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1 Introduction

The classical Harnack inequality says that if u is a non-negative harmonic function
in a ball B (x, R) in R

n then

sup
B(x, 1

2
R)

u ≤ C inf
B(x, 1

2
R)

u

where the constant C depends only on n. The same inequality holds for solutions
of a uniformly elliptic equation

Lu :=

n∑

i,j=1

∂

∂xi

(
aij (x)

∂u

∂xj

)
= 0

where now the constant C depends only on n and on the ellipticity constant of the
operator L. The Harnack inequality has proven to be a powerful tool in analysis
of elliptic PDEs. For example, it can be used to obtain the Hölder continuity of
solutions, convergence properties of sequences of solutions, estimates of fundamental
solutions, boundary regularity, etc.

A parabolic version of the Harnack inequality, which was discovered by Hadamard,
says that if u = u (t, x) is a non-negative solution of the heat equation ∂u

∂t
= ∆u in

a cylinder (0, T ) × B (x, R) where T = R2, then

sup
( 1

4
T, 1

2
T)×B(x, 1

2
R)

u (t, x) ≤ C inf
( 3

4
T,T)×B(x, 1

2
R)

u (t, x) , (1.1)
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where again C depends only on n. By a theorem of Moser [29], the same inequality
holds also for solutions of the parabolic equation ∂u

∂t
= Lu where the constant C

depends in addition on the ellipticity constant of L (here the coefficients of L are
allowed to depend on t as well). A spectacular application of Moser’s Harnack
inequality was the proof by Aronson [1] of the Gaussian estimates of the heat kernel
pt (x, y) of the equation ∂u

∂t
= Lu:

C2

tn/2
exp

(
−c2

|x − y|2
t

)
≤ pt (x, y) ≤ C1

tn/2
exp

(
−c1

|x − y|2
t

)
. (1.2)

To be more precise, the Harnack inequality was used in [1] to prove the lower bound
in (1.2), while the upper bound was obtained using an additional argument. Even
earlier Littman, Stampaccia and Weinberger [27] used the elliptic Harnack inequality
of Moser to obtain estimates of fundamental solution of the operator L. It was first
observed by Landis that conversely, if one had proper two sided estimates of the
fundamental solution of L then one could deduce the Harnack inequality, although
in a highly elaborate manner. The argument of Landis was further developed by
Krylov and Safonov [24] in the context of parabolic equations, and then was brought
by Fabes and Stroock [11] to a final, transparent form.

In the meantime, the development of analysis on Riemannian manifold raised
similar questions in the geometric context. Let now ∆ be the Laplace-Beltrami op-
erator on a complete non-compact Riemannian manifold X. Then one can consider
the associated Laplace equation ∆u = 0 and heat equation ∂u

∂t
= ∆u and ask the

same questions as above. It was quickly realized that the Harnack inequalities and
heat kernel bounds require quite strong restrictions on the geometry of the mani-
fold. The questions above are transformed in the context of the heat equation as
follows: under what geometric hypotheses can one obtain analogues of the parabolic
Harnack inequality (1.1) and the heat kernel bounds (1.2) on Riemannian manifold
and whether these two properties are equivalent? The first breakthrough result in
this direction is the following estimate of Li and Yau [26]: if the Ricci curvature of
X is non-negative then the heat kernel pt (x, y) admits the bounds

pt (x, y) ≍ C

V
(
x,
√

t
) exp

(
−c

d2 (x, y)

t

)
(1.3)

where d (x, y) is the geodesic distance, V (x, r) is the Riemannian volume of the
geodesic ball B (x, r), and ≍ means that both inequalities with ≤ and ≥ take place
but possibly with different values of positive constants C, c. In fact, Li and Yau
proved the uniform Harnack inequality (1.1) for solutions of the heat equations
on X, and then used it to obtain (1.3) as in Aronson’s proof. Similar estimates for
certain unbounded domains in R

n with Neumann boundary conditions were obtained
by a different method by Gushchin [20].

An analysis of the arguments of Fabes and Stroock [11] and Aronson [1] shows
the following:

1. If the killed heat kernel on X satisfies the lower bound

p
B(x0,R)
t (x, y) ≥ c

V
(
x0,

√
t
) for all x, y ∈ B

(
x0, ε

√
t
)

(1.4)
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for all x0 ∈ X and 0 < t ≤ εR2, for some positive constants ε, c, then the
Harnack inequality (1.1) holds.

2. If the Harnack inequality (1.1) holds then also the estimates (1.3) are satisfied.

It is not difficult to show that (1.3) implies (1.4). Hence, we obtain the equiva-
lence

(1.1) ⇔ (1.3) ⇔ (1.4). (1.5)

Note that the proof of the equivalence (1.5) requires also the following general prop-
erties of Riemannian manifolds:

(a) For any y ∈ X, the function f(x) = d (x, y) has its gradient bounded by 1,
that is, |∇f | ≤ 1. (This is used to obtain the upper bound in (1.3))

(b) For any couple x, y ∈ X, there is a geodesic connecting x and y. (This is used
to obtain the lower bound in (1.3)).

During the past two decades the study of heat kernels and Harnack inequalities
has gained a new momentum from analysis on fractals and more general metric
measure spaces. Let (X, d) be a locally compact metric space and µ be a Radon
measure on X with full support. We refer to the triple (X, d, µ) as a metric measure
space. As it was shown in [7], [4], [12] various classes of fractals (X, d, µ) admit a
natural Laplace operator, whose heat kernel satisfies the following estimates

pt (x, y) ≍ C

tα/β
exp

(
−c

(
dβ(x, y)

t

) 1

β−1

)
, (1.6)

where α > 0 and β > 1 are positive parameters. In fact, α is the Hausdorff dimension
of (X, d), and is also the exponent of the volume growth function, that is,

µ (B (x, r)) ≍ Crα (1.7)

where B (x, r) is the metric ball of d. The parameter β is called the walk dimension
of the associated diffusion process; one has always β ≥ 2. The Harnack inequality
(1.1) is also satisfied on such spaces, although the relation between the time and
space dimensions T and R has to be changed to T = Rβ.

Under the assumptions that (X, d) is a length space and the heat kernel on X
is a continuous function, it was shown by Hebisch and Saloff-Coste [22], that the
Harnack inequality with T = Rβ is equivalent to the following heat kernel estimates:

pt (x, y) ≍ C

V (x, t1/β)

(
−c

(
dβ(x, y)

t

) 1

β−1

)
, (1.8)

where V (x, r) = µ (B (x, r)). It is clear that under the condition (1.7), the estimate
(1.8) is the same as (1.6).

The purpose of this paper is to study the equivalence of the heat kernel estimates
and Harnack inequalities in a general setting without additional assumption on the
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metric d, and without the continuity of the heat kernel. In particular we do not
assume that d is a geodesic metric. Our main result is an analogue of the equivalence
(1.5) in a general setup. Our weaker hypotheses make our arguments much more
technical, but in return allow much more flexibility in applications. We remark that
typically the continuity of the heat kernel cannot be established a priori. To deduce
the Harnack inequality from the heat kernel estimates, we use a modification of
the argument of Fabes and Stroock [11]. To obtain heat kernel estimates from the
Harnack inequality, we use the following.

• For the on-diagonal upper bound – an adaptation of the argument of Aronson
[1]. (However, in this more singular setting much more work is required.)

• For the lower bounds – a new argument, based on [9], which allows one to
avoid gluing solutions in time as in [1].

• For the off-diagonal upper bounds – a modification of the argument of Hebisch
and Saloff-Coste [22]. Note that the classical argument of Aronson does not
work because the estimate |∇d| ≤ 1 is no longer true.

We do not touch here on the interesting question of deducing either the Harnack
inequality or the heat kernel bounds from some simpler properties, and refer the
reader to [6], [14], [33], [34] and references therein.

Finally, note that there are various examples of distances that are not geodesic.
For example, the resistance metric that gives an effective resistance between two
points is an important metric for the heat kernel estimates for diffusions on fractals
(see for example [21]), and the external metric is often useful for global analysis
on metric spaces (see Fig. 11 in Section 6 where the 2-dimensional Riemannian
manifold X is embedded in R

3; the external metric is then the Euclidean metric on
R

3).

2 Framework and background material

2.1 General setup

Let (X, d) be a locally compact complete separable metric space. Let µ be a Borel
measure on X with full support, that is, 0 < µ(Ω) < ∞ for every non-void relatively
compact open set Ω ⊂ X. We will refer to such a triple (X, d, µ) as a metric measure
space.

Let (E ,F) be a regular strongly local symmetric Dirichlet form on L2(X, µ). The
regularity means that the intersection F ∩ C0 (X) is dense both in F and C0 (X),
where the latter is the space of all compactly supported continuous functions on X
with sup-norm, and the norm of F is given by the inner product (f, g) + E (f, g).
The strong locality means that E (u, v) = 0 whenever u, v are functions from F with
compact supports such that u = const in an open neighborhood of suppv. (Here
the support of v means the support of the measure vdµ.) We refer to the quadruple
(X, d, µ, E) as a metric measure Dirichlet space. For any open set Ω ⊂ X, FΩ is
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defined as the closure in F of the set of all functions from F that are compactly
supported in Ω. It is known that (E ,FΩ) is a regular strongly local Dirichlet form
on L2 (Ω, µ) (see [13, Section 4.4]).

Denote by L the (negative definite) generator of E , which is a self-adjoint operator
in L2 such that

E (f, g) = − (Lf, g)L2

for all f ∈ dom (L) and g ∈ F . Let {Pt}t≥0 be the heat semigroup of the form
(E ,F), that is, Pt = etL where etL is defined by the spectral theory as an operator in
L2. For any open set Ω ⊂ X, denote by LΩ the generator (E ,FΩ) and by

{
PΩ

t

}
t≥0

the associated heat semigroup.
A family {pt}t>0 of non-negative µ× µ-measurable functions on X ×X is called

the heat kernel of Pt if, for all t > 0 and f ∈ L2(X, µ),

Ptf (x) =

∫

X

pt (x, y) f (y) dµ (y)

for µ-almost all x ∈ X. In other words, the heat kernel is the integral kernel
of Pt. The heat kernel does not have to exist in general, and its existence under
appropriate conditions is one of the issues of this work. If the heat kernel does exist
then it satisfies the following properties (cf. [16]):

1. pt (x, y) = pt (y, x) for all t > 0 and µ × µ-almost all x, y ∈ X;

2. pt+s (x, y) =
∫

X
pt (x, z) ps (z, y) dµ (z) for all t, s > 0 and µ × µ-almost all

x, y ∈ X;

3.
∫

X
pt (x, y) dµ (y) ≤ 1 for all t > 0 and µ-almost all x ∈ X.

Let Y =
(
{Yt}t≥0 , {Px}x∈X

)
be the Hunt process associated with the Dirichlet

form (E ,F) (see [13, Theorem 7.2.1]). Since E is strongly local, by [13, Theorem
7.2.2] Y is a diffusion.

For example, for Brownian motion in R
d, we have

E(f, g) =
1

2

∫

Rd

(∇f,∇g) dx,

F = W 1
(
R

d
)
, and L = ∆/2 with domain dom (L) = {f ∈ F : ∆f ∈ L2}.

2.2 Caloric functions

We need to define what it means that a function u(t, x) is a caloric function in a
cylinder I × Ω, where I is an interval in R and Ω is an open subset of X. In the
classical case of analysis in R

n, a caloric function u (t, x) is a solution of the heat
equation ∂u

∂t
= ∆u. In the abstract setting there are various definitions; for our

purposes, any definition will do as long as it satisfies the following properties:

1. The set of all caloric functions in I × Ω is a linear space over R.
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2. If I ′ ⊂ I and Ω′ ⊂ Ω then any caloric function in I×Ω is also a caloric function
in I ′ × Ω′.

