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Abstract
On a metric measure space (M, ρ, μ) we consider a family of the Lipschitz-Besov spacesΛs

p,q that is
defined only using the metricρ and measureμ, and a family of Besov spacesBs

p,q that is defined using
an auxiliary self-adjoint operatorL and the associated heat semigroup. Under certain assumptions
about the heat kernel ofL, we prove the identity of the two families of the function spaces.
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1 Introduction and main results

1.1 Function spaces on a metric measure space

Let (M, ρ) be a locally compact complete separable metric space andμ be a non-negative Borel measure
with full support onM (that is, 0< μ(E) < ∞ for any non-void relatively compact open setE ⊂ M). We
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2 Heat kernel and Lipschitz-Besov spaces

will refer to the triple (M, ρ, μ) as ametric measure space. For p ∈ (0,∞), let Lp = Lp(M, μ) be the space
of functions whose absolute value raised to thep-th power has finite integral with respect toμ. The space
L∞ = L∞(M, μ) consists of all essentially boundedμ-measurable functions onM.

Let us recall the definition of the Lipschitz-Besov space onM. We use
>

E
to denote 1

μ(E)

∫
E
, for any

measurable setE ⊂ M.

Definition 1.1. For s ∈ (0,∞), p ∈ [1,∞) andq ∈ (0,∞), theLipschitz-Besov spaceΛs
p,q = Λs

p,q(M, μ) is
defined to be the collection of allf ∈ Lp such that

‖ f ‖Λ̇s
p,q

:=





∫ ∞

0

[∫

M

?

B(x,r)

| f (x) − f (y)|p

r sp dμ(y) dμ(x)

]q/p dr
r





1/q

< ∞.

If q = ∞, thenΛs
p,∞ is defined to be the collection of allf ∈ Lp such that

‖ f ‖Λ̇s
p,∞

:= sup
r∈(0,∞)

[∫

M

?

B(x,r)

| f (x) − f (y)|p

r sp dμ(y) dμ(x)

]1/p

< ∞.

Endow the spaceΛs
p,q with the norm

‖ f ‖Λs
p,q

:= ‖ f ‖Lp + ‖ f ‖Λ̇s
p,q
.

Clearly, Λs
p,q is a Banach space. The above Lipschitz-Besov spacesΛs

p,q were first introduced by
Jonsson [16] whenM is ad-set ofRn. If M is a generalα-regular metric measure space (i. e.,μ(B(x, r)) '
rα for all x ∈ M and r > 0), these spaces were introduced in [12] for the casep = 2, q = ∞ and by
Yang and Lin [26] for generalp,q. Extensions of the result of [26] to the RD-spaces (i. e., spaces of
homogeneous type satisfies the reverse doubling condition; see [14]) was due to M̈uller and Yang [19].

Notice that for large enoughs the spaceΛs
p,q may degenerate to trivial spaces consisting only of

constant functions. For example, if (M, ρ, μ) is the classical Euclidean space thenΛs
2,q = {0} if s > 1.

Also, if (M, ρ, μ) is a fractal space admitting the heat kernel that satisfies (1.10) below, thenΛs
2,q = {0} if

s > β/2 (see [16]). The same property remains valid if the condition (1.10) is weakened to (1.5) below
(see [11, 12, 22]). Thus, the value ofβ in (P3) and (P4) (see Subsection1.2below) illustrates an intrinsic
property of the Lipschitz-Besov space.

Let us emphasize that the above definition of the spacesΛs
p,q requires only a metric measure structure

on M. However, as we would like to avoid considering a degenerate spaceΛs
p,q for larges, we introduce

more general Lipschitz-Besov spacesΛ
m,s
p,q using an additionally given operatorL.

Let L be a positive definite self-adjoint operator inL2. Then its powerLm/2 for m ∈ (0,∞) is well-
defined as a self-adjoint operator inL2. Denote by Dom(Lm/2) its domain inL2. Form= 0, we understand
Dom(Lm/2) as the collection of all measurable functions on (M, ρ, μ).

Definition 1.2. Let m ∈ [0,∞), s ∈ (0,∞), p ∈ [1,∞) andq ∈ (0,∞]. Define theLipschitz-Besov space
Λ

m,s
p,q = Λ

m,s
p,q(M, μ) to be the collection of allf ∈ Dom(Lm/2) ∩ Lp such that

‖ f ‖Λm,s
p,q

:= ‖ f ‖Lp + ‖Lm/2 f ‖Λ̇s
p,q
< ∞.

Denote bỹΛm,s
p,q the completion ofΛm,s

p,q with respect to the norm‖ ∙ ‖Λm,s
p,q

.
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For m= 0, the spacesΛ0,s
p,q andΛ̃0,s

p,q coincide withΛs
p,q.

Let us introduce another notion of the Besov spaces via the heat semigroup. LetL be a positive definite
self-adjoint operator inL2 as above. Then, for the spectral resolution{Eλ}λ≥0 of L and for all f ∈ Dom(L),
we have

L f =

∫ ∞

0
λ dEλ f .

Given anyν ∈ (0,∞), one can define the family of operators{(tL)νe−tL}t>0 via the functional calculus:

(tL)νe−tL f =

∫ ∞

0
(tλ)νe−tλ dEλ f , f ∈ L2.

Fix some valueβ > 0 (that later will be the same as in(UΦ)β but so farβ is arbitrary).

Definition 1.3. For givenr ∈ (0,∞), p ∈ [1,∞), q ∈ (0,∞] choose somek ∈ (r/β,∞) and define the
Besov space Brp,q = Br

p,q(M, μ) as the collection of allf ∈ Lp such that

‖ f ‖Br
p,q := ‖ f ‖Lp +

(∫ ∞

0

[
t−r/β‖(tL)ke−tL f ‖Lp

]q dt
t

)1/q

(1.1)

is finite, where a usual modification is made whenq = ∞.

Remark 1.4. For a general operatorL, note that (tL)ke−tL f might not be well-defined for functionsf ∈ Lp.
However, under certain assumptions about the operatorL (see Subsection1.2 below), we shall prove in
Proposition2.4below that for allk ∈ [0,∞),

‖(tL)ke−tL f ‖Lp ≤ C‖ f ‖LP

uniformly in t ∈ (0,∞). Consequently, for anya ∈ (0,∞),
(∫ ∞

a

[
t−r/β‖(tL)ke−tL f ‖Lp

]q dt
t

)1/q

≤ C(a) ‖ f ‖Lp,

and the integral
∫ ∞
0

in (1.1) can be replaced with
∫ c

0
thus leading to an equivalent norm. As it will be

proved in Proposition2.9, under certain assumptions about the operatorL the norms‖ ∙ ‖Br
p,q are equivalent

for different values ofk providedk > r/β. It is known thatBr
p,q are complete (quasi)Banach spaces; see,

for example [5, Theorem 4.1].

The main purpose of this paper is investigation of the relation between the spacesΛ
m,s
p,q andBr

p,q. Since
in the casem= 0 the spaceΛs

p,q is defined independently of the operatorL, one cannot expect any relation
between them unlessL satisfies certain hypotheses.

In the next two Subsections we state the necessary hypotheses in terms of theheat kernelof the heat
semigroupe−tL and give some examples. Then we come back to the spaceΛ

m,s
p,q, Br

p,q and state our main
result about their identity.

Notation. Throughout the paper we use the following notation. LetN = {1,2, . . . }, Z+ = {0,1,2, . . . }
andZ = {0,±1,±2, . . . }. We shall writeC for various positive constants that are independent of the main
variables involved. Occasionally we useC(α, β, γ, . . . ) to denote a positive constant depending on the
parametersα, β, γ, . . . . Given any two nonnegative functionsF andG, the notationF . G (equivalently,
G & F) means that the inequalityF ≤ CGholds for some constantC in a specified domain of the functions
F,G. If F . G . F, then we writeF ' G.



4 Heat kernel and Lipschitz-Besov spaces

1.2 The notion of the heat kernel

Let L be a self-adjoint positive definite operator onL2 with the domain Dom(L) that is a dense subspace
of L2. Theheat semigroup{Pt}t≥0 generated byL is defined by

Pt = e−tL,

so thatPt is a bounded self-adjoint operator inL2. Assume that, for anyt > 0, the operatorPt has an
integral kernel pt that is a continuous function onM × M such that, for allf ∈ L2 andx ∈ M,

Pt f (x) = e−tL f (x) =
∫

M
pt(x, y) f (y) dμ(y). (1.2)

The function (t, x, y) 7→ pt (x, y) is calledthe heat kernelof L.
It follows from (1.2) that the heat kernel issymmetric, that is, for allt > 0 andx, y ∈ M,

pt(x, y) = pt(y, x),

and satisfies thesemigroup property: for all s, t > 0 andx, y ∈ M,

ps+t(x, y) =
∫

M
ps(x, z)pt(z, y) dμ(z).

We assume that the heat kernel satisfies in addition the following conditions:

(P1) Stochastic completeness:
∫

M
pt(x, y) dμ(y) ≡ 1 for all t > 0 andx ∈ M.

(P2) There exists a positive constantC such that, for allt > 0 andx ∈ M,
∫

M
|pt(x, y)| dμ(y) ≤ C. (1.3)

(P3) Upper bound: for allt ∈ (0,1] andx, y ∈ M,

|pt(x, y)| ≤
1

tα/β
Φ

(
ρ(x, y)

t1/β

)

, (UΦ)β

whereα, β > 0 andΦ is a non-negative monotone decreasing function on [0,∞) such that, for any
γ < β, ∫ ∞

τα+γΦ(τ)
dτ
τ
< ∞. (1.4)

(P4) Hölder continuity: for allt ∈ (0,1] andx, y, y′ ∈ M such thatρ (y, y′) ≤ t1/β,

∣∣∣pt(x, y) − pt(x, y
′)
∣∣∣ ≤

(
ρ(y, y′)

t1/β

)Θ 1

tα/β
Φ

(
ρ(x, y)

t1/β

)

, (HΦ)Θ

whereα, β andΦ are the same as in (P3), andΘ is some positive constant (that can be assumed to
be sufficiently small).
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Throughout the article, we will fix the aforementioned parametersα, β andΘ.
In addition, we assume that the parameterα is related to the metric measure structure as follows: for

all x ∈ M and 0< r < diamM,
μ(B(x, r)) ≤ Crα, (Vα)≤

whereB (x, r) is an open metric ball in(M, ρ).
Notice that the heat kernelpt might be signed; see example (vii) in Subsection1.3below. Properties

(P1) and (P3) imply thatpt is anapproximation of identity, that is, for anyu ∈ Lp with p ∈ [1,∞),
∫

M
pt(x, y)u(y) dμ(y)

Lp

−→ u(x) as t → 0+;

see Lemma2.8below for its proof. Observe that (P2) is a rather weak requirement. For example, ifpt ≥ 0
then (P2) follows trivially from (P1). Also, if the upper bound estimate (P3) is true for allt > 0, then it
implies (P2); see (2.3) and (2.1) below.

It is worth mentioning, that (P2) implies that the operatorL is positive definite. Indeed, by (1.3) we
obtain that for allt > 0

‖e−tL‖2→2 ≤ C,

whereas if the operatorL is not positive definite then‖e−tL‖2→2→ ∞ ast → ∞.

1.3 Some examples of heat kernel

Let us give some examples of heat kernels in different setups.
(i) Consider the Euclidean spaceRn with standard metric and measure, which satisfies(Vα)≤ with

α = n. Consider also the Laplace operatorL = −Δ = −
∑n

j=1 ∂
2
xj

. Then the heat semigroup{e−tL}t≥0 has
the classical Gauss-Weierstrass kernel:

pt(x, y) =
1

(4πt)n/2
exp

(

−
|x− y|2

4t

)

.

Obviously, (P1)-(P4) hold withα = n, β = 2,Θ = 1 and

Φ(τ) =
1

(4π)n/2
exp(−τ2/4).

(ii) Consider the Euclidean spaceRn and the operatorL = (−Δ)1/2. Then the semigroup{e−tL}t≥0 has
the Poisson kernel:

pt(x, y) = Cn
1
tn

(

1+
|x− y|2

t

)− n+1
2

,

whereCn = π−
n+1

2 Γ(n+1
2 ). Again (P1)-(P4) hold withα = n, β = 1,Θ = 1 and

Φ(τ) = Cn(1+ τ2)−
n+1

2 .

(iii) Let L be a self-adjoint positive definite operator inL2. Assume that the kernelpt of L satisfies
(P1) and (P4) for allt ∈ (0,∞), as well a stronger version of (P3): for allt ∈ (0,∞) andx, y ∈ M,

1

tα/β
Φ1

(
ρ(x, y)

t1/β

)

≤ pt(x, y) ≤
1

tα/β
Φ2

(
ρ(x, y)

t1/β

)

, (1.5)
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whereΦ1 andΦ2 are non-negative monotone decreasing functions on [0,∞) such thatΦ1(c) > 0 for some
c > 0 andΦ2 satisfies (1.4). In particular, the heat kernel is non-negative and (P2) is trivially satisfied.

