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Abstract
On a metric measure spad, (o, 1) we consider a family of the Lipschitz-Besov spadgs, that is
defined only using the metricand measurg, and a family of Besov spac&; , that is defined using
an auxiliary self-adjoint operatdr and the associated heat semigroup. Under certain assumptions
about the heat kernel &f, we prove the identity of the two families of the function spaces.

Contents

1 Introduction and main results 1
1.1 Function spacesonametric mMeasure SPace. . . . . . . . v v v v v e 1
1.2 Thenotionoftheheatkernel. . . . . . . .. ... . ... ... ... . ... .. ..., 4
1.3 Some examplesofheatkernel. . . . . .. ... ... ... .. .. .. .. .. . ... 5
1.4 Mainresults. . . . . . . . e e 9

2 Auxiliary estimates 13
2.1 Fractional derivatives of the heatsemigroup . . . . . . . .. .. ... ... ...... 13
2.2 Aninhomogeneous version of the continuous Caldeeproducing formulae . . . . . . 19
2.3 Normequivalence . . . . . . . . . e e 22

3 Proofs of Theorems 1.5and 1.6 24
3.1 Proofof Theorem1(8) . . . . . . . . . . . . . . e 24
3.2 Proofof Theorem1(B) . . . . . . . . . . 28
3.3 Proofof Theorem1(B) . . . . . . . . . . . . . e 33
3.4 Proofof Theorem 1.6 . . . . . . . . . . . . . e 34

1 Introduction and main results

1.1 Function spaces on a metric measure space

Let (M, p) be a locally compact complete separable metric space:dreda non-negative Borel measure
with full support onM (that is, O< u(E) < o for any non-void relatively compact open $£t- M). We
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will refer to the triple (M, p, 1) as ametric measure spac&or p € (0, ), let LP = LP(M, u) be the space
of functions whose absolute value raised to philn power has finite integral with respectitoThe space
L* = L*(M, ) consists of all essentially boundgemeasurable functions av.

Let us recall the definition of the Lipschitz-Besov spaceMbnWe useﬁE to denote—= (E) fE for any
measurable sé&f c M.

Definition 1.1. For s € (0, ), p € [1, o) andq € (0, ), theLipschitz-Besov spacky 4 = Aj (M, u) is
defined to be the collection of all € LP such that

o 1109 ~ TO)P VP dr) "
Il .—{ LU £ e uco) 7} <eo.

If g = oo, thenA3 ., is defined to be the collection of dile LP such that

ﬁﬂ JCB(X,r) rsp d/'l(y) d/J(X)

1fllagg = 1l + I Fllas,.

1/p
Ifllzs., = sup < .

re(0,00)

Endow the spacaj , with the norm

Clearly, A;q is a Banach space. The above Lipschitz-Besov spAtgg]swere first introduced by
Jonsson6] whenM is ad-set ofR". If M is a generad-regular metric measure space (i.gB(x,r)) ~
r® for all x € M andr > 0), these spaces were introduced 12][for the casep = 2, g = « and by
Yang and Lin 6] for generalp,g. Extensions of the result oRp] to the RD-spaces (i. e., spaces of
homogeneous type satisfies the reverse doubling conditioni4pevas due to Miller and Yang 19].

Notice that for large enough the space/\ may degenerate to trivial spaces consisting only of
constant functions. For example, (p, 1) is the classical Euclidean space thregl {Oyif s > 1.
Also, if (M, p, u) is a fractal space admitting the heat kernel that satistid€)(below, thenASq = {0} if
s > /2 (see 16]). The same property remains valid if the conditidn1(Q is weakened tol(.5) below
(see [L1, 12, 22]). Thus, the value g in (P3) and (P4) (see Subsectibr2 below) illustrates an intrinsic
property of the Lipschitz-Besov space.

Let us emphasize that the above definition of the spagesrequires only a metric measure structure
on M. However, as we would like to avoid considering a degenerate spggéor larges, we introduce
more general Lipschitz-Besov spaq*e;gq using an additionally given operatbr

Let L be a positive definite self-adjoint operatorliA. Then its powelL™? for m € (0, o) is well-
defined as a self-adjoint operatorlif. Denote by Domi("™?) its domain inL?. Form = 0, we understand
Dom(L"™?) as the collection of all measurable functions dh p, u).

Definition 1.2. Letm € [0, ), s € (0, ), p € [1, o) andq € (0, o]. Define theLipschitz-Besov space
Apy = APig(M, u) to be the collection of alf € Dom(L™?2) N LP such that

. m/2¢.
Ifllame == Iflle + L™ Fllzs < co.

Denote byA > the completion ofA W|th respect to the norr- [[ams.
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0,s A0S A~ini ;
Form = 0, the spacef 4 andApq coincide withAJ .

Let us introduce another notion of the Besov spaces via the heat semigrolyhé atpositive definite
self-adjoint operator ih? as above. Then, for the spectral resolutin} -, of L and for allf € Dom(L),

we have .
Lf :f AdE,f.
0

Given anyy < (0, o), one can define the family of operatd(t_)"e " };.q via the functional calculus:
(tLy’e 't f = f (t)eMdE f, fel?
0

Fix some valugg > 0 (that later will be the same as (0 @), but so farg is arbitrary).

Definition 1.3. For givenr € (0, ), p € [1, ), g € (0, ] choose somd € (r/B, o) and define the
Besov space B, = B, 4(M, 1) as the collection of alf € LP such that

) L q dt 1/q
I lle, o= ||f||Lp+( fo |t ALy e Fiue T) (1.1)

is finite, where a usual modification is made witega .

Remark 1.4. For a general operatar, note that{L)“e - f might not be well-defined for functiorise LP.
However, under certain assumptions about the opetafeee Subsectioh.2 below), we shall prove in
Proposition2.4 below that for alkk € [0, ),

I(tL) e fllLe < CIIf |l

uniformly int € (0, ). Consequently, for ang € (0, o),
1/q

( f et ! th) < C@)IIflle,

and the integra%m in (1.1) can be replaced wit%C thus leading to an equivalent norm. As it will be
proved in PropositioR.9, under certain assumptions about the operatiie normg| - ||g; , are equivalent
for different values ok providedk > r/B. It is known thatBrp,q are complete (quasi)Banach spaces; see,
for example 5, Theorem 4.1].

The main purpose of this paper is investigation of the relation between the sﬂ%@esnd pr,q. Since
in the casen = 0 the spaca} , is defined independently of the operalgione cannot expect any relation
between them unledssatisfies certain hypotheses.

In the next two Subsections we state the necessary hypotheses in termsedthernebf the heat
semigroupe™* and give some examples. Then we come back to the sp@@eBrp,q and state our main
result about their identity.

Notation. Throughout the paper we use the following notation. Net {1,2,...}, Z, = {0,1,2,...}
andZ = {0,+1, +2,...}. We shall writeC for various positive constants that are independent of the main
variables involved. Occasionally we u€4a,pB,v,...) to denote a positive constant depending on the
parameterg, §,v, . ... Given any two nonnegative functiofsandG, the notatiorF < G (equivalently,

G = F) means that the inequalify < CG holds for some constafitin a specified domain of the functions
F,G.If F 5 G < F, then we writeF ~ G.
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1.2 The notion of the heat kernel

Let L be a self-adjoint positive definite operator bhwith the domain Doni() that is a dense subspace
of L2. Theheat semigroupP;}=o generated by is defined by
Pt = e_tL,

so thatP; is a bounded self-adjoint operator lif. Assume that, for any > 0, the operatoP; has an
integral kernel pthat is a continuous function dv x M such that, for allf € L2 andx € M,

Pif(x) = e f(x) = fM pe(x. y) £(y) du(y). (1.2)

The function {, X, y) — pt (X, y) is calledthe heat kernebf L.
It follows from (1.2) that the heat kernel symmetricthat is, for allt > 0 andx,y € M,

Pe(X%y) = pe(Y, %),

and satisfies theemigroup propertyfor all s;t > 0 andx,y € M,

Pere(X.Y) = fM ps(x 2 PH(2.Y) du(2).

We assume that the heat kernel satisfies in addition the following conditions:

(P1) Stochastic completenesﬁ,‘I p(X, y) du(y) = 1 forallt > 0 andx € M.
(P2) There exists a positive const&hsuch that, for alt > 0 andx € M,

fM 1P )l du(y) < C. (13)
(P3) Upper bound: foralie (0, 1] andx,y € M,
1 _(p(xy)
Ipt(x,y)lsta—/ﬁ@( a5 | (UD)s

wherea, 8 > 0 and® is a non-negative monotone decreasing function gmoj0such that, for any
Y <B

f 7"”7@(7')ﬁ < o0, (1.4)
T
(P4) Holder continuity: for allt € (0, 1] andx,y,y € M such thap (y,y’) < tY/8,

p(y,y))@ 1 q,(p(x, y))’

|p[(X, y) - pt(X, y)l < ( t1/8 ta/p t1/8 (Hq))@)

wherea, 8 and® are the same as in (P3), a@ds some positive constant (that can be assumed to
be suficiently small).
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Throughout the article, we will fix the aforementioned parametegsand®.
In addition, we assume that the parametés related to the metric measure structure as follows: for
all xe M and O< r < diamM,
/J(B(X’ r)) < Cra’ (VQ)S

whereB (x, r) is an open metric ball i(M, p).
Notice that the heat kern@ might be signed; see example (vii) in SubsectloBbelow. Properties
(P1) and (P3) imply thap; is anapproximation of identitythat is, for anyu € LP with p € [1, ),

fM P YU(Y) du(y) 5> u(x) ast - 0

see Lemma&.8below for its proof. Observe that (P2) is a rather weak requirement. For example; O
then (P2) follows trivially from (P1). Also, if the upper bound estimate (P3) is true far:alD, then it
implies (P2); seed.3) and @.1) below.
It is worth mentioning, that (P2) implies that the operdtds positive definite. Indeed, byl (3) we
obtain that for alt > 0
leM 2 < C,

whereas if the operatdris not positive definite thefie-||>_,, — oo ast — co.