3. For any g ∈ L2 (Ω, µ), the function (t, x) 7→ P Ω
t g (x) is a caloric function in

R+ × Ω.

4. If Ω is relatively compact then a constant function in Ω is the restriction to Ω
of a time independent caloric function in R+ × Ω.

5. (Super-mean value inequality) For any non-negative caloric function u (t, x) in
R+ × Ω, the following inequality holds: u (t, ·) ≥ P Ω

t−su (s, ·) for all 0 < s < t.
(We remark that when we write inequalities of this kind, we intend them to
be for functions in L2(X, µ) rather than pointwise.)

We now give one definition of caloric functions that satisfies all these require-
ments. Write for simplicity L2 = L2 (X, µ), and let I be an interval in R. We say
that a function u : I → L2 is weakly differentiable at t0 ∈ I if for any f ∈ L2,
the function (u (t) , f) is differentiable at t0 (where the brackets stand for the inner
product in L2), that is, the limit

lim
t→t0

(
u (t) − u (t0)

t − t0
, f

)

exists. By the principle of uniform boundedness, in this case there is a function
w ∈ L2 such that

lim
t→t0

(
u (t) − u (t0)

t − t0
, f

)
= (w, f)

for all f ∈ L2. We refer to the function w as the weak derivative of the function u
at t0 and write w = u′ (t0). Of course, we have the weak convergence

u (t) − u (t0)

t − t0
⇀ u′ (t0) .

Similarly, one can introduce the strong derivative of u if u(t)−u(t0)
t−t0

converges to u′ (t0)

in the norm topology of L2.

Definition. Consider a function u : I → F , and let Ω be an open subset of X. We
say that u is a subcaloric function in I ×Ω if u is weakly differentiable in the space
L2 (Ω) at any t ∈ I and, for any non-negative f ∈ FΩ and for any t ∈ I,

(u′, f) + E (u, f) ≤ 0. (2.1)

Equivalently, u is subcaloric if (u, f) is differentiable in t ∈ I for any f ∈ L2 (Ω),
and

(u, f)′ + E (u, f) ≤ 0 (2.2)

for any non-negative f ∈ FΩ. Similarly one defines the notions of supercaloric func-
tions and caloric functions; for the latter the inequalities (2.1) and (2.2) become
equalities for all f ∈ FΩ.

Clearly, the properties 1 and 2 above are satisfied. In what follows, we check
3 − 5.
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Example 2.1 (i) Let us verify that, for any g ∈ L2 (Ω, µ), the function u (t, ·) =
PΩ

t g is a caloric function in R+ × Ω. Note first that u (t, ·) ∈ FΩ ⊂ F . Next, let
{Eλ} be the spectral resolution of −LΩ. Then we have, for any f ∈ L2 (Ω),

(u (t, ·) , f) =
(
PΩ

t g, f
)

=

∫ ∞

0

e−λtd (Eλg, f)

whence, for any t > 0,

(u (t, ·) , f)′ = −
∫ ∞

0

λe−λtd (Eλg, f)

(the integral in the right hand side converges locally uniformly in t > 0 because the
function λ 7→ λe−λt is bounded). On the other hand, for any f ∈ FΩ, we have

E (u (t, ·) , f) = −
(
LΩPΩ

t g, f
)

= −
(
(LΩetLΩ

)g, f
)

=

∫ ∞

0

λe−λtd (Eλg, f) ,

whence
(u, f)′ + E (u, f) = 0, (2.3)

that is, u is a caloric function.
(ii) Let Ω be relatively compact. Then there is a cutoff function of Ω, that is, a

function u ∈ C0 (X) ∩ F such that u ≡ 1 in a neighborhood of Ω. We claim that
the function (t, x) 7→ u (x) is caloric in R × Ω. Indeed, any f ∈ C0 (Ω) ∩ F we have
E (u, f) = 0 by the strong locality, and this identity extends by continuity to all
f ∈ FΩ. Since u′ = 0, the equation (2.3) is trivially satisfied, so that u (x) is a time
independent caloric function in R × Ω.

The following maximum principle was proved in [18] (see also [15] for the case
of the strong time derivative). For any real a, set a+ = max (a, 0).

Lemma 2.2 Fix T ∈ (0,∞], an open set Ω ⊂ X, and let u : (0, T ) → F be a
subcaloric function in (0, T ) × Ω. Assume in addition that u satisfies the boundary
condition

u+ (t, ·) ∈ FΩ for all t ∈ (0, T ) (2.4)

and the initial condition

u+ (t, ·) L2(Ω)−→ 0 as t → 0.

Then u+ = 0 in (0, T ) × Ω, so that u ≤ 0 in (0, T ) × Ω.

Remark. The condition (2.4) can be verified in applications using the following
result from [15]: if u ∈ F and u ≤ v for some v ∈ FΩ then u+ ∈ FΩ.

Finally, we can establish the super-mean value inequality.
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Corollary 2.3 Let f ∈ L2
+(Ω) and u be a non-negative supercaloric function in

(0, T ) × Ω such that u (t, ·) L2(Ω)−→ f as t → 0. Then, for any t ∈ (0, T ),

u (t, ·) ≥ PΩ
t f in Ω. (2.5)

In particular, for all 0 < s < t < T ,

u (t, ·) ≥ PΩ
t−su (s, ·) in Ω. (2.6)

Proof. Consider the function v = PΩ
t f −u, which by property 2 above is a weak

subsolution in (0, T ) × Ω. Since f ∈ L2,

v (t, ·) L2(Ω)−→ 0 as t → 0

and, for any t > 0,
v (t, ·) ≤ PΩ

t f.

Since PΩ
t f ∈ FΩ, we conclude by the Remark above that v+ ∈ FΩ. By Lemma

2.2, we obtain v ≤ 0, which proves (2.5). Inequality (2.6) follows from (2.5) with
f = u (s, ·).

We note that an alternative approach to define caloric functions and develop a
parabolic potential theory is via time dependent Dirichlet forms. Such forms can
be defined by integrating time derivatives of space-time functions and the original
Dirichlet forms over the time variable. Roughly speaking, for a parabolic cylinder
Q := I × B(x0, R), u(t, x) : Q → R is a caloric function in Q if

∫

J

[ ∫
f(t, x)u′(t, x)dµ (x) + E(f(t, ·), u(t, ·))

]
dt = 0,

for all compact subintervals J ⊂ I and f : I × X → R so that f(t, ·) has compact
support in B(x0, R) for a.a. t ∈ I. Time dependent Dirichlet forms are no longer
symmetric and time derivatives should be considered in the distribution sense. We
do not pursue this approach here, but refer the reader to [30], [31], [32] for the the
theory of time dependent Dirichlet forms.

3 Main result

Consider metric balls
B(x, R) = {y : d(x, y) < R},

and set
V (x, R) = µ(B(x, R)).

We assume in the sequel that all balls B(x, R) are relatively compact for all x ∈ X
and R > 0. In particular, the function V (x, R) is finite and positive. For any x ∈ X
and T, R > 0, we define the cylinder

Q (x, T, R) = (0, T ) × B (x, R)

as a subset of R × X.
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3.1 The Harnack inequality

We introduce here the Harnack inequality and other necessary properties for caloric
functions on metric measure Dirichlet spaces. Let τ : (0,∞) → (0,∞) be a con-
tinuous strictly increasing bijection that satisfies the following property: there exist
1 < β1 ≤ β2 < ∞ and C > 0 such that, for all 0 < r ≤ R < ∞,

C−1

(
R

r

)β1

≤ τ(R)

τ(r)
≤ C

(
R

r

)β2

. (3.1)

It follows that the inverse function τ−1 satisfies the following condition: for all
0 < t ≤ T < ∞, (

T

Ct

)1/β2

≤ τ−1 (T )

τ−1 (t)
≤
(

CT

t

)1/β1

. (3.2)

Definitions. We say that a metric measure Dirichlet space X satisfies the weak

parabolic Harnack inequality with the rate function τ (for short w-PHI(τ)) if there
exist constants 0 < C1 < C2 < C3 < C4, C5 > 1 and C6 > 0 such that, for any
non-negative bounded caloric function u(t, x) in any cylinder Q(x0, τ(C4R), C5R),
the following inequality is satisfied

ess sup
Q−

u ≤ C6 ess inf
Q+

u, (3.3)

where (see Fig. 1)

Q+ : = (τ(C3R), τ(C4R)) × B(x0, R) (3.4)

Q− : = (τ(C1R), τ(C2R)) × B(x0, R).. (3.5)

We say that X satisfies the strong parabolic Harnack inequality with the rate

function τ (shortly, s-PHI(τ)) if, for any choice of constants 0 < C1 < C2 < C3 < C4

and C5 > 1, there exists C6 = C6 (C1, ..., C5) > 0 such that w-PHI(τ) holds with
this set of constants.

It is immediate that s-PHI(τ) implies w-PHI(τ). The difference between the
strong and weak PHI is one of the main topics of this paper. We remark that this
difference does not occur in the classical setting when the metric is geodesic and
τ(t) = tβ with β ≥ 2; in this context a standard chaining argument shows that
w-PHI(τ) implies s-PHI(τ) (cf. Theorem 3.2 below).

In the following definitions we use the parameters β1 and β2 from (3.1). Also,
τ−1 denotes the inverse function of the function τ .

Definitions. (i) We say that X satisfies HKE(τ ; ε), where ε ∈ (0,∞) is a parameter,
if {Pt} possesses a heat kernel pt(x, y) that satisfies the following inequalities:

pt(x, y) ≤ c1

V (x, τ−1(t))
exp

(
−c2

(
τ(d (x, y))

t

)1/(β2−1)
)

(3.6)

for all t > 0 and µ × µ-almost all (x, y) ∈ X × X, and

pt(x, y) ≥ c3

V (x, τ−1(t))
, (3.7)
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τ(C4R)

Q-

Q+

B(x0,R)0

t

B(x0,C5R)

τ(C3R)

τ(C2R)

τ(C1R) X

Figure 1: Cylinders Q+ and Q−

for all t > 0 and µ × µ-almost all (x, y) ∈ X × X with

d(x, y) ≤ ετ−1(t), (3.8)

where c1, c2, c3 = c3(ε) are positive constants.
(ii) We say that X satisfies w-HKE(τ) if HKE(τ ; ε) is satisfied for some ε > 0.
(iii) We say that X satisfies s-HKE(τ) if HKE(τ ; ε) is satisfied for all ε ∈ (0,∞).
(iv) We say that X satisfies f-HKE(τ) if {Pt} possesses a heat kernel pt(x, y) that
satisfies (3.6) and the lower bound

pt(x, y) ≥ c3

V (x, τ−1(t))
exp

(
−c4

(
τ(d (x, y))

t

)1/(β2−1)
)

, (3.9)

for all t > 0 and µ × µ-almost all x, y ∈ X.
(v) We say that X satisfies LLE(τ ; ε), where ε ∈ (0, 1) is a parameter, if for all

x0 ∈ X and R > 0, there exists a heat kernel p
B(x0,R)
t (x, y) of {P B(x0,R)

t } that
satisfies the estimate

p
B(x0,R)
t (x, y) ≥ c5

V (x0, τ−1(t))
, (3.10)

for all 0 < t ≤ τ(εR) and µ-almost all x, y ∈ B(x0, ετ
−1(t)), with some positive

constant c5.
(vi) We say that X satisfies w-LLE(τ) if LLE(τ ; ε) is satisfied for some ε ∈ (0, 1).
(vii) We say that X satisfies s-LLE(τ) if LLE(τ ; ε) is satisfies for all ε ∈ (0, 1).