Fix someδ ∈ (0,1) and consider the subordinated semigroup{e−tLδ}t≥0. It is known that this semigroup
has the heat kernel

qt(x, y) =
∫ ∞

0
ηt(s)ps(x, y) ds, (1.6)

whereηt (s) is the subordinator. It is known thatηt (s) is positive and satisfies the following identities

∫ ∞

0
ηt (s) ds= 1 (1.7)

and

ηt(s) =
1

t1/δ
η
( s

t1/δ

)
,

whereη is a positive function on(0,∞) such that for anyγ > 0,

η(s) = o
(
sγ

)
ass→ 0 (1.8)

and

η(s) '
1

s1+δ
, s≥ 1; (1.9)

(see [11, Section 5.4], [27]). As pt satisfies (P1), so doesqt by means of (1.6) and (1.7). Sinceqt ≥ 0,
it satisfies also (P2). Condition (P3) forqt follows from [11, Lemma 5.4] where it was proved that, for
β′ = δβ,

qt(x, y) '
1

tα/β
′

(

1+
ρ(x, y)

t1/β
′

)−(α+β′)

,

for all t ∈ (0,∞) andx, y ∈ M. Let us verify thatqt satisfies the Ḧolder continuity (P4). Sincept satisfies
(1.5) and (P4), we see that for allt ∈ (0,∞) andx, y, y′ ∈ M such thatρ (y, y′) ≤ t1/β

′
,

|qt(x, y) − qt(x, y
′)|

≤
∫ ∞

0
ηt(s)|ps(x, y) − ps(x, y

′)| ds

≤ C
∫ ∞

0
ηt(s)

1

sα/β

(
ρ(y, y′)

s1/β

)Θ [

Φ2

(
ρ(x, y)

s1/β

)

+ Φ2

(
ρ(x, y′)

s1/β

)]

ds

= C
1

tα/β
′

(
ρ(y, y′)

t1/β
′

)Θ ∫ ∞

0
η
( s

t1/δ

) ( t1/δ

s

)(α+Θ)/β [

Φ2

(
ρ(x, y)

s1/β

)

+ Φ2

(
ρ(x, y′)

s1/β

)]
ds

t1/δ
.

It follows from (1.4) thatΦ2(τ) ≤ C(1+ τ)−(α+β′), so

Φ2

(
ρ(x, y)

s1/β

)

≤ C

(

1+
ρ(x, y)

s1/β

)−(α+β′)

≤ C

(

1+
t1/δ

s

)(α/β+δ) (

1+
ρ(x, y)

t1/β
′

)−(α+β′)
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and thus

∫ ∞

0
η
( s

t1/δ

) ( t1/δ

s

)(α+Θ)/β

Φ2

(
ρ(x, y)

s1/β

)
ds

t1/δ

≤ C

(

1+
ρ(x, y)

t1/β
′

)−(α+β′) ∫ ∞

0
η
( s

t1/δ

) ( t1/δ

s

)(α+Θ)/β (

1+
t1/δ

s1/β

)(α/β+δ)
ds

t1/δ

'

(

1+
ρ(x, y)

t1/β
′

)−(α+β′) ∫ ∞

0
η(τ)τ−(α+Θ)/β(1+ τ)−α/β−δ dτ

'

(

1+
ρ(x, y)

t1/β
′

)−(α+β′)

,

where the last integral converges by means of (1.8) and (1.9). Similarly one obtains

∫ ∞

0
η
( s

t1/δ

) ( t1/δ

s

)(α+Θ)/β

Φ2

(
ρ(x, y′)

s1/β

)
ds

t1/δ
≤ C

(

1+
ρ(x, y′)

t1/β
′

)−(α+β′)

'

(

1+
ρ(x, y)

t1/β
′

)−(α+β′)

,

whence it follows that

∣∣∣qt(x, y) − qt(x, y
′)
∣∣∣ ≤ C

1

tα/β
′

(
ρ(y, y′)

t1/β
′

)Θ (

1+
ρ(x, y)

t1/β
′

)−(α+β′)

,

which proves (P4) forqt.
(iv) Consider the operatorL = (−Δ)m/2 in Rn, where 0< m< 2. As a consequence of (i) and (iii), the

heat kernel ofe−tL satisfies (P1)-(P4). Moreover, it satisfies the two-sided estimate

pt(x, y) '
1

tn/m

(

1+
|x− y|
t1/m

)−(n+m)

for all t ∈ (0,∞) andx, y ∈ Rn, and (P4) holds forβ = m andΘ = 1.
(v) Let M be the unbounded Sierpinski gasket SG inRn, ρ be the induces metric onSGandμ be the

Hausdorff measure on SG of dimension

α = dimH SG= log2(n+ 1).

It is known that SG satisfies(Vα)≤ (see [3]). It is also known that SG admits a local Dirichlet formE
whose heat kernel satisfies thesub-Gaussianestimate

pt(x, y) �
C

tα/β
exp


−c

(
ρ(x, y)

t1/β

) β
β−1


 , (1.10)

where the parameterβ = log2(n+ 3) is called thewalk dimension(see Barlow [3] for more details). The
sign� means here that both≤ and≥ hold but with different values of the positive constantsC, c. The
operatorL in this case is the generator of the Dirichlet formE.

The sub-Gaussian estimate (1.10) is valid on many other fractal spaces, with various values ofα andβ;
more precisely, any coupleα, β in the range 2≤ β ≤ α + 1 is possible. In all these cases the heat kernel is
known to be stochastically complete, so that (P1) and (P2) are satisfied. Clearly, (P3) follows from (1.10).



8 Heat kernel and Lipschitz-Besov spaces

By [4, Theorem 3.1 and Corollary 4.2], the estimate (1.10) implies the Ḧolder continuity (P4) with some
smallΘ (see also [13, Theorem 7.4]).

(vi) Let M be a geodesically complete Riemannian manifold,ρ be the geodesic distance, andμ be
the Riemannian measure. The Laplace-Beltrami operatorL = −Δ on M can be made into a self-adjoint
operator inL2 by appropriately defining its domain. As was proved by Li and Yau [17], if the Ricci
curvature ofM is non-negative, then the heat kernel of the heat semigroupe−tL satisfies the estimate

pt(x, y) �
C

μ(B(x,
√

t))
exp

(

−c
ρ(x, y)2

t

)

. (1.11)

The heat kernel is in this case stochastically complete (see, for example, [10]), and (1.11) implies (P4) by
[4, Theorem 3.1 and Corollary 4.2]. Hence, all (P1)-(P4) are satisfied.

(vii) Let m ∈ N andα, β ben-dimensional multi-indices. Consider inRn the elliptic operator of order
2m of the form

L =
∑

|α|≤m, |β|≤m

(−1)|α|Dα(aα,βD
β)

with the leading part
L0 = (−1)m

∑

|α|=|β|=m

Dα(aα,βD
β),

whereA := {aα,β(x)} is a symmetric matrix of complex-valued bounded measurable functions onRn. Thus
operatorsL0 andL admit self-adjoint extensions inL2. Denote byp0

t the heat kernel of the semigroup
e−tL0 and bypt the heat kernel of the semigroupe−tL. It is known that ifm > 1 then the heat kernelsp0

t
andpt cannot be non-negative functions; see Davies [9, Section 5.5]. Upper bound and Hölder continuity
estimates of the kernelp0

t andpt are studied in Auscher and Qafsaqui [2]; see also [1, 9].
For p ∈ [1,∞), denote byLp(Rn) the Lebesgue space with respect to the Lebesgue measure. Assume

thatL0 satisfies the so-calledstrong Garding inequality: for all functionsu in the Sobolev spaceWm,2(Rn),

Re(L0u, u) ≥ δ0‖∇
mu‖2L2(Rn)

for some constantδ0 > 0. Let BMO (Rn) be the space of locally integrable functionsf satisfying the
condition

‖ f ‖BMO (Rn) := sup
ballsB inRn

1
|B|

∫

B
| f (x) − fB| dx< ∞,

where fB denotes the arithmetic mean off in the ball B. Obviously, the constant functions are in
BMO (Rn). If every aα,β ∈ BMO (Rn), then the following estimates ofp0

t and pt were given in [2,
Proposition 47]. For any multi-indices|γ| ≤ m− 1, there exist positive constantsC andc such that for all
t ∈ (0,∞) andx, y ∈ Rn,

|Dγxp0
t (x, y)| ≤ C

1

t(n+|γ|)/(2m)
exp


−c

(
|x− y|
t1/(2m)

) 2m
2m−1


 .

In particular,p0
t satisfies (P3) for allt > 0 with α = n andβ = 2m. It follows that p0

t satisfies also (P2). If
m= 1, then for allt ∈ (0,∞) andx, y, y′ ∈ Rn such that|y− y′| ≤ t1/(2m),

|p0
t (x, y) − p0

t (x, y′)| ≤ C
1

tn/(2m)
exp


−c

(
|x− y|
t1/(2m)

) 2m
2m−1


 ,
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that is,p0
t satisfies (P4) for allt > 0. By [2, Theorem 16], the kernelpt satisfies (P3) and (P4) for short

time t ∈ (0,T0] with someT0 ∈ (0,∞). Unfortunately, it remains unclear whenp0
t or pt are in general

stochastically complete.

1.4 Main results

As above, let(M, ρ, μ) be a metric measure space,L be a positive definite self-adjoint operator inL2, and
pt (x, y) be the heat kernel ofL.

Our main result is the next theorem.

Theorem 1.5. Let (M, ρ, μ) be a metric measure space that satisfies(Vα)≤. Assume that L is a positive
definite operator whose heat semigroup{Pt}t≥0 has the heat kernel{pt}t>0 satisfying (P1)-(P4). Fix the
parameters p∈ (1,∞), q ∈ (0,∞], m ∈ [0,∞) as well as

s ∈ (0,Θ ∧ (β/2))

and set
r = mβ/2+ s.

Then the following assertions hold:

(a) For all f ∈ Dom(Lm/2) ∩ Lp,
‖ f ‖Br

p,q ' ‖ f ‖Λm,s
p,q
.

(b) If in addition q< ∞ the following two spaces are identical:

Br
p,q = Λ̃m,s

p,q (1.12)

with equivalent norms.

(c) If (P2) holds for all t∈ (0,∞), then the assertions of (a) and (b) are valid also for p= 1.

Under the hypotheses of Theorem1.5, we see that, for any two pairs of (m, s) and (m′, s′) such that
m, m′ ∈ [0,∞),

s, s′ ∈ (0, Θ ∧ (β/2)) and mβ/2+ s= m′β/2+ s′,

we have the identity of the spaces
Λ̃m,s

p,q = Λ̃m′,s′
p,q

with equivalent norms. This provides a way of defining the higher order Sobolev spacesWr
p with r =

mβ/2+ s onα-regular metric measure spaces as follows:

‖ f ‖Wr
p := ‖ f ‖Λm,s

p,p
' ‖ f ‖Lp +

[∫

M

∫

M

|Lm/2 f (x) − Lm/2 f (y)|p

ρ(x, y)α+sp dμ(x) dμ(y)

]1/p

,

which may be an interesting topic of research in the future.
For the casep = q = 2 and under some additional assumptions the identity (1.12) holds for the

maximal ranges ∈ (0, β/2), as is stated in the next theorem.
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Theorem 1.6. Let (M, ρ, μ) be a metric measure space that satisfies(Vα)≤. Assume that L is a positive
definite operator whose heat semigroup{Pt}t≥0 has the non-negative heat kernel{pt}t>0 satisfying (P1)
and (P3) for all t∈ (0,∞), and (P4) for t∈ (0,1]. Fix the parameters m∈ [0,∞),

s ∈ (0, β/2),

and set
r = mβ/2+ s.

Then the following two spaces are identical:

Br
2,2 = Λ̃

m,s
2,2 (1.13)

with equivalent norms.

Remark 1.7. Assuming that the heat kernelpt is non-negative and satisfies (P1) and (1.5), Hu and Z̈ahle
[15, Theorem 5.2 and Corollary 3.4] proved that, for anys ∈ (0, β/2),

Bs
2,2 = Λs

2,2

with equivalent norms. Under a stronger assumption (1.10) instead of (1.5) the same equivalence was also
obtained by Pietruska-Pałuba [23, Section 4.2].

However, the relation between the spacesΛs
p,q andBs

p,q for generalp,q ands remained unknown even
when p = 2, which was posed in [23] as an open question. Our Theorem1.5 answers this question for
small values ofs, as well as characterisesBr

p,q for arbitrarily larger in terms ofΛ̃m,s
p,q.