1.3 Some examples of heat kernel

Let us give some examples of heat kernels ifiedent setups.

(i) Consider the Euclidean spa&® with standard metric and measure, which satisfiég. with
a = n. Consider also the Laplace operaloe —A = — ZT:l aij. Then the heat semigroyp 't} has
the classical Gauss-Weierstrass kernel:

o1 Ix= P
IOt(X’y)_(47rt)n/2 eXp( 4t )

Obviously, (P1)-(P4) hold with = n, 8 = 2,© = 1 and

(1) exp(t2/4).

1
 (4n)n/?
(i) Consider the Euclidean spaB@ and the operator = (~A)Y/2. Then the semigroufe“};-o has
the Poisson kernel: -
1 x-y?2\" 7z
p(X.Y) =Cnt_n(1+—| ty| ) ,
whereC,, = n‘%ll"(’izl). Again (P1)-(P4) hold witlkk = n,8=1,0 = 1 and

n+l

O(t) =Ca(1+79) 2.

(iii) Let L be a self-adjoint positive definite operatorliA. Assume that the kerngk of L satisfies
(P1) and (P4) for alt € (0, ), as well a stronger version of (P3): for &k (0, ) andx,y € M,

1 (%) 1 p(X,y)
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where®; and®, are non-negative monotone decreasing functions pr)J@uch thaib;(c) > 0 for some
¢ > 0 and®, satisfies .4). In particular, the heat kernel is non-negative and (P2) is trivially satisfied.

Fix somes € (0, 1) and consider the subordinated semigr(;mﬂ-‘7 }=0. Itis known that this semigroup
has the heat kernel

a(xy) = fo n(Sps(xy) ds (1.6)

wherern, () is the subordinator. It is known that(s) is positive and satisfies the following identities

f n(s)ds=1 .7
0
and
1 S
m(s) = tﬁn(t%)’

wheren is a positive function oif0, «0) such that for any > 0,

n(s) =o(¢) ass— 0 (1.8)
and

l 0
T](S) ~ @, s> 1; (19)

(see L1, Section 5.4], 27]). As p; satisfies (P1), so doeg by means of 1.6) and (L.7). Sinceq; = O,
it satisfies also (P2). Condition (P3) fqy follows from [11, Lemma 5.4] where it was proved that, for

B =B,

’

A
qt(x’ y) - ta/ﬁr (1 + tl/,B/

forallt € (0,00) andx,y € M. Let us verify thaiy; satisfies the Elder continuity (P4). Since; satisfies
(1.5 and (P4), we see that for dlk (0, ) andx,y,y’ € M such thap (y,y’) < t¥/#,

(X Y) — (X YY)l
< f n(Sps(x.Y) - ps(x )l ds
0

e 1 (o Y)\[ . (p(%Y) p(%Y)
ce [ (42 [l 52) 52 o
1 (p YN\ [ [ s\ (B (xy) p(x,y)\| ds
-car () (5] el |
It follows from (1.4) that®,(r) < C(1 + 7)~@*), so

—(a+8) 1/6\ (@/B+0) —(a+B)
p(x.y) p(Xy) t p(X.Y)
QZ(W)SC(1+W <C 1+? 1+ tl/,B/
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and thus

tl/é O (P9
o t1/5 TSlUB t1/5
y)

( (e+B) S t1/6 (a+O©)/B t1/6 (a/B+6) ds
( ﬂW) L (mﬂ(z) @*am) an

C
p(xy)\ ) —(a+©)/B —a/p-5
( 5 fo n(t)r Q+7 dr

L, Py )
e

IA

1

>

where the last integral converges by meansld)(and (.9). Similarly one obtains

00 a+0 (et a+p’
( ) tl/(S (a+ )/ﬁq) p(X, y/) <clts p(X y/) =( +ﬁ) 14 p(X y) —(e+p")
o \i@e /s 2\"quB tl/a = tUp t1p ’

whence it follows that

1
(X y) - qe(x.Y)| < th’/ﬂ'

s

PO\ (4, )P
1/ tL/p

which proves (P4) fog.
(iv) Consider the operatot. = (~A)™? in R", where O< m < 2. As a consequence of (i) and (iii), the
heat kernel o' satisfies (P1)-(P4). Moreover, it satisfies the two-sided estimate

—(n+m)
IX-yl
pe(Xy) = tnm (1 + —tl/m )

forallt € (0, ) andx,y € R", and (P4) holds fo = mand® = 1.
(v) Let M be the unbounded Sierpinski gasket S®ih p be the induces metric cBGandu be the
Hausdoftf measure on SG of dimension

a = dimy SG= logy(n + 1).

It is known that SG satisfie®/,)< (see B]). It is also known that SG admits a local Dirichlet for&
whose heat kernel satisfies thgb-Gaussiamstimate

£
pu(X,y) < tCSﬁ p{ (pﬁ(/’ﬁy))ﬁ ] (1.10)

where the paramet@ = log,(n + 3) is called thewalk dimensior(see Barlow ] for more details). The
sign < means here that both and> hold but with diferent values of the positive constafisc. The
operatorL in this case is the generator of the Dirichlet fofin

The sub-Gaussian estimateX0 is valid on many other fractal spaces, with various valuesaridg,;
more precisely, any couple 8 in the range X 8 < a + 1 is possible. In all these cases the heat kernel is
known to be stochastically complete, so that (P1) and (P2) are satisfied. Clearly, (P3) follow&.ft6m (
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By [4, Theorem 3.1 and Corollary 4.2], the estimatel() implies the Holder continuity (P4) with some
small® (see also13, Theorem 7.4]).

(vi) Let M be a geodesically complete Riemannian manifpldbe the geodesic distance, aade
the Riemannian measure. The Laplace-Beltrami opetater—-A on M can be made into a self-adjoint
operator inL? by appropriately defining its domain. As was proved by Li and Yad,[if the Ricci
curvature ofM is non-negative, then the heat kernel of the heat semigedhisatisfies the estimate

_C W
u(B(x, Vb)) eXp( 1 ) (1.11)

The heat kernel is in this case stochastically complete (see, for exaifile and (L.11) implies (P4) by
[4, Theorem 3.1 and Corollary 4.2]. Hence, all (P1)-(P4) are satisfied.

(vii) Let m € N anda, 8 ben-dimensional multi-indices. Consider Rf' the elliptic operator of order
2m of the form

pr(X,y) <

L= > (-1)"ID*(a,4D")
lel<m, |BI<m

with the leading part

Lo=(-1)™ > D@D,

lal=[8l=m
whereA := {a,3(X)} is a symmetric matrix of complex-valued bounded measurable functioR8.orhus
operatord o and L admit self-adjoint extensions i’. Denote byp? the heat kernel of the semigroup
e tto and byp the heat kernel of the semigroep'. It is known that ifm > 1 then the heat kerne|s!
andp; cannot be non-negative functions; see Dav$SEction 5.5]. Upper bound andlder continuity
estimates of the kerngf and p; are studied in Auscher and Qafsaqgj; [see also1, 9].
For p € [1, =), denote byLP(R") the Lebesgue space with respect to the Lebesgue measure. Assume

thatLg satisfies the so-callestrong Garding inequalityfor all functionsu in the Sobolev spac&/™2(R"),

Re(Loul, U) > dollV™ull?c.)

for some constanipy > 0. Let BMO (R") be the space of locally integrable functiohsatisfying the
condition 1

IfllBMO® := Sup —flf(x) — feldXx < oo,

ballsinkn [Bl JB

where fg denotes the arithmetic mean &fin the ball B. Obviously, the constant functions are in
BMO (R"). If every a,g € BMO(R"), then the following estimates qf? and p; were given in 2,
Proposition 47]. For any multi-indicgg| < m— 1, there exist positive constar@sandc such that for all
t € (0, ) andx,y € R",

2m
1 |X_ y| 2m-1
Y0 -7
IBxPe OV = Corram eXp[_C(tl/(Zm)) ] '

In particular,p? satisfies (P3) for all > 0 with @ = nandg = 2m. It follows thatp? satisfies also (P2). If
m = 1, then for allt € (0, ) andx,y,y € R" such thaty — y’| < t¥/@m

2m
. 0 1 Xyl
IPc(xy) = P Yl < Coramy expl =C| (e :
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that is, p satisfies (P4) for alt > 0. By [2, Theorem 16], the kerngd satisfies (P3) and (P4) for short
timet € (0, Tg] with someTy € (0, ). Unfortunately, it remains unclear whqaﬁ or p; are in general
stochastically complete.

1.4 Main results

As above, le{M, p, 1) be a metric measure spatebe a positive definite self-adjoint operatorlif, and
p: (X, y) be the heat kernel df.
Our main result is the next theorem.