Here the abbreviation ‘HK’ stands for ‘heat kernel’ estimates, ‘w-’ stands for
‘weak’, ‘s-’ stands for ‘strong’, ‘f-’ stands for ‘full’, and LLE stands for ‘local lower
estimate’.
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3.2 The statement of the main result

We say that a metric measure space (X, d, µ) satisfies the volume doubling property
VD, if there exists a constant C such that

V (x, 2R) ≤ CV (x, R) for all x ∈ X, R > 0. (VD)

It is easy to see that VD implies the following; there exist CVD, γ > 0 such that

V (x, R) ≤ CVDV (y, r)

(
d(x, y) + R

r

)γ

, for all x, y ∈ X, 0 < r ≤ R. (3.11)

Our main result is as follows.

Theorem 3.1 Let (X, d, µ, E) be a metric measure Dirichlet space and assume that
all metric balls are relatively compact and VD is satisfied. Then the following con-
ditions are equivalent:
(a) X satisfies w-HKE(τ).
(b) X satisfies w-LLE(τ).
(c) X satisfies w-PHI(τ).

Further, under any of the conditions (a), (b), (c), the heat kernel pt (x, y) is a
continuous function of (t, x, y) ∈ R+ ×X ×X and, for any open subset Ω ⊂ X, the
heat kernel pΩ

t (x, y) is a continuous function of (t, x, y) ∈ R+ × Ω × Ω.

Let us emphasize that in this paper we never assume that (E ,F) is conservative.
We say that a metric space (X, d) is geodesic if, for any couple x, y ∈ X, there

exists a (not necessarily unique) geodesic path, that is, a continuous path connecting
the points x, y and such that, for any point z on this path, d(x, z)+d(z, y) = d(x, y).
The following statement refines Theorem 3.1 in the case of a geodesic space.

Theorem 3.2 Let (X, d, µ, E) be a metric measure Dirichlet space and assume that
all metric balls are relatively compact and the metric is geodesic. Assume also that
the function τ satisfies the condition1

(
R

r

)β1

≤ τ(R)

τ(r)
≤ C

(
R

r

)β2

, 0 < r ≤ R. (3.12)

The following are equivalent:
(a) X satisfies s-HKE(τ).
(a′) X satisfies VD and w-HKE(τ).
(a′′) X satisfies f-HKE(τ).
(b) X satisfies VD and s-LLE(τ).
(b′) X satisfies VD and w-LLE(τ).
(c) X satisfies s-PHI(τ).
(c′) X satisfies w-PHI(τ).

1Note that (3.12) is stronger than (3.1) since the coefficient in the left hand side inequality is 1
rather than C−1.
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Remark. Theorem 3.2 shows that s-LLE, s-HKE and s-PHI are equivalent provided
the metric d is geodesic. Without the latter assumption the statement of Theorem
3.2 is not true in general. See Section 6 for an example of a space that satisfies
s-HKE but neither s-PHI nor s-LLE.

Remark. In this framework we can also define harmonic functions as a caloric
function which is time independent. For example, according to the above definition,
a function u ∈ F is harmonic in Ω if E (u, f) = 0 for all f ∈ FΩ. The Har-
nack inequality for harmonic functions (called also the elliptic Harnack inequality
– EHI) can be stated as follows: there are constants C5, C6 > 1 such that, for any
non-negative bounded harmonic function u(x) in any cylinder ball B (x0, C5R) the
following inequality is satisfied

ess sup
B(x0,R)

u ≤ C6 ess inf
B(x0,R)

u.

Clearly, the parabolic Harnack inequality w-PHI(τ) with any function τ implies EHI.
The connection between EHI and other properties of interest is not yet properly
understood and is beyond the scope of this paper.

4 Proof of Theorem 3.1

4.1 Proof of (a) ⇒ (b) (w-HKE implies w-LLE)

We prove here that VD+w-HKE(τ ; ε) implies w-LLE(τ). Let us first show that the
heat semigroup P B

t possesses the heat kernel for any ball B = B (x0, R). Indeed, by
the upper bound (3.6) and (3.11) we have

ess sup
x,y∈B

pt (x, y) ≤ sup
x∈B

c1

V (x, τ−1(t))
≤ c′1

V (x0, r)

(
2R

τ−1(t)

)γ

=: F (t) . (4.1)

Therefore, for any non-negative function f ∈ L1 (B) and µ-almost all x ∈ B,

P B
t f (x) ≤ Ptf (x) =

∫

B

pt (x, y) f (y) dµ (y) ≤ F (t) ‖f‖L1.

Hence, the semigroup P B
t is L1 → L∞ ultracontractive, which implies the existence

of the heat kernel pB
t (see [5], [8], [10], [16]).

By [15, Lemma 4.18], for any open set U ⊂ X and any compact set K ⊂ U , for
any non-negative function f ∈ L2(X, µ) and any t > 0, the following holds.

Ptf(x) ≤ P U
t f(x) + sup

s∈[0,t]

ess sup
Kc

Psf, (4.2)

for µ-almost all x ∈ X. Let us apply this inequality with U = B := B(x0, R) and
K = B(x0, R/2). Fix some 0 < r < R/4 to be specified later on, set A = B (x0, r)
and let f be a non-negative function from L1 (A). We have

sup
s∈[0,t]

ess sup
z∈Kc

Psf (z) = sup
s∈(0,t]

ess sup
z∈Kc

∫

A

ps (z, y) f (y)dµ (y) ≤ M‖f‖L1 ,
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where
M := sup

s∈(0,t]

ess sup
z∈Kc, y∈A

ps(z, y) (4.3)

(note that the value s = 0 can be dropped from sups∈[0,t] because P0f = f and
ess sup

z∈Kc

f(z) = 0).

Multiplying (4.2) by a non-negative function g ∈ L1 (A) and integrating, we
obtain ∫

A

(Ptf) g dµ ≤
∫

A

(
P B

t f
)
g dµ + M‖f‖L1‖g‖L1,

which is equivalent to
∫

A

∫

A

pt(x, y)f(y)g(x)dµ(x)dµ(y) ≤
∫

A

∫

A

pB
t (x, y)f(y)g(x)dµ(x)dµ(y)

+M‖f‖L1‖g‖L1.

Dividing by ‖f‖L1‖g‖L1 and taking inf in all test functions f, g, we obtain

ess inf
x,y∈A

pt(x, y) ≤ ess inf
x,y∈A

pB
t (x, y) + M. (4.4)

By the definition of w-LLE(τ), we need to estimate ess inf
x,y∈A

pB
t (x, y) from below

assuming
t ≤ τ (εR) and r ≤ ετ−1 (t) , (4.5)

for some ε ∈ (0, 1) . For that, we estimate the left hand side of (4.4) from below and
M from above. The value of ε will be chosen small enough to satisfy a number of re-
quirements. From the beginning we can assume that ε < 1/4 and that w-HKE(τ ; ε)
is satisfied. Then we have by (3.7)

ess inf
x,y∈A

pt(x, y) ≥ c3

V (x, τ−1(t))
. (4.6)

To estimate M from above, observe that, for all z ∈ Kc and y ∈ A,

d (z, y) ≥ R

2
− r ≥ R

4
.

Also, for any s ≤ t, using ε < 1/4, we obtain by (3.1)

τ (d (z, y))

s
≥ τ (R/4)

s
≥ C−1

(
R

4τ−1 (s)

)β1

.

Hence, for all 0 < s ≤ t and µ-almost all z ∈ Kc and y ∈ A, we have by (3.6)

ps(z, y) ≤ c1

V (y, τ−1(s))
exp

(
−c2

(
τ (d (z, y))

s

)1/(β2−1)
)

≤ c1

V (x0, τ−1(t))

V (x0, τ
−1(t))

V (y, τ−1(s))
exp

(
−c′2

(
R

τ−1 (s)

)β1/(β2−1)
)

≤ C

V (x0, τ−1(t))

(
R

τ−1(s))

)γ

exp

(
−c′2

(
R

τ−1 (s)

)β1/(β2−1)
)

,
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where we have used (3.11) and τ−1 (t) ≤ R. Note that by (4.5)

R

τ−1 (s)
≥ ε−1.

Using the fact that, for positive a, b,

ξa exp
(
−c2ξ

b
)
→ 0 as ξ → ∞,

we conclude that if ε is small enough then

ps (z, y) ≤ c3/2

V (x0, τ−1 (t))
,

where c3 is the constant from (4.6). It follows that also

M ≤ c3/2

V (x0, τ−1 (t))
,

which together with (4.4) and (4.6) implies

ess inf
x,y∈A

pB
t (x, y) ≥ c3/2

V (x0, τ−1(t))
,

which was to be proved.

4.2 Proof of (b) ⇒ (c) (w-LLE implies w-PHI)

Here we prove that VD + LLE(τ ; ε) implies w-PHI(τ). The argument mostly fol-
lows [11, Section 5], with modifications that are appropriate to the present setting.
Observe first that LLE(τ ; ε) implies

p
B(x0,R)
t (x, y) ≥ c6

V (x0, R)
, (4.7)

for µ × µ-almost all x, y ∈ B(x0, εr) provided r and t satisfy the conditions

τ (r) ≤ t ≤ τ(εR).

Indeed, we have r ≤ τ−1 (t) whence x, y ∈ B (x0, ετ
−1 (t)) and hence, (3.10) holds,

which implies (4.7) because τ−1 (t) ≤ εR < R.
For all s ∈ R, r > 0 and x ∈ X, define the cylinder

D((s, x), r) := (s − τ(r), s) × B(x, r).

For any set A ⊂ R × X and a function f on A, define

ess sup
A

f = sup
t

ess sup
{x:(t,x)∈A}

f(t, x),

and define ess inf
A

f analogously. Set

osc
A

f : =ess sup
A

f− ess inf
A

f.
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4.2.1 Oscillation inequality and the Hölder continuity

Proposition 4.1 Assume that VD and LLE(τ ; ε) hold. Then, for any bounded
caloric function u in a cylinder D((s, x), R), the following inequality holds

osc
D((s,x),δR)

u ≤ θ osc
D((s,x),R)

u, (4.8)

(see Fig. 2), with constants δ, θ ∈ (0, 1) that depend only on the constants in the
hypotheses.

s

D((s,x), R)

B(x, R)

t

B(x,R)s- (R)

X

s- ( R)

D((s,x),R)

Figure 2: Cylinders D ((x, s) , R) and D ((x, s) , δR)

Proof. Let m(R) and M(R) denote, respectively, the essential infimum and
essential supremum of u on D((s, x), R). Since u + const is a caloric function, we
obtain by the super-mean-value inequality for caloric functions (cf. Corollary 2.3)
that

u(t, y) − m(R) ≥
∫

B(x,R)

p
B(x,R)
t−ξ (y, z)(u(ξ, z)− m(R))µ(dz), (4.9)

for all s − τ (R) < ξ < t < s and µ-almost all y ∈ B (x, R). Choose here

ξ = s − τ(εR).

By the properties of the function τ (·), there is a constant ε′ ∈ (0, ε) such that

τ(εr) ≥ 2τ(ε′r) for all r > 0.

