {2, 9, 12} → 14}
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that corresponds to two squares

e13 2 14 − e13 12 14 and e13 2 14 − e13 9 14,

while all other squares in the above basis of Ω2 are 1-squares.

For the vertex x = 13 we have then

deg2�1
(x) = 0, deg2�2

(x) = 1

as well as
degΔ (x) = 1, deg�1

(x) = 0, deg�2
(x) = 1,

whence by (5.119)

[13, Ω2] = degΔ(x) +
1
2

deg�1
(x) + deg�2

(x) +
2
3

deg2�1
(x) + 2 deg�2

(x)

= 1 + 1 + 2 = 4

Since also deg (13) = 6 and [13, Ω3] = 1, we obtain

K13 = 1−
6
2

+
4
3
−

1
4

= −
11
12

.

Since the vertex x = 2 we have

deg2�1
(x) = 1, deg2�2

(x) = 0

and
degΔ (x) = 2, deg�1

(x) = 2, deg�2
(x) = 1,

whence

[2, Ω2] = 2 +
2
2

+ 1 +
2
3

=
14
3

.

Since also deg (2) = 5 and [2, Ω3] = 3
2 , we obtain

K2 = 1−
5
2

+
14/3

3
−

3/2
4

= −
23
72

.

Computation of the curvature at all other vertices yields

{Kx}
14
x=0 =

{
− 7

24 ,− 1
12 ,−23

72 ,−1
6 , 1

6 , 1
6 ,−1

3 , 1
6 , 0, 13

72 , 2
3 , 1

6 , 1
18 ,−11

12 , 13
24

}
.

5.6 Curvature of n-cube

We use the notation of Subsection 3.4 where n-cube was defined. The purpose of this section is to
prove the following statement.

Theorem 5.33. For any vertex x in n-cube we have

Kx (n- cube) =
1

(n + 1)
(

n
|x|

) .

For example, in a 4-cube that is shown here,

for the marked vertex x we have |x| = 2 and

Kx =
1

5
(
4
2

) =
1
30

.

Let us first prove some lemmas about binomial coefficients.
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Lemma 5.34. We have for all M ≥ l ≥ 0

l∑

j=0

(
M

j

)

(−1)j = (−1)l

(
M − 1

l

)

. (5.120)

Proof. Induction in M . For M = l we have

l∑

j=0

(
l

j

)

(−1)j = (1− 1)l = 0 = (−1)l

(
l − 1

l

)

.

Induction step from M to M + 1. We have

l∑

j=0

(
M + 1

j

)

(−1)j =
l∑

j=0

((
M

j

)

+

(
M

j − 1

))

(−1)j

= (−1)l

(
M − 1

l

)

+
l∑

j=1

(
M

j − 1

)

(−1)j

= (−1)l

(
M − 1

l

)

−
l−1∑

i=0

(
M

i

)

(−1)i

= (−1)l

(
M − 1

l

)

− (−1)l−1

(
M − 1
l − 1

)

= (−1)l

(
M

l

)

.

Lemma 5.35. We have for all N ≥ 0 and M ≥ 1

N∑

l=0

(
N

l

)
(−1)l

l + M
=

1

M
(
N+M

M

) (5.121)

Proof. We start with the identity

N∑

l=0

(
N

l

)

(−z)l = (1− z)N

for all z ∈ R, whence

N∑

l=0

(
N

l

)

(−z)l+M−1 = (−1)M−1 (1− z)N zM−1.

Integrating this identity from 0 to 1, we obtain

−
N∑

l=0

(
N

l

)
(−z)l+M

l + M

∣
∣
∣
∣
∣

1

0

= (−1)M−1 B (N + 1,M)

= (−1)M−1 Γ (N + 1)Γ (M)
Γ (N + M + 1)

= (−1)M−−1 N ! (M − 1)!
(N + M)!
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= (−1)M−1 1

M
(
N+M

M

)

while the left hand side is equal to

−
N∑

l=0

(
N

l

)
(−1)l+M

l + M
= (−1)M+1

N∑

l=0

(
N

l

)
(−1)l

l + M
,

which proves the claim.

Lemma 5.36. We have

Km :=
m∑

k=0

n−m∑

l=0

(
m

k

)(
n−m

l

)
(−1)k+l

(
k+l

l

)
(k + l + 1)

=
1

(m + 1)
(

n+1
m+1

) .

Proof. Set

Sm,l =
m∑

k=0

(
m

k

)
(−1)k+l

(
k+l

l

)
(k + l + 1)

= l!
m∑

k=0

(
m

k

)
(−1)k+l

(k + 1) ... (k + l) (k + l + 1)

= l!
m∑

k=0

(−1)k+l m (m− 1) ... (m− k + 1)
(k + l + 1)!

=
l!

(m + l + 1) ... (m + 1)

m∑

k=0

(−1)k+l (m + l + 1) .... (m + 1) m (m− 1) ... (m− k + 1)
(k + l + 1)!

= −
1

(l + 1)
(
m+l+1

l+1

)
m∑

k=0

(
m + l + 1
k + l + 1

)

(−1)k+l+1

= −
1

(l + 1)
(
m+l+1

l+1

)
m+l+1∑

j=l+1

(
m + l + 1

j

)

(−1)j

=
1

(l + 1)
(
m+l+1

l+1

)
l∑

j=0

(
m + l + 1

j

)

(−1)j

By (5.120) with M = m + l + 1 we obtain

l∑

j=0

(
m + l + 1

j

)

(−1)j = (−1)l

(
m + l

l

)

whence

Sm,l =
(−1)l

(l + 1)
(
m+l+1

l+1

)

(
m + l

l

)

=
(−1)l l!m!

(m + l + 1)!
(m + l)!

l!m!

=
(−1)l

m + l + 1
.
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Therefore, by (5.121) with N = n−m and M = m + 1,

Km =
n−m∑

l=0

(
n−m

l

)

Sm,l =
n−m∑

l=0

(
n−m

l

)
(−1)l

m + l + 1
=

1

(m + 1)
(

n+1
m+1

) .

Proof of Theorem 5.33. Fix a vertex x of the n-cube and non-negative integers k, l, p such that

k + l = p.

Let a and b be two vertices in the n-cube such

a � x � b, |x| − |a| = k, and |b| − |x| = l. (5.122)

The cube Da,b has dimension |b| − |a| = p, and for any ∂-invariant p-path ωa,b between a and b (cf.
(3.43)), we have

‖ωa,b‖
2 = p! and [x, ωa,b] = k!l!.

Indeed, ωa,b is an alternating sum of all the elementary allowed paths from a to b, and the number of
the elementary allowed paths from a to b going through x is k!l!,

because the number of such paths
from a to x is equal to k! and that
from x to b is equal to l!.

Hence, we have for such ωa,b

[x, ωa,b]

‖ωa,b‖
2 =

k!l!
p!

=
1

(
k+l
k

) .

Set m = |x| and observe that the number of vertices a � x with |x| − |a| = k is equal to
(
m
k

)
.

Indeed, in the binary representations a = (a1, ...an, ) and x = (x1, ...xn, ), we have ai ≤ xi and∑
i (xi − ai) = k which is only possible if ai = 0 at k out of m positions where xi = 1.

Similarly, the number of the vertices b � x with |b| − |x| = l is equal to
(
n−m

l

)
. Hence, the number

of pairs a, b satisfying (5.122) is equal to
(

m

k

)(
n−m

l

)

.

By Proposition 3.9, all p-paths ωa,b with a � b form an orthogonal basis in Ωp (n- cube) . If x does
not satisfy the condition a � x � b then we have

[x, ωa,b] = 0.

Hence, we obtain

[x, Ωp] =
∑

a�x�b
|b|−|a|=p

[x, ωa,b]
‖ωa,b‖

=
∑

k+l=p
a�x�b

|x|−|a|=k, |b|−|x|=l

[x, ωa,b]
‖ωa,b‖

=
∑

k+l=p

(
m

k

)(
n−m

l

)
1

(
k+l
k

) ,
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which implies by Lemma 5.36 that

Kx =
∑

p≥0

(−1)p

p + 1
[x, Ωp]

=
m∑

k=0

n−m∑

l=0

(
m

k

)(
n−m

l

)
(−1)k+l

(
k+l

l

)
(k + l + 1)

=
1

(m + 1)
(

n+1
m+1

)

=
m! (n−m)!

(n + 1)!

=
1

(n + 1)
(

n
m

) .

Note that the number of vertices x with |x| = m is equal to
(

n
m

)
whence

Ktotal =
n∑

m=0

1

(n + 1)
(

n
m

)
(

n

m

)

=
n∑

m=0

1
n + 1

= 1,

as expected because χ = 1.

5.7 Curvature of a join

The main result of this section is Proposition 5.39 below. Recall that a join Z = X ∗Y of two digraphs
was defined in Subsection 3.6.

Let us first prove two lemmas. Everywhere 〈∙, ∙〉 denotes the natural inner product in all spaces Λ∗ (X),
Λ∗ (Y ) and Λ∗ (Z).

Lemma 5.37. [29, Lemma 3.10] If u, u′ ∈ Λ∗ (X) and v, v′ ∈ Λ∗ (Y ) then

〈
uv, u′v′

〉
Z

=
〈
u, u′〉

X

〈
v, v′

〉
Y

. (5.123)

Proof. Indeed, due to bilinearity it suffices to prove (5.123) if u, u′, v, v′ are elementary paths, say

u = ei0...ip , u′ = ei′0...i′
p′

, v = ej0...jq , v′ = ej′0...j′
q′

.