Theorem 1.5. Let (M, p, 1) be a metric measure space that satisfiés)<. Assume that L is a positive
definite operator whose heat semigroif}i-0 has the heat kerndlp}o satisfying (P1)-(P4). Fix the
parameters [E (1, ), g€ (0,], me [0, ) as well as

s€ (0,0 A (8/2))

and set
r=m3/2+s.

Then the following assertions hold:

(a) Forall f e Dom(L™?) N LP,
I flley,, = IIfIIAg}g-
(b) If in addition q< oo the following two spaces are identical:
Bhg=Abg (1.12)
with equivalent norms.

(c) If (P2) holds for all te (0, =), then the assertions of (a) and (b) are valid also fot fi.

Under the hypotheses of Theordn®d, we see that, for any two pairs afh(s) and {17, ') such that
m, m' € [0, o),
s, €(0,®A(B/2) and MB/2+s=mpB/2+ S,

we have the identity of the spaces
Kms _ Km(,s’
pa ~ “pg

with equivalent norms. This provides a way of defining the higher order Sobolev spécesth r =
mB/2 + sona-regular metric measure spaces as follows:

LMW2f(x) — L2 (y)|P 1/p
1lhwg, = 1 llams = [1fllco + f L) V)
M JM

oy )|

which may be an interesting topic of research in the future.
For the casep = q = 2 and under some additional assumptions the identit¢Z holds for the
maximal ranges € (0, 3/2), as is stated in the next theorem.




10 Heat kernel and Lipschitz-Besov spaces

Theorem 1.6. Let (M, p, 1) be a metric measure space that satisfiés)<. Assume that L is a positive
definite operator whose heat semigroii}i-0 has the non-negative heat kerrgk}.o satisfying (P1)
and (P3) for all te (0, =), and (P4) for te (0, 1]. Fix the parameters ra [0, ),

se (0,8/2),
and set
r=m3/2+s.
Then the following two spaces are identical:

By, = ALy (1.13)
with equivalent norms.

Remark 1.7. Assuming that the heat kernp| is non-negative and satisfies (P1) atdb), Hu and ZAhle
[15, Theorem 5.2 and Corollary 3.4] proved that, for @y (0,3/2),

S _ AS
B2,2 - A2,2

with equivalent norms. Under a stronger assumptioh@ instead of {.5) the same equivalence was also
obtained by Pietruska-Patub2a3 Section 4.2].

However, the relation between the spaagg andBg , for generalp, g andsremained unknown even
whenp = 2, which was posed in2B] as an open question. Our Theordnd answers this question for
small values o, as well as characteris&  for arbitrarily larger in terms ofKB}(f.

Remark 1.8. Consider the case wheM is the Euclidean spad®”, p is the Euclidean distance apds
the Lebesgue measure. Llek —A be the Laplace operator apgdas above the Gauss-Weierstrass kernel,
sothate = n,8 =2 and® = 1. Theoreni.5says in this case that, for afi € (0, ), s€ (0,1), p € [1, )

andq € (0, o],
A2 (x) — (A2 . 1P ar|
f JC S dyd —
RN JB(x,r) rsp r

I fllLprn) + {f
0

o (92 KtA q dt v
0

for functionsf € Dom((-A)™2) N LP(R"), wherek > (m+ s)/2.
For the operatoL = V-A and for the Poisson kernpj we havex = n, 8 = 1 and® = 1. By Theorem
1.5we see that, for alin € (0, ), s€ (0,1/2), p € [1, o) andq € (0, ],

w (—AY2(x) — (A2 1P ar|
I fllLeny + S dyd —
0 |JrnJBxr) rsp r

= N e @ )"
2||f||LP(R")+(f [t‘("”s)ll(t —A)etY" f”Lp(R“)] T) (1.15)
0

for functionsf € Dom((~A)™?) N LP(R"), wherek > m+ s.
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Form = 0 ands € (0, 1), the norm equivalence4.( 4 and (.15 are well known; see TriebeRp,
Theorem 1.7.3 and Theorem 1.8.3]. The right hand side&.a@f)(and (L.15 are the Gauss-Weierstrass
heat semigroup and Poisson semigroup characterizations of the Beso\B§gék®), respectively. They
are both equivalent to the norm

1 dt\
11l rn) = I fllLogrn) + (j(; by fll(ﬂp(Rn) T) ,
whereg can be taken a smooth function such that
suppp c {€ e R": 1/4 < |¢] < 4

and
¢>c>0o0n{¢eR: 1/2<¢<2),

andg¢,(-) = t"¢(t-). We refer the reader to Triebe?4, 25| and the references therein for detailed discus-
sions of the various characterizations of the classical Besov spaces.

It should be remarked that, assuming that)})/ (P1), (P3) and (P4) hold f@gr = 2 andt € (0, o), Bui,
Duong and Yan%] systematically studied the Besov spa&,§1 (for smallr only) defined in Definition
1.3and proved that wheh = —A the spaceB], , is equivalent to the classical Besov space.

Remark 1.9. Let (M, p, 1) be the space of homogeneous type with the megssegisfying the reverse
doubling condition, that is, foralbe M and O< r < memM

u(B(x, 2r)) = u(B(x.r)).

Letes € (0,1], e2 > 0, ande3 > 0. A sequencé¢Syjkez of bounded linear integral operators bis called
anapproximation of the identity of ordde;, €2, €3), if there exists a positive consta@tsuch that, for all
k € Z andx, X', yandy € M, the integral kernelSk(x,y), of Sk is a measurable function, froM x M
into C, satisfying that

. 1 2 ke .
O 1S = C ratratom e

. , d(x,x)<1 1 2 kea ’ —k .
(”) |Sk(X7 y) - Sk(x ’ Y)| < C[Z*k+d(x,y)]fl ﬂ(B(X,27k+d(X,y))) [2*k+d(x,y)]52 for all d(X’ X ) < [2 + d(X9 y)]/2,

(i) Sk satisfies (ii) withx andy interchanged;

(iv) forall d(x, x) < [27K + d(x,y)]/3 andd(y,y’) < [27% + d(x, ¥)]/3,

: / Aot _dyy)a | 2t
[5ix ) = Six YT = [S0X' Y) = S YT < C s s EwsdGonls etz a0 - doan=

(V) iy SKO6 W) deW) = 1=, S(w,y) cu(w).

Obviously, an approximation of the identity has similar properties as a heat kernel, except the second order
difference property in (iv). For the existence of s{8kjkcz, we refer the reader to Han,iMer and Yang
[14] (see also David, Jougnand Semme$] when (M, p, 1) is ana-regular metric measure space).
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Via the above approximation of the identity, the authorslal puild a framework for the theory of
Besov and Triebel-Lizorkin spaces oMo, 1). In particular, fors € (0,e1), p € [1, 0] andq € (0, o0],
the Besov spacg;, , can be defined by means of the following norm:

[

1/q
Ifllzs, = ISoflle + (Z 2k5%|Dkf||ﬁp)

k=1

whereDy = Sy — Sk_1 for k € Z, and a usual modification is made whgg: co. It was proved by Niller
and Yang L9 that the spacé} , coincides with the Besov spaé# ,; see also Yang and Lir2f] when
(M, p, u) is ana-regular metric measure space.

Remark 1.10. Let (M, p, u) be as in Remar.9. Assume that the non-collapsing condition holds: there
exists a positive constantsuch that

inl& u(B(x, 1)) > c.

Xe

Assume that is a positive defined self-adjoint operatoiifisuch that the kerngg of the heat semigroup
(e )50 satisfies (P1) and the following stronger conditions:

(P3y forallte (0,1]andx,y € M,
exp(—c[p(xt’y)]z )

JiBOx VD) (B VD)

Ipe(x,y)I <C

(P4y forallte (0,1] andx,y,y € M satisfying thap(y,y’) < Wi,

[p(xt,y)lz )

p(y,w)‘a eXp(‘C

X))l < |
I @i Vo) By, Vi)

In this case8 = 2. Let®p, @ € C(R*) such that
(i) supp®o C [0, 2], [Po(2)| = ¢ > 0 on [0 2%4] and®®*D(0) = O for all v € I;
(i) supp® c [1/2,2] and|®(2)| > ¢ > 0 on [2°%/4, 2%/4];
(i) @j()=®@ ) forallj>1 andy 2, @j(4) = 1 forall1 € R".

Foranyse (0,0 A1), p e (1, )andqg € (0, ), it was proved in20, Theorem 6.7, Remark 6.8] antig]
that

- 1/q
Iflles, =~ {Z 215‘*||<1>j(ﬁ)f||ﬁp} ~ || fllss,
j=0

where®j( VL) are operators defined via the spectral resolutiob. #pplying Remarkl.9yields that all
the norms in the last formulae coincideltellas,. In particularBj , = A} 4 with equivalent norms.



Alexander Grigor'yan and Liguang Liu 13

The article is organized as follows. In Sectigdrwe make necessary preparation for the proof. In
Subsectior2.1we obtain the estimates of fractional derivatives of the heat semigroup. In Subs&étion
we deduce an inhomogeneous version of the continuous @aldeproducing formulae. In Subsection
2.3, we prove that the definition df- ||g;, in (1.1) is independent of the choices kf Finally, in Section
3, we prove Theorem$.5and1.6.

2 Auxiliary estimates

2.1 Fractional derivatives of the heat semigroup

We start with the following basic estimates of the metric measure gpage 1) that satisfiegV,)<.