Remark 1.8. Consider the case whenM is the Euclidean spaceRn, ρ is the Euclidean distance andμ is
the Lebesgue measure. LetL = −Δ be the Laplace operator andpt as above the Gauss-Weierstrass kernel,
so thatα = n, β = 2 andΘ = 1. Theorem1.5says in this case that, for allm ∈ (0,∞), s ∈ (0,1), p ∈ [1,∞)
andq ∈ (0,∞],

‖ f ‖Lp(Rn) +





∫ ∞

0

[∫

Rn

?

B(x,r)

|(−Δ)m/2 f (x) − (−Δ)m/2 f (y)|p

r sp dy dx

]q/p
dr
r





1/q

' ‖ f ‖Lp(Rn) +

(∫ ∞

0

[
t−(m+s)/2‖(−tΔ)ketΔ f ‖Lp(Rn)

]q dt
t

)1/q

(1.14)

for functions f ∈ Dom((−Δ)m/2) ∩ Lp(Rn), wherek > (m+ s)/2.
For the operatorL =

√
−Δ and for the Poisson kernelpt we haveα = n, β = 1 andΘ = 1. By Theorem

1.5we see that, for allm ∈ (0,∞), s ∈ (0,1/2), p ∈ [1,∞) andq ∈ (0,∞],

‖ f ‖Lp(Rn) +





∫ ∞

0

[∫

Rn

?

B(x,r)

|(−Δ)m/2 f (x) − (−Δ)m/2 f (y)|p

r sp dy dx

]q/p
dr
r





1/q

' ‖ f ‖Lp(Rn) +

(∫ ∞

0

[
t−(m+s)‖(t

√
−Δ)ke−t

√
−Δ f ‖Lp(Rn)

]q dt
t

)1/q

(1.15)

for functions f ∈ Dom((−Δ)m/2) ∩ Lp(Rn), wherek > m+ s.
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For m = 0 ands ∈ (0,1), the norm equivalences (1.14) and (1.15) are well known; see Triebel [25,
Theorem 1.7.3 and Theorem 1.8.3]. The right hand sides of (1.14) and (1.15) are the Gauss-Weierstrass
heat semigroup and Poisson semigroup characterizations of the Besov spaceBs

p,q(Rn), respectively. They
are both equivalent to the norm

‖ f ‖Bs
p,q(Rn) = ‖ f ‖Lp(Rn) +

(∫ 1

0
t−sq‖φt ∗ f ‖qLp(Rn)

dt
t

)1/q

,

whereφ can be taken a smooth function such that

suppφ̂ ⊂ {ξ ∈ Rn : 1/4 ≤ |ξ| ≤ 4}

and
φ̂ > c > 0 on {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2},

andφt(∙) = tnφ(t∙). We refer the reader to Triebel [24, 25] and the references therein for detailed discus-
sions of the various characterizations of the classical Besov spaces.

It should be remarked that, assuming that (Vα)≤, (P1), (P3) and (P4) hold forβ = 2 andt ∈ (0,∞), Bui,
Duong and Yan [5] systematically studied the Besov spacesBr

p,q (for small r only) defined in Definition
1.3and proved that whenL = −Δ the spaceBr

p,q is equivalent to the classical Besov space.

Remark 1.9. Let (M, ρ, μ) be the space of homogeneous type with the measureμ satisfying the reverse
doubling condition, that is, for allx ∈ M and 0< r ≤ diamM

3 ,

μ(B(x,2r)) ' μ(B(x, r)).

Let ε1 ∈ (0,1], ε2 > 0, andε3 > 0. A sequence{Sk}k∈Z of bounded linear integral operators onL2 is called
anapproximation of the identity of order(ε1, ε2, ε3), if there exists a positive constantC such that, for all
k ∈ Z andx, x′, y andy′ ∈ M, the integral kernel,Sk(x, y), of Sk is a measurable function, fromM × M
intoC, satisfying that

(i) |Sk(x, y)| ≤ C 1
μ(B(x,2−k+d(x,y)))

2−kε2

[2−k+d(x,y)]ε2
;

(ii) |Sk(x, y) − Sk(x′, y)| ≤ C d(x,x′)ε1
[2−k+d(x,y)]ε1

1
μ(B(x,2−k+d(x,y)))

2−kε2

[2−k+d(x,y)]ε2
for all d(x, x′) ≤ [2−k + d(x, y)]/2;

(iii) Sk satisfies (ii) withx andy interchanged;

(iv) for all d(x, x′) ≤ [2−k + d(x, y)]/3 andd(y, y′) ≤ [2−k + d(x, y)]/3,

|[Sk(x, y)−Sk(x, y′)] − [Sk(x′, y)−Sk(x′, y′)]| ≤ C d(x,x′)ε1
[2−k+d(x,y)]ε1

d(y,y′)ε1
[2−k+d(x,y)]ε1

1
μ(B(x,2−k+d(x,y)))

2−kε3

[2−k+d(x,y)]ε3
;

(v)
∫

M
Sk(x,w) dμ(w) = 1 =

∫
M

Sk(w, y) dμ(w).

Obviously, an approximation of the identity has similar properties as a heat kernel, except the second order
difference property in (iv). For the existence of such{Sk}k∈Z, we refer the reader to Han, M̈uller and Yang
[14] (see also David, Journé and Semmes [6] when (M, ρ, μ) is anα-regular metric measure space).
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Via the above approximation of the identity, the authors of [14] build a framework for the theory of
Besov and Triebel-Lizorkin spaces on (M, ρ, μ). In particular, fors ∈ (0, ε1), p ∈ [1,∞] andq ∈ (0,∞],
the Besov spaceBs

p,q can be defined by means of the following norm:

‖ f ‖Bs
p,q

= ‖S0 f ‖Lp +




∞∑

k=1

2ksq‖Dk f ‖qLp




1/q

whereDk = Sk − Sk−1 for k ∈ Z, and a usual modification is made whenq = ∞. It was proved by M̈uller
and Yang [19] that the spaceΛs

p,q coincides with the Besov spaceBs
p,q; see also Yang and Lin [26] when

(M, ρ, μ) is anα-regular metric measure space.

Remark 1.10. Let (M, ρ, μ) be as in Remark1.9. Assume that the non-collapsing condition holds: there
exists a positive constantc such that

inf
x∈M
μ(B(x,1)) ≥ c.

Assume thatL is a positive defined self-adjoint operator inL2 such that the kernelpt of the heat semigroup
{e−tL}t≥0 satisfies (P1) and the following stronger conditions:

(P3)′ for all t ∈ (0,1] andx, y ∈ M,

|pt(x, y)| ≤ C
exp

(
−c[ρ(x,y)]2

t

)

√
μ(B(x,

√
t)) μ(B(y,

√
t))

;

(P4)′ for all t ∈ (0,1] andx, y, y′ ∈ M satisfying thatρ(y, y′) ≤
√

t,

|pt(x, y) − pt(x, y
′)| ≤ C

(
ρ(y, y′)
√

t

)Θ exp
(
−c[ρ(x,y)]2

t

)

√
μ(B(x,

√
t)) μ(B(y,

√
t))
.

In this caseβ = 2. LetΦ0,Φ ∈ C∞c (R+) such that

(i) suppΦ0 ⊂ [0,2], |Φ0(λ)| ≥ c > 0 on [0,23/4] andΦ(2ν+1)
0 (0) = 0 for all ν ∈ N;

(ii) suppΦ ⊂ [1/2,2] and|Φ(λ)| ≥ c > 0 on [2−3/4,23/4];

(iii) Φ j(∙) = Φ(2− j ∙) for all j ≥ 1 and
∑∞

j=0Φ j(λ) = 1 for all λ ∈ R+.

For anys ∈ (0,Θ∧1), p ∈ (1,∞) andq ∈ (0,∞), it was proved in [20, Theorem 6.7, Remark 6.8] and [18]
that

‖ f ‖Bs
p,q
'





∞∑

j=0

2 jsq‖Φ j(
√

L ) f ‖qLp





1/q

' ‖ f ‖Bs
p,q
,

whereΦ j(
√

L ) are operators defined via the spectral resolution ofL. Applying Remark1.9yields that all
the norms in the last formulae coincide to‖ ∙ ‖Λs

p,q
. In particularBs

p,q = Λs
p,q with equivalent norms.
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The article is organized as follows. In Section2 we make necessary preparation for the proof. In
Subsection2.1we obtain the estimates of fractional derivatives of the heat semigroup. In Subsection2.2
we deduce an inhomogeneous version of the continuous Calderón reproducing formulae. In Subsection
2.3, we prove that the definition of‖ ∙ ‖Br

p,q
in (1.1) is independent of the choices ofk. Finally, in Section

3, we prove Theorems1.5and1.6.

2 Auxiliary estimates

2.1 Fractional derivatives of the heat semigroup

We start with the following basic estimates of the metric measure space(M, ρ, μ) that satisfies(Vα)≤.

Lemma 2.1. Letγ ∈ (0,∞). There exists a constant C> 0 such that for all x, y ∈ M and t> 0,

∫

M

1

tα/β

[

1+
ρ(x, y)

t1/β

]−(α+γ)

dμ(y) ≤ C (2.1)

and ∫

M

[

1+
ρ(x, z)

t1/β

]−(α+γ) [

1+
ρ(z, y)

t1/β

]−(α+γ)

dμ(z) ≤ Ctα/β
[

1+
ρ(x, y)

t1/β

]−(α+γ)

. (2.2)

Proof. By (Vα)≤, we see that for allt > 0 andy ∈ M,

∫

M

[

1+
ρ(x, y)

t1/β

]−(α+γ)

dμ(y) =




∫

B(x,t1/β)
+

∞∑

j=1

∫

2 j−1t1/β≤ρ(x,y)<2 j t1/β




[

1+
ρ(x, y)

t1/β

]−(α+γ)

dμ(y)

≤ Ctα/β,

which implies (2.1). For anyx, y, z ∈ M, one has eitherρ(x, z) ≥ 1
2ρ(x, y) or ρ(z, y) ≥ 1

2ρ(x, y), so (2.1)
implies that

∫

M

[

1+
ρ(x, z)

t1/β

]−(α+γ) [

1+
ρ(z, y)

t1/β

]−(α+γ)

dμ(z)

≤




∫

ρ(x,z)≥ 1
2ρ(x,y)

+

∫

ρ(z,y)≥ 1
2ρ(x,y)




[

1+
ρ(x, z)

t1/β

]−(α+γ) [

1+
ρ(z, y)

t1/β

]−(α+γ)

dμ(z)

≤ Ctα/β
[

1+
ρ(x, y)

t1/β

]−(α+γ)

.

Thus, (2.2) holds. �

Let pt be the heat kernel satisfying (P1)-(P4). The upper bound and Hölder continuity estimates ofpt

have some self-improvement properties in the timet, as follows.

Lemma 2.2. Let γ ∈ (0, β) and T0 ∈ [1,∞). Then, there exists a positive constant C= C(γ,T0, α, β,Θ)
such that the following hold:
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(i) For all t ∈ (0,T0] and x, y ∈ M,

|pt(x, y)| ≤ C
1

tα/β

[

1+
ρ(x, y)

t1/β

]−(α+γ)

. (2.3)

(ii) For all t ∈ (0,T0] and x, y, y′ ∈ M such thatρ(y, y′) ≤ t1/β,

|pt(x, y) − pt(x, y
′)| ≤ C

(
ρ(y, y′)

t1/β

)Θ 1

tα/β

[

1+
ρ(x, y)

t1/β

]−(α+γ)

. (2.4)

Proof. Let the functionΦ be as in (P3) and (P4). Given anyγ ∈ (0, β), it is easy to verify that

Φ(τ) ≤ C(1+ τ)−(α+γ), τ > 0,

for some positive constantC = C(γ). Thus, from (P3) and (P4), it follows that (i) and (ii) hold when
T0 = 1.

Now we let 1< T0 ≤ 2 and prove that (i) and (ii) hold. For anyt ∈ (0,T0], by the semigroup property,
we write

pt(x, y) =
∫

M
pt/2(x, z)pt/2(z, y) dμ(z).