Then

〈
uv, u′v′

〉
Z

= 〈ei0...ipj0...jq , ei′0...i′
p′

j′0...j′
q′
〉 = δ

i′0...i′
p′

j′0...j′
q′

i0...ipj0...jq

= δ
i′0...i′

p′

i0...ip
δ
j′0...j′

q′

j0...jq
= 〈ei0...ip , ei′0...i′

p′
〉〈ej0...jq , ej′0...j′

q′
〉 =

〈
u, u′〉

X

〈
v, v′

〉
Y

.

Lemma 5.38. Let Z = X ∗ Y be the join of two digraphs X and Y . Then, for all x ∈ X and r ≥ 0
we have

[x, Ωr (Z)] = [x, Ωr (X)] +
∑

p+q=r−1,
p,q≥0

[x, Ωp (X)] dimΩq (Y ) . (5.124)
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Proof. Let Bp (X) be an orthonormal basis in Ωp (X) and Bq (Y ) be an orthonormal basis in Ωq (Y ),
for all p, q ≥ 0. By Theorem 3.12, we obtain the following basis in Ωr (Z): it consists of all elements
of Br (X), Br (Y ) as well as of the elements of the form

{uv : u ∈ Bp (X) , v ∈ Bq (Y ) , p + q = r − 1, p, q ≥ 0} . (5.125)

Note that the set (5.125) is empty if r = 0, so it makes sense to consider it only if r ≥ 1. This basis
in also orthonormal due to the identity (5.123). Therefore, we obtain, for any x ∈ X and any r ≥ 0

[x, Ωr (Z)] =
∑

u∈Br(X)

(Txu, u) +
∑

v∈Br(Y )

(Txv, v)

+
∑

p+q=r−1,
p,q≥0

∑

u∈Bp(X)
v∈Bq(Y )

(Tx (uv) , uv) .

Since Txv = 0 and Tx (uv) = (Txu) v, we obtain

(Tx (uv) , uv) = ((Txu) v, uv) = (Txu, u) (v, v) = (Txu, u)

and ∑

u∈Bp(X)
v∈Bq(Y )

(Tx (uv) , uv) = [x, Ωp (X)] dimΩq (Y ) ,

whence (5.124) follows.

Proposition 5.39. Let Z = X ∗ Y be the join of two digraphs X and Y . Assume that ΩN (X) and
ΩN (Y ) vanish for large enough N . Then, for any x ∈ X , we have

Kx (Z) = Kx (X)−
∑

p≥0

(−1)p Cp (Y ) [x, Ωp (X)] , (5.126)

where

Cp (Y ) =
∑

q≥0

(−1)q

p + q + 2
dimΩq (Y ) .

A similar formula holds for Ky (Z) for y ∈ Y :

Ky (Z) = Ky (Y )−
∑

q≥0

(−1)q Cq (X) [y, Ωq (Y )] ,

where

Cq (X) =
∑

p≥0

(−1)p

p + q + 2
dimΩp (X) .

Proof. It follows from (5.124) that

Kx (Z) =
∑

r≥0

(−1)r [x, Ωr (Z)]
r + 1

= Kx (X) +
∑

p,q≥0

(−1)p+q+1

p + q + 2
[x, Ωp (X)] dimΩq (Y )

= Kx (X)−
∑

p≥0

(−1)p




∑

q≥0

(−1)q

p + q + 2
dimΩq (Y )



 [x, Ωp (X)] ,

which was to be proven.
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Example 5.40. Consider on octahedron Z based on a square:

We have

Z = X ∗ Y

where X is the following square:

X = {0→ 1→ 3, 0→ 2→ 3}

and Y = {4, 5} .

Since Ωq (Y ) is non-trivial only for q = 0 and dimΩ0 (Y ) = 2, we obtain

Cp (Y ) =
2

p + 2
.

As we have computed in Example 5.9,

[0, Ω2 (X)] = [3, Ω2 (X)] = 1, [1, Ω2 (X)] = [2, Ω2 (X)] =
1
2

and

K0 (X) = K3 (X) =
1
3
, K1 (X) = K2 (X) =

1
6
.

Hence, we obtain by (5.126), for x = 0 or 3,

Kx (Z) =
1
3
−
∑

p≥0

(−1)p 2
p + 2

[x, Ωp (X)] =
1
3
− 1 +

2
3
∙ 2−

2
4
∙ 1 =

1
6
,

and for x = 1 or 2,

Kx (Z) =
1
6
−
∑

p≥0

(−1)p 2
p + 2

[x, Ωp (X)] =
1
6
− 1 +

2
3
∙ 2−

2
4
∙
1
2

=
1
4
.

Next, we have

Cq (X) =
∑

p≥0

(−1)p

p + q + 2
dimΩp (X) =

4
q + 2

−
4

q + 3
+

1
q + 4

.

Since [y, Ω0 (Y )] = 1, Ωq (Y ) = {0} for q ≥ 1, and Ky (Y ) = 1, we obtain, for y = 4 or 5,

Ky (Z) = 1− C0 (X) [y, Ω0 (Y )] = 1−

(
4
2
−

4
3

+
1
4

)

=
1
12

.

5.8 Strongly regular digraphs

Recall that a graph is called regular if deg (x) is constant.

Definition. We say that a digraph G is strongly regular if the function x 7→ [x, Ωp] is constant for any
p (in particular, G is regular because deg (x) = [x, Ω1] is constant).

For a strongly regular digraph G the function x 7→ Kx is constant, and we set

K(G) := Kx =
χ (G)
|V |

.
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Recall the definition of m-suspension susm G:

it is obtained by adding to G new m vertices
{y1, ..., ym} and all arrows x→ yi ∀x ∈ G.

In other words, susm G = G ∗ Y where

Y = {y1, ..., ym} .

Theorem 5.41. Let G be a strongly regular digraph, such that for some k,m ∈ N and any p ≥ 0

dimΩp(G) =

(
k

p + 1

)

mp+1. (binom(k,m))

Then susm G is strongly regular, and for all p ≥ 0

dimΩp(susm G) =

(
k + 1
p + 1

)

mp+1. (binom(k + 1,m))

Proof. We have

|X| = dimΩ0 (X) =

(
k

1

)

n = kn.

Since for any x ∈ X
∑

x∈X

[x, Ωp (X)] = [1, Ωp (X)] = (p + 1) dimΩp (X) ,

it follows that

[x, Ωp (X)] =
(p + 1) dimΩp (X)

|X|
=

p + 1
kn

(
k

p + 1

)

np+1 =

(
k − 1

p

)

np.

Since dimΩ0 (Y ) = n and Ωq (Y ) = {0} for all q ≥ 1, we obtain from (5.124) that, for r ≥ 1,

[x, Ωr (Z)] = [x, Ωr (X)] + n [x, Ωr−1 (X)]

=

(
k − 1

r

)

nr + n

(
k − 1
r − 1

)

nr−1 =

(
k

r

)

nr.

In the same way, for any y ∈ Y and r ≥ 1,

[y, Ωr (Z)] = [y, Ωr (Y )] +
∑

p+q=r−1,
p,q≥0

[y, Ωq (Y )] dimΩp (X)

= dimΩr−1 (X) =

(
k

r

)

nr.

It follows that, for all z ∈ Z,

[z, Ωr (Z)] =

(
k

r

)

nr.

Consequently, we have

dimΩr (Z) =
|Z| [z, Ωr (Z)]

r + 1
=
|X|+ |Y |

r + 1

(
k

r

)

nr =
kn + n

r + 1

(
k

r

)

nr =

(
k + 1
r + 1

)

nr+1.

Finally, for r = 0 we obtain

dimΩ0 (Z) = kn + n = (k + 1) n =

(
k + 1
0 + 1

)

n0+1.
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5.9 Digraphs of constant curvature

For the digraph G as in Theorem 5.41 we have

χ(G) =
∑

p≥0

(−1)p dimΩp =
k−1∑

p=0

(−1)p

(
k

p + 1

)

mp+1

= −
k∑

j=1

(−1)j

(
k

j

)

mj = 1− (1−m)k .

It follows that

K(G) =
χ(G)
|V |

=
χ(G)

dimΩ0
=

1− (1−m)k

km
.

Of course, the same formula is true for K(susm G) with k replaced by k + 1:

K(susm G) =
1− (1−m)k+1

(k + 1) m

Example 5.42. We have seen that a triangle (= 2-simplex) is strongly regular and

dimΩ0 = 3, dimΩ1 = 3, dimΩ2 = 1, dimΩp = 0 for p ≥ 3

that is, the sequence {dimΩp}p≥0 is the sequence
(

3
p+1

)
that satisfies (binom(3, 1)). The 1-suspension

of an n-simplex is an (n + 1)-simplex. Hence, we obtain by induction that the n-simplex is strongly
regular and satisfies (binom(n + 1, 1)). In particular,

K (n-simplex) =
1

n + 1
.

For any m ∈ N denote by Dm a digraph with m vertices and no arrows. Then

dimΩ0 (Dm) = m =

(
1

p + 1

)

mp+1 for p = 0,

dimΩp (Dm) = 0 =

(
1

p + 1

)

mp+1 for p ≥ 1,

so that (binom(1,m)) is satisfied. Clearly, Dm is strongly regular.

For any k ∈ N define digraph D∗k
m as

the k-th join power of Dm, that is,

D∗1
m = Dm

and

D
∗(k+1)
m = D∗k

m ∗Dm = susm D∗k
m .

Here are digraphs D∗1
m , D∗2

m , D∗3
m , D∗4

m :

In fact, D∗k
m is a digraph version of a complete k-partite graph Km,m,...,m where the index m repeats

k times, that can also be denoted by
−→
Km,m,...,m.