Lemma 2.1. Lety € (0, ). There exists a constant €0 such that for all xy e M and t> 0,

1 X, —(a+y)
fM = [1 + pil/ﬁy)] du(y) < C @2.1)
and (a+7) (@+) (a+)
p(x2) | pzy) | 8 p(xy) |
fM[1+ - } 1+ 22 du@ < Ce |1+ 223 . 2.2)

Proof. By (V,)<, we see that for all > 0 andy € M,

—(a+y) 00 —(a+y)
p(%.Y) f f [ p(x,y)]
1 d = 1 d
\fl\ll[ * tl/B ] o [ B(X’tl/ﬁ)+j21 201418 <p(x,y)<2itL/B i t1/8 ()

< Ct¥/B,

1+

which implies @.1). For anyx,y,z € M, one has eithes(x,z) > %p(x, y) or p(zy) = %p(X, y), so @.1)
P y)]‘(“”)

implies that
—(a+y)
(X2
fM[1+ tl/ﬂ} 1B du(2)

—(a+y) —(a+y)
X, Z
(orse ™ Lo 750 [1+55] wee
p(x2=3p(xy)  Jpy)=Lp(xy) t t

—(a+y)
< Ctv/p [1 + @] .

1/
Thus, @.2) holds. m|

Let p; be the heat kernel satisfying (P1)-(P4). The upper bound d@nder continuity estimates g
have some self-improvement properties in the ttiraes follows.

Lemma 2.2. Lety € (0,8) and Ty € [1, ). Then, there exists a positive constantC(y, T, a, 58, O)
such that the following hold:
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(i) Forallt e (0, Tp] and xy € M,

1+

—(a+y)
ixo) = Co |1+ 22| 23)

t/B

(i) Forallt e (0,Tg] and xYy,y € M such thaip(y,y’) < tY/8,

()
p(y,)/)) tai/ﬁ [1 L P(xY)

~(aty)
IPe(XY) = Pe(%.Y)I < C( 1B tue

(2.4)

Proof. Let the function® be as in (P3) and (P4). Given apye (0, 8), it is easy to verify that
o) <Cl+7) @M >0,

for some positive consta@ = C(y). Thus, from (P3) and (P4), it follows that (i) and (ii) hold when
To=1.

Now we let 1< Tp < 2 and prove that (i) and (ii) hold. For amy (O, To], by the semigroup property,
we write

P = [ pralx APz ) duta).
Since now O< t/2 < Tp/2 < 1, the kernely,, satisfies2.3) and @.4). Thus, by 2.2), we have
1 P A pen [
peyI<Cors [ [1 b ] 1+ du(2 (25)

s
1 [ ey
Ct(’_/ﬁ [l + —tl/ﬁ

<
and, forp(y, y’) < (t/2)%5,
(% Y) - Pyl = \ fM Py2(% 2 [py2(2y) - P2z Y)] du<z)\

1 (p(y.y)\° (x,2) ] @y
<cas ("5 [t o) e

1+ =15 118

1 (p YN\, pxy)
) [t

<Cors

For ¢/2)V% < p(y,y) < tY#, we have 1+ 253 ~ 1 + 289 which combined with2.5) implies that

IPOCY) ~ Py <C (”(ty;,;”) (R 31+ 1P ) 26)

e YN\ L[ ey |
SC( P ) wiE |1t T

Altogether, we deduce tha2.@3) and @.4) hold fort € (0, To] with 1 < Tp < 2.
Let N € N such that 21 < Ty < 2N. Repeating the above argumehtsgimes, we getZ.3) and @.4)
for t € (O, Tg]. This finishes the proof of the lemma. ]
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Given any number € (0, o), denote byg,((x,y) the kernel of the operatotl()’e™'. If v = kis a
positive integer, since
(tLke ™ = thoke™ = tofP;,

so we occasionally writ€'dkPy(x, y) asakt(x,y). Indeed, the kerneiy; has short time upper bound and
Holder continuity similar to that ofy, as follows.

Proposition 2.3. Letk € Z;, y € (0,8) and Tp € [1,00). Then, there exists a positive constant=C
C(k, v, To, a, B, ®) such that the following hold:

(i) Forallt € (0,Tg] and xy e M,

Pl y)]_(m) . 2.7)

1

ta/B
(i) Forallt e (0, Tg] and xYy,y € M such thap(y,y’) < tY/8,

(€] —(a+y)
> 1 X,
Gk (%) — Ghe(6 Y < € (p (t{/;/)) = [1 +5 il/ﬁy)} :

Proof. Fork = 0, we see that (i) and (ii) are given exactly in Lemga Fork > 1, (i) follows directly
from [8, Theorem 4] and Lemma.2(i).
Now we show (i) fork > 1. For anyt > 0, the semigroup property @ implies that

Oke(% y) = 2€ fM Okt/2(X, 2)pr/2(z y) du(2).

For allt € (0, To] and x,y,y’ € M such thap(y,y’) < (t/2)Y, we apply (i), Lemma2.2(ii) and (2.2) to
derive that

lakt(% Y) = Gke(% V)l < 2 fM |Okt/2(% 2lIPt2(2 Y) = P2z Y) du(2) (2.8)
1 (o y)\° p )T plzy) ]
oot (68 [ e

/B t1/8
1 (p0y)\ [, ]
T Tta/B\ tlB t1/B

A

du(2)

A

’

which proves (i) forp(y, y') < (t/2)Y8. For ¢/2)Y8 < p(y,y’) < t¥8, by (i) and the same method used in
(2.6), we deduce that (ii) also holds. o

For fractional derivatives of the heat semigroup, we have the following norm estimates, both for short
and large time. Under the current assumptions (P1)-(P4) we can only obtai thBthelow holds for
p € (1,0). To obtain .11 for p = 1 or oo, we need the large time upper bound estimatep;pfee
Lemma3.3 below for how to deal with it.

Proposition 2.4. (i) If p € [1, 0], then for all te (0, ) and f € LP,

le™fllr < ClIfILe. (2.9)
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(i) fTo>1,keZ, and pe [1, ], then for all te (0, Tg] and f € LP,

L) e ™ flie < ClfliLe. (2.10)

(i) fkeZ,,ve[0,1)and pe (1, «), then forall te (0, ) and f e LP,
ItL) e flle < Cllfie. (2.11)

Here the constant C appearing (i)-(iii) is positive and depends omk p and Ty, but independent of t
and f.

Proof. First we prove (i). Fop € [1, ), by (P2) and Klder’s inequality, we see that for dlb 0,

et (x) < fM e VI ()] ()

1/p

1/p
s[ fM Ipt(x,y)ldu(y)] [ fM 1P (%, V)1 (Y)IP du(y)

1/p
sCUMIpt(x,y)llf(y)lpdu(y)] :

which combined with Fubini’s theorem further implies that

I 1, < C [ [ IpOITOP duv) ) < O,

A modification of the above arguments yields9) for p = co. This proves (i).
Now we prove (ii). Ifk € Z,, v = 0 andt € (0, To] with Tg > 1, then @.1) and @.7) imply that for any
giveny € (0,3),

—(a+y)
du(y) < C.

1 p(xy)
[} ety < i [ e 25

Arguing as in the proof of (i), with the kerng there replaced by, we obtain (ii).

Next we prove (iii) for the cask € Z,, v = 0 andt € (0, ). It was known from §, Lemma 2] that
the kernel pi}i-0 can be analytically continued to complex tinees t + is such that > 0. We claim that
there exists a consta@tsuch that for allf € LP with p € (1, ),

e fllLe < ClIflILp (2.12)
uniformly in the complex time satisfying|argZ < 6, with
T
Op = 5(1-12/p-1)). (2.13)

Assuming this claim for the moment, we sha@v1). LetT" be the circle in the complex plane with center
t and radiusit sindp, so Cauchy’s theorem states that

2(X, y)
Z)k+1

K ok tkk
Okt(X,y) = 0 Py(Xy) = .
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and thus - ()
t“ k! e X

ki katL _
tLe ™ f(X) = 201 ) T2t

Observe thatargz < 6, for anyz € I'. Taking LP-norm in both sides 0fZ.14), we use 2.12) to derive
that

(2.14)

_ k[ le 2l I fllLe
tL)ke ™ fle < d Ctkf d2 = Clflle,
ket il < = | S0 < T gier 92 =Clflle

which proves 2.11) fork € Z,, v = 0 andt € (0, o).

To verify the claim 2.12), we proceed as in the proof of,[| Theorem 1.4.2]. Let > 0,0 €
(-n/2, 7/2), f € L1 n L2 andg € L2 n L®. Consider the operatok, defined on the strigz € C :
0<Rez< 1} hy

(Af, gy =€ "@Lf gy with h(z) = re'=

By the functional calculus of self-adjoint operators, we see that
KAf, Ol < [Ifllezllgll 2, if Rez=1.
Property (P4) implies that
KAf, )l < ClIfllLallglls, if Rez=0,

where the constar > 0 is independent af. Applying the interpolation theorem for analytic families of
operators (see, for examplg [Section 1.1.6]) yields that for@t < 1,

1A ILeo < CllFllLpo,

where ¥ p(t) = 1-t/2. Equivalently, forp € (1, 2), we obtain 2.12 when|argz < 6, with 6, defined as
in (2.13. Forp € (2, ), the corresponding result is obtained by duality. The gase follows from the
functional calculus otf.. Altogether, we obtain2.12).