Since now 0< t/2 ≤ T0/2 ≤ 1, the kernelpt/2 satisfies (2.3) and (2.4). Thus, by (2.2), we have

|pt(x, y)| ≤C
1

t2α/β

∫

M

[

1+
ρ(x, z)

t1/β

]−(α+γ) [

1+
ρ(z, y)

t1/β

]−(α+γ)

dμ(z) (2.5)

≤C
1

tα/β

[

1+
ρ(x, y)

t1/β

]−(α+γ)

and, forρ(y, y′) ≤ (t/2)1/β,

|pt(x, y) − pt(x, y
′)| =

∣∣∣∣∣

∫

M
pt/2(x, z)

[
pt/2(z, y) − pt/2(z, y′)

]
dμ(z)

∣∣∣∣∣

≤ C
1

t2α/β

(
ρ(y, y′)

t1/β

)Θ ∫

M

[

1+
ρ(x, z)

t1/β

]−(α+γ) [

1+
ρ(z, y)

t1/β

]−(α+γ)

dμ(z)

≤ C
1

t2α/β

(
ρ(y, y′)

t1/β

)Θ [

1+
ρ(x, y)

t1/β

]−(α+γ)

.

For (t/2)1/β < ρ(y, y′) ≤ t1/β, we have 1+ ρ(x,y
′)

t1/β
' 1+

ρ(x,y)
t1/β
, which combined with (2.5) implies that

|pt(x, y) − pt(x, y
′)| ≤C

(
ρ(y, y′)

t1/β

)Θ (
|pt(x, y)| + |pt(x, y

′)|
)

(2.6)

≤C

(
ρ(y, y′)

t1/β

)Θ 1

tα/β

[

1+
ρ(x, y)

t1/β

]−(α+γ)

.

Altogether, we deduce that (2.3) and (2.4) hold for t ∈ (0,T0] with 1 < T0 ≤ 2.
Let N ∈ N such that 2N−1 < T0 ≤ 2N. Repeating the above argumentsN times, we get (2.3) and (2.4)

for t ∈ (0,T0]. This finishes the proof of the lemma. �
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Given any numberν ∈ (0,∞), denote byqν,t(x, y) the kernel of the operator (tL)νe−tL. If ν = k is a
positive integer, since

(tL)ke−tL = tk∂k
t e
−tL = tk∂k

t Pt,

so we occasionally writetk∂k
t Pt(x, y) asqk,t(x, y). Indeed, the kernelqk,t has short time upper bound and

Hölder continuity similar to that ofpt, as follows.

Proposition 2.3. Let k ∈ Z+, γ ∈ (0, β) and T0 ∈ [1,∞). Then, there exists a positive constant C=
C(k, γ,T0, α, β,Θ) such that the following hold:

(i) For all t ∈ (0,T0] and x, y ∈ M,

|qk,t(x, y)| ≤ C
1

tα/β

[

1+
ρ(x, y)

t1/β

]−(α+γ)

. (2.7)

(ii) For all t ∈ (0,T0] and x, y, y′ ∈ M such thatρ(y, y′) ≤ t1/β,

|qk,t(x, y) − qk,t(x, y
′)| ≤ C

(
ρ(y, y′)

t1/β

)Θ 1

tα/β

[

1+
ρ(x, y)

t1/β

]−(α+γ)

.

Proof. For k = 0, we see that (i) and (ii) are given exactly in Lemma2.2. For k ≥ 1, (i) follows directly
from [8, Theorem 4] and Lemma2.2(i).

Now we show (ii) fork ≥ 1. For anyt > 0, the semigroup property ofpt implies that

qk,t(x, y) = 2k
∫

M
qk,t/2(x, z)pt/2(z, y) dμ(z).

For all t ∈ (0,T0] and x, y, y′ ∈ M such thatρ(y, y′) ≤ (t/2)1/β, we apply (i), Lemma2.2(ii) and (2.2) to
derive that

|qk,t(x, y) − qk,t(x, y
′)| ≤ 2k

∫

M
|qk,t/2(x, z)||pt/2(z, y) − pt/2(z, y′)| dμ(z) (2.8)

≤ C
1

t2α/β

(
ρ(y, y′)

t1/β

)Θ ∫

M

[

1+
ρ(x, z)

t1/β

]−(α+γ) [

1+
ρ(z, y)

t1/β

]−(α+γ)

dμ(z)

≤ C
1

tα/β

(
ρ(y, y′)

t1/β

)Θ [

1+
ρ(x, y)

t1/β

]−(α+γ)

,

which proves (ii) forρ(y, y′) ≤ (t/2)1/β. For (t/2)1/β < ρ(y, y′) ≤ t1/β, by (i) and the same method used in
(2.6), we deduce that (ii) also holds. �

For fractional derivatives of the heat semigroup, we have the following norm estimates, both for short
and large time. Under the current assumptions (P1)-(P4) we can only obtain that (2.11) below holds for
p ∈ (1,∞). To obtain (2.11) for p = 1 or∞, we need the large time upper bound estimates ofpt; see
Lemma3.3below for how to deal with it.

Proposition 2.4. (i) If p ∈ [1,∞], then for all t∈ (0,∞) and f ∈ Lp,

‖e−tL f ‖Lp ≤ C‖ f ‖Lp. (2.9)
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(ii) If T0 ≥ 1, k ∈ Z+ and p∈ [1,∞], then for all t∈ (0,T0] and f ∈ Lp,

‖(tL)ke−tL f ‖Lp ≤ C‖ f ‖Lp. (2.10)

(iii) If k ∈ Z+, ν ∈ [0,1) and p∈ (1,∞), then for all t∈ (0,∞) and f ∈ Lp,

‖(tL)k+νe−tL f ‖Lp ≤ C‖ f ‖Lp. (2.11)

Here the constant C appearing in(i)-(iii) is positive and depends on k, ν, p and T0, but independent of t
and f .

Proof. First we prove (i). Forp ∈ [1,∞), by (P2) and Ḧolder’s inequality, we see that for allt > 0,

|e−tL f (x)| ≤
∫

M
|pt(x, y)|| f (y)| dμ(y)

≤

[∫

M
|pt(x, y)| dμ(y)

]1/p′ [∫

M
|pt(x, y)|| f (y)|p dμ(y)

]1/p

≤ C

[∫

M
|pt(x, y)|| f (y)|p dμ(y)

]1/p

,

which combined with Fubini’s theorem further implies that

‖e−tL f ‖pLp ≤ C
∫

M

∫

M
|pt(x, y)|| f (y)|p dμ(y) dμ(x) ≤ C‖ f ‖pLp.

A modification of the above arguments yields (2.9) for p = ∞. This proves (i).
Now we prove (ii). Ifk ∈ Z+, ν = 0 andt ∈ (0,T0] with T0 ≥ 1, then (2.1) and (2.7) imply that for any

givenγ ∈ (0, β),

∫

M
|qk,t(x, y)| dμ(y) ≤ C

1

tα/β

∫

M

[

1+
ρ(x, y)

t1/β

]−(α+γ)

dμ(y) ≤ C.

Arguing as in the proof of (i), with the kernelpt there replaced byqk,t, we obtain (ii).
Next we prove (iii) for the casek ∈ Z+, ν = 0 andt ∈ (0,∞). It was known from [8, Lemma 2] that

the kernel{pt}t>0 can be analytically continued to complex timesz= t + is such thatt > 0. We claim that
there exists a constantC such that for allf ∈ Lp with p ∈ (1,∞),

‖e−zL f ‖Lp ≤ C‖ f ‖Lp (2.12)

uniformly in the complex timez satisfying| argz| < θp with

θp =
π

2
(1− |2/p− 1|). (2.13)

Assuming this claim for the moment, we show (2.11). LetΓ be the circle in the complex plane with center
t and radius1

2t sinθp, so Cauchy’s theorem states that

qk,t(x, y) = tk∂k
t Pt(x, y) =

tk k!
2πi

∫

Γ

pz(x, y)

(t − z)k+1
dz
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and thus

tkLke−tL f (x) =
tk k!
2πi

∫

Γ

e−zL f (x)

(t − z)k+1
dz. (2.14)

Observe that| argz| < θp for anyz ∈ Γ. TakingLp-norm in both sides of (2.14), we use (2.12) to derive
that

‖(tL)ke−tL f ‖Lp ≤
tk k!
2π

∫

Γ

‖e−zL f ‖Lp

|t − z|k+1
|dz| ≤ Ctk

∫

Γ

‖ f ‖Lp

|t − z|k+1
|dz| = C‖ f ‖Lp,

which proves (2.11) for k ∈ Z+, ν = 0 andt ∈ (0,∞).
To verify the claim (2.12), we proceed as in the proof of [7, Theorem 1.4.2]. Letr > 0, θ ∈

(−π/2, π/2), f ∈ L1 ∩ L2 and g ∈ L2 ∩ L∞. Consider the operatorAz defined on the strip{z ∈ C :
0 ≤ Rez≤ 1} by

〈Azf , g〉 = 〈e−h(z)L f , g〉 with h(z) = reiθz.

By the functional calculus of self-adjoint operators, we see that

|〈Azf , g〉| ≤ ‖ f ‖L2‖g‖L2, i f Rez= 1.

Property (P4) implies that

|〈Azf , g〉| ≤ C‖ f ‖L1‖g‖L∞ , i f Rez= 0,

where the constantC > 0 is independent ofz. Applying the interpolation theorem for analytic families of
operators (see, for example [7, Section 1.1.6]) yields that for 0< t < 1,

‖At f ‖Lp(t) ≤ C‖ f ‖Lp(t) ,

where 1/p(t) = 1− t/2. Equivalently, forp ∈ (1,2), we obtain (2.12) when| argz| < θp with θp defined as
in (2.13). For p ∈ (2,∞), the corresponding result is obtained by duality. The casep = 2 follows from the
functional calculus ofL. Altogether, we obtain (2.12).

Finally we prove (iii) fork ∈ Z+, ν ∈ (0,1) andt ∈ (0,∞). For allλ ∈ (0,∞), one has

λν = Cνλ
2
∫ ∞

0
ξ1−νe−ξλ dξ,

whereCν is some positive number depending only onν. Consequently, for allt ∈ (0,∞),

(tλ)k+νe−tλ = Cν

∫ ∞

0

tk+νξ1−ν

(t + ξ)k+2
[(t + ξ)λ]k+2e−(t+ξ)λ dξ

and the functional calculus gives us that

(tL)k+νe−tL = Cν

∫ ∞

0

tk+νξ1−ν

(t + ξ)k+2
[(t + ξ)L]k+2e−(t+ξ)L dξ. (2.15)

For all f ∈ Lp with p ∈ (1,∞), since (2.11) holds fork ∈ Z+, ν = 0 andt ∈ (0,∞) was already proved, it
follows that

‖[(t + ξ)L]k+2e−(t+ξ)L f ‖Lp ≤ C‖ f ‖Lp
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uniformly in t andξ, which further implies that

‖(tL)k+νe−tL f ‖Lp ≤ Cν

∫ ∞

0

tk+νξ1−ν

(t + ξ)k+2
‖[(t + ξ)L]k+2e−(t+ξ)L f ‖Lp dξ

≤ C‖ f ‖Lp

∫ ∞

0

tk+νξ1−ν

(t + ξ)k+2
dξ

= C‖ f ‖Lp.

This proves (2.11) for the casek ∈ Z+, ν ∈ (0,1) andt ∈ (0,∞). �

As a simple consequence of Proposition2.4, we have the following two corollaries, which will be
useful in the following sections.

Corollary 2.5. Let T0 ≥ 1, p ∈ [1,∞], ν ∈ [0,∞) and N,N1 ∈ Z+ such that N−N1 ≥ ν. Then, there exists
a positive constant C such that for allλ, t ∈ (0,T0] and f ∈ Lp,

‖(λL)Ne−2λL(tL)νe−tL f ‖Lp ≤ C min

{( t
λ

)ν
,
(
λ

t

)N−N1−ν
}

‖(λL)N1+νe−λL f ‖Lp. (2.16)

Proof. Write

(λL)Ne−2λL(tL)νe−tL f =
λN−N1−νtν

(λ + t)N−N1
((λ + t)L)N−N1 e−(λ+t)L(λL)N1+νe−λL f .

SinceN − N1 ∈ Z+, applying (2.10) implies that

‖(λL)Ne−2λL(tL)νe−tL f ‖Lp ≤ C
λN−N1−νtν

(λ + t)N−N1
‖(λL)N1+νe−λL f ‖Lp

≤ C min

{( t
λ

)ν
,
(
λ

t

)N−N1−ν
}

‖(λL)N1+νe−λL f ‖Lp.

Thus, (2.16) holds. �

Corollary 2.6. Let p∈ [1,∞], ν ∈ [0,∞) and q∈ (0,1]. Then, there exists a positive constant C such that
for all j ∈ Z+ and f ∈ Lp,




∫ 2− j+1

2− j
‖(tL)νe−tL f ‖Lp

dt
t




q

≤ C
∫ 2− j

2− j−1
‖(tL)νe−tL f ‖qLp

dt
t
. (2.17)

Proof. For eacht ∈ [2− j ,2− j+1], we apply (2.9) to derive that

‖(tL)νe−tL f ‖Lp ≤ 2ν‖e−(t−2− j )L(2− j L)νe−2− j L f ‖Lp ≤ C‖(2− j L)νe−2− j L f ‖Lp.