Then, for any t ∈ (s − τ(ε′R), s), we have

t − ξ ≤ τ(εR),

t − ξ ≥ τ(εR) − τ(ε′R) ≥ τ(ε′R).
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It follows from (4.7) that, for this range of t,

p
B(x,R)
t−ξ (y, z) ≥ c1

V (x, R)
for all µ-a.a. y, z ∈ B(x, εε′R). (4.10)

Set δ = εε′ so that both (4.10) and (4.9) are satisfied for (t, y) ∈ D((s, x), δR).
Restricting the integration in (4.9) to B (x, δR), using (4.10), and taking the essential
infimum in (t, y) ∈ D((s, x), δR), we obtain

m(δR) − m(R) ≥ c1

V (x, R)

∫

B(x,δR)

(u(ξ, z) − m(R))µ(dz). (4.11)

By a similar argument using M(R) − u(t, y), we obtain

M(R) − M(δR) ≥ c1

V (x, R)

∫

B(x,δR)

(M(R) − u(ξ, z))µ(dz), (4.12)

which together with (4.11) implies

M(R) − m(R) − (M(δR) − m(δR)) ≥ c1V (x, δR)

V (x, R)
(M(R) − m(R))

≥ c2(M(R) − m(R)),

where VD has been used in the last inequality. Rearranging this inequality, we
obtain

(1 − c2)(M(R) − m(R)) ≥ M(δR) − m(δR),

which proves (4.8) with θ = 1 − c2.

From the oscillation inequality, a standard argument gives the Hölder continuity
of caloric functions as follows.

Corollary 4.2 Assume that VD and LLE(τ ; ε) hold. Then, for any bounded caloric
function u in a cylinder D((t0, x0), R), the following inequality is satisfied

|u(s′, x′) − u(s′′, x′′)| ≤ C

(
τ−1(|s′ − s′′|) + d(x′, x′′)

R

)α

osc
D((t0,x0),R)

u (4.13)

for dt×µ-almost all (s′, x′), (s′′, x′′) ∈ D((t0, x0), δR), where α, δ ∈ (0, 1) and C > 0
are constants that depend on the constants in hypotheses VD and LLE(τ ; ε).

Proof. We will prove the following equivalent form of (4.13): for any r > 0 and
for dt × µ-almost all (s′, x′), (s′′, x′′) ∈ D((t0, x0), δR) such that

τ−1(|s′ − s′′|) + d(x′, x′′) < r, (4.14)

the following inequality holds:

|u(s′, x′) − u(s′′, x′′)| ≤ C
( r

R

)α

osc
D((t0,x0),R)

u. (4.15)
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It suffices to show that any two points (s′, x′), (s′′, x′′) ∈ D((t0, x0), δR) with condi-
tion (4.14) are contained in an open subset Ω ⊂ D((t0, x0), R) such that

osc
Ω

u ≤ C
( r

R

)α

osc
D((t0,x0),R)

u. (4.16)

Since the metric space (R × X)2 is separable, the set S of couples ((s′, x′), (s′′, x′′)) in
D((t0, x0), δR)×D((t0, x0), δR) satisfying (4.14) can be then covered by a countable
family of sets like Ω × Ω where Ω is as above. Because in each Ω × Ω the estimate
(4.15) holds almost everywhere, it follows that (4.15) holds almost everywhere in S.

Assuming that s′ ≥ s′′, set y = x′ and choose t to be a bit larger than s′ so that
s′ < t < t0 and

τ−1 (t − s) + d (x, y) < r (4.17)

for both the points (s, x) = (s′, x′) and (s, x) = (s′′, x′′) (the strict inequality in
(4.14) provides a flexibility for making t strictly larger than s′). Then define the set
Ω by

Ω = D ((t, y) , r) ∩ D ((t0, x0) , R) .

By construction, we have (t, y) ∈ D((t0, x0), δR), that is,

t0 − τ (δR) < t < t0 and d (x0, y) < δR.

Also, it follows from (4.17) that both the points (s′, x′) and (s′′, x′′) belong to
D ((t, y) , r) .

Consider first the case when D ((t, y) , r) is not contained in D ((t0, x0) , R). Then
we have

d (x0, y) + r > R or t0 − τ (R) > t − τ (r) ,

which implies that

r > (1 − δ)R or τ (r) > τ (R) − τ (δR) ≥ τ (δR)

whence it follows in the both cases r ≥ δR. (Here we may and will assume that
δ < 1/2.) Clearly, in this case (4.16) is trivial for any α > 0 just by taking the
constant C larger than δ−α.

Assume now that D ((t, y) , r) ⊂ D ((t0, x0) , R) , and let k ≥ 1 be a possibly
large integer (to be specified below) such that

D
(
(t, y) , δ−kr

)
⊂ D ((t0, x0) , R) (4.18)

(see Fig. 3).
Then by Proposition 4.1, we have

osc
D((t,y),r)

u ≤ θk osc
D((t,y),δ−kr)

u ≤ θk osc
D((t0,x0),R)

u. (4.19)

The value of k in (4.18) can be estimated as follows. The condition (4.18) means
that

t0 − τ (R) ≤ t − τ
(
δ−kr

)
and d (x0, y) + δ−kr ≤ R ,
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t0

D((t0,x0), R)

t

t0- (R)

t0- ( R)

D((t0,x0),R)

D((t,y), -kr)

(t0,x0)

(t,y)
t

t- ( kr)

Figure 3: Cylinder D
(
(t, y) , δ−kr

)

which will follow from

τ (δR) + τ
(
δ−kr

)
≤ τ (R) and δR + δ−kr ≤ R. (4.20)

The value of δ can be assumed to be so small that

τ (δR) ≤ 1

2
τ (R) and δ < 1/2,

so that both the conditions in (4.20) will follow from δ−kr ≤ δR. Hence, (4.18) and
a forteriori (4.19) hold with

k =

[
log (R/r)

log (1/δ)

]
− 1 ≥ log (R/r)

log (1/δ)
− 2.

It follows from (4.19) that

osc
D((t,y),r)

u ≤ C
( r

R

)α

osc
D((t0,x0),R)

u, (4.21)

where α = log(1/θ)
log(1/δ)

and C = θ−2.

Remark. It follows from Corollary 4.2 that any locally bounded caloric function
u (t, x), defined in a cylinder, is continuous in its entire domain; more precisely, it
has a version that is jointly continuous in (t, x). Hence, in the rest of the proof of
(b) ⇒ (c) we can assume that all locally bounded solutions are continuous.
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4.2.2 Obtaining the Harnack inequality

We can now complete the proof of (b) ⇒ (c). It follows from (3.1) that there exists
a (small) constant l ∈ (0, 1) such that

τ (r) ≥ 2τ (lr) (4.22)

for all r > 0. We will prove w-PHI(τ) in a slightly different, but equivalent form:
if u (t, x) is a bounded (and hence continuous) non-negative caloric function in the
cylinder

Q = (0, τ (εR)) × B (x0, R) ,

where x0 ∈ X and R > 0 are arbitrary and ε is the parameter from LLE(τ ; ε), then

sup
Q−

u ≤ C inf
Q+

u,

where

Q− = (τ(l3εR), τ(l2εR))×B(x0, ηR), Q+ = (τ(lεR), τ(εR))×B (x0, ηR) , (4.23)

and the constants η ∈ (0, 1), C > 1 depend only on the constants in the hypotheses.
It is enough to show that if infQ+

u ≤ 1 then supQ−
u ≤ C.

The essential part of the proof is contained in the following claim.

Claim. Let (t, x) ∈ Q and r > 0 be such that

D ((t, x) , r) ⊂ Q̃ := (0, τ(l2εR)) × B (x0, σR) (4.24)

where σ is a constant to be specified later on; so far let us assume η < σ < 1 (see
Fig. 4). If

u (t, x) ≥ λ,

then
sup

D((t,x),r)

u ≥ Kλ,

with some constant K > 1, provided λ satisfies the inequality

λ ≥ C

(
R

r

)γ

, (4.25)

where γ is the constant from (3.11) and C is a large enough constant. Both constants
C and K depend only upon the constants in the hypotheses.

Observe first that, by the super-mean-value inequality (cf. Corollary 2.3), we
have, for all t < T < τ (εR) and µ-almost all z ∈ B (x0, R), that

u(T, z) ≥
∫

B(x0,R)

p
B(x0,R)
T−t (z, y)u(t, y)µ(dy). (4.26)

Restrict T to the interval τ(lεR) < T < τ(εR). For any 0 < t < τ(l2εR), it follows
that

τ(κR) < T − t < τ(εR), (4.27)
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B(x0, R)0 B(x0, R)
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(l2 R)

(l3 R)

X

B(x0, R)

Q-

Q
(T,z)

(t,x)
D((t,x), r) Q

~

Figure 4: Cylinder D ((t, x) , r)

where κ = l2ε, which is true by (4.22). Applying (4.7) with r = κR, (4.27), and
VD, we obtain

p
B(x0,R)
T−t (z, y) ≥ c1

V (x0, R)
, (4.28)

for almost all z, y ∈ B (x0, εκR). We can assume that the constant σ from (4.24) is
so small that

σ ≤ εκ. (4.29)

Then (4.28) holds for almost all z, y ∈ B (x0, σR) (see Fig. 5).
Reducing the domain of integration in (4.26) to the ball B (x, δr) ⊂ B (x0, σR)

(where δ < 1 is the constant from Proposition 4.1) and using (4.28), we obtain, for
all T as above and all z ∈ B (x0, σR),

u (T, z) ≥ c1

V (x0, R)

∫

B(x,δr)

u(t, y)µ(dy).

In particular, this inequality holds for all (T, z) ∈ Q+. Since the right hand side
does not depend on T, z, taking the infimum in (T, z) ∈ Q+ and using infQ+

u ≤ 1,
we obtain

1 ≥ c1

V (x0, R)

∫

B(x,δr)

u(t, y)µ(dy),

whence

inf
y∈B(x,δr)

u (t, y) ≤ Λ :=
V (x0, R)

c1V (x, δr)
.

Combining with the hypothesis u (t, x) ≥ λ, we see that

osc
D((t,x),δr)

u ≥ λ − Λ,
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B(x0, R)

B(x0, R)

B(x0, R)

B(x0, R)

z

B(x, r)

Figure 5: Estimating the function u(t, y) in the ball B(x, δr)

whence by Proposition 4.1

sup
D((t,x),r)

u ≥ osc
D((t,x),r)

u ≥ θ−1 (λ − Λ) ,

where 0 < θ < 1 is the constant from Proposition 4.1. We are left to make sure that

θ−1 (λ − Λ) ≥ Kλ,

with a constant K > 1. Observe that by (3.11)

Λ ≤ C1

(
R

r

)γ

,

where C1 = C1(c1, CVD, γ, δ). Assuming from the beginning that

λ ≥ 2C1

1 − θ

(
R

r

)γ

,

we obtain that Λ ≤ λ1−θ
2

and, hence,

θ−1 (λ − Λ) ≥ θ−1 + 1

2
λ,

so that we can set K = θ−1+1
2

> 1. This completes the proof of the Claim.
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We can reformulate the Claim as follows. Define a function

ρ (λ) =
R

(C−1λ)1/γ

so that the condition (4.25) is equivalent to r ≥ ρ (λ). If for some point (s, y) ∈ Q,
we have λ := u (s, y) > 0 and

D ((s, y) , ρ (λ)) ⊂ Q̃,

then there is a point (s′, y′) ∈ D ((s, y) , ρ (λ)) such that u (s′, y′) ≥ Kλ.
Start with an arbitrary point (s0, y0) ∈ Q− where λ0 := u (s0, y0) > 0. Assuming

that
D ((s0, y0) , ρ (λ0)) ⊂ Q̃,

choose a point (s1, y1) ∈ D ((s0, y0) , ρ (λ0)) where

λ1 := u (s1, y1) ≥ Kλ0.

If
D ((s1, y1) , ρ (λ1)) ⊂ Q̃,

then select a point (s2, y2) ∈ D ((s1, y1) , ρ (λ1)) such that

λ2 := u (s2, y2) ≥ Kλ1 ≥ K2λ0,

and so on. We obtain in this manner a sequence of points {(sn, yn)} such that

λn := u (sn, yn) ≥ Knλ0

and
(sn, yn) ∈ D ((sn−1, yn−1) , ρ (λn−1)) ⊂ Q̃.