Finally we prove (iii) fork € Z,, v € (0,1) andt € (0, o). For all A € (0, ), one has

= Cv/lz jo‘ gl—ve—f/l dé:,

whereC, is some positive number depending onlysorConsequently, for atl € (0, o),

tk+v§;1 y
(t/l)k+ve—t/l — CV (t )k+2 [(t + f)/l] k+2e—('[+§)/l dé;
and the functional calculus gives us that
tk+vg1—
tL)<+ett =c, (o —2__[(t + &)L]*2e Ok gg. (2.15)

For all f € LP with p € (1, ), since 2.11) holds fork € Z,, v = 0 andt € (0, ) was already proved, it
follows that
It + LI 2e I Lo < ClIF s
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uniformly in t and¢, which further implies that

tk+vé';l—v

L k+v i < Vfoo L k+2 —(t+§)Lf
IE0e e <€, [ a Sl L2 O s e
00 tk+v§;l—v

<C|f ——d
= ” ||Lp (t+§)k+2 g

= ClIf]lLe.
This proves2.11) for the cas&k € Z,, v € (0,1) andt € (0, o). m|

As a simple consequence of Propositidd, we have the following two corollaries, which will be
useful in the following sections.

Corollary 2.5. LetTp > 1, pe [1, ], v € [0,0) and N N; € Z, such that N- N; > v. Then, there exists
a positive constant C such that for allt € (0, Tg] and fe LP,

[ty NN
IALNe 2Lty et fllLp < Cmm{(;) , (Y) } AN e AL £ (2.16)
Proof. Write
/lN_Nl_VtV
(/IL)Ne_Z/lL(tL)Ve_th — m ((/l + t)L)N—Nl e—(/l+t)L(/lL)N1+ve—/lL f.

SinceN - N; € Z,, applying .10 implies that

N 21 L ANy N L
||(/1L) e (tL)Ve_ f||LP < Cm”(/u_) 1+ f”LP
ty 1 N—N1—-v
<C min{(;) , (Y) } AN e £l .
Thus, .16 holds. ]

Corollary 2.6. Let pe [1, 0], v € [0, ) and ge (0, 1]. Then, there exists a positive constant C such that
forall j e Z, and fe LP,

ki dt]" 2 dt
f L)y et fle —| < cf lItL) e ™ £, —. (2.17)
2-i t 2-i-1 t
Proof. For eacht € [271,271*1], we apply @.9) to derive that

L) et i < 2/le 22 iLy e 2 L L, < i TL) e 2 fe.
Thus,

q

2-j+1
dt : -
[ f . ||(tL)Ve‘th||LpT < CliLye? . (2.18)

2-]
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Further, for anyr € [271-1, 271], again using 2.9) yields that
27Ty e L1, < 291e @ Ot Ly et i, < ClieLy e Y,

which further gives us that
j 2! dr
—-j1 yva—2! VAT
HQJUeZLW&sCL}NhUeLW&7< (2.19)
Combining .18 and @.19 yields 2.17). m|

2.2 Aninhomogeneous version of the continuous Caldén reproducing formulae

It was proved inp, Theorem 2.3] that for alp € (1, ), k e Nandf € LP,

f_(k—l)!fotl'e ft in LP.

This is usually refereed to as the homogeneous version of the continuous@atdproducing formulae.
In this paper, since the upper bound ardldér continuity are assumed only for short times, we therefore
need the following inhomogeneous version.

Proposition 2.7. Let pe [1, ) and ke N. Then, for any fe LP,
k1 4
_ _— yma-L
f_ZmLef+

m=0

]dﬁweﬂfgf (2.20)
k-1)! Jo t’ '

where the integral converges strongly ifi.L

To prove Propositio2.7, we need the following lemma.

Lemma 2.8. Letme N, pe[1,o)and fe LP. Then,

y@neﬂf—fmpzo (2.21)
and
y@uaumgﬂfmp=o. (2.22)

Proof. Since we are considering the behavioreof- ast — 0,, we may restrict € (0,1]. Denote by
Cc:(M) the space of continuous functions with compact supportMombue to .10 and the density of
Cc(M) in LP for p € [1, ), we only need to prove2(21) and @.22) for f € Cc(M).

First we letf € C,(M) and prove 2.21). Assume that supp c B(xo, R) for somexp € M andR > 0.
Foré > 0 to be determined later, by (P1), we write

e () - f(x) = fM PO YILF(Y) = F()] duy), (2.23)
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so that

tL
et — f11P,

p
fM PO YLF(Y) = F(X)] d/l()/)’ du(x)

fl\‘/I\B(Xo,ZR)

p
" fB(XO,ZR) f )< P YIF(Y) = T du(y)|  du(x)
P
+fB(Xo,2R) fp(x,y)>5 du(x)

ZJl+Jz+J3.

By (P2), we see thaﬁm Ipe(%, Y)| du(y) < C. For Ji, since supgd c B(xo, R), we use Hlder’s inequality
and Fubini's theorem to derive that

5=
M\B(x0,2R)

<c f
M\B(x0,2R)

<[] |pt<x,y)|dy<x)]|f(y)|Pdu(y).
M LJp(xy)>R

Choosey € (0,8). Then Lemma&.2(i) and .1) imply that

p
fM PO ) dh)] o)

f |pt(x,y>||f(y)|pdu(y)] du(¥)
B(xo0,R)

Py |
fp (X’y)>R|pt(X, yldu(x) <C f o P [ T d () (2.24)
R\ L[, )]
=° (1 ' »[1_/,3) fp(x,y)>R /B [1 tHe ] 9
R \7/2
= C (1 + tl_/,B) s

and thus

R \77/2
a<Clfif(1+ 55)

which tends to zero as — 0,. For anye > 0, sincef € C.(M), there exists somé& > 0 such that
|f(X) — f(y)| < e whenp(x,y) < 6. From this, it follows thatl, < ePu(B(xo, 2R)) < CePR?, which tends to
0if € — 0,. With the above chosef) we use 2.24), obtaining

f(y)-f Pd d
3 < fB - f o POYIT) — OO A) i)

P p
<C fM I (X,y)zélpt(x,y)llf(Y)l du(x) du(y) +C fM f; (X’y)26|pt(X,y)||f(X)| du(y) du(x)

5 \7/?
<Cfiy (14 55) -

which also tends to zero as» 0,. Combining the estimates df, J, andJs yields 2.21).
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Now we prove 2.22). Fort € (0,1] andx € M, it follows from (P1) thath Omt(X, y) du(y) = 0 when
m e N. Thus, instead 0f4.23, we have

(tL)"e f(x) = fM Ame(% ILE(Y) = FO9] du(y).

Next, following the proof of 2.21), we just need to replace the kermeby gm and use Propositio?.3(i)
instead of Lemm&.2(i), which leads t02.22). The details are omitted. m]

Proof of Propositior2.7. Let p € [1, ) andf € LP. We claim that, for alme Z,,
tILn;_(tL)me‘“-f =L"ef  inLP. (2.25)
To see the claim, we write
(tD)Me ™t f - LMetf = (tL)Me (1 - e I f 4 (1™ - 1)LMeH 1.
By (2.10, we have|L™e " f||_» < C||f||Lr and thus

lim (™ - )LMe e = 0.

Again (2.10 implies that
ItL)"e (1 — e LY flIe < ClI(L - e AN Flje = ClIf — e @£,

which tends to 0 by means d2.21). This proves2.25 and the claim.
By (2.2)), (2.22 and @.25, we use integration by parts to obtain

1 1
f:e‘Lf—f ate‘thdt:e‘Lf+f tLe‘thth
0 0

in LP, that is, .20 holds fork = 1. Now we assume tha? 20 holds inLP for somek € N and prove its
validity for k + 1. Indeed, integration by parts again gives us that

1t ek dt 1 (w1« Ky k
f thlp kerlgtlg = = —f [kt L ket — g, (t L e‘“-f)] dt
0 0

K t K
1

_1 [kf kL ket f dr_ Lke‘Lf]
K| Jo t

k-1
_ 1 m—L 1 k —L
= f r;)m!Le fogLiet

ki1
_ ma—L
_f—ZHLe f.

m=0

By (2.21), (2.22 and @.25), all the equalities in the above formula holdlif. This proves that3.20
holds inLP for k + 1. This finishes the proof of the proposition. ]
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2.3 Norm equivalence

Proposition 2.9. Let s€ (0, c0), p € (1, ) and ge (0,c0]. Then, the norm§- ||gs, defined in {.1) are
equivalent for any two values of k satisfying ks/g.

Proof. Let s/B < ki < ky < 0 and define

dt)"/e .
||f||Bsq(m-||f||Lp+( f [ e | —) L i-12 (2.26)

We need to show that
11188 (k) = 1T llB3 4(k2)-

Because 0fZ.11), the integral signfom in (2.26 can be equivalently replaced lfyc wherec can be any
constant in (0eo]. By k» > k; and @.11), we see that

L) et flle = L) e st tL)ke 2 fl|p < ClI(tL) e 2 Fp,

so that

ke BtL a dt)"
||f||B;q<k2>sc||f||Lp+C( fo |y 3 il T) = 11fllgg, -

It remains to prove
I fllBg (k) < CllifllBgo(ke)- (2.27)

Fix some integeN > k. By Propositior2.7 and a change of variables, we write
N-1

(tetf=>" % LMet(tL)et f + ——

m=0

(N o f (ALNe 2 tL)k -fodﬂ (2.28)

For any 0O< m< N - 1, applying .10 yields that
ILMe b (tL)ket fl|Le = tL™ ke et fl| L < CHIf|Lp.