Thus, 


∫ 2− j+1

2− j
‖(tL)νe−tL f ‖Lp

dt
t




q

≤ C‖(2− j L)νe−2− j L f ‖qLp. (2.18)
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Further, for anyτ ∈ [2− j−1,2− j ], again using (2.9) yields that

‖(2− j L)νe−2− j L f ‖qLp ≤ 2νq‖e−(2− j−τ)L(τL)νe−τL f ‖qLp ≤ C‖(τL)νe−τL f ‖qLp,

which further gives us that

‖(2− j L)νe−2− j L f ‖qLp ≤ C
∫ 2− j

2− j−1
‖(τL)νe−τL f ‖qLp

dτ
τ
. (2.19)

Combining (2.18) and (2.19) yields (2.17). �

2.2 An inhomogeneous version of the continuous Calderón reproducing formulae

It was proved in [5, Theorem 2.3] that for allp ∈ (1,∞), k ∈ N and f ∈ Lp,

f =
1

(k− 1)!

∫ ∞

0
tkLke−tL f

dt
t

in Lp.

This is usually refereed to as the homogeneous version of the continuous Calderón-reproducing formulae.
In this paper, since the upper bound and Hölder continuity are assumed only for short times, we therefore
need the following inhomogeneous version.

Proposition 2.7. Let p∈ [1,∞) and k∈ N. Then, for any f∈ Lp,

f =

k−1∑

m=0

1
m!

Lme−L f +
1

(k− 1)!

∫ 1

0
tkLke−tL f

dt
t
, (2.20)

where the integral converges strongly in Lp.

To prove Proposition2.7, we need the following lemma.

Lemma 2.8. Let m∈ N, p ∈ [1,∞) and f ∈ Lp. Then,

lim
t→0+
‖e−tL f − f ‖Lp = 0 (2.21)

and
lim
t→0+
‖(tL)me−tL f ‖Lp = 0. (2.22)

Proof. Since we are considering the behavior ofe−tL as t → 0+, we may restrictt ∈ (0,1]. Denote by
Cc(M) the space of continuous functions with compact supports onM. Due to (2.10) and the density of
Cc(M) in Lp for p ∈ [1,∞), we only need to prove (2.21) and (2.22) for f ∈ Cc(M).

First we let f ∈ Cc(M) and prove (2.21). Assume that suppf ⊂ B(x0,R) for somex0 ∈ M andR> 0.
Forδ > 0 to be determined later, by (P1), we write

e−tL f (x) − f (x) =
∫

M
pt(x, y)[ f (y) − f (x)] dμ(y), (2.23)
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so that

‖e−tL f − f ‖pLp =

∫

M\B(x0,2R)

∣∣∣∣∣

∫

M
pt(x, y)[ f (y) − f (x)] dμ(y)

∣∣∣∣∣

p

dμ(x)

+

∫

B(x0,2R)

∣∣∣∣∣∣

∫

ρ(x,y)<δ
pt(x, y)[ f (y) − f (x)] dμ(y)

∣∣∣∣∣∣

p

dμ(x)

+

∫

B(x0,2R)

∣∣∣∣∣∣

∫

ρ(x,y)≥δ
pt(x, y)[ f (y) − f (x)] dμ(y)

∣∣∣∣∣∣

p

dμ(x)

=: J1 + J2 + J3.

By (P2), we see that
∫

M
|pt(x, y)| dμ(y) ≤ C. For J1, since suppf ⊂ B(x0,R), we use Ḧolder’s inequality

and Fubini’s theorem to derive that

J1 =

∫

M\B(x0,2R)

∣∣∣∣∣

∫

M
pt(x, y) f (y) dμ(y)

∣∣∣∣∣

p

dμ(x)

≤ C
∫

M\B(x0,2R)

[∫

B(x0,R)
|pt(x, y)|| f (y)|p dμ(y)

]

dμ(x)

≤ C
∫

M

[∫

ρ(x,y)>R
|pt(x, y)| dμ(x)

]

| f (y)|p dμ(y).

Chooseγ ∈ (0, β). Then Lemma2.2(i) and (2.1) imply that

∫

ρ(x,y)>R
|pt(x, y)| dμ(x) ≤ C

∫

ρ(x,y)>R

1

tα/β

[

1+
ρ(x, y)

t1/β

]−α−γ
dμ(x) (2.24)

≤ C
(
1+

R

t1/β

)−γ/2 ∫

ρ(x,y)>R

1

tα/β

[

1+
ρ(x, y)

t1/β

]−α−γ/2
dμ(x)

= C
(
1+

R

t1/β

)−γ/2
,

and thus

J1 ≤ C‖ f ‖pLp

(
1+

R

t1/β

)−γ/2
,

which tends to zero ast → 0+. For anyε > 0, since f ∈ Cc(M), there exists someδ > 0 such that
| f (x)− f (y)| < ε whenρ(x, y) < δ. From this, it follows thatJ2 ≤ εpμ(B(x0,2R)) ≤ CεpRα, which tends to
0 if ε → 0+. With the above chosenδ, we use (2.24), obtaining

J3 ≤
∫

B(x0,2R)

∫

ρ(x,y)≥δ
|pt(x, y)|| f (y) − f (x)|p dμ(y) dμ(x)

≤ C
∫

M

∫

ρ(x,y)≥δ
|pt(x, y)|| f (y)|p dμ(x) dμ(y) + C

∫

M

∫

ρ(x,y)≥δ
|pt(x, y)|| f (x)|p dμ(y) dμ(x)

≤ C‖ f ‖pLp

(
1+

δ

t1/β

)−γ/2
,

which also tends to zero ast → 0+. Combining the estimates ofJ1, J2 andJ3 yields (2.21).
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Now we prove (2.22). For t ∈ (0,1] andx ∈ M, it follows from (P1) that
∫

M
qm,t(x, y) dμ(y) = 0 when

m ∈ N. Thus, instead of (2.23), we have

(tL)me−tL f (x) =
∫

M
qm,t(x, y)[ f (y) − f (x)] dμ(y).

Next, following the proof of (2.21), we just need to replace the kernelpt by qm,t and use Proposition2.3(i)
instead of Lemma2.2(i), which leads to (2.22). The details are omitted. �

Proof of Proposition2.7. Let p ∈ [1,∞) and f ∈ Lp. We claim that, for allm ∈ Z+,

lim
t→1−

(tL)me−tL f = Lme−L f in Lp. (2.25)

To see the claim, we write

(tL)me−tL f − Lme−L f = (tL)me−tL(1− e−(1−t)L) f + (tm− 1)Lme−L f .

By (2.10), we have‖Lme−L f ‖Lp ≤ C‖ f ‖Lp and thus

lim
t→1−
‖(tm− 1)Lme−L f ‖Lp = 0.

Again (2.10) implies that

‖(tL)me−tL(1− e−(1−t)L) f ‖Lp ≤ C‖(1− e−(1−t)L) f ‖Lp = C‖ f − e−(1−t)L f ‖Lp,

which tends to 0 by means of (2.21). This proves (2.25) and the claim.
By (2.21), (2.22) and (2.25), we use integration by parts to obtain

f = e−L f −
∫ 1

0
∂te
−tL f dt = e−L f +

∫ 1

0
tLe−tL f

dt
t

in Lp, that is, (2.20) holds fork = 1. Now we assume that (2.20) holds inLp for somek ∈ N and prove its
validity for k+ 1. Indeed, integration by parts again gives us that

1
k!

∫ 1

0
tk+1Lk+1e−tL f

dt
t

=
1
k!

∫ 1

0

[
ktk−1Lke−tL f − ∂t

(
tkLke−tL f

)]
dt

=
1
k!

[

k
∫ 1

0
tkLke−tL f

dt
t
− Lke−L f

]

= f −
k−1∑

m=0

1
m!

Lme−L f −
1
k!

Lke−L f

= f −
k∑

m=0

1
m!

Lme−L f .

By (2.21), (2.22) and (2.25), all the equalities in the above formula hold inLp. This proves that (2.20)
holds inLp for k+ 1. This finishes the proof of the proposition. �
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2.3 Norm equivalence

Proposition 2.9. Let s∈ (0,∞), p ∈ (1,∞) and q∈ (0,∞]. Then, the norms‖ ∙ ‖Bs
p,q

defined in (1.1) are
equivalent for any two values of k satisfying k> s/β.

Proof. Let s/β < k1 < k2 < ∞ and define

‖ f ‖Bs
p,q(ki ) = ‖ f ‖Lp +

(∫ ∞

0

[
t−s/β‖(tL)ki e−tL f ‖Lp

]q dt
t

)1/q

, i = 1, 2. (2.26)

We need to show that
‖ f ‖Bs

p,q(k1) ' ‖ f ‖Bs
p,q(k2).

Because of (2.11), the integral sign
∫ ∞
0

in (2.26) can be equivalently replaced by
∫ c

0
, wherec can be any

constant in (0,∞]. By k2 > k1 and (2.11), we see that

‖(tL)k2e−tL f ‖Lp = ‖(tL)k2−k1e−
1
2 tL(tL)k1e−

1
2 tL f ‖Lp ≤ C‖(tL)k1e−

1
2 tL f ‖Lp,

so that

‖ f ‖Bs
p,q(k2) ≤ C‖ f ‖Lp + C

(∫ c

0

[
t−s/β‖(tL)k1e−

1
2 tL f ‖Lp

]q dt
t

)1/q

' ‖ f ‖Bs
p,q(k1).

It remains to prove
‖ f ‖Bs

p,q(k1) ≤ C‖ f ‖Bs
p,q(k2). (2.27)

Fix some integerN > k2. By Proposition2.7and a change of variables, we write

(tL)k1e−tL f =

N−1∑

m=0

1
m!

Lme−L(tL)k1e−tL f +
2N

(N − 1)!

∫ 1
2

0
(λL)Ne−2λL(tL)k1e−tL f

dλ
λ
. (2.28)

For any 0≤ m≤ N − 1, applying (2.10) yields that

‖Lme−L(tL)k1e−tL f ‖Lp = tk1‖Lm+k1e−Le−tL f ‖Lp ≤ Ctk1‖ f ‖Lp.

With this, taking theLp-norm on both sides of (2.28) and applying (2.16), we obtain

‖(tL)k1e−tL f ‖Lp ≤ C


t

k1‖ f ‖Lp +

∫ 1
2

0
‖(λL)Ne−2λL(tL)k1e−tL f ‖Lp

dλ
λ




≤ C


t

k1‖ f ‖Lp +

∫ 1
2

0
min

{( t
λ

)k1

,
(
λ

t

)N−k2
}

‖(λL)k2e−λL f ‖Lp
dλ
λ




=: J1(t) + J2(t).

Sincek1 > s/β, it follows that

(∫ 1

0

[
t−s/βJ1(t)

]q dt
t

)1/q

≤ C‖ f ‖Lp

(∫ 1

0
t(k1−s/β)q dt

t

)1/q

≤ C‖ f ‖Lp.
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Thus, to obtain (2.27), it suffices to prove that
(∫ 1

0

[
t−s/βJ2(t)

]q dt
t

)1/q

≤ C‖ f ‖Bs
p,q(k2). (2.29)

First we prove (2.29) for q > 1. Write

[
t−s/βJ2(t)

]q
= C




∫ 1
2

0

( t
λ

)−s/β
min

{( t
λ

)k1

,
(
λ

t

)N−k2
}

λ−s/β‖(λL)k2e−λL f ‖Lp
dλ
λ




q

. (2.30)

Sincek1 > s/β, one can verify that
∫ 1

2

0

( t
λ

)−s/β
min

{( t
λ

)k1

,
(
λ

t

)N−k2
}

dλ
λ
< ∞.

Further, applying Ḧolder’s inequality to (2.30) yields that

[
t−s/βJ2(t)

]q
≤ C

∫ 1
2

0

( t
λ

)−s/β
min

{( t
λ

)k1

,
(
λ

t

)N−k2
} [
λ−s/β‖(λL)k2e−λL f ‖Lp

]q dλ
λ
,

which combined with Fubini’s theorem implies that
∫ 1

0

[
t−s/βJ2(t)

]q dt
t
≤ C

∫ 1

0

∫ 1

0

( t
λ

)−s/β
min

{( t
λ

)k1

,
(
λ

t

)N−k2
} [
λ−s/β‖(λL)k2e−λL f ‖Lp

]q dλ
λ

dt
t

≤ C
∫ 1

0

[
λ−s/β‖(λL)k2e−λL f ‖Lp

]q dλ
λ
.