(see Fig. 6).
Let us continue this construction until

D ((sn, yn) , ρ (λn)) 6⊂ Q̂ := [τ(l4εR), τ(l2εR)] × B (x0, σR). (4.30)

If such n does not exist then we obtain an infinite sequence (sn, yn) ∈ Q̂ such

that u (sn, yn) → ∞ which is not possible because the function u is bounded in Q̂.
Hence, there exists an n that satisfies (4.30). It follows that either yn /∈ B (x0, σR)
or sn ≤ τ(l4εR). In the former case, we have

d (y0, yn) ≥ d (x0, yn) − d (x0, y0) ≥ (σ − η) R,

and in the latter case

s0 − sn ≥ τ(l3εR) − τ(l4εR) ≥ τ (κR)

where κ = l4ε.
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Q̂
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X
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(s0,y0)

D((s0,y0), ( 0))

(sn-1,yn-1)

(sn,yn)

D((sn,yn), ( n))

x0

Figure 6: The sequence of cylinders D ((sk, yk) , ρ (λk))

On the other hand, we have

d (y0, yn) ≤
n−1∑

k=0

d (yk, yk+1) ≤
n−1∑

k=0

ρ (λk) ≤
n−1∑

k=0

ρ
(
Kkλ0

)
≤ C2Rλ

−1/γ
0

and similarly

s0 − sn =

n−1∑

k=0

(sk − sk+1) ≤
n−1∑

k=0

τ (ρ (λk)) ≤ τ(C3Rλ
−1/γ
0 ),

where we have used (3.1). Comparing with the above lower bounds of d (y0, yn) and
s0 − sn, we obtain in the both cases that

λ0 ≤ C4 = C4 (C2, C3, σ, η, γ) .

Since λ0 is the value of u at an arbitrary point in Q−, it follows that supQ−
u ≤ C4,

which finishes the proof of w-PHI(τ).

4.3 Proof of (c) ⇒ (a) (w-PHI implies w-HKE)

We prove here that VD + w-PHI(τ) implies w-HKE(τ).
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4.3.1 A technical lemma

We start with the following lemma.

Lemma 4.3 For any ν ∈ (0, 1) there exist constants κ, ω ∈ (0, 1) depending on ν
and on β1 from (3.1) with the following property: for any R > 0 there is r ∈ [ωR, R]
such that

τ (r) − τ (νr) ≥ τ (κR) . (4.31)

Proof. Consider sequence ri = νiR, i = 0, 1, 2, ... and assume that, for some
positive integer n, none of the values r0, ..., rn−1 satisfies (4.31), that is,

τ (r0) − τ (r1) < τ (κR)

τ (r1) − τ (r2) < τ (κR)

...

τ (rn−1) − τ (rn) < τ (κR) .

Adding up all these inequalities yields

τ (R) − τ (rn) < nτ (κR) .

By (3.1) we have
τ (κR) ≤ Cκβ1τ (R)

and
τ (rn) = τ (νnR) ≤ Cνnβ1τ (R)

whence
τ (R) ≤ Cνnβ1τ (R) + nCκβ1τ (R) . (4.32)

Choose now n = n (β1, ν) so big that Cνnβ1 < 1
2

and then choose κ = κ (β1, ν) > 0
so small that nCκβ1 < 1

2
. With these values of n and κ equation (4.32) cannot hold,

which means that there is i < n such that

τ (ri) − τ (ri+1) ≥ τ (κR) .

Clearly, we have
ri = νiR ≥ νnR = ωR

where ω := νn, which finishes the proof.

4.3.2 Oscillation inequality and the Hölder continuity

The next statement is an analogue of Proposition 4.1.

Proposition 4.4 Assume that w-PHI(τ) holds. Then, for any bounded caloric
function u in a cylinder D((s, x), R), the oscillation inequality (4.8) holds with con-
stants δ, θ ∈ (0, 1) that depend only on the constants in the hypotheses.
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Proof. Fix some r > 0 and consider the cylinders

Q (r) := Q(x, τ(C4r), C5r) = (0, τ(C4r)) × B (x, C5r)

and

Q− (r) := (τ(C1r), τ(C2r)) × B(x, r),

Q+ (r) := (τ(C3r), τ(C4r)) × B(x, r),

as in the definition of w-PHI(τ). We would like to choose r such that

Q (r) ⊂ D((s, x), R) = (s − τ (R) , s) × B (x, R)

and
Q+ (r) ⊃ D ((s, x) , δR) = (s − τ (δR) , s) × B (x, δR)

(see Fig. 7).

s= (C4r)

t

s- (R)

(C2r)

D((s,x),R)

(s,x)

(C3r)

(C1r)
Q(r)

Q-(r)

Q+(r)

D((s,x), R)

0

s- ( R)

Figure 7: Cylinders Q (r) , Q+ (r) , Q− (r)

The inclusions of the corresponding balls occur if

R ≥ C5r and r ≥ δR. (4.33)

To handle the inclusion of the time intervals, first make a shift of time to ensure
s = τ (C4r). Then the inclusions of the time interval occur provided

τ (R) ≥ τ (C4r) and τ(δR) ≤ τ (C4r) − τ (C3r) . (4.34)
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Setting ν = C3

C4
and R′ = R/C5, observe that by Lemma 4.3 there exists r′ ∈

[ωR′, R′] such that
τ (r′) − τ (νr′) ≥ τ (κR′) ,

where κ and ω are positive constants depending on ν and β1. Setting r = r′/C4 we
obtain that

ωR ≤ C4C5r ≤ R and τ (C4r) − τ (C3r) ≥ τ
(
κC−1

5 R
)

so that both the conditions (4.33) and (4.34) are satisfied with

δ = min

(
ω

C4C5

,
κ

C5

)
.

Let m (R) and M (R) be the essential infimum and essential supremum of u on
D((s, x), R). Applying w-PHI(τ) to the function u − m(R) in Q (r), we obtain

ess sup
Q−(r)

(u − m(R)) ≤ C6 ess inf
Q+(r)

(u − m (R))

≤ C6 ess inf
D((s,x),δR)

(u − m (R))

= C6(m(δR) − m(R)),

and in the same way

ess sup
Q−(r)

(M(R) − u) ≤ C6(M(R) − M(δR)).

Adding up the two inequalities, we obtain

M (R) − m (R) ≤ ess sup
Q−(r)

((M(R) − u)+ ess sup
Q−(r)

(u − m(R))

≤ C6(m(δR) − m(R)) + C6(M(R) − M(δR)),

whence

M(δR) − m(δR) ≤ (1 − 1

C6
)(M(R) − m(R)).

Hence, (4.8) holds with θ = (1 − 1/C6).

Corollary 4.5 Assume that w-PHI(τ) holds. Then the conclusion of Corollary 4.2
holds. In particular, any locally bounded caloric function has a continuous version.

The proof is the same as that of Corollary 4.2. In what follows we will always
use the continuous versions of locally bounded solutions.
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4.3.3 Existence of the heat kernel and on-diagonal upper bound

We next show that, under the assumption w-PHI(τ), the heat kernel exists, is a
continuous function of t, x, y, and satisfies the on-diagonal upper bound.

Let f be a non-negative function from f ∈ L2∩L∞(X, µ). The function v(t, x) =
etLf(x) is a non-negative essentially bounded caloric function in R+ × X. By the
previous section, this function has a continuous version; let us denote in the sequel
by Ptf (x) the continuous version of etLf.

Choose some r > 0, x ∈ X, set B = B (x, r) and tk = τ (Ckr) where k = 1, 2, 3, 4
and Ck are the constants from w-PHI(τ). Applying the Harnack inequality in the
cylinder Q(x, τ(C4r), C5r), we obtain, for any t ∈ (t1, t2),

Ptf (x) ≤ C6 inf
t3<s<t4,y∈B

Psf (y) . (4.35)

Since ‖Psf‖2 ≤ ‖f‖2, it follows that

inf
t3<s<t4,y∈B

(Psf (y))2 ≤ 1

(t4 − t3)µ (B)

∫ t4

t3

∫

B

(Psf (y))2 dµ (y) ds ≤ ‖f‖2
2

V (x, r)
.

Setting in (4.35) t = τ
(

C1+C2

2
r
)

and noticing that r = cτ−1 (t), where

c =
2

C1 + C2
,

we obtain that, for all t > 0 and x ∈ X,

Ptf (x) ≤ C‖f‖2

V (x, cτ−1 (t))1/2
, (4.36)

where C = C6.
Let us extend (4.36) to all non-negative functions f ∈ L2 (X). Indeed, setting

fn := min (f, n) we obtain fn ∈ L2 ∩ L∞ so that (4.36) holds for fn. Hence, the
sequence {Ptfn (x)}∞n=1 is bounded and increasing in n and, hence, converges for any
t and x. Clearly, the limit is a pointwise version of etLf which will be denoted by
Ptf (x). Applying (4.36) to fn − fm with n > m, we obtain

Ptfn (x) − Ptfm (x) ≤ C‖fn − fm‖2

V (x, cτ−1 (t))1/2
.

Since ‖fn − fm‖2 → 0 as n, m → ∞ and the function (t, x) 7→ V (x, cτ−1 (t))
1/2

is
locally uniformly bounded away from 0 in R+ × X, it follows that

Ptfn (x) − Ptfm (x) → 0 as n, m → ∞,

where the convergence is locally uniform in (t, x), which implies that the limit Ptf (x)
is a continuous function of (t, x) which satisfies (4.36). Finally, for any signed
f ∈ L2 (X), we have Ptf = Ptf+−Ptf−, whence the continuity of Ptf (x) and (4.36)
follow.
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It follows from (4.36) and the Riesz representation theorem that, for any (t, x) ∈
R+ × X there exists a function pt,x ∈ L2 (X) such that

Ptf (x) = (pt,x, f) for all f ∈ L2 (X) (4.37)

and

‖pt,x‖2 ≤
C

V (x, cτ−1 (t))1/2
. (4.38)

Following [36], define pt (x, y) as a pointwise function of t, x, y ∈ R+ × X × X by

pt (x, y) =
(
pt/2,x, pt/2,y

)
. (4.39)

In the next lemma we prove that pt (x, y) is the heat kernel of Pt, that is continuous
in t, x, y and satisfies the on-diagonal upper bound, which, hence, concludes the
proof of this part of Theorem 3.1.