With this, taking theLP-norm on both sides o2(28 and applying 2.16), we obtain

1
2 da
I(tL)e ™ flle < C [tklllfIILp + f S IALNe 2 (tLyket 7]
0

1

5 k N—kz
< C[tklllflh_p + f2 min{(f) " (4) }uuL)kZe—ﬂquLp dd
5 1) 1 1

= Jl(t) + Jz(t).

[ S—

Sincek; > s/B, it follows that

L dt) " 1 dt) "
( fo 30" T) < Cllfliee ( fo tla=s/)d T) < CllfllLe.
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Thus, to obtainZ.27), it suffices to prove that

1 q dt 1a
( fo [t953,(0)] T) < Cll lls i) (2.29)

First we prove 2.29 for q > 1. Write
q

sl =cf [ “mof(f (4 e 8] e

Sincek; > s/B, one can verify that

By (ke Ny da
) {3 (4"} & <
fo A {/1 t Pl
Further, applying 8lder’s inequality to 2.30 yields that
S/ﬂ tyk Nk q di
-s/B ; - - -s/B ko o—AL e
[ 3,00)] <Cf {&) (%) }[a Iyt fie[* =,
which combined with Fubini's theorem implies that

1 s//3 t ki \N-k da dt
583, d_t f f _) (_) ~siBy( 4 YeeL g1 |9
fo[t Ln] = =<cC =) -3 [0y e 1] — T

da

<c f [aLy et ] <
0 A

This proves 2.29 for g > 1. If g = o0, one may easily verifyd.29 by using the above argument.
Now we show 2.29 for g € (0, 1]. We split the integral interval in the right a2 (8) and apply the fact

(> 1)) < >llajl whenx e (0.1, (2.31)
and Corollary2.6. It follows that

[Se]

e - () mnlf (5] e

J:

1
t\~sJB tyka [ 2\(N-ke)a q da
By in<( = - -s/p ke AL aa
Scfo (/l) mm{(/l) ’ (t) }[ﬂ Py ee i) —.

By Fubini’'s theorem and the fact

dotysas (tyka \(N-k)O) dg
- min<(=] , = — < 0o,
[E™ mn{G) G5
we further deduce that

f [ 20]" T <c f f ) ™ min{(3) (%)(N_@q}[fs/ffu(ﬂL)kze‘”Lf||Lp]“"'—;O'Tt

< Cf |8 (L) ee | d%.

This proves 2.29 for g € (0, 1]. We complete the proof the proposition. m|

Bl
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3 Proofs of Theoremsl.5and 1.6

3.1 Proof of Theoreml.5a)

Proof of Theoreni.¥a). According to Propositior2.9, the norm| - [|gs, defined in {.1) is independent

of the choices ok satisfyingk > s/8. Thus we choosky € N such thaky > s/8+ 2. Fixk = kg+m/2, so

thatk > m/2 + s/B. In the proof below, we shall consider the noltmilgs,, defined via such kas in (.1).
Let f € Dom(L™?) N LP. First we will prove that

IIfIIBg}gms < ClIfllams. (3.1)
It follows from (P1) that the kernel of the operatok e ", which is denoted bwk,.t(X,y), satisfies that
[ destxyrcuty) -
By k = ko + m/2, we havetl)¢e - f = t™2(tL)koetL(L™2f) and thus
(tL)fe ™ f(x) = t™? fM Ohot (06 Y) [L™2 () = L™2 ()] du(y).

Since 0< s < min{®, B/2}, we choosey € (s,B8). With thisy, applying Propositior2.3(i) to gy, (X, )
yields that fort € (0, 1] andx € M,

—(a+y)
(tL)ke F(x)] < C2 f - [1 s y)] IL™2£ (y) — L™2£ ()] duy)
m t@ t/p

(9]

cctYy 2 £ L) - L) dut)
3 (xy)~218

i=
where the notatiop(x.y) ~ 2'tY# means 2tY# < p(x,y) < 2'tYf wheni > 1 andp(x,y) < t*# when
i = 0. Further, by the fack,>, 2™ < oo, applying Hilder's inequality twice yields that

(e f (P < CEmP2 Yy 2y f IL™2£(y) — L™2£ (1P du(y).
i=

p(xy)<2itYp
and

t2=SIB)|(tL) ket £l (3.2)

1/p
S L™2f(y) — L™2f (x)|P
2(s=) f Jf | . du(y) du(X
iZ(; M Jp(xy)<2itB (2'tL/P)sp ) ()

Consider first the casg> p. Raising both sides oB3(2) to the powerq, and then applying < y and
Holder’s inequality with exponen@— + (q/p), = 1, we conclude that

<C

) m m a/p
[t‘m/z‘s/ﬁn(tL)ke_tLf|||_p]q <C Z oi(s) [f JC( IL /2f(y) _ LM2f(x)P ) dﬂ(X)] ’
=0

M Jp(xy)<2itls (2'tL/B)sp
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so that

1
f [t-m/z-s/ﬁ“(tL)ke-tLf”Lp]qth
0

Lm/Zf(y) _ Lm/Zf(X)lp a/p dt
. d d —
f JC(xy)<2't1/ﬁ (2it1/B)sp ) #(X)] t

Lm/Zf — L2 (x P a/p dr
[f DO duydutn| T
(xy)<r r r

(o)

c Z oi(s7) f

IA

(o] 2I
<C 2i(s-7) f
2,27 |

<C||fII

Am,sa

which proves 8.1) for the casel > p. Whenqg = o, a modification of the above arguments also implies
(3.1. If g € (0, p], then by B.2) and @.31), we see that

1
f |25 L) et 1o | a
0 t

1 > / y )
SC[ E 2|( y)q/p[ff L '—l p . a/p
0 i=0 M p(x’y)<2it1/ﬁ (thl/ﬂ)sp dﬂ(y) d,u( ) _t

S 2 2§ (y) — L2f(x)|P VP dr
- Z i(s-narp L™ () M dr
=C2,277 L ﬁﬂ J[(x y)<r rsp WO ) r

<Cllfll

Ams,

so 3.1) also holds whem € (0, p]. Altogether, we obtain3.1).
To finish the proof of Theorerh.5a), we still need to prove that

||f||Ar’1)}c']s < CIlfllBEﬂR“' (3.3)

To this end, leN € N such thailN > ky + k, wherek = kg + m/2 with kg being a large positive integer. For
f e Dom(L"™?) N LP, we write

N-1 1

Lm2¢ EL|+m/2e—Lf + 2N fz NN+ 22l ¢ d_t

o i! (N=2D)! Jo t
Noticing that
Li+m/2gL§ — Lie—%LLm/Ze—%Lf
and
tN LN+m/2e—2th — t—m/Z(tL)N—koe—tL(tL)ke—tLf’
we have
2 - 2 2 1L : 2 K -tL dt

LM2£(x) = T f 0.1/2(% 2) L™?e7 2 f(2) du(2) + C f f 20N kot(%. 2) (L) e F(2) du(2) +

M 0 JM

Il
o
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and thus

N-1
L™2E0) - LR = ) 5
i=0 °

i dt
+CfO ‘fM t—m/Z [qN_ko,t(x, Z) - QN—ko,t(y, Z)] (tL)ke‘“- f(z) d,u(z) T

N,

f Gi.1/2(% 2) — G 12(y, 2] L™ €721 £(2) du(2)

Lety € (s,8). For anyx,y,ze M such thap(x,y) < r, by Propositior2.3, one has

1 (p(xy)\° o(x,2) @) ; 1B
Cta_/ﬁ( ar ) |1 s e
I )< 3.4
|ON-ko,t(X: 2) = ON-ko.t . D) o(x,2) @) oy, 2“7 1/ oY
o[ e 2 ) e

<C min{l, (rt‘l/ﬁ)G}Jt(X, Y. 2),

where

1 P AT [ T
Ji(Xy,2) = ta/ﬁ[[l+ tl/ﬁ] 1+ T .

Similar to 3.4), one has
0.2/2(% D = Gia2(y, 2l < Cmin{L, 1} T3(xY,2,  0<i<N-L1
Therefore,
LR (x) - LA ()]
< Cr*min{1, r®} fM T3 (%Y, 2IL™ 26721 £ (2)| du(2)
+C fo : fM YA min{1, (t78)°) Fi(x y, 2 V2R ALy ke £ (2)) oly(z)dTt
=71+ 2Zo.

From @.1), it follows that for allt € (0, o),
[ ey ad@<c<w
M
Applying Holder’s inequality yields that

1/p
Zy <Cr°min{1, r®} fj%(x,y,z)|Lm/2e‘%'-f(z)|pdy(z)] .
M

By the assumptiols < ®, we see that for all € (0, ),
0 . dt
f (r‘ltl/ﬁ)smln{l, (rt‘l/ﬁ)G} ~ <G (3.5)
0
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SO
% 1:1 ; 1/8\0 dt
f f(r‘ tY%)*min{1, (t")°} Ji(xy.2) du@ + <C<eo
0 M
uniformly in the variablez andr. Applying this and Hblder’s inequality yields that
2 dt1P
Z; < c[ f f (e min{L, (A%} Fi(xy,2) [C 2L 1)) du() —]
0 JM
Combining the estimates @ andZ, implies that
rSAL™2(x) - L2 ()P
<Cr*min{1, r@p}f j%(x,y,z)|Lm/2e‘%"f(z)|pdy(z)
M

+C f ? f (U8 min(1, (t"Y8)°) Fi(x.y.2) [ ™2 L)ke ()| dﬂ(z)th
0 M

By this, Fubini's theorem and|, Ji(xy)« Ji(%. Y, 2) du(y) du(x) < C uniformly inr € (0, 00), t € (0, 3] and
z<€ M, we deduce that

IL™2f(y) - L™2f(X)IP

< Cr‘Spmin{l rOP} L™ 263 £,

+C f YA min{1, (780} 2B aLyke £, d—t
=1 Y1(r) + Yao(r).