This proves (2.29) for q > 1. If q = ∞, one may easily verify (2.29) by using the above argument.
Now we show (2.29) for q ∈ (0,1]. We split the integral interval in the right of (2.8) and apply the fact

(∑
|aj |

)κ
≤

∑
|aj |
κ whenκ ∈ (0,1], (2.31)

and Corollary2.6. It follows that

[
t−s/βJ2(t)

]q
'
∞∑

j=1




( t

2− j

)−s/β
min





( t

2− j

)k1

,

(
2− j

t

)N−k2




2 js/β




q ∫ 2− j

2− j−1
‖(λL)k2e−λL f ‖qLp

dλ
λ

≤ C
∫ 1

4

0

( t
λ

)−sq/β
min

{( t
λ

)k1q
,
(
λ

t

)(N−k2)q} [
λ−s/β‖(λL)k2e−λL f ‖Lp

]q dλ
λ
.

By Fubini’s theorem and the fact
∫ 1

4

0

( t
λ

)−sq/β
min

{( t
λ

)k1q
,
(
λ

t

)(N−k2)q} dλ
λ
< ∞,

we further deduce that
∫ 1

0

[
t−s/βJ2(t)

]q dt
t
≤ C

∫ 1

0

∫ 1
4

0

( t
λ

)−sq/β
min

{( t
λ

)k1q
,
(
λ

t

)(N−k2)q} [
λ−s/β‖(λL)k2e−λL f ‖Lp

]q dλ
λ

dt
t

≤ C
∫ 1

4

0

[
λ−s/β‖(λL)k2e−λL f ‖Lp

]q dλ
λ
.

This proves (2.29) for q ∈ (0,1]. We complete the proof the proposition. �
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3 Proofs of Theorems1.5and 1.6

3.1 Proof of Theorem1.5(a)

Proof of Theorem1.5(a). According to Proposition2.9, the norm‖ ∙ ‖Bs
p,q

defined in (1.1) is independent
of the choices ofk satisfyingk > s/β. Thus we choosek0 ∈ N such thatk0 > s/β+2. Fix k = k0+m/2, so
thatk > m/2+ s/β. In the proof below, we shall consider the norm‖ ∙ ‖Bs

p,q
defined via such ak as in (1.1).

Let f ∈ Dom(Lm/2) ∩ Lp. First we will prove that

‖ f ‖Bmβ/2+s
p,q

≤ C‖ f ‖Λm,s
p,q
. (3.1)

It follows from (P1) that the kernel of the operator (tL)k0e−tL, which is denoted byqk0,t(x, y), satisfies that
∫

M
qk0,t(x, y) dμ(y) = 0.

By k = k0 + m/2, we have (tL)ke−tL f = tm/2(tL)k0e−tL(Lm/2 f ) and thus

(tL)ke−tL f (x) = tm/2
∫

M
qk0,t(x, y) [Lm/2 f (y) − Lm/2 f (x)] dμ(y).

Since 0< s < min{Θ, β/2}, we chooseγ ∈ (s, β). With this γ, applying Proposition2.3(i) to qk0,t(x, y)
yields that fort ∈ (0,1] andx ∈ M,

|(tL)ke−tL f (x)| ≤ Ctm/2
∫

M

1

tα/β

[

1+
ρ(x, y)

t1/β

]−(α+γ)

|Lm/2 f (y) − Lm/2 f (x)| dμ(y)

≤ Ctm/2
∞∑

i=0

2−iγ
?

ρ(x,y)∼2i t1/β
|Lm/2 f (y) − Lm/2 f (x)| dμ(y).

where the notationρ(x, y) ∼ 2i t1/β means 2i−1t1/β ≤ ρ(x, y) < 2i t1/β when i ≥ 1 andρ(x, y) < t1/β when
i = 0. Further, by the fact

∑∞
i=0 2−iγ < ∞, applying Ḧolder’s inequality twice yields that

|(tL)ke−tL f (x)|p ≤ Ctmp/2
∞∑

i=0

2−iγ
?

ρ(x,y)<2i t1/β
|Lm/2 f (y) − Lm/2 f (x)|p dμ(y),

and

t−m/2−s/β‖(tL)ke−tL f ‖Lp (3.2)

≤ C




∞∑

i=0

2i(s−γ)
∫

M

?

ρ(x,y)<2i t1/β

|Lm/2 f (y) − Lm/2 f (x)|p

(2i t1/β)sp
dμ(y) dμ(x)




1/p

.

Consider first the caseq > p. Raising both sides of (3.2) to the powerq, and then applyings< γ and
Hölder’s inequality with exponents1q/p + 1

(q/p)′ = 1, we conclude that

[
t−m/2−s/β‖(tL)ke−tL f ‖Lp

]q
≤ C

∞∑

i=0

2i(s−γ)
[∫

M

?

ρ(x,y)<2i t1/β

|Lm/2 f (y) − Lm/2 f (x)|p

(2i t1/β)sp
dμ(y) dμ(x)

]q/p

,
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so that
∫ 1

0

[
t−m/2−s/β‖(tL)ke−tL f ‖Lp

]q dt
t

≤ C
∞∑

i=0

2i(s−γ)
∫ 1

0

[∫

M

?

ρ(x,y)<2i t1/β

|Lm/2 f (y) − Lm/2 f (x)|p

(2i t1/β)sp
dμ(y) dμ(x)

]q/p
dt
t

≤ C
∞∑

i=0

2i(s−γ)
∫ 2i

0

[∫

M

?

ρ(x,y)<r

|Lm/2 f (y) − Lm/2 f (x)|p

r sp dμ(y) dμ(x)

]q/p
dr
r

≤ C‖ f ‖q
Λ̇

m,s
p,q
,

which proves (3.1) for the caseq > p. Whenq = ∞, a modification of the above arguments also implies
(3.1). If q ∈ (0, p], then by (3.2) and (2.31), we see that

∫ 1

0

[
t−m/2−s/β‖(tL)ke−tL f ‖Lp

]q dt
t

≤ C
∫ 1

0

∞∑

i=0

2i(s−γ)q/p
[∫

M

?

ρ(x,y)<2i t1/β

|Lm/2 f (y) − Lm/2 f (x)|p

(2i t1/β)sp
dμ(y) dμ(x)

]q/p
dt
t

= C
∞∑

i=0

2i(s−γ)q/p
∫ 2i

0

[∫

M

?

ρ(x,y)<r

|Lm/2 f (y) − Lm/2 f (x)|p

r sp dμ(y) dμ(x)

]q/p
dr
r

≤ C‖ f ‖q
Λ̇

m,s
p,q
,

so (3.1) also holds whenq ∈ (0, p]. Altogether, we obtain (3.1).
To finish the proof of Theorem1.5(a), we still need to prove that

‖ f ‖Λ̇m,s
p,q
≤ C‖ f ‖Bmβ/2+s

p,q
. (3.3)

To this end, letN ∈ N such thatN > k0 + k, wherek = k0 +m/2 with k0 being a large positive integer. For
f ∈ Dom(Lm/2) ∩ Lp, we write

Lm/2 f =

N−1∑

i=0

1
i!

Li+m/2e−L f +
2N

(N − 1)!

∫ 1
2

0
tNLN+m/2e−2tL f

dt
t
.

Noticing that

Li+m/2e−L f = Lie−
1
2 LLm/2e−

1
2 L f

and
tNLN+m/2e−2tL f = t−m/2(tL)N−k0e−tL(tL)ke−tL f ,

we have

Lm/2 f (x) =

N−1∑

i=0

2i

i!

∫

M
qi,1/2(x, z) Lm/2e−

1
2 L f (z) dμ(z) + C

∫ 1
2

0

∫

M
t−m/2qN−k0,t(x, z) (tL)ke−tL f (z) dμ(z)

dt
t
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and thus

|Lm/2 f (x) − Lm/2 f (y)| =
N−1∑

i=0

2i

i!

∫

M

[
qi,1/2(x, z) − qi,1/2(y, z)

]
Lm/2e−

1
2 L f (z) dμ(z)

+C
∫ 1

2

0

∫

M
t−m/2 [

qN−k0,t(x, z) − qN−k0,t(y, z)
]
(tL)ke−tL f (z) dμ(z)

dt
t
.

Let γ ∈ (s, β). For anyx, y, z ∈ M such thatρ(x, y) < r, by Proposition2.3, one has

|qN−k0,t(x, z) − qN−k0,t(y, z)| ≤





C
1

tα/β

(
ρ(x, y)

t1/β

)Θ [

1+
ρ(x, z)

t1/β

]−(α+γ)

i f r ≤ t1/β

C
1

tα/β




[

1+
ρ(x, z)

t1/β

]−(α+γ)

+

[

1+
ρ(y, z)

t1/β

]−(α+γ) i f r > t1/β

(3.4)

≤ C min
{
1, (rt−1/β)Θ

}
Jt(x, y, z),

where

Jt(x, y, z) :=
1

tα/β




[

1+
ρ(x, z)

t1/β

]−(α+γ)

+

[

1+
ρ(y, z)

t1/β

]−(α+γ) .

Similar to (3.4), one has

|qi,1/2(x, z) − qi,1/2(y, z)| ≤ C min
{
1, rΘ

}
J 1

2
(x, y, z), 0 ≤ i ≤ N − 1.

Therefore,

r−s|Lm/2 f (x) − Lm/2 f (y)|

≤ Cr−s min
{
1, rΘ

} ∫

M
J 1

2
(x, y, z)|Lm/2e−

1
2 L f (z)| dμ(z)

+C
∫ 1

2

0

∫

M
(r−1t1/β)s min

{
1, (rt−1/β)Θ

}
Jt(x, y, z) t−(m/2+s/β)|(tL)ke−tL f (z)| dμ(z)

dt
t

=: Z1 + Z2.

From (2.1), it follows that for allt ∈ (0,∞),
∫

M
Jt(x, y, z) dμ(z) ≤ C < ∞.

Applying Hölder’s inequality yields that

Z1 ≤ Cr−s min
{
1, rΘ

} [∫

M
J 1

2
(x, y, z)|Lm/2e−

1
2 L f (z)|p dμ(z)

]1/p

.

By the assumptions< Θ, we see that for allr ∈ (0,∞),
∫ ∞

0
(r−1t1/β)s min

{
1, (rt−1/β)Θ

} dt
t
≤ C, (3.5)
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so
∫ 1

2

0

∫

M
(r−1t1/β)s min

{
1, (rt−1/β)Θ

}
Jt(x, y, z) dμ(z)

dt
t
≤ C < ∞

uniformly in the variablesz andr. Applying this and Ḧolder’s inequality yields that

Z2 ≤ C

[ ∫ 1
2

0

∫

M
(r−1t1/β)s min

{
1, (rt−1/β)Θ

}
Jt(x, y, z)

[
t−(m/2+s/β)|(tL)ke−tL f (z)|

]p
dμ(z)

dt
t

]1/p

Combining the estimates ofZ1 andZ2 implies that

r−sp|Lm/2 f (x) − Lm/2 f (y)|p

≤ Cr−spmin
{
1, rΘp

} ∫

M
J 1

2
(x, y, z)|Lm/2e−

1
2 L f (z)|p dμ(z)

+C
∫ 1

2

0

∫

M
(r−1t1/β)s min

{
1, (rt−1/β)Θ

}
Jt(x, y, z)

[
t−(m/2+s/β)|(tL)ke−tL f (z)|

]p
dμ(z)

dt
t
.

By this, Fubini’s theorem and
∫

M

>
ρ(x,y)<r

Jt(x, y, z) dμ(y) dμ(x) ≤ C uniformly in r ∈ (0,∞), t ∈ (0, 1
2] and

z ∈ M, we deduce that
∫

M

?

ρ(x,y)<r

|Lm/2 f (y) − Lm/2 f (x)|p

r sp dμ(y) dμ(x)

≤ Cr−spmin
{
1, rΘp

}
‖Lm/2e−

1
2 L f ‖pLp

+C
∫ 1

2

0
(r−1t1/β)s min

{
1, (rt−1/β)Θ

}
‖t−(m/2+s/β)(tL)ke−tL f ‖pLp

dt
t

=: Y1(r) + Y2(r).

Since (2.10) implies that‖Lm/2e−
1
2 L f ‖Lp ≤ C‖ f ‖Lp, we have‖Y1‖L∞ ≤ ‖ f ‖Lp and

(∫ ∞

0
[Y1(r)]q/p dr

r

)1/q

≤ C‖ f ‖Lp

(∫ ∞

0
r−sqmin

{
1, rΘq

} dr
r

)1/q

≤ C‖ f ‖Lp.