Lemma 4.6 Under the above conditions, the function pt (x, y) that is defined by
(4.39), is non-negative, continuous in (t, x, y) ∈ R+ × X × X, and satisfies the
following identities:

1. For all f ∈ L2 (X) and for all t > 0 and x ∈ X,

Ptf (x) =

∫

X

pt (x, y) f (y) dµ (y) . (4.40)

2. For all t > 0 and x, y ∈ X, pt (x, y) = pt (y, x)
3. For all x, z ∈ X and t, s > 0,

pt+s(x, z) =

∫

X

ps(x, y)pt(y, z)dµ (y) . (4.41)

Furthermore, for all t > 0 and x ∈ X, we have

pt (x, x) ≤ C

V (x, cτ−1 (t))
. (4.42)

Proof. It follows from (4.37) that pt,x is non-negative almost everywhere, which
implies by (4.39) that pt (x, y) ≥ 0. The symmetry pt (x, y) = pt (y, x) is obvious
from (4.39). By (4.38) and (4.39) we have

pt (x, x) = ‖pt/2,x‖2
2 ≤

C2

V (x, cτ−1 (t/2))
, (4.43)

whence (4.42) follows by (3.2) and renaming the constants.
Before we prove the other claims, let us first show that, for all x ∈ X, t, s > 0,

and f ∈ L2 (X),

Pt+sf (x) =

∫

X

(pt,z, ps,x) f (z) dµ (z) . (4.44)
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Indeed, using the semigroup identity Pt+sf (x) = Ps (Ptf) (x), which by the conti-
nuity of Ptf (x) holds pointwise, (4.37), and the symmetry of Pt, we obtain

Pt+sf (x) = Ps (Ptf) (x)

= (ps,x, Ptf) = (Ptps,x, f)

=

∫

X

Ptps,x (z) f (z) dµ (z)

=

∫

X

(pt,z, ps,x) f (z) dµ (z) ,

which was to be proved.
Let us now show that, for all x, y ∈ X and t > 0, the inner product (ps,x, pt−s,y)

does not depend on s ∈ (0, t); consequently, for all x, y ∈ X and 0 < s < t,

pt (x, y) = (ps,x, pt−s,y) . (4.45)

Indeed, for all 0 < r < s < t, we have, using (4.37) and applying (4.44) with f = pr,x,

(ps,x, pt−s,y) = Pspt−s,y (x) = Pr (Ps−rpt−s,y) (x)

=

∫

X

pr,x (z) (ps−r,z, pt−s,y) dµ (z)

= Pt−rpr,x (y)

= (pt−r,y, pr,x) ,

which was to be proved. Combining (4.44) and (4.45), we obtain (4.40).
Comparison of (4.37) and (4.40) shows that

pt (x, ·) = pt,x a.e. (4.46)

Using (4.45) and (4.46), we obtain, for all x, y ∈ X and t, s > 0,

∫

X

pt (x, z) ps (z, y) dµ (z) = (pt (x, ·) , ps (y, ·)) = (pt,x, ps,y) = pt+s (x, y) ,

which proves (4.41).
It follows from (4.37) and (4.45) that, for any fixed 0 < s < t and x ∈ X,

pt (x, ·) = Pt−sps,x.

Since ps,y ∈ L2, it follows that pt (x, y) is jointly continuous in (t, y) for any fixed x.
By symmetry, pt (x, y) is also jointly continuous in (t, x) for any fixed y.

To prove the joint continuity of pt (x, y) in (t, x, y), it suffices to show that pt (x, y)
is continuous in x locally uniformly in (t, y). For that, we use Corollary 4.5. Let us
apply the estimate (4.13) to the caloric function Ptf (x), where f ∈ L2 (X), in the
cylinder D ((t, x0) , ρ (t)) where ρ (t) = τ−1 (t/2) so that

D ((t, x0) , ρ (t)) = (t/2, t) × B (x0, ρ (t)) .
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We obtain that, for all x′, x′′ ∈ B (x0, δρ (t)),

|Ptf (x′) − Ptf (x′′)| ≤ C

(
d (x′, x′′)

ρ (t)

)α

sup
s∈(t/2,t)

z∈B(x0,ρ(t))

|Psf (z)| .

Rewrite (4.36) in the form

Psf (z) ≤ F (s, z) ‖f‖2

where
F (s, z) := CV

(
z, cτ−1 (s)

)−1/2

is a positive continuous function of (s, z) ∈ R+ × X, which is decreasing in s.
Combining the above two estimates, we obtain

|Ptf (x′) − Ptf (x′′)| ≤ C

(
d (x′, x′′)

ρ (t)

)α

sup
z∈B(x0,ρ(t))

F (t/2, z) ‖f‖2.

Setting here f = pt,y with any y ∈ X, observing that Ptf = p2t (·, y) and estimating
‖f‖2 by (4.38), we obtain, for all x′, x′′ ∈ B (x0, δρ (t)),

|p2t (x′, y) − p2t (x
′′, y)| ≤ C

(
d (x′, x′′)

ρ (t)

)α

sup
z∈B(x0,ρ(t))

F (t/2, z) F (t, y) .

Clearly, this estimate implies that p2t (x, y) is continuous in x locally uniformly in
(t, y), which finishes the proof.

Finally, note that the above construction of the heat kernel goes through for any
open subset Ω ⊂ X because the semigroup

{
PΩ

t

}
satisfies the key estimate (4.36)

simply by
∣∣PΩ

t f
∣∣ ≤ Pt |f |. Hence, PΩ

t possesses the heat kernel pΩ
t (x, y) that satisfies

all the properties stated in Lemma 4.6.
It is worth mentioning that if Ω is relatively compact then the function pΩ

t (x, y)
is bounded in (x, y) ∈ Ω × Ω for any t > 0. Indeed, by (4.41) we have

pΩ
t (x, y)2 =

(∫

Ω

pΩ
t/2(x, z)pΩ

t/2(z, y)dµ (z)

)2

≤
∫

Ω

pΩ
t/2(x, z)2dµ (z)

∫

Ω

pΩ
t/2(z, y)2dµ (z)

= pΩ
t (x, x) pΩ

t (y, y)

≤ pt (x, x) pt (y, y) ,

whence by (4.42)

pΩ
t (x, y)2 ≤ C2

V (x, cτ−1 (t))V (y, cτ−1 (t))
.

Since the function x 7→ V (x, cτ−1 (t)) is bounded away from 0 on Ω, it follows that
the function (x, y) 7→ pΩ

t (x, y) is bounded from above in Ω × Ω.
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4.3.4 Near diagonal lower bound

We start with a lemma.

Lemma 4.7 Let Ω be an open subset of X with µ (Ω) < ∞. If for some t > 0, the
operator PΩ

t admits a bounded kernel pΩ
t (x, y), then the spectrum of LΩ is discrete.

Furthermore, if λ1 (Ω) denotes the bottom of the spectrum of −LΩ, then the
following inequality holds for all t > 0:

ess sup
x,y∈Ω

pΩ
t (x, y) ≥ e−λ1(Ω)t

µ (Ω)
. (4.47)

Note that the inequality (4.47) holds also in a more general setting – see [9,
Proposition 2.3].

Proof. From the general theory of operators, we have the following trace formula

trace
(
PΩ

t

)2
=

∫

Ω

∫

Ω

pΩ
t (x, y)2 dµ (x) dµ (y) . (4.48)

By hypothesis, the right hand side is finite, which implies that the operator
(
PΩ

t

)2
=

e2tLΩ

has a finite trace. Consequently, the spectrum of P 2
t is discrete in (0, +∞),

which implies that all the spectrum of LΩ is discrete.
Let {λk}∞k=1 be the eigenvalues of −LΩ, arranged in increasing order, and counted

with multiplicity, so that λ1 = λ1 (Ω). Then the operator
(
PΩ

t

)2
has the eigenvalues

e−2λkt whence

trace
(
PΩ

t

)2
=

∞∑

k=1

e−2λkt ≥ e−2λ1t.

Comparing with (4.48), we obtain
∫

Ω

∫

Ω

pΩ
t (x, y)2 dµ (x) dµ (y) ≥ e−2λ1t,

whence (4.47) follows.
Returning to Theorem 3.1, observe that by the argument of the previous section,

any ball B = B (x0, r) possesses the heat kernel pB
t (x, y) that is, for any t > 0, a

bounded and continuous function of (x, y) ∈ B × B. Hence, all the hypotheses of
Lemma 4.7 are satisfied and we conclude that the spectrum of LB is discrete. Let
ϕ (x) ≥ 0 be the bottom eigenfunction of −LB with the eigenvalue λ1 (B). Consider
the caloric function in R+ × Ω

v (t, x) := P B
t ϕ (x) = e−λ1(B)tϕ (x) . (4.49)

The boundedness of the heat kernel pB
t implies that

ess sup
B

v (t, ·) ≤ess sup
x,y∈B

pB
t (x, y) ‖ϕ‖L1(B) < ∞,

that is, v (t, ·) is essentially bounded in B for any t > 0, whence it clearly follows that
ϕ (x) is essentially bounded. Therefore, v (t, x) is essentially bounded in R+×B, and
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we conclude by Corollary 4.2 that v (t, x) is continuous in R+ × B. Consequently,
ϕ (x) is continuous in B.

Let us show that ϕ (x0) > 0. Assume that ϕ (x) = 0 at some x ∈ B. Let ρ > 0
be such that

B (x, C5ρ) ⊂ B (x0, r) (4.50)

where C5 is the constant from w-PHI(τ). Applying the Harnack inequality to the
function v in Q(x, τ(C4ρ), C5ρ) and noticing that v (t, x) ≡ 0, we obtain

v (s, y) ≡ 0 on (τ(C1ρ), τ(C2ρ)) × B(x, ρ),

whence
ϕ (y) ≡ 0 for all y ∈ B (x, ρ) .

Assuming that ϕ (x0) = 0, let R ∈ (0, r] be the maximal number such that

ϕ (x) = 0 for all x ∈ B (x0, R) .

If R < r then set ρ = r−R
C5

so that (4.50) is satisfied for any x ∈ B (x0, R). By
the above argument, we have ϕ ≡ 0 in B (x, ρ), which implies that ϕ ≡ 0 in
B (x0, R + ρ), which contradicts the maximality of R. We conclude that R = r
and, hence, ϕ ≡ 0 in B (x0, r), which is impossible because ϕ is an eigenfunction.
Therefore, ϕ (x0) > 0.

Now we apply the Harnack inequality (3.3) to the function v (t, x) in the cylinder
Q(x0, τ(c4r), r), where we write for convenience of notation ck = Ck

C5
for k = 1, 2, 3, 4

(see Fig. 8).

(c4r)

t

(c2r)

(c3r)

(c1r)

0

t-

t+

B(x0,r)
B(x0,r/C5)

(t+,x0)

(t-,x0)

Q(x0, (c4r),r)

Figure 8: Cylinder Q (x0, τ (c4r) , r)

We obtain
v (t−, x0) ≤ C6v (t+, x0) ,
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where t− = τ
(

c1+c2
2

r
)

and t+ = τ
(

c3+c4
2

r
)
. It follows then from (4.49) that

e−λ1(B)t−ϕ (x0) ≤ C6e
−λ1(B)t+ϕ (x0) .

Since ϕ (x0) > 0, we obtain that

λ1 (B) ≤ log C6

t+ − t−
≤ 1

τ (κr)
(4.51)

where κ > 0 is chosen so that

τ

(
c3 + c4

2
r

)
− τ

(
c1 + c2

2
r

)
≥ τ (κr)

log C6

for all r > 0.
Using (4.51) together with the inequality (4.47) of Lemma 4.7, we obtain that,

for all t > 0,

sup
x,y∈B

pB
t (x, y) ≥ 1

µ (B)
exp

(
− t

τ (κr)

)
. (4.52)

Denote by B′ the ball B (x0, r/C5). Applying (4.52) to the heat kernel pB′

t , we obtain

sup
x,y∈B′

pB
t (x, y) ≥ sup

x,y∈B′

pB′

t (x, y) ≥ 1

µ (B′)
exp

(
− t

τ (κr/C5)

)
.

Using VD and renaming the constant κ appropriately, we can write

sup
x,y∈B′

pB
t (x, y) ≥ c

µ (B)
exp

(
− t

τ (κr)

)
. (4.53)

Applying the Harnack inequality (3.3) in the cylinder Q(x0, τ(c4r), r) to the
function u (t, ·) = pB

t (x, ·) where x ∈ B′, we obtain

sup
y∈B′

pB
t (x, y) ≤ C6p

B
s (x, z) (4.54)

for all z ∈ B′, t ∈ (τ (c1r) , τ (c2r)) , and

s ∈ (τ (c3r) , τ (c4r)) . (4.55)

Taking in (4.54) sup in x ∈ B′, we obtain

sup
x,y∈B′

pB
t (x, y) ≤ C6 sup

x∈B′

pB
s (x, z) ,

which together with (4.53) yields, in the above range of z and s,

sup
x∈B′

pB
s (x, z) ≥ c′

µ (B)
. (4.56)

Now we apply the Harnack inequality in the same cylinder to the function

u (t, ·) = pB
t+t0

(·, z)
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where z ∈ B′ and
t0 = τ (c3r) − τ (c1r) .