Using Theorem 5.41, by obtain by induction that D∗k
m is strongly regular and satisfies (binom(k,m)).

Hence, D∗k
m has a constant curvature

K(D∗k
m ) =

1− (1−m)k

km
. (5.127)

One can show that the only non-trivial Betti number of D∗k
m is βk−1 = (m− 1)k (see [7]).
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Example 5.43. For m = 1 we have by (5.127)

K(D∗k
1 ) =

1
k
.

Clearly, D∗k
1 is a (k − 1)-simplex:

Example 5.44. For m = 2 we have by (5.127)

K(D∗k
2 ) =

{
0, k even,
1
k , k odd.

For example, D∗2
2 is a diamond:

that is an analogue of 1-sphere.

We have K(D∗2
2 ) = 0.

We can regard D
∗(k+1)
2 as a digraph analogue of a k-sphere Sk because D

∗(k+1)
2 is obtained from

D∗k
2 by 2-suspension, similarly to how Sk is obtained from Sk−1. Besides, the only non-trivial Betti

number of D
∗(k+1)
2 is βk = 1 like the Betti numbers for Sk.

Here is D∗3
2 , that is an octahedron, based on a diamond:

It is an analogue of 2-sphere; it has constant curvature 1
3 .

D∗4
2 is an analogue of 3-sphere; it has constant curvature 0.

Example 5.45. For m = 3 we have by (5.127)

K(D∗k
3 ) =

1− (−2)k

3k
=

1
3k

{
1− 2k, k even,
1 + 2k, k odd.

Here is D∗2
3 that is a directed version of K3,3 :

We have K(D∗2
3 ) = −

1
2

and K(D∗3
3 ) = 1.

5.10 Cartesian product and curvature

Recall that a Cartesian product X�Y of two digraphs was defined in Subsection 3.2.
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Theorem 5.46. Let X be any digraph with a finite chain sequence {Ωp} and Y be a cyclic digraph
{0→ 1→ 2→ ...→ 0} of at least 3 vertices. Then, with respect to the natural inner product 〈∙, ∙〉,
we have

Kz (X�Y ) = 0 for any z ∈ X�Y.

In particular, we have K(T�n) = 0. Recall that in Example 5.20 we have computed directly that
K(T�2) = 0.

Proof. Let Y = (V,E) . Then

Ω0 (Y ) = 〈ea : a ∈ V 〉 , Ω1 (Y ) = {eab : ab ∈ E} , Ωp (Y ) = {0} for p > 2.

We have

Kx(X) =
∑

p≥0

(−1)p [x, Ωp]
p + 1

.

Denote by Bp (X) an orthogonal basis in Ωp (X) so that

[x, Ωp] =
∑

ω∈Bp(X)

[x, ω]

‖ω‖2
.

We have by Theorem 3.5

Bp (Z) = {u× ea, v × eab : u ∈ Bp (X) , v ∈ Bp−1 (X) , a ∈ V, ab ∈ E} .

This basis is orthogonal due to the identity

〈
u× ω, u′ × ω′〉

Z
=

(
p + q

p

)
〈
u, u′〉

X

〈
ω, ω′〉

Y
, (5.128)

where u ∈ Ωp (X), u′ ∈ Ωp′ (X), ω ∈ Ωq (Y ), ω′ ∈ Ωq′ (Y ) (see [29, Lemma 4.13]).

Hence, we have

[z, Ωp (Z)] =
∑

u∈Bp(X)
a∈V

[z, u× ea]

‖u× ea‖
2 +

∑

v∈Bp−1(X)
ab∈E

[z, v × eab]

‖v × eab‖
2 .

Let u =
∑

ui0...ipei0...ip so that

u× ea =
∑

i0...ip

ui0...ipei0...ip × ea.

We have for z = (x, y)

[z, ei0...ip × ea] = [(x, y) , e(i0a)(i1a) ... (ipa)] = [x, ei0...ip ][y, a],

whence ∑

a∈V

[
z, ei0...ip × ea

]
= [x, ei0...ip ].

It follows that
∑

a∈V

[z, u× ea] =
∑

a∈V

∑

i0...ip

(ui0...ip)2[z, ei0...ip × ea]
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=
∑

i0...ip

∑

a∈V

(ui0...ip2)[z, ei0...ip × ea]

=
∑

i0...ip

(ui0...ip)2[x, ei0...ip ] = [x, u] .

Since also ‖u× ea‖ = ‖u‖, we obtain

∑

u∈Bp(X)

∑

a∈V

[z, u× ea]

‖u× ea‖
2 =

∑

u∈Bp(X)

[x, u]

‖u‖2
= [x, Ωp (X)] .

Now let us handle the term [z, v × eab] . Let v =
∑

i0...ip
vi0...ip−1ei0...ip−1 so that

v × eab =
∑

i0...ip

vi0...ip−1ei0...ip−1 × eab.

We have

ei0...ip−1 × eab =
p−1∑

k=0

(−1)p−1−k e(i0a) (i1a) ...(ika) (ikb) ....(ip−1b).

Note that

[(x, y) , e(i0a) (i1a) ...(ika) (ikb) ....(ip−1b)] =






[x, ei0...ik ], y = a
[x, eik...ip−1 ], y = b
0, otherwise.

Considering all arrows ab ∈ E, there is exactly one a = y and exactly one b = y. It follows that

∑

ab∈E

[(x, y) , e(i0a) (i1a) ...(ika) (ikb) ....(ip−1b)] = [x, ei0...ik ] + [x, eik...ip−1 ]

= [x, ei0...ip−1 ] + 1{x=ik}

and
∑

ab∈E

[z, ei0...ip−1 × eab] =
p−1∑

k=0

([x, ei0...ip−1 ] + 1{x=ik}) = (p + 1) [x, ei0...ip−1 ].

We obtain that
∑

ab∈E

[z, v × eab] =
∑

i0...ip

∑

ab∈E

(vi0...ip−1)2[z, ei0...ip−1 × eab]

= (p + 1)
∑

i0...ip

(vi0...ip−1)2[x, ei0...ip−1 ]

= (p + 1) [x, v] .

Since ∥
∥ei0...ip−1 × eab

∥
∥2 = p,

we have
‖v × eab‖

2 =
∑

i0...ip

(vi0...ip−1)2p = p ‖v‖2 ,

whence
∑

ab∈E

[z, v × eab]

‖v × eab‖
2 =

p + 1
p

[x, v]

‖v‖2
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and
∑

v∈Bp−1(X)

∑

ab∈E

[z, v × eab]

‖v × eab‖
2 =

p + 1
p

[x, Ωp−1 (X)] .

We obtain

[z, Ωp (Z)] = [x, Ωp (X)] +
p + 1

p
[x, Ωp−1 (X)] ,

whence it follows that

Kz − 1 =
∑

p≥1

(−1)p [z, Ωp (Z)]
p + 1

=
∑

p≥1

(−1)p [x, Ωp (X)]
p + 1

+
∑

p≥1

(−1)p [x, Ωp−1 (X)]
p

= (Kx − 1)−Kx = −1,

that is, Kz = 0.

5.11 Some problems

Problem 5.47. How to compute K (X�Y ) for general digraphs X,Y ?

Problem 5.48. Is |Ω2| = 25 true for an icosahedron (see Example 5.19) with any numbering of the
vertices?

Problem 5.49. Let a digraph G be determined by a triangulation of S2 (see Subsection 1.10). Assume
that deg (x) ≤ 4 for all x ∈ G. Is it true that Kx ≥ 0 for all x ∈ G?

We have verified above that Kx ≥ 0 for the following triangulations of S2: simplex, bipyramid,
octahedron, but with specific orientations of edges (the question remains open when the numbering
of vertices is arbitrary). All these digraphs have deg (x) ≤ 4. We have seen that Kx < 0 can occur
for icosahedron with deg (x) = 5 and for a pyramid with deg (x) = 7.

Problem 5.50. Denote D = maxx∈G deg (x) . Is it true that |Kx| ≤ CD for some constant CD

depending only on D? What about upper bounds for |K(2)
x | and |K(3)

x |?

Note that Kx can be take arbitrarily large positive and negative values. For example, for a strongly
regular digraph satisfying (binom(k,m)), we have

Kx =
1− (1−m)k

km
,

while D = 2 dim Ω1
dim Ω0

= (k − 1) m. In this case one can verify that |Kx| ≤ e0.3D.

Problem 5.51. What can be said about the curvature of random digraphs?

Problem 5.52. Let S be a simplicial complex and GS be its Hasse diagram (see Subsection 1.9). Is
there any relation of Kx (GS) to properties of S? For example, we have

Ktotal (GS) = χ (GS) = χsimp (S) .

Can one give an explicit formula for computing Kσ (GS) for any simplex σ ∈ S?
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6 Hodge Laplacian on digraphs

In this section K = R. Let us fix an arbitrary inner product 〈∙, ∙〉 in each of the spaces Rp so that we
have an inner product also in all Ωp. In all examples we use the natural inner product.

6.1 Definition and spectral properties of Δp

For the operator ∂ : Ωp → Ωp−1, consider the adjoint operator ∂∗ : Ωp−1 → Ωp. By the definition of
an adjoint operator, we have

〈∂u, v〉 = 〈u, ∂∗v〉 for all u ∈ Ωp and v ∈ Ωp−1.

Definition. Define the Hodge-Laplace operator Δp : Ωp → Ωp by

Δpu = ∂∗∂u + ∂∂∗u. (6.129)

The pairs ∂∗, ∂ and ∂, ∂∗ appearing in (6.129) are the following operators:

Ωp−1

∂
�
∂∗

Ωp and Ωp

∂
�
∂∗

Ωp+1.