Since .10 implies that|L™2e 2L f[|_o < C||f|lLe, we have|Ya||L~ < |If]lLr and

(f [Ya(r)]YP —) < Clfllee (f r~Imin {1, r®9) —) < CllflILe.
0 r 0 r

Thus, to obtaind.3), we only need to verify that

o dr\Yd
( f [Ya(r)]YP —) < Cl|fllgmpzss. (3.6)
0 r p.q

If g/p = 1, then by 8.5 and Hlder’s inequality with exponent§1— + =1, we obtain

(Q/ D

1
[Y2(]9P < C fo A min{L, (V) eSO ke 1, th
Applying Fubini's theorem and the fact that

f (r 'tV min{1, (%)) ar.c
0 r
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uniformly in t, we obtain

f [Yz(l’)]q/p < Cf It (m/2+s/,3)(t|_)k —thH < C”f”qms/2+s'

This proves 8.6) for the caseo > q/p > 1. The case = ~ follows by a simple modification of the
above arguments.
Now we prove 8.6) for the casey/p < 1. Using €.31) and Corollary2.6, we have that

[Ya(r)] VP =~ Z [(rzl/ﬁ)—s min{l, (rzl/B)G)}]q/p 2ia(m/2+s/p) [f ' ||(tL)ke_th||Ep gl
j_ 2-j-1 t
/ i dt
[(rzl/ﬁ) mln{l (rzj/ﬁ)@)}]q P oiam/2+s/p) L_j_z ||(tL)ke_“‘f||Ep -

I/\
.Mg N

|
=

J

fo

I/\
ENT

[(rt 8y s min 1, (rt-8)°) |77 a2y yke L pl,

Notice that
0 ) d
f |8y~ min {1, (rt‘l/ﬁ)@}]q/p Tec
0 r

uniformly int. Applying Fubini’s theorem implies that

°° dr i _ _
fo [Yo(r)]9/P —=<C fo [t~ (W2+SIB) (¢ ke th||ﬁp— C||f||Bn¥,/2+S

This proves 8.6) and thus 8.3). We complete the proof of the Theorein®(a). ]

3.2 Proof of Theorem1.5b)
To prove Theorem.5b), we shall use Theoreh5(a) and the following two density lemmas.

Lemma 3.1. Let all the assumptions be as in Theoré&ri(b). Let me (0,x), s€ R, p € (1, ) and
q € (0, ). Then,Dom(L™?) N B} q is @ dense subset ofB.

Proof. Let f € By . Obviously,f € LP. Given a large numbeN € N, which will be determined later, we
apply Propositior2.7to deduce that

N-

EI—L 1 fl N—/lLd_/l- p
Z|Le f+(N_1)! O(/lL)e f— inLP. (3.7)

Let ¢ be a smooth function defined on, 8) such that 0< ¢ < 1, ¢(t) = 1 on [0, 1] and¢(t) = 0 when
t ¢ [0,2]. Fix X € M. Given anyo, 7 € (0, 1), letg, (X) = ¢ (no(x, X)) and

Z

=

ooy

L '—(f¢n)+(N 1)|f(/1|_)N —tL(f¢n)

I
o
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To verify that everyf,,, € Dom(L™?), we apply @.11) to derive that

N-1, 1 da
IL"fogllz < 37 FILT™ 2 (0o + oy, f TN (g )l —
i=0 '

< Cno 16, l2,

which if finite sincef¢, € L2. Thusf,, € Dom(L™?).
Now we prove thaff,,, tends tof in LP aso,n — 0,. According to Propositior2.7, the sequence

{90 }o>0 given by
f(/“_)N —/lLf dﬂ'

converges td in LP asoc — 0,. Thus, it siffices to show that for any fixed smadtl> 0,

lim ||fg’,7 - go—|||_p =0. (3.8)
n—0,

N-1 1
= .—Lie‘Lf
il TIN= 1)|

By (2.10, we obtain
N-1 4

1o = GollLe < Z —||L' e (FL- gl + 5

< CN,a’ (1= &,)lle,

which tends to 0 ag — 0,. This proves 8.8). Thusf, , tends tof in LP aso,n — O..
Due to the above arguments and Proposifidhto prove thatf, , tends tof in By ; aso,n — 0,, we
only need to show that

= 1), f I(A)Ne - (f(1 - ¢,7))||Lp—

1 q dt va
lim (f [ (F = foplie ] —) =0
0

o,n—0,; t

for some fixedk € N such thak > s/B. To this end, write

(tL)*e ™ (f = f,)] < ALY (F - g0l + (L) €™ (s — Torsp)l-

Thus, it sufices to show that

! —s/B Kot g dt
Jim | [EIEn e - gl =0 (3.9)
and that, for any fixed,
- By ket q dt
lim [ [T e™(@r — ol — =0. (3.10)
n—0y 0 t

First we prove 8.9). Applying (3.7) with some integeN > k and the definition of, yields that

< (N 1), fo IaL)Ne (L) “Lfan—

30 da
= Ct P fo ||(/lL)Ne_2/lL(tL)ke_tLf||Lp7.

A tL) e ™ (f - go)liee <

._\
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Then, by Corollary2.6, one has

YA tL) e ™ (f - go)llLe (3.11)

s -s/B k N-k
scf2 (3) min (5) , (3) Lk 2.
. 1 1)\t 1

If g > 1, then the assumptida> s/B implies that

L minf (5 (4 2 <

uniformly in o- andt, which together with l8lder’s inequality further implies that the right side 811

is bounded by
ir - N-k 1/q
76 w3 e nre e &

With this and Fubini’'s theorem, one has

1
fo |2 e (F - go)lie|” a

t

o [TE) mdl) () frare o 4 ¢

<C f 2 |8 )L e | d; -0

._.

aso — 0,4, where the last inequality follows from

Lit\sB [tk dt
LG md(G) ()] F o<
o \1 1 t t
by means of the assumpti&n> s/B. This proves 8.9) for the casey > 1.

Next we show that3.9) remains valid whem € (0,1). Denote byJ the unique number such that
279 < 20 < 279+, By (2.31) and Corollary2.6, we obtain

1
20 1t \~S/B t\K 1 N-k s da
— i — _ -s/p L k —/lLf dad
lfo (3 mm{(/l) () }/l ALY e e 2
o 2w s K N-k q
Zf (E) mln{(i) , (il) }/I—S/ﬁ”(/u_)ke—/lLf”Lp d_/l
j:-] 2’1 /l /l t /l
t \—sdB t \kq (- (N-Kay 2
— i — —— jsa/B kgL
=C £ (2—1) mln{(z—j) ’ ( t ) 2 Li lI(aL)"e f|||_p 1

1
27 1t \~SUB thka 1 (N-K)a . q di
Y in{(= Z -s/B Ka-AL daa
Scfo (/1) m'n{(a) (t) }[ﬂ ALy e flls X

q
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From this and3.11), it follows that whernr- — 0.,

1 dt
f [ e e ™ (f - gl | =
0

o [ mnl( 6 e 3

< sz [/l_s/'B”(/?.L)ke_/lLf”Lp]q d% - 0,

._‘

where the last inequality is due to Fubini’s theorem and the fact that

J G mf G () F e

while the latter holds because ot s/8. This proves that3.9) still holds wheng € (0, 1).
Finally we prove 8.10 by fixing someo. Notice that

L) (fory — Gl < Z —||L' e (tL) e ™ (f(1 - ¢,)lILe

T f JaNe ke (£ (1 - g e 2
(N=-D)! J, 7 1’

Fort € (0,1] andA € [0, 1], applying Corollary2.6yields that

ILe ™ (tL)*e M (F(L - ¢, < Cmin{t<, t7}[1f(1 - ¢,)llLe < CHIF(L— 6,IlLo
and

N AL 5| \KeatL [k (N k
IALNe (L) e (F(L - ¢,))lILe < C mm{(;) (%) }uf(l — ¢l < CotMIT (1= @)l

Combining the last two formulae gives that

ItL*e ™ (fry - Go)lle < CotIf (L - &,)lIL.