We obtain
sup
x∈B′

pB
s (x, z) ≤ C6p

B
t (x0, z) (4.57)

provided

s ∈ (t0 + τ (c1r) , t0 + τ (c2r)) = (τ (c3r) , τ (c3r) + τ (c2r) − τ (c1r)) (4.58)

and
t ∈ (t0 + τ (c3r) , t0 + τ (c4r)) . (4.59)

Comparison of (4.55) and (4.58) shows that there is a value of s that belongs to the
intersection of these intervals. Choosing this value of s and combining (4.56) with
(4.57), we obtain, for all z ∈ B′ = B (x, r/C5) and t from (4.59),

p
B(x0,r)
t (x0, z) ≥ c′′

µ (B)
=

c′′

V (x0, r)
. (4.60)

Given any ball B (x0, R) and t > 0, apply (4.60) to the ball B (x0, r), where r is
chosen to satisfy the identity

t = (τ (c3r) − τ (c1r)) +
1

2
τ (c3r) +

1

2
τ (c4r) , (4.61)

which ensures the validity of the inclusion (4.59). Note that the right hand side of
(4.61) is a continuous function of r that takes values in the entire half-line (0, +∞)
so that there exists r which satisfies (4.61).

It follows from (4.61) that

τ (c3r) ≤ t ≤ 2τ (c4r) . (4.62)

By (3.1) there is a (large) constant c′4 such that

2τ (c4r) ≤ τ (c′4r) ,

so that (4.62) implies
τ (c3r) ≤ t ≤ τ (c′4r)

and, hence,
1

c′4
τ−1 (t) ≤ r ≤ 1

c3
τ−1 (t) .

Choose ε > 0 to be so small that

ε ≤ c3 and ε ≤ (c′4C5)
−1

.

Assuming that t ≤ τ (εR) we obtain from the above two lines that r ≤ R and

r

C5
≥ ετ−1 (t) .
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Hence, any z ∈ B (x0, ετ
−1 (t)) belongs also to B (x0, r/C5), and we obtain from

(4.60) for such z that

p
B(x0,R)
t (x0, z) ≥ p

B(x0,r)
t (x0, z) ≥ c′′

V (x0, r)
≥ c′′′

V (x0, τ−1 (t))
, (4.63)

which proves LLE(τ ; ε).
Letting R → ∞ and renaming x0 to x and z to y, we obtain the lower bound

(3.7) of the heat kernel pt (x, y). Another consequence of LLE(τ ; ε), that is obtained
by integrating (4.63) over B (x0, ετ

−1 (t)) and renaming x0 to x, is the inequality
∫

B(x,R)

p
B(x,R)
t (x, z) dµ (z) ≥ c0, (4.64)

which is true whenever t ≤ τ (εR), with a positive constant c0.

4.3.5 Integrated upper bound

Given the on-diagonal upper bound of the heat kernel and LLE, the proof of the
upper bound in HKE can be obtained by at least two different ways: as in [17,
Section 4] or as in [22, Section 5]. Here we mainly follow [22], which partially uses
a probabilistic argument. A purely analytic version of that argument can be found
in [16].

The main part of the proof of the off-diagonal upper bound of the heat kernel is
contained in the following lemma.

Lemma 4.8 Assume that the heat kernels pt and pB
t are continuous for any ball B

and that the estimate (4.64) holds for all x ∈ X, R > 0 and t ≤ τ (εR). Then the
following is true.
(i) There exist c1, c2 > 0 such that, for all x ∈ X, t > 0,

∫

X

exp

(
c1

d(x, z)

τ−1(t)

)
pt(x, z)µ(dz) ≤ c2. (4.65)

(ii) Furthermore, for any k ∈ N, we have
∫

X

exp

(
c1

d(x, z)

τ−1(t/k)

)
pt (x, z) dµ (z) ≤ ck

2. (4.66)

Proof. We follow the proof of Lemma 5.8 and 5.9 in [22] with some improve-
ments.

(i) Recall that, for any bounded Borel function f on X, we have the identity

E
x[f(Yt)] = Ptf (x) (4.67)

which is true for almost all x ∈ X. However, since the right hand side has a
continuous version and the left hand side is quasi-continuous, the equality holds for
q.e. x ∈ X. Using [13, Lemma 7.2.4], we see that there exists N0 ⊂ X such that

P
x(Yt ∈ N0 for some t) = 0 for all x ∈ X \ N0 =: X ′,
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and Cap (N0) = 0, where Cap is the 1-capacity (see [13, (2.1.2)] for definition).
For any open set Ω ⊂ X, let TΩ be the first exit time from Ω, that is,

TΩ := inf{s > 0 : Ys ∈ X ′ \ Ω}.

Fix a ball B = B (x, R) and set Bk = B (x, kR) and Tk = TBk
for all k ∈ N. Then

we have by the strong Markov property, for any t > 0,

P
x (Tk+1 ≤ t) = E

x
[
1{Tk≤t}P

YTk (Tk+1 ≤ t − Tk)
]
, ∀ x ∈ X ′

(see Fig. 9).

Bk+1

x
k+1

YT

YT

k

B(YT ,R)

Bk

k

Figure 9: Exit points from the balls Bk and Bk+1

Since {Yt} is a diffusion without a killing term and P
x(Yt ∈ N0, ∃t) = 0, the exit

point YTk
is contained in Bk ∩ X ′

P
x-a.s., whence it follows that B (YTk

, R) ⊂ Bk+1

and, hence,

P
YTk (Tk+1 ≤ t − Tk) ≤ P

YTk

(
TB(YTk

,R) ≤ t
)
≤ sup

z∈X′

P
z
(
TB(z,R) ≤ t

)
.

Combining the above two lines, we obtain for x ∈ X ′

P
x (Tk+1 ≤ t) ≤ P

x (Tk ≤ t) sup
z∈X′

P
z
(
TB(z,R) ≤ t

)
. (4.68)

On the other hand, we have by [13, (4.1.2)]

P
z
(
TB(z,R) > t

)
= P

B(z,R)
t 1 (z) =

∫

B(z,R)

p
B(x,R)
t (z, y) dµ (y) , ∀ z ∈ X ′. (4.69)

Assuming that t ≤ τ (εR), we obtain by (4.64) that P
z
(
TB(z,R) > t

)
≥ c0 whence

P
z
(
TB(z,R) ≤ t

)
≤ 1 − c0.
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Substituting into (4.68), we obtain by induction in k that

P
x (Tk ≤ t) ≤ (1 − c0)

k , ∀ x ∈ X ′.

Consequently, we have for all x ∈ X ′

Pt1X′\Bk
(x) = P

x (Yt ∈ X ′ \ Bk) ≤ P
x (Tk ≤ t) ≤ (1 − c0)

k ,

that is, ∫

X′\Bk

pt(x, z)dµ (z) ≤ (1 − c0)
n.

It follows that for all x ∈ X ′

∫

X

exp

(
c
d(x, z)

R

)
pt(x, z)dµ (z)

=
∞∑

k=0

∫

(Bk+1\Bk)∩X′

exp

(
c
d(x, z)

R

)
pt(x, z)dµ (z)

≤
∞∑

k=0

ec(k+1)

∫

X′\Bk

pt(x, z)dµ (z)

≤
∞∑

k=0

e4c(k+1)(1 − c0)
k < ∞,

provided the constant c > 0 is chosen small enough. Setting in this estimate R =
ε−1τ−1 (t) and noting the continuity of pt(x, y), we obtain (4.65) for all x ∈ X.

(ii) Denote for simplicity

Et,x (y) = exp

(
c1

d(x, y)

τ−1(t)

)
.

The estimate (4.65) means then that, for all t > 0 and x ∈ X,

PtEt,x (x) ≤ c2. (4.70)

Let us prove that, for all t > 0, x, y ∈ X,

PtEt,x (y) ≤ c2Et,x (y) .

By the triangle inequality, we have, for all x, y, z ∈ X,

Et,x (y) ≤ Et,x (z) Et,z (y) .

Considering x and z as fixed and y as variable and applying Pt, we obtain

PtEt,x (y) ≤ Et,x (z) PtEt,z (y) .

Setting z = y and using (4.70), we obtain

PtEt,x (y) ≤ c2Et,x (y) .

Iterating this inequality and using once again (4.70), we obtain

PktEt,x (x) ≤ ck
2.

Renaming t to t/k, we obtain (4.66).
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4.3.6 Pointwise off-diagonal upper bound

Using the upper bound (4.42) and (3.11), we obtain

pt (x, z) ≤ C

(V (x, τ−1 (t)) V (z, τ−1 (t)))1/2

≤ C

V (x, τ−1 (t))

(
1 +

d (x, z)

τ−1 (t)

)γ/2

, (4.71)

whence it follows that
∫

X

exp

(
c1

d(x, z)

τ−1(t/k)

)
p2

t (x, z) dµ (z)

≤ C

V (x, τ−1 (t))

∫
exp

(
c1

d(x, z)

τ−1(t/k)

)(
1 +

d (x, z)

τ−1 (t)

)γ/2

pt (x, z) dµ (z) .

By reducing the constant c1 and increasing C, the term
(

1 +
d (x, z)

τ−1 (t)

)γ/2

≤
(

1 +
d (x, z)

τ−1 (t/k)

)γ/2

can be absorbed into the exponential. Hence, we obtain from (4.66) that
∫

X

exp

(
c1

d(x, z)

τ−1(t/k)

)
p2

t (x, z) dµ (z) ≤ Cck
2

V (x, τ−1 (t))
.

Therefore, for any two points x, y ∈ X, we obtain, using the triangle inequality and
the Cauchy-Schwarz inequality,

p2t (x, y) =

∫

X

pt (x, z) pt (y, z) dµ (z)

≤
∫

X

exp

(
c1

2

d(x, z)

τ−1(t/k)

)
pt (x, z) exp

(
c1

2

d(y, z)

τ−1(t/k)

)
pt (y, z) dµ (z)

× exp

(
−c1

2

d (x, y)

τ−1 (t/k)

)

≤
(∫

X

exp

(
c1

d(x, z)

τ−1(t/k)

)
p2

t (x, z) dµ (z)

)1/2

×
(∫

X

exp

(
c1

d(y, z)

τ−1(t/k)

)
p2

t (y, z) dµ (z)

)1/2

× exp

(
−c1

2

d (x, y)

τ−1 (t/k)

)

≤ Cck
2

(V (x, τ−1 (t)) V (y, τ−1 (t)))1/2
exp

(
−c1

2

d (x, y)

τ−1 (t/k)

)
.

Using again (3.11) as in (4.71), reducing again the constant c1, and renaming 2t to
t, we obtain

pt (x, y) ≤ Cck
2

V (x, τ−1 (t))
exp

(
−c1

d (x, y)

τ−1 (t/k)

)
. (4.72)
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Let us now choose k as follows. Set for simplicity r = d (x, y) and assume first
that τ (r) ≥ t. Using (3.2), we obtain

ck
2 exp

(
− c1r

τ−1(t/k)

)
≤ exp

(
k log c2 − c1

(
τ (r)

Ct/k

)1/β2

)

= exp

(
c′k − c′′

(
τ (r)

t

)1/β2

k1/β2

)

with the obvious meaning of the new constants c′ and c′′. We would like to choose
k to satisfy the inequality

c′k ≤ 1

2
c′′
(

τ (r)

t

)1/β2

k1/β2 ,

that is,

k ≤ c′′′
(

τ (r)

t

) 1

β2−1

where c′′′ =
(

c′′

2c′

)β2/(β2−1)
. If the ratio τ(r)

t
is larger than a certain constant then such

a positive integer k exists; choose k to be maximal possible so that

k ≃
(

τ (r)

t

) 1

β2−1

.