Proposition 6.1. The operator Δp is self-adjoint and non-negative definite.

Proof. We have for all u, v ∈ Ωp

〈Δpu, v〉 = 〈∂∗∂u + ∂∂∗u, v〉 = 〈∂u, ∂v〉+ 〈∂∗u, ∂∗v〉 = 〈u, Δpv〉

so that Δp is self-adjoint, and

〈Δpu, u〉 = ‖∂u‖2 + ‖∂∗u‖2 ≥ 0, (6.130)

so that Δp ≥ 0.

Hence, the spectrum of Δp is real, non-negative and consists of a finite sequence of eigenvalues.

Proposition 6.2. Denote D = maxi∈V deg (i) . If 〈∙, ∙〉 is the natural inner product then specΔ0 ⊂
[0, 2D] .

Proof. By the variational principle, it suffices to prove that for all u ∈ Ω0

〈Δ0u, u〉

‖u‖2
≤ 2D.

Since ∂u = 0, we have by (6.130)
〈Δ0u, u〉 = ‖∂∗u‖2 .

Since for any i→ j
〈∂∗u, eij〉 = 〈u, ∂eij〉 = 〈u, ej − ei〉 = uj − ui,

it follows that

‖∂∗u‖2 =
∑

i→j

(uj − ui)2 ≤ 2
∑

i→j

(uj)2 + 2
∑

i→j

(ui)2 = 2
∑

i

deg(i)(ui)2 ≤ 2D ‖u‖2 , (6.131)

whence the claim follows.

The bottom eigenvalue of Δ0 is always 0 because if all uk = 1 then by (6.131) ∂∗u = 0 and, hence,
Δ0u = ∂∂∗u = 0. If G a complete bipartite graph KD,D , then G is D-regular and 2D is the top
eigenvalue of Δ0.

For a general p, the multiplicity of 0 as an eigenvalue of Δp is equal to the Betti number βp as we will
see below in Corollary 6.7.
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Problem 6.3. Find reasonable upper bounds for specΔp. The question amounts to obtaining an
upper bound for the Rayleigh quotient for non-zero u ∈ Ωp :

‖∂u‖2+‖∂∗u‖2

‖u‖2 ≤?

Problem 6.4. Find estimates of the eigenvalues of Δp in terms of geometric and combinatorial
properties of G.

6.2 Harmonic paths

A path u ∈ Ωp is called harmonic if Δpu = 0.

Lemma 6.5. [23, Lemma 3.2] A path u ∈ Ωp is harmonic if and only if ∂u = 0 and ∂∗u = 0.

Proof. Indeed, if ∂u = 0 and ∂∗u = 0 then by (6.129) we have Δpu = 0. Conversely, if Δpu = 0
then we obtain by (6.130) that

‖∂u‖2 + ‖∂∗u‖2 = 〈Δpu, u〉 = 0,

whence ‖∂u‖ = ‖∂∗u‖ = 0.

Denote by Hp the set of all harmonic paths in Ωp, so that Hp is a subspace of Ωp.

Theorem 6.6. [23, Lemma 3.3] (Hodge decomposition) The space Ωp is an orthogonal sum:

Ωp = ∂Ωp+1
⊕

∂∗Ωp−1
⊕
Hp. (6.132)

Proof. If u ∈ ∂Ωp+1 and v ∈ ∂∗Ωp−1 then u = ∂u′ and v = ∂∗v′, and we have

〈u, v〉 = 〈∂u′, ∂∗v′〉 =
〈
∂2u′, v′

〉
= 0,

so that the subspaces ∂Ωp+1 and ∂∗Ωp−1 are orthogonal.

Denote by K the orthogonal complement of ∂Ωp+1
⊕

∂∗Ωp−1 in Ωp. Then we have

w ∈ K ⇔ 〈w, u〉 = 0 ∀u ∈ ∂Ωp+1 and 〈w, v〉 = 0 ∀v ∈ ∂∗Ωp−1,

that is,

w ∈ K ⇔
〈
w, ∂u′〉 = 0 ∀u′ ∈ Ωp+1 and

〈
w, ∂∗v′

〉
= 0 ∀v′ ∈ Ωp−1

⇔
〈
∂∗w, u′〉 = 0 ∀u′ ∈ Ωp+1 and

〈
∂w, v′

〉
= 0 ∀v′ ∈ Ωp−1

⇔ ∂∗w = 0 and ∂w = 0

⇔ w ∈ Hp.

Hence, K = Hp which finishes the proof.
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Corollary 6.7. [23, Corollary 3.4] There is a natural linear isomorphism

Hp
∼= Hp. (6.133)

In particular, dimHp = βp; that is, the multiplicity of 0 as an eigenvalue of Δp is equal to the Betti
number βp.

Proof. Observe that Zp := ker ∂|Ωp is the orthogonal complement of ∂∗Ωp−1 in Ωp because, for any
u ∈ Ωp,

u ∈ Zp ⇔ ∂u = 0 ⇔ 〈∂u, v〉 = 0 ∀v ∈ Ωp−1

⇔ 〈u, ∂∗v〉 = 0 ∀v ∈ Ωp−1 ⇔ u⊥∂∗Ωp−1.

Since by (6.132)
Ωp = ∂Ωp+1

⊕
Hp
⊕

∂∗Ωp−1

we obtain
Zp = (∂∗Ωp−1)

⊥ = ∂Ωp+1
⊕
Hp (6.134)

whence Hp
∼= Zp/∂Ωp+1 = Hp.

Remark 6.8. It follows from this argument thatHp is an orthogonal complement of Bp in Zp and that
any homology class ω ∈ Hp has a unique harmonic representative u ∈ Hp. In addition, u minimizes
the norm ‖∙‖ among all representatives of ω.

6.3 Matrix of Δp

Let {αi} be an orthonormal basis in Ωp, {βm} be an orthonormal basis in Ωp−1 and {γn} be an
orthonormal basis in Ωp+1 :

Ωp−1

∂∗

�
∂

Ωp

∂∗

�
∂

Ωp+1

{βm} {αi} {γn}
.

The operator ∂ : Ωp → Ωp−1 has in the bases {αi} and {βm} the matrix representation

B = (〈βm, ∂αi〉)m,i , (6.135)

where m is the row index and i is the column index.

Similarly, the operator ∂∗ : Ωp → Ωp+1 has the matrix representation

C = (〈γn, ∂∗αi〉)n,i = (〈∂γn, αi〉)n,i , (6.136)

where n is the row index and i is the column index. Since Δp = ∂∗∂ +(∂∗)∗ ∂∗, we obtain the matrix
representation of Δp in the basis {αi}:

matrix of Δp = BT B + CT C. (6.137)

More explicitly, the (i, j)-entry of the matrix of Δp in the basis {αi} is given by

〈Δpαi, αj〉 =
∑

m

〈∂αi, βm〉 〈∂αj , βm〉+
∑

n

〈αi, ∂γn〉 〈αj , ∂γn〉 , (6.138)

where i is the row index and j is the column index.
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Example 6.9. Recall that Ω−1 = {0}, Ω0 = {ei : i ∈ V } and Ω1 = 〈ekl : k → l〉 . Assuming that
〈∙, ∙〉 is the natural inner product, we obtain by (6.138) that the matrix of Δ0 is

〈Δ0ei, ej〉 =
∑

k→l

〈ei, ∂ekl〉 〈ej , ∂ekl〉

=
∑

k→l

〈ei, el − ek〉 〈ej , el − ek〉

=
∑

k→l

(δil − δik) (δjl − δjk)

=
∑

k→i

δij +
∑

i→l

δij − 1{i→j} − 1{j→i}

= deg(i)δij − 1{i→j} − 1{j→i}.

If G has no double arrow then

the matrix of Δ0 = diag (deg (i))− 1{i∼j},

where 1{i∼j} is the adjacency matrix of G. Hence, in this case Δ0 is the usual unnormalized Laplacian
(=Kirchhoff operator) on functions on V. Consequently, we have

traceΔ0 =
∑

i∈V

deg (i) = 2 |E| . (6.139)

6.4 Examples of computation of the matrix of Δ1

In this section, we denote by V and E respectively the numbers of vertices and arrows of the digraph
in question.

Let us compute Δ1 for the natural inner product. We use the orthonormal bases {em} in Ω0 and
{eij : i→ j} in Ω1. Let {γn} be an orthonormal basis in Ω2.

The matrix of Δ1 has dimensions E × E and, by (6.138), its entries are
〈
Δ1eij , ei′j′

〉
=
∑

m
〈∂eij , em〉

〈
∂ei′j′ , em

〉
+
∑

n
〈eij , ∂γn〉

〈
ei′j′ , ∂γn

〉
(6.140)

for all arrows i→ j and i′ → j′.

For the first sum in (6.140) we have
∑

m
〈∂eij , em〉

〈
∂ei′j′ , em

〉
=
∑

m
〈ej − ei, em〉

〈
ej′ − ei′ , em

〉

=
∑

m
(δjm − δim)

(
δj′m − δi′m

)

= δjj′ − δij′ − δji′ + δii′ =:
[
ij, i′j′

]
.

The values of [ij, i′j′] are shown here:
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Hence, in the case p = 1, we have
BT B =

([
ij, i′j′

])
. (6.141)

In particular, diagonal entries of BT B are equal to 2.

Example 6.10. Consider a 1-torus T = {0→ 1→ 2→ 0}. In this case we have Ω1 = 〈e01, e12, e20〉
and

the matrix of Δ1 = BT B =
([

ij, i′j′
])

=







e01 e12 e20

e01 [01, 01] [01, 12] [01, 20]
e12 [12, 01] [12, 12] [12, 20]
e20 [20, 01] [20, 12] [20, 20]







=




2 −1 −1
−1 2 −1
−1 −1 2



 .