From this andk > s/B, we see that the left hand side 810 is bounded by
1 dt\ "
Collf(1-¢,)llLe ( fo ak=s/) T) = ColIf(1-¢,)llLe,

which tends to 0 ag — 0,. Thus @.10 holds and we complete the proof of the lemma. O

Lemma 3.2. Let all the assumptions be as in Theoré&r(b). Let me [0, oo) m* € [m, o0) N (0, ),
se (0,0 A (8/2)), p € (1, ) and ge (0, ). Then the spacBom(L™ /%) N B”’B/ *Sis dense iM ;.
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Proof. Notice that
Dom(L"/?) = {f elL?: f AT d||E, f|]? < oo} = {f elL?: f 1+ )™d|E,f|]? < oo}.
0 0
Sincem’ € [m, o), it follows that
Dom(L"™/?) c Dom(L™?). (3.12)
By this and Theorem.5a), we see that

Dom(L™/2) N B *** c Dom(L™?) n By *° c AT,

To see the density of Dor{"/2) N B> in Alis, we letf € Alls. For anye > 0, sinceAls is the

completion ofApy, there existg € Apy such that
If - gs||xg}§ <€

Clearly, suchg, belongs to Doml(™?) and thusy, € Bg}g/z+s by Theoreml.5a). According to Lemma
3.1, the space Don{"™ )N B ***is dense irBy >**. Thus, there exists sonfee Dom(L™ )N B >
such that|g. - felle/2+s < e. By (3.12, we see thaf, € Dom(L"™?), so doeg). — f.. Applying Theorem
1.5a) yields that

I9e — feHA?qS ~[|ge — fe”Bm/%S < Ce.

In this way, for anye > 0, we find anf, € Dom(L™/?) N By **® such that
I = Tellgms < T = Gellzms + 119 — fellzms < (C + L)e.
This finishes the proof of the lemma. ]

Proof of Theoreni.5(b). Letme [0, ), s€ (0,0 A (8/2)) andr = mB/2 + s. Fixm" € [m, 00) N (0, c0).
By Lemmas3.1and3.2, the space8, , andA}g have a common dense subset Daffi(?) N B}, .. For
functionsf in this common dense subset, B/12 and Theorem..5@a), one has

fllepq = Ml fllams. (3.13)

From this, one deduces th8},, = K?,"j with equivalent norms. Being more precise, for dng B

P.a’
since Dom[™/2) N B q is dense irBy, ;, we can find

()52, Dom(L"/?) n Bhq

such thatfj — f in B}, 4, and hence in.P. Notice that{ f;};?, is a Cauchy sequence B}, ;, which is also
a Cauchy sequencgﬁi]g}; because 0f3.13. Ihus{fj}‘j’il converges to some elemehin K?}é so that
it also converges td in LP. This forcesf = f in LP and almost everywhere. Hence, ahyjn B})’q also
belongs taAp and

-~ =i i < i i =
Il = lim fillage < C lim 11l = Clfle

The converse part follows in a similar way; we omit the details. ]
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3.3 Proof of Theorem1.5c)
Lemma 3.3. Assume that (P2) holds for all time=t(0, o).

(i) Letke N andv € [0,1). Then, for anyy € (0,8), there exists a constant € 0 such that for all
te (0,00)and xy e M,

1+

—(a+y)
p(%,y)
7 ] . (3.14)

1

If k = 0andyv € (0, 1), then there exists a constant€0 such that for all te (0, ) and Xy € M,

plxy) [

1
(%Yl < Co7s [1 1B (3.15)

(i) Let pe[1,], ke Z, andv € [0,1). Then there exists a constant0 such that for all fe LP
and te (0, ),
||(tL)k+Ve_th|||_p < C||flILe. (3.16)

Proof. Observe that (ii) follows from (i) and the same argument as in the proof of Propo2idn Thus
it suffices to show (i).

Fork € N, since now (P2) holds for all timeee (0, ), it follows from the proof of Propositio.3(i)
that for allt € (0, ) andx,y € M,

—(a+y)
1 X,
|qk’[(X7 y)l < Cta_/ﬁ |:1 + pEl/ﬁy)] . (317)

This proves 8.14) for the cas&k € N andv = 0.
Now we letk € Z, andv € (0, 1). Choosey € (vB, B). It follows from (2.15) that
00 k+v 1-v
Qv t(X,Y) = Cy f n f)k+2 O+2, tr(X, Y) A&,
so by @.17) one has
k+v§l v

|Okv,t (X, V)| < f (t 1 &)kr2+alp 1+

We split the last integral into integrals over the intervalg](@nd [t, «), and denote those integrals By
andJ,, respectively. InJ;, we havet + ¢ ~ t and thus

t ikt el-v —(a+y)
S p(X.y)
J1 = j(; tk+2+a/p [1 + t1/B dé < C—2

—(a+y)
p(x) ] o,

(t+8)7

(a+y)
p(%.Y)
A

In Jo, we havet + £ ~ £ and

00 tk+v ,D(X,y) —(a+y)
J = ft gerviiralp [1"' 1B dg.
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If p(x,y) < 2tY8, then

tk+v 1 1 p(X, y) —(a+y)
J < Cf §k+v+l+a/ﬂ {‘4 < ta/_/ﬂ ~ '[a/_/,B |:1+ (1B . (319)

If p(x,y) > 2tYA, then by a change of variables= pf(f;g’), we obtain

p(xy)

k
e ftl/ﬂ T(k+v)ﬁ+a(1 + T)—(a+y) ﬁ
0 T

= o(x, ) pra

Whenk > 1, by k+ v)B+ a > 8+ @ > a + v, we conclude that

k - —a— -_—
B thtv p(X, y) (k+v)B—y 1 p(X, y) a—y N i 1. p(X, y) (a+y)
°7 plxy)kepa " (1ip AN ta/f LB '

Combining this with 8.18 and @.19 implies (3.14) for the cas& € N andv € (0, 1).
Whenk = 0 andv € (0, 1), applyingvB < v yields that

o(%Y)

ftl/ﬁ 7-"3*“(1 + T)—(aw) % <C< oo,
o T

and thus whep(x,y) > 2t¥# one has

b oeo U (poey)\ 1y |
= p(x,y)Bra t“/ﬁ tV/B ta/p 1B
Combining this with 8.18 and @.19 yields 3.15. This finishes the proof of (i). -

Proof of Theoreni.5c). Given anyk € Z, andv € [0, 1), by (3.16), we see that the operatdt <’ et
is bounded ori.! uniformly int € (0, ). This will guarantee that Propositich9 remains valid when
p = 1. Consequently, the arguments in the proof of Theotesa) also works fop = 1. Hence

fllame = ||f||Brlr.g/2+s, f € Dom(L™?) N LP.

The density lemmas in Subsecti8r? are also valid folp = 1, so thalBZ‘g/Z*S andK’l“’qS have a common
dense subset Dom{" /) N Brlr‘gms, wherem* € [m, o) N (0, o). The rest of the proof follows exactly the
same as in the proof of TheorelrB(b), and we conclude thﬁ?gms = Kl’lquS with equivalent norms. o

3.4 Proof of Theoreml.6

Proof of Theorenml..6. Sincep; is hon-negative, then following the proof @1, Propositions 7.27 and
7.28], we deduce that for dlle (0, ) andx,y € M,

p(%.Y)
x> o (452
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where the functiond; is given by

C, if r<n

()] =
(1) {o, if 7>,

with C andn being some positive constants. This combined with (P3) implies ghags two sides
estimates: for alt € (0, o0) andx,y € M,

1(p8(/’ﬁy)) Pi(x.y) < ta/ﬂq) (pg/ﬁy))’ (3-20)

where®; is a non-negative monotone decreasing function gmo)Guch that

0 d
f Ta+6ﬁq)2(‘l') —T < 0
T

for all § € (0,1). It follows from (3.20 and [L1, Theorem 3.1] that(B(x,r)) =~ r* for all x € M and
r > 0. In particular (\4)< holds. Notice that (P2) follows frormp, > 0 and (P1). So far, all conditions of
Theoreml.5are verified. Thus, i5€ (0,0 A (8/2)), then (.13 is known from Theoreni.5b).

To prove (.13 for s € [®, B/2), we shall use the following result il], Corollary 5.5]: if 3.20
holds, then for anyf € Dom(L?%),

ta/B

113 552 = (L°F, £). (3.21)
22
With s € [@,3/2), we letm € [0, ) andr = mB/2 + s. Chooses® € (0,0) andm* € (0, ) such that
m‘B/2 + s* = r. Observe that* > m. We claim that for allf € Dom(L™/2+1),
Iflls;, = ””|A'£;- (3.22)

Assuming 8.22 for the moment, we provel(13. By Lemma3.1, Dom(L™/>!) n B}, is a dense
subset ofBr22 Applying (3.22 andm* > m, we proceed as in the proof in Lemr3a&2 and obtain that

Dom(L™/#1)Nn B}, is also a dense subsetztsvgls This tells us thaB}, , andA7*; have equivalence norms
on their common dense subset Daf(%1) N Br . Following the arguments in the proof of Theorem
1.5(b) yields thatB , = Am“s with equivalent norms. This proves.(3.

Finally, we Ietf € Dom(Lm /2+1) and prove 8.22. By m*/2 + 1 > 2s*/8 + m"/2 = 2s/8 + m/2 and
(3.12, we see that

f € Dom(L?/A#*™/2) c Dom(L™/?) and fe Dom(L2#*M2) c Dom(L"™?).
Then, from 8.21) and Z*/8 + m*/2 = 2r /B = 2s/B + m/2, it follows that
HLm*/ZfHZS* ~ (LZS*/,B+m*/2f Lm*/Zf) — (Lzr/‘Bf f) — (LZS/B+m/2f Lm/Zf) ~ ||Lm/2f||/2\
A2,2 ’ ’ ’ ;,2.
Sinces’ < 0O, applying Theoreni..5@a) implies that
/2 280 —
Iflleg, = 1l s = 1l + IL™ 2 Fllxg) = il + IL™2Fllzs, = fllazs,
which proves 8.22). This completes the proof of the theorem. |
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