Then (4.72) implies

pt (x, y) ≤ C

V (x, τ−1 (t))
exp

(
−c

(
τ (r)

t

) 1

β2−1

)
. (4.73)

Finally, if τ (r) /t is bounded then (4.73) trivially follows from (4.72) with k = 1.
By that, the proof of Theorem 3.1 is finished.

5 Proof of Theorem 3.2

Lemma 5.1 (i) s-HKE(τ) implies VD.
(ii) s-PHI(τ) implies VD.

Proof. (i) By definition of s-HKE(τ), (3.7) holds for every ε ∈ (0,∞). Assuming
that ε > 1 and integrating (3.7) over B(x, ετ−1(t)), we obtain

c3V (x, ετ−1(t))

V (x, τ−1(t))
≤
∫

B(x,ετ−1(t))

pt(x, y)µ(dy) ≤ 1.

Since ε > 1 and t > 0, x ∈ X are arbitrary, this implies VD.
(ii) Note that (4.63) and (4.42) control pT (x0, x0) from above and below in terms
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of the volume of balls by taking y = x0. Recalling (4.36), (4.43) and (3.2), we see
that c = 21−1/β1/(C1 + C2) in (4.42), so we can take c ≥ 2 by taking C1 + C2 small.
s-PHI(τ) enables these choices of constants and thus implies VD.

Remark. As the proof of (i) shows, if (3.7) holds with ε > 1, then VD is satisfied.

Given Theorem 3.1 and Lemma 5.1, it is enough to prove the following proposi-
tion to complete the proof of Theorem 3.2. Although the proof consists of a standard
chaining argument, we reproduce it for readers’ convenience.

Proposition 5.2 Under the hypotheses of Theorem 3.2, the following hold.
(i) VD and w-HKE(τ) imply s-HKE(τ).
(ii) VD and w-LLE(τ) imply s-LLE(τ).
(iii) s-HKE(τ) implies f-HKE(τ).
(iv) w-PHI(τ) implies s-PHI(τ).

Proof. (i) We assume that HKE(τ ; ε0) holds for some ε0 > 0, and will prove
HKE(τ ; ε) for any fixed ε > ε0. Put

a =

(
3ε

ε0

)β1/(β1−1)

,

and n = ⌈a⌉. Then by (3.12) we have, for any t > 0,

τ−1(t)

nτ−1(t/n)
≤ 1

n
n1/β1 ≤ ε0

3ε
. (5.1)

Now let t > 0, and x, y ∈ X satisfy d(x, y) ≤ ετ−1(t). Then as the metric d is
geodesic, there exists a chain {xi}n

i=0 such that x0 = x, xn = y and d(xi, xi+1) =
d(x, y)/n for i = 0, 1, · · · , n − 1. Let r = ετ−1(t)/n and s = t/n. Then by (5.1) we
have

3r ≤ 3ετ−1(t)

n
≤ ε0τ

−1(t/n) = ε0τ
−1(s).

We also have by (3.12)

τ−1(s)

r
=

nτ−1(t/n)

ετ−1(t)
≤ n

ε

(
C

n

)1/β2

≤ (1 + a)1−1/β2C1/β2

ε
. (5.2)

By VD, there exists a constant b > 0 such that

V (z, τ−1(s)) ≤ b−1V (z, r)

for all z ∈ X. Thus, by HKE(τ ; ε0) we have

ps(zi, zi+1) ≥
c1

V (zi, τ−1(s))
≥ c1b

V (zi, r)
. (5.3)
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for µ × µ-almost all (zi, zi+1) ∈ B(xi, r) × B(xi+1, r). Therefore

pt(x, y) =

∫

X

· · ·
∫

X

ps(x, z1)ps(z1, z2) · · ·ps(zn−1, y)µ(dzn−1) · · ·µ(dz1) (5.4)

≥
∫

B(x1,r)

· · ·
∫

B(xn−1,r)

ps(x, z1) · · ·ps(zn−1, y)µ(dzn−1) · · ·µ(dz1)

≥ c1

V (x, τ−1(s))

n−1∏

i=1

(
c1

V (xi, τ−1(s))
· V (xi, r)

)
≥ cn

1b
n−1

V (x, τ−1(s))
.

Since s = t/n ≤ t, this gives the required bound.

x=x0

x2

y=xn
xn-1

x1

z1 z2

zn-1

Figure 10: Sequence of balls B (xi, s)

(ii) The proof is very similar to (i): note that as the metric d is geodesic the chain
xi does not leave the ball B(x, d(x, y)).
(iii) We have that HKE(τ, 3) holds. Let x, y ∈ X and t > 0, and let R = d(x, y). If
τ(R)/t ≤ 1 there is nothing to prove, so we assume τ(R)/t > 1.

For n ≥ 1 let rn = R/n and sn = t/n. Let

an =
rn

τ−1(sn)
=

R/n

τ−1(t/n)
.

By (3.2) we have limn an = 0; let N be the smallest integer so that aN < 1. As
a1 > 1, we have N ≥ 2. By (3.2)

an+1

an
=

nτ−1(t/n)

(n + 1)τ−1(t/(n + 1))
≥ n

n + 1

(n + 1

Cn

)1/β1

≥ c2 > 0,

where c2 depends only on the function τ . We thus deduce that c2 ≤ aN < 1, which
implies that

c2τ
−1(sN) ≤ rN < τ−1(sN ).

As in (i) we now construct a chain x = z0, z1, . . . , zN = y with d(zi−1, zi) = R/N for
each i. We have

V (z, τ−1(sN)) ≤ V (z, c−1
2 rN) < bV (z, rN ),

where b depends only on c2 and the constant in VD.
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We can therefore use (5.4) to obtain

pt(x, y) ≥ cN
4

V (x, τ−1(t/N))
≥ exp(−c5N)

V (x, τ−1(t))
. (5.5)

Now since aN ≍ 1, we have τ(R/N) ≍ t/N . So using (3.2)

τ(R)

t
≥ c

τ(R)

Nτ(R/N)
≥ c′N−1Nβ1 .

This gives N ≤ c(τ(R)/t)1/(β1−1), and combining this with (5.5) this gives the lower
bound needed for f-HKE.
(iv) Assume that w-PHI(τ) holds with constants C1, · · · , C6 and take arbitrary
constants

0 < C ′
1 < C ′

2 < C ′
3 < C ′

4, C ′
5 > 1, C ′

6 > 0.

Let

c′′1 =
C1 + C2

2
and c′′3 =

C3 + C4

2
.

Let x0 ∈ X, R > 0, and u = u(t, x) be a non-negative caloric function in Q(x0, τ(C ′
4R), C ′

5R).
Define the cylinders

Q−,R(s, x) = (s + τ(C1R), s + τ(C2R)) × B(x, R)

Q+,R(s, x) = (s + τ(C3R), s + τ(C4R)) × B(x, R)

Q′
−,R = (τ(C ′

1R), τ(C ′
2R)) × B(x0, R)

Q′
+,R = (τ(C ′

3R), τ(C ′
4R)) × B(x0, R)

and choose arbitrarily points

(s, x) ∈ Q′
−,R, (s′, x′) ∈ Q′

+,R.

We will compare u(s, x) and u(s′, x′) by taking a chain {(si, xi)}N
i=0 where

(s0, x0) = (s, x), (sN , xN) = (s′, x′)

and, for i = 0, · · · , N − 1,

(si, xi) ∈ Q−,r(s̄i, x̄i), (si+1, xi+1) ∈ Q+,r(s̄i, x̄i), d(xi, xi+1) < r,

where
(s̄i, x̄i) ∈ Q(x0, τ(C ′

4R), C ′
5R).

As d is geodesic such a choice of chain is possible when

2R

N
≤ r and si+1 = si + τ(c′′3r) − τ(c′′1r).

So, let us choose N = [2R/r] + 1. By the w-PHI(τ), we have

u(si, xi) ≤ Cu(si+1, xi+1),
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so we can obtain u(s, x) ≤ C ′u(s′, x′), where C ′ is independent of the choice of u
and R, provided the following inequality holds

(τ(c′′3r) − τ(c′′1r))N ≤ τ(C3R) − τ(C2R). (5.6)

By (3.12) we have

τ(C3R) − τ(C2R) =

(
τ(C3R)

τ(C2R)
− 1

)
τ (C2R) ≥

((
C3

C2

)β1

− 1

)
τ (C2R)

and, for any 0 < κ < C2,

τ (C2R) ≥
(

C2

κ

)β1

τ (κR) .

Combining these inequalities and choosing κ small enough, we obtain

τ(C3R) − τ(C2R) ≥ τ(κR).

Hence, (5.6) is satisfied provided

τ(c′′3r)
3R

r
≤ τ(κR),

which is by (3.12) the case if R
r

is large enough.

Remark. (i) We say that a metric space (X, d) satisfies the chain condition if
there exists C > 0 such that, for all x, y ∈ X and any n ∈ N, there exists a
sequence {xi}n

i=0 ⊂ X such that x0 = x, xn = y and d(xi, xi+1) ≤ Cd(x, y)/n for
all i = 0, 1, · · · , n − 1. Clearly a geodesic space satisfies the chain condition. We
note that Proposition 5.2 (i,iii) hold under the chain condition by the same proof
as above. However, Proposition 5.2 (ii,iv) does not hold under the chain condition.
Indeed the example in Section 6 (see Fig. 11) satisfies the chain condition, VD, and
w-PHI(τ) with τ(r) = r2 (so it satisfies w-LLE(τ) by Theorem 3.1), but it does not
satisfy s-LLE(τ) nor s-PHI(τ).

(ii) Let q ≥ 1. We say that a metric space (X, d) satisfies UA(q), if the following
holds: for all 0 < r < R and x, y ∈ X such that d (x, y) < R, there is a sequence
{xi}n

i=0 with

n ≤ C

(
R

r

)q

,

such that xi ∈ B (x, R) for all i = 0, ..., n, x0 = x, xn = y, d (xi, xi+1) < r for all
i = 0, ..., n− 1. (Note that because of the requirement xi ∈ B (x, R), the hypothesis
(UA(q)) with q = 1 is stronger than the chain condition.) It can be proved that
if (UA(q)) holds with q < β1, then Proposition 5.2 and so Theorem 3.2 hold by
modifying the definition of f-HKE(τ) so that (3.9) holds with some exponent α > 0
instead of 1/(β2 − 1).
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6 Example

We give here an example that satisfies w-PHI(τ) but not s-PHI(τ).
Consider the following 2-dimensional Riemannian manifold X embedded in R

3

(see Fig. 11) equipped with the 3-dimensional Euclidean distance, which is not
geodesic in X.

x 0 
y 0 

X

Figure 11: Example that satisfies w-PHI(τ) but not s-PHI(τ)

Let x0, y0 ∈ X be the points that attains minimum distance around two ends of
X. Note that VD holds for this example. s-HKE(τ) holds as well for τ(r) = r2, since
f-HKE(τ) holds for the Riemannian metric D that is geodesic, and D(x, y) ≍ d(x, y)
in X. Thus, by Theorem 3.1, w-PHI(τ) holds. However, B(x0, d(x0, y0) + ε) is not
connected for small ε > 0. A function which is 1 in the connected component of x0

in B(x0, d(x0, y0) + ε) and 0 otherwise is a caloric function in B(x0, d(x0, y0) + ε) –
cf. Example 2.1 (ii). So s-PHI(τ) cannot hold in this example.
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