The eigenvalues of Δ1 are (0, 3, 3) .

Example 6.11. Consider a dodecahedron (as in Example 5.7):

We have V = 20, E = 30,

Ω2 = {0} and |H1| = 11.

In particular, CT C = 0 and,

hence, Δ1 = BT B.

The matrix of Δ1 is shown here:

The eigenvalues of Δ1 are:

(011, 25, 34, 54,
(
3±
√

5
)
3
),

where the subscripts show multiplicity.

For a general digraph G with Ω2 6= {0}, let us compute the entry 〈eij , ∂γn〉 of the matrix C assuming
that γn = γ is a triangle or square (note that although Ω2 always has a basis of triangles and squares,
the squares in this basis do not have to be orthogonal).
If γ = eabc is a triangle then we have

〈eij , ∂γ〉 = 〈eij , eab + ebc − eac〉 = [ij, γ] ,

where

[ij, γ] :=






1, if ij ∈ {ab, bc}
−1 if ij = ac
0, otherwise.
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If γ = eabc−eab′c√
2

is a (normalized) square then

〈eij , ∂γ〉 =
1
√

2
〈eij , eab + ebc − eab′ − eb′c〉 =

1
√

2
[ij, γ] ,

where

[ij, γ] =






1, if ij ∈ {ab , bc}
−1 if ij ∈ {ab′, b′c}
0, otherwise.

Example 6.12. Let G be a triangle {0→ 1→ 2, 0→ 2} . Then Ω1 = 〈e01, e12, e02〉 and

BT B =
([

ij, i′j′
])

=







e01 e12 e02

e01 [01, 01] [01, 12] [01, 20]
e12 [12, 01] [12, 12] [12, 20]
e02 [02, 01] [02, 12] [02, 02]





 =




2 −1 1
−1 2 1
1 1 2



 .

The basis {γn} of Ω2 consists of a single triangle γ = e012 so that

C =

(
e01 e12 e02

e012 [01, γ] [12, γ] [02, γ]

)

=
(
1 1 −1

)
,

CT C =




1 1 −1
1 1 −1
−1 −1 1



 ,

matrix of Δ1 = BT B + CT C =




3 0 0
0 3 0
0 0 3



 .

Example 6.13. Let G be a square {0→ 1→ 3, 0→ 2→ 3}. Then Ω1 = 〈e01, e02, e13, e23〉 and

BT B =
([

ij, i′j′
])

=









e01 e02 e13 e23

e01 [01, 01] [01, 02] [01, 13] [01, 23]
e02 [02, 01] [02, 02] [02, 13] [02, 23]
e13 [12, 01] [13, 02] [13, 13] [13, 23]
e23 [23, 01] [23, 02] [23, 13] [23, 23]









=







2 1 −1 0
1 2 0 −1
−1 0 2 1
0 −1 1 2





 .

The basis {γn} of Ω2 consists of a single square γ = 1√
2

(e013 − e023) so that

C =
1
√

2

(
e01 e02 e13 e23

γ [01, γ] [02, γ] [13, γ] [23, γ]

)

=
1
√

2

(
1 −1 1 −1

)
,

CT C =
1
2







1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1





 .

Hence,

matrix of Δ1= BT B + CT C =







5
2

1
2 −1

2 −1
2

1
2

5
2 −1

2 −1
2

−1
2 −1

2
5
2

1
2

−1
2 −1

2
1
2

5
2





 ,

and the eigenvalues of Δ1 are (23, 4) .
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Example 6.14. Consider the following digraph:

Here V = 5, E = 6, |Ω2| = 2 and

Ω2 = 〈e014 − e024, e014 − e034〉 .

However, this basis is not orthogonal.

Orthogonalization gives an orthonormal basis for Ω2:

γ1 = 1√
2

(e014 − e024) ,

γ2 = 1√
6

(e014 + e024 − 2e034) .

Since

∂γ1 = 1√
2

(e01 + e14 − e02 − e24) ,

∂γ2 = 1√
6

(e01 + e04 + e02 + e24 − 2e03 − 2e34) ,

we obtain

C = (〈eij , ∂γn〉) =






e01 e14 e02 e24 e03 e34

∂γ1
1√
2

1√
2
− 1√

2
− 1√

2
0 0

∂γ2
1√
6

1√
6

1√
6

1√
6
− 2√

6
− 2√

6






=

(
1√
2

1√
2
− 1√

2
− 1√

2
0 0

1√
6

1√
6

1√
6

1√
6
− 2√

6
− 2√

6

)

and

CT C =











2
3

2
3 −1

3 −1
3 −1

3 −1
3

2
3

2
3 −1

3 −1
3 −1

3 −1
3

−1
3 −1

3
2
3

2
3 −1

3 −1
3

−1
3 −1

3
2
3

2
3 −1

3 −1
3

−1
3 −1

3 −1
3 −1

3
2
3

2
3

−1
3 −1

3 −1
3 −1

3
2
3

2
3











.

Now we compute BT B:

BT B =
([

eij , ei′j′
])

=











2 −1 1 0 1 0
−1 2 0 1 0 1
1 0 2 −1 1 0
0 1 −1 2 0 1
1 0 1 0 2 −1
0 1 0 1 −1 2











,

whence

matrix of Δ1 = BT B + CT C =











8
3 −1

3
2
3 −1

3
2
3 −1

3
−1

3
8
3 −1

3
2
3 −1

3
2
3

2
3 −1

3
8
3 −1

3
2
3 −1

3
−1

3
2
3 −1

3
8
3 −1

3
2
3

2
3 −1

3
2
3 −1

3
8
3 −1

3
−1

3
2
3 −1

3
2
3 −1

3
8
3











.

The eigenvalues of Δ1 are (24, 3, 5) .
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Example 6.15. Consider the following pyramid:

For this digraph V = 5, E = 8, |Ω2| = 5, and

Ω2 = 〈e014, e024, e134, e234, e013 − e023〉 .

We have then

BT B =
([

ij, i′j′
])

=

















e01 e02 e13 e23 e04 e14 e24 e34

e01 2 1 −1 0 1 −1 0 0
e02 1 2 0 −1 1 0 −1 0
e13 −1 0 2 1 0 1 0 −1
e23 0 −1 1 2 0 0 1 −1
e04 1 1 0 0 2 1 1 1
e14 −1 0 1 0 1 2 1 1
e24 0 −1 0 1 1 1 2 1
e34 0 0 −1 −1 1 1 1 2

















,

C =











e01 e02 e13 e23 e04 e14 e24 e34

e014 1 0 0 0 −1 1 0 0
e024 0 1 0 0 −1 0 1 0
e134 0 0 1 0 0 −1 0 1
e234 0 0 0 1 0 0 −1 1

1√
2

(e013 − e023) 1√
2
− 1√

2
1√
2
− 1√

2
0 0 0 0











,

CT C =















3
2 −1

2
1
2 −1

2 −1 1 0 0
−1

2
3
2 −1

2
1
2 −1 0 1 0

1
2 −1

2
3
2 −1

2 0 −1 0 1
−1

2
1
2 −1

2
3
2 0 0 −1 1

−1 −1 0 0 2 −1 −1 0
1 0 −1 0 −1 2 0 −1
0 1 0 −1 −1 0 2 −1
0 0 1 1 0 −1 −1 2















,

matrix of Δ1 = BT B + CT C =















7
2

1
2 −1

2 −1
2 0 0 0 0

1
2

7
2 −1

2 −1
2 0 0 0 0

−1
2 −1

2
7
2

1
2 0 0 0 0

−1
2 −1

2
1
2

7
2 0 0 0 0

0 0 0 0 4 0 0 1
0 0 0 0 0 4 1 0
0 0 0 0 0 1 4 0
0 0 0 0 1 0 0 4















.

The eigenvalues of Δ1 are (35, 53).

Example 6.16. Let G be an (n− 1)-simplex, that is, the vertices are {0, 1, ..., n − 1} and

i→ j ⇔ i < j.

Let us show that
A := matrix of Δ1 = diag (n) .
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Let ij and i′j′ be two arrows. Then the (ij, i′j′)-entry of A is

Aij,i′j′ =
(
BT B

)
ij,i′j′

+
(
CT C

)
ij,i′j′

=
[
ij, i′j′

]
+
∑

n
[ij, γn]

[
i′j′, γn

]
, (6.142)

where {γn} is an orthonormal basis of Ω2, which we may take to consist of all triangles in G.

If ij = i′j′ then [ij, i′j′] = 2. Since the arrow ij belongs to (n− 2) triangles γn, we obtain

Aij,ij = 2 + (n− 2) = n,

that is, all the diagonal entries of Δ1 are equal to n. It remains to show that if ij 6= i′j′ then

Aij,i′j′ = 0. (6.143)

If ij and i′j′ have no common vertex then they cannot belong to the same triangle γn and, hence, all
the terms in (6.142) vanish.

Suppose i′ = i and j′ 6= j:

↗•
j

i′=i• → •j
′

Then [ij, i′j′] = 1 while [ij, γn] [i′j′, γn] is nonzero only when γn is the triangle formed by i, j, j ′. In
this case the arrows ij and i′j′ have opposite orientations with respect to γn, whence [ij, γn] [i′j′, γn] =
−1 and (6.143) follows.

Suppose j′ = i and i′ 6= j:

↗•
j

j′=i• ← •i
′

Then [ij, i′j′] = −1 while [ij, γn] [i′j′, γn] is nonzero only when γn is the triangle i′ij. In this case
the arrows ij and i′j′ have the same orientation with respect to γn, whence [ij, γn] [i′j′, γn] = 1 and
again (6.143) follows.

