
On biparabolicity of Riemannian manifolds

Shokoufe Faraji1 Alexander Grigor’yan2∗

December 2017

1 Department of Physics, University of Bielefeld, 33501 Bielefeld, Germany.
Email: fshokoufe@gmail.com

2 Department of Mathematics, University of Bielefeld, 33501 Bielefeld, Germany and
Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russia.

Email: grigor@math.uni-bielefeld.de

Contents

1 Introduction 1

2 Weighted manifolds 2

3 Sufficient conditions for biparabolicity 3
3.1 Biparabolicity and Green operator . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Volume growth and biparabolicity . . . . . . . . . . . . . . . . . . . . . . . 5

4 Counter example 7

1 Introduction

The notion of parabolicity of a Riemannian manifold has been studied by many authors
for more than a half-century. A Riemannian manifold M is called parabolic if any positive
superharmonic function on M is identically constant. For example, it is well known that
Rn is parabolic if and only if n ≤ 2.

The term ”parabolic” comes from the Classification Theory of Riemann surfaces. By
the famous Uniformization Theorem of Koebe-Poincaré, any simply connected Riemann
surface S is conformally equivalent to either the sphere S2 or the Euclidean plane R2 or the
hyperbolic plane H2. In the first case S is called elliptic, in the second case parabolic, and
in the third case hyperbolic. It is easy to prove that for non-compact S the parabolicity
of S is equivalent to the property, that any positive superharmonic function is constant.
Hence, the latter is taken as definition of parabolicity for a Riemannian manifold of
arbitrary dimension.
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It is well-known that the parabolicity of a Riemannian manifold M is equivalent to
the absence of a positive Green function as well as to the recurrence of Brownian motion
on M (see, for example, [4], [8]).

A famous theorem of Cheng and Yau [1] provides a sufficient condition for parabolicity
in terms of the volume growth. Let V (x, r) denote the Riemannian volume of the geodesic
ball on M of radius r centered at x ∈ M. The theorem of Cheng and Yau says that, if M
is geodesically complete and, for some x0 ∈ M and constant C,

V (x0, r) ≤ Cr2 for r → ∞,

then M is parabolic.
The purpose of this work is to investigate a similar notion of biparabolicity of a

Riemannian manifold M . Let Δ denote the Laplace-Beltrami operator on M . A function
u ∈ C4(M) is called bi-superharmonic if Δu ≤ 0 and Δ2u ≥ 0. The manifold M is called
biparabolic, if any positive bi-superharmonic function is harmonic, that is Δu = 0.

Note that the notion of parabolicity admits a similar equivalent definition: M is
parabolic if and only if any positive superharmonic function is harmonic.

The main result of this work is the following sufficient condition for biparabolicity: if
M is a geodesically complete manifold and for some x0 ∈ M

V (x0, r) ≤ C
r4

log r
for r → ∞, (1.1)

then M is biparabolic (Theorem 3.5).
We also show that the condition (1.1) is nearly optimal in the following sense: for any

β > 1 there exists a geodesically complete manifold M with

V (x0, r) ≤ C r4 logβ r for r → ∞

such that M is not biparabolic (Section 4).

2 Weighted manifolds

In fact, we state and prove the main result in a more general setting of weighted manifolds.
A weighted manifold is a couple (M,μ) where M is a connected Riemannian manifold
and μ is a measure on M with a positive smooth density with respect to the Riemannian
measure ν. Denote this density by h2, that is, dμ = h2dν, where h is a smooth positive
function on M . The weighted Laplace operator of (M,μ) is defined by

Δμ =
1

h2
div(h2∇),

where div and ∇ are the Riemannian divergence and gradient, respectively. Of course,
in the case h ≡ 1 the operator Δμ coincides with the Laplace-Beltrami operator Δ. For
convenience we will use the notation

L = −Δμ.

A C2 function u on M is called superharmonic if Lu ≥ 0. The weighted manifold (M,μ)
is called parabolic if any positive superharmonic function is constant.