Thus, to obtain (3.3), we only need to verify that

(∫ ∞

0
[Y2(r)]q/p dr

r

)1/q

≤ C‖ f ‖Bmβ/2+s
p,q
. (3.6)

If q/p ≥ 1, then by (3.5) and Ḧolder’s inequality with exponents1q/p + 1
(q/p)′ = 1, we obtain

[Y2(r)]q/p ≤ C
∫ 1

2

0
(r−1t1/β)s min

{
1, (rt−1/β)Θ

}
‖t−(m/2+s/β)(tL)ke−tL f ‖qLp

dt
t
.

Applying Fubini’s theorem and the fact that
∫ ∞

0
(r−1t1/β)s min

{
1, (rt−1/β)Θ

} dr
r
≤ C
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uniformly in t, we obtain

∫ ∞

0
[Y2(r)]q/p dr

r
≤ C

∫ 1
2

0
‖t−(m/2+s/β)(tL)ke−tL f ‖qLp

dt
t
≤ C‖ f ‖q

Bmβ/2+s
p,q

.

This proves (3.6) for the case∞ > q/p ≥ 1. The caseq = ∞ follows by a simple modification of the
above arguments.

Now we prove (3.6) for the caseq/p < 1. Using (2.31) and Corollary2.6, we have that

[Y2(r)]q/p '
∞∑

j=1

[
(r2 j/β)−s min

{
1, (r2 j/β)Θ

}]q/p
2 jq(m/2+s/β)




∫ 2− j

2− j−1
‖(tL)ke−tL f ‖pLp

dt
t




q/p

≤ C
∞∑

j=1

[
(r2 j/β)−s min

{
1, (r2 j/β)Θ

}]q/p
2 jq(m/2+s/β)

∫ 2− j−1

2− j−2
‖(tL)ke−tL f ‖qLp

dt
t

≤ C
∫ 1

4

0

[
(rt−1/β)−s min

{
1, (rt−1/β)Θ

}]q/p
t−q(m/2+s/β)‖(tL)ke−tL f ‖qLp

dt
t
.

Notice that
∫ ∞

0

[
(rt−1/β)−s min

{
1, (rt−1/β)Θ

}]q/p dr
r
≤ C

uniformly in t. Applying Fubini’s theorem implies that

∫ ∞

0
[Y2(r)]q/p dr

r
≤ C

∫ 1
4

0
‖t−(m/2+s/β)(tL)ke−tL f ‖qLp

dt
t
≤ C‖ f ‖q

Bmβ/2+s
p,q

.

This proves (3.6) and thus (3.3). We complete the proof of the Theorem1.5(a). �

3.2 Proof of Theorem1.5(b)

To prove Theorem1.5(b), we shall use Theorem1.5(a) and the following two density lemmas.

Lemma 3.1. Let all the assumptions be as in Theorem1.5(b). Let m∈ (0,∞), s ∈ R, p ∈ (1,∞) and
q ∈ (0,∞). Then,Dom(Lm/2) ∩ Bs

p,q is a dense subset of Bs
p,q.

Proof. Let f ∈ Bs
p,q. Obviously, f ∈ Lp. Given a large numberN ∈ N, which will be determined later, we

apply Proposition2.7to deduce that

f =

N−1∑

i=0

1
i!

Lie−L f +
1

(N − 1)!

∫ 1

0
(λL)Ne−λL f

dλ
λ

in Lp. (3.7)

Let φ be a smooth function defined on [0,∞) such that 0≤ φ ≤ 1, φ(t) = 1 on [0,1] andφ(t) = 0 when
t < [0,2]. Fix x0 ∈ M. Given anyσ, η ∈ (0,1), letφη(x) = φ (ηρ(x, x0)) and

fσ,η :=
N−1∑

i=0

1
i!

Lie−L( fφη) +
1

(N − 1)!

∫ 1

σ
(λL)Ne−tL( fφη)

dλ
λ
.
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To verify that everyfσ,η ∈ Dom(Lm/2), we apply (2.11) to derive that

‖Lm/2 fσ,η‖L2 ≤
N−1∑

i=0

1
i!
‖Li+m/2e−L( fφη)‖L2 +

1
(N − 1)!

∫ 1

σ
λ−m/2‖(λL)N+m/2e−λL( fφη)‖L2

dλ
λ

≤ CN,σ ‖ fφη‖L2,

which if finite sincefφη ∈ L2. Thus fσ,η ∈ Dom(Lm/2).
Now we prove thatfσ,η tends tof in Lp asσ, η → 0+. According to Proposition2.7, the sequence

{gσ}σ>0 given by

gσ :=
N−1∑

i=0

1
i!

Lie−L f +
1

(N − 1)!

∫ 1

σ
(λL)Ne−λL f

dλ
λ

converges tof in Lp asσ→ 0+. Thus, it suffices to show that for any fixed smallσ > 0,

lim
η→0+
‖ fσ,η − gσ‖Lp = 0. (3.8)

By (2.10), we obtain

‖ fσ,η − gσ‖Lp ≤
N−1∑

i=0

1
i!
‖Lie−L( f (1− φη))‖Lp +

1
(N − 1)!

∫ 1

σ
‖(λL)Ne−λL( f (1− φη))‖Lp

dλ
λ

≤ CN,σ ‖ f (1− φη)‖Lp,

which tends to 0 asη→ 0+. This proves (3.8). Thus fσ,η tends tof in Lp asσ, η→ 0+.
Due to the above arguments and Proposition2.9, to prove thatfσ,η tends tof in Bs

p,q asσ, η→ 0+, we
only need to show that

lim
σ,η→0+

(∫ 1

0

[
t−s/β‖(tL)ke−tL( f − fσ,η)‖Lp

]q dt
t

)1/q

= 0

for some fixedk ∈ N such thatk > s/β. To this end, write

|(tL)ke−tL( f − fσ,η)| ≤ |(tL)ke−tL( f − gσ)| + |(tL)ke−tL(gσ − fσ,η)|.

Thus, it suffices to show that

lim
σ→0+

∫ 1

0

[
t−s/β‖(tL)ke−tL( f − gσ)‖Lp

]q dt
t
= 0 (3.9)

and that, for any fixedσ,

lim
η→0+

∫ 1

0

[
t−s/β‖(tL)ke−tL(gσ − fσ,η)‖Lp

]q dt
t
= 0. (3.10)

First we prove (3.9). Applying (3.7) with some integerN > k and the definition ofgσ yields that

t−s/β‖(tL)ke−tL( f − gσ)‖Lp ≤
t−s/β

(N − 1)!

∫ σ

0
‖(λL)Ne−λL(tL)ke−tL f ‖Lp

dλ
λ

= Ct−s/β
∫ 1

2σ

0
‖(λL)Ne−2λL(tL)ke−tL f ‖Lp

dλ
λ
.
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Then, by Corollary2.6, one has

t−s/β‖(tL)ke−tL( f − gσ)‖Lp (3.11)

≤ C
∫ 1

2σ

0

( t
λ

)−s/β
min

{( t
λ

)k
,
(
λ

t

)N−k}

λ−s/β‖(λL)ke−λL f ‖Lp
dλ
λ
.

If q ≥ 1, then the assumptionk > s/β implies that

∫ 1
2σ

0

( t
λ

)−s/β
min

{( t
λ

)k
,
(
λ

t

)N−k} dλ
λ
< ∞

uniformly in σ andt, which together with Ḧolder’s inequality further implies that the right side of (3.11)
is bounded by




∫ 1
2σ

0

( t
λ

)−s/β
min

{( t
λ

)k
,
(
λ

t

)N−k} [
λ−s/β‖(λL)ke−λL f ‖Lp

]q dλ
λ




1/q

.

With this and Fubini’s theorem, one has
∫ 1

0

[
t−s/β‖(tL)ke−tL( f − gσ)‖Lp

]q dt
t

≤ C
∫ 1

0

∫ 1
2σ

0

( t
λ

)−s/β
min

{( t
λ

)k
,
(
λ

t

)N−k} [
λ−s/β‖(λL)ke−λL f ‖Lp

]q dλ
λ

dt
t

≤ C
∫ 1

2σ

0

[
λ−s/β‖(λL)ke−λL f ‖Lp

]q dλ
λ
→ 0

asσ→ 0+, where the last inequality follows from

∫ 1

0

( t
λ

)−s/β
min

{( t
λ

)k
,
(
λ

t

)N−k} dt
t
≤ C < ∞

by means of the assumptionk > s/β. This proves (3.9) for the caseq ≥ 1.
Next we show that (3.9) remains valid whenq ∈ (0,1). Denote byJ the unique number such that

2−J < 1
2σ ≤ 2−J+1. By (2.31) and Corollary2.6, we obtain




∫ 1
2σ

0

( t
λ

)−s/β
min

{( t
λ

)k
,
(
λ

t

)N−k}

λ−s/β‖(λL)ke−λL f ‖Lp
dλ
λ




q

≤




∞∑

j=J

∫ 2− j+1

2− j

( t
λ

)−s/β
min

{( t
λ

)k
,
(
λ

t

)N−k}

λ−s/β‖(λL)ke−λL f ‖Lp
dλ
λ




q

≤ C
∞∑

j=J

( t

2− j

)−sq/β
min





( t

2− j

)kq
,

(
2− j

t

)(N−k)q




2 jsq/β
∫ 2− j

2− j−1
‖(λL)ke−λL f ‖qLp

dλ
λ

≤ C
∫ 1

2σ

0

( t
λ

)−sq/β
min

{( t
λ

)kq
,
(
λ

t

)(N−k)q} [
λ−s/β‖(λL)ke−λL f ‖Lp

]q dλ
λ
.



Alexander Grigor’yan and Liguang Liu 31

From this and (3.11), it follows that whenσ→ 0+,

∫ 1

0

[
t−s/β‖(tL)ke−tL( f − gσ)‖Lp

]q dt
t

≤ C
∫ 1

0

∫ 1
2σ

0

( t
λ

)−sq/β
min

{( t
λ

)kq
,
(
λ

t

)(N−k)q} [
λ−s/β‖(λL)ke−λL f ‖Lp

]q dλ
λ

dt
t

≤ C
∫ 1

2σ

0

[
λ−s/β‖(λL)ke−λL f ‖Lp

]q dλ
λ
→ 0,

where the last inequality is due to Fubini’s theorem and the fact that

∫ 1

0

( t
λ

)−sq/β
min

{( t
λ

)kq
,
(
λ

t

)(N−k)q} dt
t
≤ C < ∞;

while the latter holds because ofk > s/β. This proves that (3.9) still holds whenq ∈ (0,1).
Finally we prove (3.10) by fixing someσ. Notice that

‖(tL)ke−tL( fσ,η − gσ)‖Lp ≤
N−1∑

i=0

1
i!
‖Lie−L(tL)ke−tL( f (1− φη))‖Lp

+
1

(N − 1)!

∫ 1

σ
‖(λL)Ne−λL(tL)ke−tL( f (1− φη))‖Lp

dλ
λ
.

For t ∈ (0,1] andλ ∈ [σ, 1], applying Corollary2.6yields that

‖Lie−L(tL)ke−tL( f (1− φη))‖Lp ≤ C min
{
tk, t−i

}
‖ f (1− φη)‖Lp ≤ Ctk‖ f (1− φη)‖Lp

and

‖(λL)Ne−λL(tL)ke−tL( f (1− φη))‖Lp ≤ C min

{( t
λ

)k
,
(
λ

t

)N}

‖ f (1− φη)‖Lp ≤ Cσtk‖ f (1− φη)‖Lp.

Combining the last two formulae gives that

‖(tL)ke−tL( fσ,η − gσ)‖Lp ≤ Cσtk‖ f (1− φη)‖Lp.

From this andk > s/β, we see that the left hand side of (3.10) is bounded by

Cσ‖ f (1− φη)‖Lp

(∫ 1

0
tq(k−s/β) dt

t

)1/q

= Cσ‖ f (1− φη)‖Lp,

which tends to 0 asη→ 0+. Thus (3.10) holds and we complete the proof of the lemma. �

Lemma 3.2. Let all the assumptions be as in Theorem1.5(b). Let m∈ [0,∞), m∗ ∈ [m,∞) ∩ (0,∞),
s ∈ (0,Θ ∧ (β/2)), p ∈ (1,∞) and q∈ (0,∞). Then the spaceDom(Lm∗/2) ∩ Bmβ/2+s

p,q is dense iñΛm,s
p,q.
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Proof. Notice that

Dom(Lm∗/2) =

{

f ∈ L2 :
∫ ∞

0
λm∗d‖Eλ f ‖2 < ∞

}

=

{

f ∈ L2 :
∫ ∞

0
(1+ λ)m∗d‖Eλ f ‖2 < ∞

}

.

Sincem∗ ∈ [m,∞), it follows that
Dom(Lm∗/2) ⊂ Dom(Lm/2). (3.12)

By this and Theorem1.5(a), we see that

Dom(Lm∗/2) ∩ Bmβ/2+s
p,q ⊂ Dom(Lm/2) ∩ Bmβ/2+s

p,q ⊂ Λm,s
p,q.