The cases j = i′ and j = j′ are similar.

Problem 6.17. Describe all the digraphs for which Δ1 has only one eigenvalue.

Problem 6.18. Devise a program for computing the matrix and spectrum of Δ1 for large digraphs.

6.5 Trace of Δ1

Recall that by (6.139)
traceΔ0 =

∑

i∈V

deg (i) = 2E,

where E denotes the number of arrows. Here is a similar result for the trace of Δ1.

Theorem 6.19. Let T be the number of triangles in Ω2, S be the number of linearly independent
squares in Ω2, and D be the number of double arrows a� b. Then

traceΔ1 = 2E + 3T + 2S + 4D. (6.144)

By a square here we mean an allowed 2-path eabc − eab′c such that a 6= c and a 6→ c.

For example, for the pyramid from Example 6.15 we have E = 8, T = 4, S = 1 and D = 0, whence

traceΔ1 = 2 ∙ 8 + 3 ∙ 4 + 2 ∙ 1 = 30,

which matches the sum of the eigenvalues as well as the sum of the diagonal values of the matrix of
Δ1 as determined there.
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Proof. Let {γn} be an orthogonal basis for Ω2. Let us first prove that

traceΔ1 = 2E +
∑

n

‖∂γn‖
2

‖γn‖
2 . (6.145)

By (6.137), traceΔ1 = trace BT B + trace CT C. As we have seen above (see (6.141)), all the
diagonal entries of BT B are equal to 2 so that

trace BT B = 2E.

Let us compute trace CT C. Without loss of generality assume that the basis {γn} is orthonormal
basis. Let {αi} be the sequence of all arrows. Since {αi} is an orthonormal basis for Ω1, we have by
(6.136)

C = (〈∂γn, αi〉)n,i

and, hence, (
CT C

)
ij

=
∑

n
〈∂γn, αi〉 〈∂γn, αj〉 .

It follows that

trace CT C =
∑

i

∑

n
〈∂γn, αi〉

2 =
∑

n

∑

i
〈∂γn, αi〉

2 =
∑

n
‖∂γn‖

2 ,

whence (6.145) follows.

As we know, Ω2 has a basis {γn} that consists of triangles, squares and double arrows. The only
non-orthogonal pairs in this basis are pairs of squares containing the same elementary 2-path, like
eabc−eab′c and eabc−eab′′c. Assume first that the entire basis {γn} is orthogonal (which is equivalent
to absence of multisquares).

A double arrow a� b gives two elements of the basis {γn}: eaba and ebab. If γn = eaba then

‖γn‖
2 = 1, ∂γn = eba + eab, ‖∂γn‖

2 = 2

and
‖∂γn‖

2

‖γn‖
2 = 2.

The same is true for γn = ebab so that each double arrow contributes 4 to the sum

∑

n

‖∂γn‖
2

‖γn‖
2 . (6.146)

If γn is a triangle eabc then

‖γn‖
2 = 1, ∂γn = ebc − eac + eab, ‖∂γn‖

2 = 3,

whence
‖∂γn‖

2

‖γn‖
2 = 3,

so that each triangle contributes 3 to the sum (6.146).

If γn is a square eabc − eab′c then

‖γn‖
2 = 2, ∂γn = eab + ebc − eab′ − eb′c, ‖∂γn‖

2 = 4,
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so that
‖∂γn‖

2

‖γn‖
2 = 2,

so that each square contributes 2 to the sum (6.146). Hence, we obtain that the sum (6.146) is equal
to 3T + 2S + 4D, which proves (6.144) in this case.

In the general case G may contain multisquares. Assume that G contains the following m-square

a, {bk}
m
k=0 , c

which gives rise to m linearly independent squares:

eab0c − eab1c, eabc − eab2c, ..., eabc − eabmc . (6.147)

The sequence (6.147) is not orthogonal, and its orthogonalization gives the following sequence:

ω1 = eab0c − eab1c

ω2 = eab0c + eab1c − 2eab2c

...

ωk = eab0c + ... + eabk−1c − keabkc

...

ωm = eab0c + ... + eabm−1c −meabmc

(cf. Example 5.16). We have

∂ωk = (eab0 + eb0c) + ... +
(
eabk−1

+ ebk−1c

)
− k (eabk

+ ebkc)

‖∂ωk‖
2 = 2k + 2k2, ‖ωk‖

2 = k + k2,

whence
‖∂ωk‖

2

‖ωk‖
2 = 2.

Hence, each ωk contributes 2 to the sum (6.146), which completes the proof.

Since the sum of all eigenvalues is traceΔ1 and the eigenvalue 0 has the multiplicity β1, we obtain
that the average of the positive eigenvalues is

λaverage =
traceΔ1

E − β1

.

6.6 An upper bound on λmax (Δ1)

Denote by λmax (A) the maximal eigenvalue of a symmetric operator A. Recall that, by Proposition
6.2,

λmax (Δ0) ≤ 2max
i

deg (i) .

For any arrow i → j in G denote by degΔ (ij) the number of triangles containing the arrow i → j,
and by deg� (ij) the number of squares containing i→ j.

Theorem 6.20. Assume that there is an orthogonal basis {γn} for Ω2 that consists of triangles and
squares. Then

λmax (Δ1) ≤ 2max
i

deg (i) + 3max
i→j

degΔ (ij) + 2max
i→j

deg� (ij) . (6.148)
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Proof. Recall that

λmax (Δ1) = sup
u∈Ω1\{0}

(
‖∂u‖2

‖u‖2
+
‖∂∗u‖2

‖u‖2

)

.

Since the operators ∂ : Ω1 → Ω0 and ∂∗ : Ω0 → Ω1 are dual, they have the same norm. The norm
of the latter was estimated in the proof of Proposition 6.2 (cf. (6.131)), whence we obtain the same
estimate for the norm of the former, that is, for any non-zero u ∈ Ω1,

‖∂u‖2

‖u‖2
≤ 2max

i∈V
deg (i) .

Let us prove that
‖∂∗u‖2

‖u‖2
≤ 3max

i→j
degΔ (ij) + 2max

i→j
deg� (ij) . (6.149)

Let u =
∑

i→j uijeij and, hence,

‖u‖2 =
∑

i→j

(uij)2

Using the basis {γn} in Ω2, we obtain

‖∂∗u‖2 =
∑

n

〈∂∗u, γn〉
2

‖γn‖
2 =

∑

n

〈u, ∂γn〉
2

‖γn‖
2 .

If γn is a triangle eabc then ‖γn‖ = 1,

〈u, ∂γn〉 = 〈u, ebc − eac + eab〉 = ubc − uac + uab,

〈u, ∂γn〉
2 ≤ 3

(
(ubc)2 + (uac)2 + (uab)2

)
.

Summing up over all triangles γn and using that any arrow i → j occurs in degΔ (ij) triangles, we
obtain

∑

n:γn is a triangle

〈u, ∂γn〉
2

‖γn‖
2 ≤ 3

∑

i→j

(uij)2 degΔ (ij) ≤ 3 ‖u‖2 max
i→j

degΔ (ij) . (6.150)

Let now γn be a square eabc − eab′c (such that a 6→ c). Then ‖γn‖
2 = 2,

〈u, ∂γn〉 = 〈u, eab + ebc − eab′ + eb′c〉 = uab + ubc − uab′ − ub′c,

〈u, ∂γn〉
2 ≤ 4

(
(uab)2 + (ubc)2 + (uab′)2 + (ub′c)2

)
.

Summing up over all squares γn and using that any arrow i → j occurs in deg� (ij) squares, we
obtain

∑

n:γn is a square

〈u, ∂γn〉
2

‖γn‖
2 ≤ 2

∑

i→j

(uij)2 deg� (ij)

≤ 2 ‖u‖2 max
i→j

deg� (ij) . (6.151)

Adding up (6.150) and (6.151), we obtain (6.149).

Problem 6.21. How sharp is the upper bound on λmax (Δ1) in (6.148)? Is it attained on some
digraphs? Extend (6.148) to the general case when a basis of triangles and squares requires orthog-
onalization.
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6.7 Examples of computations of spec Δ1

Example 6.22. Consider an octahedron based on a diamond:

For this digraph V = 6, E = 12, |Ω2| = 8.

The space Ω2 is generated by 8 triangles:

Ω2 = 〈e024 , e025 , e034 , e035 , e124 , e125 , e134 , e135〉.

Hence, T = 8, S = 0, and we obtain

traceΔ1 = 2E + 3T = 48.

Since β1 = 0, it follows that

λaverage =
traceΔ1

E − β1

=
48
12

= 4.

The eigenvalues of Δ1 are
(23, 46, 63) ,

where the subscript denotes the multiplicity.

Example 6.23. Consider a prism as in Example 5.24:

Since E = 9, T = 2, S = 3, we have

traceΔ1 = 2E + 3T + 2S = 30

and

λaverage =
traceΔ1

E − β1

=
30
9

.

The eigenvalues of Δ1 are

(2, (5
2)2, 33, 4, 52).

Example 6.24. Consider a 3-cube:

We have V = 8, E = 12, |Ω2| = 6,

Hp = {0} for p ≥ 1.

Space Ω2 is generated by 6 squares,

so that

S = 6 and T = 0.

Hence, we obtain by (6.144)

traceΔ1 = 2E + 2S = 2 ∙ 12 + 2 ∙ 6 = 36.

Since β1 = 0, we obtain

λaverage =
traceΔ1

E − β1

= 3.

In fact, the eigenvalues of Δ1 on a 3-cube are

(26, 32, 43, 6).