2



It is easy to see that L satisfies the Green formula with respect to the measure μ, that
is, for smooth functions u and v

∫

M

uLv dμ =

∫

M

〈∇u,∇v〉dμ =

∫

M

vLu dμ, (2.1)

provided u or v has a compact support. Consequently, the operator L with the domain
C∞

0 (M) is a symmetric operator in L2 (M,μ). It extends canonically to a self-adjoint,
non-negative definite operator in L2 (M,μ) that will be denoted also by L. Hence, it
determines a heat semigroup Pt = e−tL, t ≥ 0, acting in L2 (M,μ). This semigroup has
a smooth positive kernel pt (x, y) that is called the heat kernel of (M,μ). The Green
function g (x, y) is then defined by

g(x, y) =

∫ ∞

0

pt(x, y)dt, (2.2)

The parabolicity of (M,μ) is equivalent to g (x, y) ≡ ∞. We assume in what follows that
the Green function g (x, y) is finite (which means that g (x, y) < ∞ for all x 6= y).

Define the Green operator G on all non-negative measurable functions f on M by

Gf(x) =

∫

M

g(x, y)f(y)dμ(y) =

∫ ∞

0

Ptf (x) dt. (2.3)

For any k ∈ N, let Gk be the k-th operator power of G, that is,

Gkf (x) =

∫

Mk

g (x, x1) g (x1, x2) ...g (xk−1, xk) f (xk) dμ (x1) ...dμ (xk) . (2.4)

It is easy to prove that

Gkf (x) =

∫ ∞

0

tk−1

(k − 1)!
Ptf (x) dt. (2.5)

If the integral in (2.4) (or, equivalently, in (2.5)) diverges for any non-zero, non-negative
function f ∈ C∞

0 (M) then, we write Gk ≡ ∞, which is equivalent to

∫

Mk−1

g (x, x1) g (x1, x2) ...g (xk−1, y) dμ (x1) ...dμ (xk−1) ≡ ∞

for all x, y ∈ M .
Let d (x, y) be the geodesic distance on M and B (x, r) denote open geodesic balls in

M .

3 Sufficient conditions for biparabolicity

Let (M,μ) be a weighted manifold as above. A function u ∈ C4(M) is called bi-
superharmonic if Lu ≥ 0 and L2u ≥ 0. The manifold M is called biparabolic, if any
positive bi-superharmonic function is harmonic, that is Lu = 0.
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3.1 Biparabolicity and Green operator

Theorem 3.1 A weighted manifold (M,μ) is biparabolic if and only if G2 ≡ ∞.

We will prove this Theorem after the following lemmas.

Lemma 3.2 If G2 ≡ ∞ then, for any positive harmonic function h on M , we have
Gh ≡ ∞.

Proof. Assume from the contrary that, for some positive harmonic function h on M ,
Gh < ∞, and let us prove that G2 < ∞.

The proof is split into a series of claims. Fix a point y ∈ M and some ball B centered
at y.

Claim 1. There exists a constant c depending on y and such that for all z ∈ Bc

g(z, y) ≤ ch(z).

Indeed, since h > 0 on ∂B and g(z, y) < ∞ on ∂B, then there exists c such that
g(z, y) ≤ ch(z) for all z ∈ ∂B. It follows from the minimality property of the Green
function and from the maximum principle that this inequality holds also in Bc.

Claim 2. For all x ∈ M we have
∫

Bc

g(x, z)g(z, y)dμ (z) < ∞.

Indeed, it follows from Claim 1 that
∫

Bc

g(x, z)g(z, y)dμ (z) ≤ c

∫

Bc

g(x, z)h (z) dμ (z) ≤ cGh (x) < ∞.

Claim 3. For all x 6= y we have
∫

B

g(x, z)g(z, y)dμ(z) < ∞.