To see the density of Dom(Lm∗/2) ∩ Bmβ/2+s
p,q in Λ̃

m,s
p,q, we let f ∈ Λ̃

m,s
p,q. For anyε > 0, sinceΛ̃m,s

p,q is the
completion ofΛm,s

p,q, there existsgε ∈ Λ
m,s
p,q such that

‖ f − gε‖Λ̃m,s
p,q
< ε.

Clearly, suchgε belongs to Dom(Lm/2) and thusgε ∈ Bmβ/2+s
p,q by Theorem1.5(a). According to Lemma

3.1, the space Dom(Lm∗/2)∩Bmβ/2+s
p,q is dense inBmβ/2+s

p,q . Thus, there exists somefε ∈ Dom(Lm∗/2)∩Bmβ/2+s
p,q

such that‖gε − fε‖Bmβ/2+s
p,q

< ε. By (3.12), we see thatfε ∈ Dom(Lm/2), so doesgε − fε . Applying Theorem

1.5(a) yields that
‖gε − fε‖Λm,s

p,q
' ‖gε − fε‖Bmβ/2+s

p,q
< Cε.

In this way, for anyε > 0, we find anfε ∈ Dom(Lm∗/2) ∩ Bmβ/2+s
p,q such that

‖ f − fε‖Λ̃m,s
p,q
≤ ‖ f − gε‖Λ̃m,s

p,q
+ ‖gε − fε‖Λ̃m,s

p,q
< (C + 1)ε.

This finishes the proof of the lemma. �

Proof of Theorem1.5(b). Let m ∈ [0,∞), s ∈ (0,Θ ∧ (β/2)) andr = mβ/2+ s. Fix m∗ ∈ [m,∞) ∩ (0,∞).
By Lemmas3.1 and3.2, the spacesBr

p,q andΛ̃m,s
p,q have a common dense subset Dom(Lm∗/2) ∩ Br

p,q. For
functions f in this common dense subset, by (3.12) and Theorem1.5(a), one has

‖ f ‖Br
p,q ' ‖ f ‖Λm,s

p,q
. (3.13)

From this, one deduces thatBr
p,q = Λ̃

m,s
p,q with equivalent norms. Being more precise, for anyf ∈ Br

p,q,
since Dom(Lm∗/2) ∩ Br

p,q is dense inBr
p,q, we can find

{ f j}
∞
j=1 ⊂ Dom(Lm∗/2) ∩ Br

p,q

such thatf j → f in Br
p,q, and hence inLp. Notice that{ f j}∞j=1 is a Cauchy sequence inBr

p,q, which is also

a Cauchy sequence iñΛm,s
p,q because of (3.13). Thus{ f j}∞j=1 converges to some elementf̃ in Λ̃

m,s
p,q, so that

it also converges tõf in Lp. This forcesf = f̃ in Lp and almost everywhere. Hence, anyf in Br
p,q also

belongs tõΛm,s
p,q and

‖ f ‖
Λ̃

m,s
p,q

= lim
j→∞
‖ f j‖Λm,s

p,q
≤ C lim

j→∞
‖ f j‖Br

p,q = C‖ f ‖Br
p,q.

The converse part follows in a similar way; we omit the details. �
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3.3 Proof of Theorem1.5(c)

Lemma 3.3. Assume that (P2) holds for all time t∈ (0,∞).

(i) Let k ∈ N andν ∈ [0,1). Then, for anyγ ∈ (0, β), there exists a constant C> 0 such that for all
t ∈ (0,∞) and x, y ∈ M,

|qk+ν,t(x, y)| ≤ C
1

tα/β

[

1+
ρ(x, y)

t1/β

]−(α+γ)

. (3.14)

If k = 0 andν ∈ (0,1), then there exists a constant C> 0 such that for all t∈ (0,∞) and x, y ∈ M,

|qν,t(x, y)| ≤ C
1

tα/β

[

1+
ρ(x, y)

t1/β

]−(α+νβ)

. (3.15)

(ii) Let p ∈ [1,∞], k ∈ Z+ andν ∈ [0,1). Then there exists a constant C> 0 such that for all f∈ Lp

and t∈ (0,∞),
‖(tL)k+νe−tL f ‖Lp ≤ C‖ f ‖Lp. (3.16)

Proof. Observe that (ii) follows from (i) and the same argument as in the proof of Proposition2.4(i). Thus
it suffices to show (i).

For k ∈ N, since now (P2) holds for all timet ∈ (0,∞), it follows from the proof of Proposition2.3(i)
that for allt ∈ (0,∞) andx, y ∈ M,

|qk,t(x, y)| ≤ C
1

tα/β

[

1+
ρ(x, y)

t1/β

]−(α+γ)

. (3.17)

This proves (3.14) for the casek ∈ N andν = 0.
Now we letk ∈ Z+ andν ∈ (0,1). Chooseγ ∈ (νβ, β). It follows from (2.15) that

qk+ν,t(x, y) = Cν

∫ ∞

0

tk+νξ1−ν

(t + ξ)k+2
qk+2, t+ξ(x, y) dξ,

so by (3.17) one has

|qk+ν,t(x, y)| ≤ C
∫ ∞

0

tk+νξ1−ν

(t + ξ)k+2+α/β

[

1+
ρ(x, y)

(t + ξ)1/β

]−(α+γ)

dξ.

We split the last integral into integrals over the intervals (0, t] and [t,∞), and denote those integrals byJ1

andJ2, respectively. InJ1, we havet + ξ ' t and thus

J1 '
∫ t

0

tk+νξ1−ν

tk+2+α/β

[

1+
ρ(x, y)

t1/β

]−(α+γ)

dξ ≤ C
1

tα/β

[

1+
ρ(x, y)

t1/β

]−(α+γ)

. (3.18)

In J2, we havet + ξ ' ξ and

J2 '
∫ ∞

t

tk+ν

ξk+ν+1+α/β

[

1+
ρ(x, y)

ξ1/β

]−(α+γ)

dξ.
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If ρ(x, y) ≤ 2t1/β, then

J2 ≤ C
∫ ∞

t

tk+ν

ξk+ν+1+α/β
dξ ≤ C

1

tα/β
'

1

tα/β

[

1+
ρ(x, y)

t1/β

]−(α+γ)

. (3.19)

If ρ(x, y) > 2t1/β, then by a change of variablesτ = ρ(x,y)
ξ1/β

, we obtain

J2 '
tk+ν

ρ(x, y)(k+ν)β+α

∫ ρ(x,y)

t1/β

0
τ(k+ν)β+α(1+ τ)−(α+γ) dτ

τ

Whenk ≥ 1, by (k+ ν)β + α ≥ β + α > α + γ, we conclude that

J2 .
tk+ν

ρ(x, y)(k+ν)β+α

(
ρ(x, y)

t1/β

)(k+ν)β−γ

'
1

tα/β

(
ρ(x, y)

t1/β

)−α−γ
'

1

tα/β

[

1+
ρ(x, y)

t1/β

]−(α+γ)

.

Combining this with (3.18) and (3.19) implies (3.14) for the casek ∈ N andν ∈ (0,1).
Whenk = 0 andν ∈ (0,1), applyingνβ < γ yields that

∫ ρ(x,y)

t1/β

0
τνβ+α(1+ τ)−(α+γ) dτ

τ
≤ C < ∞,

and thus whenρ(x, y) > 2t1/β one has

J2 ≤ C
tν

ρ(x, y)νβ+α
'

1

tα/β

(
ρ(x, y)

t1/β

)−α−νβ
'

1

tα/β

[

1+
ρ(x, y)

t1/β

]−(α+νβ)

.

Combining this with (3.18) and (3.19) yields (3.15). This finishes the proof of (i). �

Proof of Theorem1.5(c). Given anyk ∈ Z+ andν ∈ [0,1), by (3.16), we see that the operator (tL)k+νe−tL

is bounded onL1 uniformly in t ∈ (0,∞). This will guarantee that Proposition2.9 remains valid when
p = 1. Consequently, the arguments in the proof of Theorem1.5(a) also works forp = 1. Hence

‖ f ‖Λm,s
1,q
' ‖ f ‖Bmβ/2+s

1,q
, f ∈ Dom(Lm/2) ∩ Lp.

The density lemmas in Subsection3.2 are also valid forp = 1, so thatBmβ/2+s
1,q andΛ̃m,s

1,q have a common

dense subset Dom(Lm∗/2)∩ Bmβ/2+s
1,q , wherem∗ ∈ [m,∞)∩ (0,∞). The rest of the proof follows exactly the

same as in the proof of Theorem1.5(b), and we conclude thatBmβ/2+s
1,q = Λ̃

m,s
1,q with equivalent norms. �

3.4 Proof of Theorem1.6

Proof of Theorem1.6. Sincept is non-negative, then following the proof of [21, Propositions 7.27 and
7.28], we deduce that for allt ∈ (0,∞) andx, y ∈ M,

pt(x, y) ≥
1

tα/β
Φ1

(
ρ(x, y)

t1/β

)
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where the functionΦ1 is given by

Φ1(τ) :=




C, i f τ ≤ η

0, i f τ > η ,

with C and η being some positive constants. This combined with (P3) implies thatpt has two sides
estimates: for allt ∈ (0,∞) andx, y ∈ M,

1

tα/β
Φ1

(
ρ(x, y)

t1/β

)

≤ pt(x, y) ≤
1

tα/β
Φ2

(
ρ(x, y)

t1/β

)

, (3.20)

whereΦ2 is a non-negative monotone decreasing function on [0,∞) such that
∫ ∞

τα+δβΦ2(τ)
dτ
τ
< ∞

for all δ ∈ (0,1). It follows from (3.20) and [11, Theorem 3.1] thatμ(B(x, r)) ' rα for all x ∈ M and
r > 0. In particular (Vα)≤ holds. Notice that (P2) follows frompt ≥ 0 and (P1). So far, all conditions of
Theorem1.5are verified. Thus, ifs ∈ (0,Θ ∧ (β/2)), then (1.13) is known from Theorem1.5(b).

To prove (1.13) for s ∈ [Θ, β/2), we shall use the following result in [11, Corollary 5.5]: if (3.20)
holds, then for anyf ∈ Dom(Lδ),

‖ f ‖2
Λ̇
δβ/2
2,2

' (Lδ f , f ). (3.21)

With s ∈ [Θ, β/2), we letm ∈ [0,∞) andr = mβ/2 + s. Chooses∗ ∈ (0,Θ) andm∗ ∈ (0,∞) such that
m∗β/2+ s∗ = r. Observe thatm∗ > m. We claim that for allf ∈ Dom(Lm∗/2+1),

‖ f ‖Br
2,2
' ‖ f ‖Λm,s

2,2
. (3.22)

Assuming (3.22) for the moment, we prove (1.13). By Lemma3.1, Dom(Lm∗/2+1) ∩ Br
2,2 is a dense

subset ofBr
2,2. Applying (3.22) andm∗ > m, we proceed as in the proof in Lemma3.2 and obtain that

Dom(Lm∗/2+1)∩Br
2,2 is also a dense subset ofΛ̃

m,s
2,2 . This tells us thatBr

2,2 andΛm,s
2,2 have equivalence norms

on their common dense subset Dom(Lm∗/2+1) ∩ Br
2,2. Following the arguments in the proof of Theorem

1.5(b) yields thatBr
2,2 = Λ̃

m,s
2,2 with equivalent norms. This proves (1.13).

Finally, we let f ∈ Dom(Lm∗/2+1) and prove (3.22). By m∗/2+ 1 > 2s∗/β + m∗/2 = 2s/β + m/2 and
(3.12), we see that

f ∈ Dom(L2s∗/β+m∗/2) ⊂ Dom(Lm∗/2) and f ∈ Dom(L2s/β+m/2) ⊂ Dom(Lm/2).

Then, from (3.21) and 2s∗/β + m∗/2 = 2r/β = 2s/β + m/2, it follows that

‖Lm∗/2 f ‖2
Λ̇s∗

2,2
' (L2s∗/β+m∗/2 f , Lm∗/2 f ) = (L2r/β f , f ) = (L2s/β+m/2 f , Lm/2 f ) ' ‖Lm/2 f ‖2

Λ̇s
2,2
.

Sinces∗ < Θ, applying Theorem1.5(a) implies that

‖ f ‖Br
2,2
' ‖ f ‖

Λ
m∗ ,s∗
2,2

= ‖ f ‖L2 + ‖Lm∗/2 f ‖Λ̇s∗
2,2
' ‖ f ‖L2 + ‖Lm/2 f ‖Λ̇s

2,2
= ‖ f ‖Λm,s

2,2
,

which proves (3.22). This completes the proof of the theorem. �
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