Example 6.25. Let G be the n-cube, that is,

G = In� = I�I�...�I︸ ︷︷ ︸
n times
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where I = {0→ 1} (see Subsection 3.4). Then

V = 2n, E = n2n−1, S = |Ω2| = 2n−3n (n− 1)

and T = 0. Hence,
traceΔ1 = 2E + 2S = 2n−2n (n + 3)

and

λaverage =
traceΔ1

E − β1

=
2n−2n (n + 3)

n2n−1
=

n + 3
2

.

For example, for the 4-cube we obtain

traceΔ1 = 22 ∙ 4 ∙ 7 = 112.

The eigenvalues of Δ1 on the 4-cube are

(210, 38, 49, 64, 8).

For the 5-cube we obtain
traceΔ1 = 23 ∙ 5 ∙ 8 = 320.

The eigenvalues of Δ1 on the 5-cube are

(215, 320, 425, 54, 610, 85, 10).

Problem 6.26. Determine the full spectrum of Δ1 on the n-cube. In particular, prove that

λmax = 2n and λmin = 2n(n+1)
2

.

Prove that specΔ1 consists of all even integers from 2 to 2n and of all odd integers from 3 to n.

The difficulty here is that the method of separation of variables does not work for Δ1 on Cartesian
products.

Example 6.27. Consider the 2-torus G = T�T where T = {0→ 1→ 2→ 0}.

Here V = 9, E = 18, |Ω2| = 9, |H1| = 2.

Space Ω2 is generated by 9 squares, whence

traceΔ1 = 2 ∙ 18 + 2 ∙ 9 = 54.

The eigenvalues of Δ1 on the 2-torus are

(02, (3
2)4, 38, 64).

For the 3-torus G = T�3 we have

E = 81, S = |Ω2| = 81, |H1| = 3,

whence
traceΔ1 = 2 ∙ 81 + 2 ∙ 81 = 324.

The eigenvalues of Δ1 on the 3-torus are

(03, (3
2)12, 330, (9

2)16, 612, 98).

For the n-torus G = T�n we have

E = n3n, S = |Ω2| =
n (n− 1)

2
3n, |H1| = n,

whence
traceΔ1 = 2E + 2S = n (n + 1) 3n

and

λaverage = (n + 1)
3n

3n − 1
.
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Problem 6.28. Compute the full spectrum of Δ1 for the n-torus. In particular, prove that

λmax = (3n)2n .

In fact, λmin = 0n, which is a consequence of β1 = n.

Example 6.29. Consider a trapezohedron Tm (see Subsection 2.1 and Proposition 2.1).

For example, T4 is shown here:

We have V = 2m + 2, E = 4m, while

Ω2 is generated by S = 2m squares.

It follows that on Tm

traceΔ1 = 2E + 2S = 12m.

Since β1 = 0, we obtain

λaverage =
traceΔ1

E − β1

=
12m

4m
= 3.

In the case m = 2 the eigenvalues of Δ1 are as follows:

(2, 35,
7
2 ±

1
2

√
17),

where
λmin = 7

2 −
1
2

√
17 = 1.438 . . . and λmax = 7

2 + 1
2

√
17 = 5.561 . . . .

In the case m = 3 the trapezohedron T3 coincides with a 3-cube, and as was already shown above,
the eigenvalues of Δ1 are:

(26, 32, 43, 6).

In the case m = 4 the characteristic polynomial of Δ1 is

(z − 2) (z − 3)4 (z − 5) (z2 − 9z + 16)(z2 − 4z + 7
2)2(z2 − 6z + 7)2,

and the eigenvalues of Δ1 are

{2, 34, 5, 9
2 ±

1
2

√
17, (2± 1

2

√
2)2, (3±

√
2)2},

with
λmin = 2− 1

2

√
2 = 1.292 . . . and λmax = 9

2 + 1
2

√
17 = 6.561 . . . .

In the case m = 5 the characteristic polynomial of Δ1 is

(z − 2) (z − 5
2)4 (z − 6) (z2 − 10z + 20)(z2 − 7z + 11)2(z2 − 5z + 5)2(z2 − 4z + 11

4 )2,

and the eigenvalues of Δ1 are

{2, (5
2)4, 6, 5±

√
5, (7

2 ±
1
2

√
5)2, (5

2 ±
1
2

√
5)2, (2± 1

2

√
5)2},

where
λmin = 2− 1

2

√
5 = 0.881 . . . and λmax = 5 +

√
5 = 7.236 . . . .

In the case m = 6 the characteristic polynomial of Δ1 is

(z − 2)5 (z − 3)7 (z − 4)2 (z − 7) (z − 8) (z2 − 3z + 3
2)2(z2 − 6z + 6)2,

and the eigenvalues of Δ1 are

(25, 37, 42, 7, 8, (3
2 ±

1
2

√
3)2, (3±

√
3)2),
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where
λmin = 3

2 −
1
2

√
3 = 0.633 . . . and λmax = 8.

In the case m = 7 the characteristic polynomial of Δ1 is

(z − 2) (z − 8) (z2 − 12z + 28)(z3 − 6z2 + 41
4 z − 29

8 )2(z3 − 10z2 + 31z − 29)2

× (z3 − 7z2 + 63
4 z − 91

8 )2(z3 − 8z2 + 19z − 13)2.

It has eigenvalues 2 and 8, and all other eigenvalues are irrational.

Problem 6.30. Determine the full spectrum of Δ1 on the trapezohedron Tm for any m. In particular,
what are λmin and λmax?

Example 6.31. Consider a rhombic dodecahedron as in Example 5.25. The arrows go along edges
from smaller numbers to larger ones.

Here V = 14, E = 24, S = 12, T = 0.

It follows that

traceΔ1 = 2E + 2S = 72,

λaverage =
traceΔ1

E − β1

=
72
24

= 3.

The characteristic polynomial of Δ1 is

(z − 1)3 (z − 2)3 (z − 3)9 (z − 4)2 (z − 7) (z2 − 7z + 8)3,

and the eigenvalues of Δ1 are

(13, 23, 39, 42, 7, (7
2 ±

√
17
2 )3).

Example 6.32. Consider a rhombicuboctahedron (see also Examples 5.17 and 5.28).

Here V = 24, E = 48, |Ω2| = 26.

Ω2 is generated by 8 triangles and

18 squares so that T = 8, S = 18.

Hence, we obtain

traceΔ1 = 2E + 3T + 2S = 156.

Since β1 = 0, we have

λaverage =
traceΔ1

E − β1

=
156
48

= 3.25.

A computation of the eigenvalues of Δ1 gives

λmin = 0.518... and λmax = 72.

There are many multiple eigenvalues: 13, 23, 33, 44, 56, etc. The full spectrum of Δ1 is shown here:
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Example 6.33. Consider the icosahedron as in Examples 1.16, 5.19.

We have here V = 12, E = 30, |Ω2| = 25.

The space Ω2 is generated by 20 triangles

and 5 squares (cf. Example 5.19).

Hence, T = 20, S = 5 and

traceΔ1 = 2E + 3T + 2S = 130.

Since β1 = 0, we have

λaverage =
traceΔ1

E − β1

=
130
30

= 4.333...

Computation shows that
λmin = 0.810... and λmax = (5 +

√
5)3.

Other multiple eigenvalues are 65 and (5−
√

5)3. The full spectrum of Δ1 is shown here:

6.8 Eigenvalues of Δ1 on trapezohedron

Here we give a partial answer to Problem 6.30. Recall that the trapezohedra Tm were defined in
Subsection 2.1.

Proposition 6.34. For any m ≥ 2, the operator Δ1 on the trapezohedron Tm has eigenvalues λ = 2
and λ = m + 1.

Proof. The vertices of Tm will be denoted as here:

Consider the following 1-paths on Tm:

v = ei0j1 + ei1j2 + ... + eim−1j0

−
(
ei0j0 + ei1j1 + ... + eim−1jm−1

)

=
m−1∑

k=0

(eik−1jk
− eikjk

),

where the index k is regarded mod m, and

u = eai0 + eai1 + ... + eaim−1

−
(
ej0b + ej1b + ... + ejm−1b

)

=
m−1∑

k=0

(eaik − ejkb).

The 1-paths u and v are obviously allowed and, hence, ∂-invariant. We will prove that

Δ1v = 2v and Δ1u = (m + 1) u,

which will settle the claim. We have clearly

∂v =
m−1∑

k=0

(ejk
− eik−1

− ejk
+ eik) = 0,
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and, hence, ∂∗∂v = 0.

In order to compute ∂∗v ∈ Ω2 we use the following orthogonal basis in Ω2 that consists of all 2m
squares in Tm:

ϕk = eaik−1jk
− eaikjk

and ψk = eikjkb − eikjk+1b,

where k = 0, . . . ,m − 1 (cf. Proposition 2.1). We have for any k

〈∂∗v, ϕk〉 = 〈v, ∂ϕk〉 =
〈
v, eik−1jk

+ eaik−1
− eikjk

− eaik

〉
= 2,

〈∂∗v, ψk〉 = 〈v, ∂ψk〉 =
〈
v, ejkb + eikjk

− ejk+1b − eikjk+1

〉
= −2,

which together with ‖ϕk‖
2 = ‖ψk‖

2 = 2 implies that

∂∗v =
m−1∑

k=0

(ϕk − ψk) .

Hence, we obtain

Δ1v = ∂∂∗v =
m−1∑

k=0

(∂ϕk − ∂ψk)

=
m−1∑

k=0

(eik−1jk
+ eaik−1

− eikjk
− eaik)

−
m−1∑

k=0

(ejkb + eikjk
− ejk+1b − eikjk+1

)

= 2
m−1∑

k=0

(eik−1jk
− eikjk

) = 2v.