Indeed, the Green function z 7→ g(z, y) behaves in a small neighborhood of y as the
Green function in Rn where n = dim M ; in particular, the Green function is locally
integrable, whence the claim follows.

Combining Claims 2 and 3, we obtain G2 < ∞, which finishes the proof of Theorem
3.1.

Lemma 3.3 ([5, Theorem 13.1]) Let f be a non-negative function from L2
loc(M) such

that Gf ∈ L2
loc(M). Then the function u = Gf is the minimal non-negative solution in

L2
loc(M) of the equation Lu = f considered in the distributional sense. If in addition

f ∈ C∞, then also u ∈ C∞.

Lemma 3.4 Let f ∈ C∞ (M) be a non-negative function such that Gf(x) < ∞, for some
x ∈ M . Then Gf ∈ C∞ (M) and L(Gf) = f .
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Proof. Let {Ωn} be an exhaustion of M by a sequence of precompact, connected
domains. Since f is bounded and smooth in Ωn, by Lemma 3.3 we conclude that GΩnf ∈
C∞(Ωn) and L(GΩnf) = f in Ωn.

It is well know that GΩnf → Gf pointwise in M as n → ∞. Let us verify that
Gf ∈ C∞(M). Fix some m ∈ N and consider for any n > m the function

un = GΩnf − GΩmf.

Since Lun = 0 in Ωm, the sequence {un} is a monotone increasing sequence of harmonic
functions that is bounded by Gf (x) for any x ∈ Ωm. Therefore, the limit limn→∞ un is a
harmonic function in Ωm. It follows that in Ωm

Gf = GΩmf + a harmonic function.

Consequently, Gf is a locally bounded function on M , which implies by Lemma 3.3 that
Gf ∈ C∞ (M) and L(Gf) = f .

Now we can prove the Theorem 3.1.
Proof of Theorem 3.1. If G2 6≡ ∞ then there exists a non-trivial, non-negative

function ϕ ∈ C∞
0 (M) such that G2ϕ < ∞ at least at one point. Then also Gϕ is finite

at least at one point. Applying twice Lemma 3.4 we obtain that u := G2ϕ ∈ C∞ (M) as
well as Lu = Gϕ ≥ 0 and L2u = ϕ ≥ 0. Hence, u is bi-superharmonic, but not harmonic
(not even biharmonic).

Let now G2 ≡ ∞. If u is a positive bi-superharmonic function, then set v = Lu ≥ 0
and w = Lv ≥ 0. Using the minimality property of the Green function, we obtain v ≥ Gw
and u ≥ Gv, whence u ≥ G2w. However, G2 ≡ ∞, which implies w ≡ 0. Hence, Lv = 0
so that v is harmonic. We still have u ≥ Gv, while by Lemma 3.2 Gv ≡ ∞, unless v = 0.
Hence, v = 0 and u is harmonic.

3.2 Volume growth and biparabolicity

Our main result is as follows.

Theorem 3.5 Let M be a geodesically complete weighted manifold. If, for some x0 ∈ M
and for all r � 1,

V (x0, r) ≤ C
r4

log r
, (3.1)

where C is a positive constant, then M is biparabolic.

We use in the proof the following heat kernel estimate.

Lemma 3.6 ([2], [5, Theorem 16.5]) Let M be a complete weighted manifold. Assume
that, for some x ∈ M and all r ≥ r0,

V (x, r) ≤ Crν ,

where C, ν, r0 are positive constant. Then, for all t ≥ t0 ,

pt(x, x) ≥
1/4

V (x,
√

Kt log t)
,

where K = K(x, r0, C, ν) and t0 = max(r2
0, 3).
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We use also the following lemma that is a standard consequence of a local parabolic
Harnack inequality for the heat equation (cf. [6], [7]).

Lemma 3.7 For any ball BR(x0), there is a constant c = c(BR (x0)) > 0 such that

pt(x, y) ≥ cpt(x0, x0),

for all x, y ∈ BR/2(x0) and for all t ≥ t0 = R2.