Next, let us compute ∂∗u. We have for any k,

〈∂∗u, ϕk〉 = 〈u, ∂ϕk〉 =
〈
u, eik−1jk

+ eaik−1
− eikjk

− eaik

〉
= 0,

〈∂∗u, ψk〉 = 〈u, ∂ψk〉 =
〈
u, ejkb + eikjk

− ejk+1b − eikjk+1

〉
= 0,

whence ∂∗u = 0 and, hence, ∂∂∗u = 0. It remains to compute ∂∗∂u. We have

∂u =
m−1∑

k=0

(eik − ea − eb + ejk
) =

m−1∑

k=0

(eik + ejk
)−m (ea + eb) .

For any 0-path ei and any 1-path eαβ we have

〈∂∗ei, eαβ〉 = 〈ei, ∂eαβ〉 = 〈ei, eβ − eα〉 = δiβ − δiα

whence
∂∗ei =

∑

α→β

(δiβ − δiα) eαβ =
∑

α→i

eαi −
∑

i→β

eiβ .

It follows that
∂∗eik = eaik − eikjk

− eikjk+1
,

∂∗ejk
= eik−1jk

+ eikjk
− ejkb,

∂∗ea = −
m−1∑

k=0

eaik , ∂∗eb =
m−1∑

k=0

ejkb,

105



whence

Δ1u = ∂∗∂u =
m−1∑

k=0

(eaik − eikjk
− eikjk+1

+ eik−1jk
+ eikjk

− ejkb)

+ m
m−1∑

k=0

(eaik − ejkb)

= (m + 1)
m−1∑

k=0

(eaik − ejkb) = (m + 1) u,

which finishes the proof.

6.9 Spectrum of Δp on join

In this section we use the augmented chain complex (3.46):

K
∂
← Ω0

∂
← Ω1

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . . (6.152)

Denote by Δ̃p the Hodge Laplacian associated with this complex. Of course, Δ̃p coincides with Δp

for p ≥ 1 but is different for p = −1 and p = 0.

For example, we have for the chain complex (6.152)

〈∂∗e, ei〉 = 〈e, ∂ei〉 = 〈e, e〉 = 1

so that
∂∗ei = σ :=

∑

k∈V

ek

whence
Δ̃−1e = ∂∂∗e = ∂σ = |V | e.

In particular,
spec Δ̃−1 = {|V |} .

In the case p = 0 we have

Δ̃0ei = ∂∗∂ei + ∂∂∗ei = ∂∗e + Δ0ei = Δ0ei + σ,

that is,
(Δ̃0ei)

j = (Δ0ei)
j + 1.

Therefore, the matrix of Δ̃0 is obtained from the matrix of Δ0 by adding 1 to each entry. For any
u ∈ Ω0 we have

Δ̃0u = Δ0u +

(
∑

k∈V

uk

)

σ.

The advantage of using the chain complex (6.152) lies in the following statements.

Lemma 6.35. [23, Lemma 5.5] Let X,Y be two digraphs. Then, for u ∈ Ωp (X), v ∈ Ωq (Y ) and
r = p + q + 1, we have

Δ̃r (u ∗ v) = (Δ̃pu) ∗ v + u ∗ Δ̃qv. (6.153)

Theorem 6.36. Let X,Y be two digraphs. We have for any r ≥ 0

spec Δ̃r (X ∗ Y ) =
⊔

{p,q≥−1:p+q=r−1}

(
spec Δ̃p (X) + spec Δ̃q (Y )

)
. (6.154)
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Here we denote by spec A a sequence of all the eigenvalues of the operator A counted with multiplic-
ities. The sum of two such sequences consists of all pairwise sums of the elements of the sequences,
and the disjoint union of sequences means the union of all sequences, summing up the multiplicities.
In particular, if one of the sequences is empty then its sum with another sequence is also empty.

Proof of Theorem 6.36. Observe that if u ∈ Ωp (X) and v ∈ Ωq (Y ) are eigenvectors such that

Δ̃pu = λu and Δ̃qv = μv,

then we have by (6.153) for r = p + q + 1:

Δ̃r (u ∗ v) = (Δ̃pu) ∗ v + u ∗ Δ̃qv = (λ + μ) (u ∗ v) ,

that is, u ∗ v is an eigenvector of Δ̃r on X ∗ Y with the eigenvalue λ + μ.

In each Ωp (X) there is a basis that consists of eigenvectors of Δ̃p; denote by {uk} the union of all
such bases of Ωp (X) across all p ≥ −1, with the corresponding eigenvalues {λk}. Let {vl} be a
similar sequence on Y with the eigenvalues {μl} . By Theorem 3.12, we have, for any r ≥ −1,

Ωr (X ∗ Y ) ∼=
⊕

{p,q≥−1:p+q=r−1}
(Ωp (X)⊗ Ωq (Y )) ,

that is, Ωr (X ∗ Y ) has a basis

{uk ∗ vl : |uk|+ |vl| = r − 1} .

The elements of this basis are the eigenvectors of Δ̃r on X ∗ Y with eigenvalues λk + μl, whence
(6.154) follows.

In particular, for r = 0 we have

spec Δ̃0 (X ∗ Y ) =
(
spec Δ̃−1 (X) + spec Δ̃0 (Y )

)
t
(
spec Δ̃0 (X) + spec Δ̃−1 (Y )

)

=
(
{|X|}+ spec Δ̃0 (Y )

)
t
(
spec Δ̃0 (X) + {|Y |}

)
(6.155)

and for r = 1

spec Δ̃1 (X ∗ Y ) =
(
spec Δ̃−1 (X) + spec Δ̃1 (Y )

)

t
(
spec Δ̃1 (X) + spec Δ̃−1 (Y )

)

t
(
spec Δ̃0 (X) + spec Δ̃0 (Y )

)
.

Since Δ̃1 = Δ1, we conclude that

specΔ1 (X ∗ Y ) = ({|X|}+ specΔ1 (Y ))

t (specΔ1 (X) + {|Y |})

t
(
spec Δ̃0 (X) + spec Δ̃0 (Y )

)
. (6.156)

6.10 Spectrum of Δ1 on digraph spheres

Consider a family {Sn}∞n=0 of digraphs that is defined inductively as follows: S0 = {∙, ∙} and

Sn+1 = sus2 Sn.
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For example, S1 is a diamond and S2 the octahedron (see also Example 3.10):

S1 is a diamond
S2 is an octahedron

The digraph Sn can be regarded as an analogue of an n-sphere. In the notation of Subsection 5.9, we
have Sn = D

∗(n+1)
2 .

Proposition 6.37. We have for all n ≥ 0

specΔ1 (Sn) =
{

2 (n− 1)n(n+1)
2

, (2n)n(n+1), 2 (n + 1)n(n+1)
2

}
. (6.157)

Example 6.38. For example, we have

specΔ1(S
1) = {0, 22, 4}

and
specΔ1(S

2) = {23, 46, 63}

as we have seen above. For n = 3 we obtain from (6.157)

specΔ1(S
3) = {46, 612, 86}.

Proof of Proposition 6.37. Let us first prove by induction that

spec Δ̃0(S
n) =

{
(2n)n+1 , (2n + 2)n+1

}
. (6.158)

For n = 0 we have
spec Δ̃0(S

0) = {0, 2}

which verifies (6.158) for n = 0. For the induction step from n − 1 to n, let us observe that
Sn = S0 ∗ Sn−1,

∣
∣S0
∣
∣ = 2 and

∣
∣Sn−1

∣
∣ = 2n, so that we obtain by (6.155)

spec Δ̃0(S
n) =

({∣∣S0
∣
∣}+ spec Δ̃0(S

n−1)
)
t
(
spec Δ̃0(S

0) +
{∣∣Sn−1

∣
∣}
)

=
(
{2}+ spec Δ̃0(S

n−1)
)
t ({0, 2}+ {2n})

=
(
{2}+ spec Δ̃0(S

n−1)
)
t ({2n, 2n + 2}) .

By the induction hypothesis we have

spec Δ̃0(S
n−1) = {(2n− 2)n , (2n)n} , (6.159)

whence

spec Δ̃0(S
n) = {(2n)n , (2n + 2)n} t {2n, 2n + 2}

=
{
(2n)n+1 , (2n + 2)n+1

}
,

which was to be proved.
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Let us prove (6.157). For n = 0 we have

specΔ1(S
0) = ∅,

which matches (6.157). For the induction step from n− 1 to n, we obtain by (6.156) and (6.159)

specΔ1(S
n) =

({∣∣S0
∣
∣}+ specΔ1(S

n−1)
)

t
(
specΔ1(S

0) +
{∣∣Sn−1

∣
∣})

t
(
spec Δ̃0(S

0) + spec Δ̃0(S
n−1)

)

=
(
{2}+ specΔ1(S

n−1)
)
t ({0, 2}+ {(2n− 2)n , (2n)n})

=
(
{2}+ specΔ1(S

n−1)
)
t {(2n− 2)n , (2n)2n , (2n + 2)n} .

Using the induction hypothesis

specΔ1(S
n−1) =

{
2 (n− 2)n(n−1)

2

, 2 (n− 1)n(n−1) , (2n)n(n−1)
2

}

we obtain

specΔ1(S
n) =

{
2 (n− 1)n(n−1)

2

, (2n)n(n−1), 2 (n + 1)n(n−1)
2

}

t {2 (n− 1)n , (2n)2n , 2 (n + 1)n , }

=
{

2 (n− 1)n(n+1)
2

, (2n)n(n+1), 2 (n + 1)n(n+1)
2

}
,

which finishes the proof.
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