Proof of Theorem 3.5. By Theorem 3.1, it suffices to show that, for any non-
negative non-zero function ϕ ∈ C∞

0 (M), we have G2φ ≡ ∞. By (2.5), we have, for any
x ∈ M ,

G2ϕ (x) =

∫ ∞

0

tPtϕ (x) dt =

∫ ∞

0

∫

supp ϕ

tpt(x, y)ϕ(y)dμ(y)dt.

Fix arbitrary x ∈ M and choose R > 0 so big that the ball BR/2(x0) contains both supp ϕ
and x. Applying Lemma 3.7 with this ball, we obtain

G2ϕ(x) =

∫ ∞

0

∫

BR/2(x0)

tpt(x, y)ϕ(y)dμ(y)dt

≥
∫ ∞

t0

∫

BR/2(x0)

tpt(x, y)ϕ(y)dμ(y)dt

≥ c||ϕ||L1

∫ ∞

t0

tpt(x0, x0)dt.

By Lemma 3.6, we have, for large t,

pt (x0, x0) ≥
c

v
(√

t log t
) ,

where v(r) = r4

log r
. Since for t → ∞ we have

t

v(
√

t log t)
=

t
(t log t)2

1
2

log(t log t)

∼
2

t log t
,

and hence

∫ ∞

t0

tdt

v
(√

t log t
) �

∫ ∞

t0

dt

t log t
= ∞,

we conclude that G2ϕ (x) = ∞, which was to be proved.
In the next section, construct an example to show that under the volume growth

V (x0, r) ≤ Cr4 logβ r (3.2)

with β > 1, one cannot claim biparabolicity.
Unfortunately, we were not able to fill in the gap between the positive result in the

case of the volume growth (3.1) and the volume growth (3.2) in the counterexample.
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4 Counter example

Fix n ≥ 2 and consider a smooth manifold

M = R× Sn−1,

that is, any point x ∈ M is represented in the polar form as (r, θ) where r ∈ R and
θ ∈ Sn−1. Define the Riemannian metric g on M by

g = dr2 + ψ2(r)dθ2, (4.1)

where dθ2 is the standard Riemannian metric on Sn−1 and ψ(r) is a smooth positive
function on R. Let μ be the Riemannian measure on M .

Define the area function S (r), r ∈ R, by

S (r) = ωnψ (r)n−1 ,

where ωn is the volume of Sn−1. Then, for any domain of the form

Ωa,b =
{
(r, θ) ∈ M : a < r < b, θ ∈ Sn−1

}

with a < b, we have

μ (Ωa,b) =

∫ b

a

S (r) dr.

The Laplace-Beltrami operator Δ on M is represented in the polar coordinates as
follows

Δ =
∂2

∂r2
+

S ′(r)

S(r)

∂

∂r
+

1

ψ2(r)
Δθ, (4.2)

where Δθ is the Laplace-Beltrami operator on Sn−1. An easy consequence of (4.2) is that
every radial harmonic function v(r) in a domain Ωa,b satisfies

v (r) = c1 + c2

∫ r

c

dt

S(t)
. (4.3)

where c ∈ [a, b] so that the integral converges, and c1, c2 are arbitrary constants.
Now let us choose ψ so that the area function S(r) satisfies the identities

S(r) =

{
e−rα

, r > r0,

|r|3 logβ |r|, r < −r0,
(4.4)

with some r0 > 1, where α, β are arbitrary real numbers such that

α > 2 and β > 1. (4.5)

For r ∈ [−r0, r0] the function S(r) is defined arbitrary.

Proposition 4.1 Under the hypotheses (4.4) and (4.5), the model manifold M is not
biparabolic, and the volume growth function of M satisfies

V (o,R) ≤ CR4 logβ R. (4.6)
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Proof. Clearly, for large R, the volumes of the ball BR (o) and of the domain Ω−R,R

are comparable. It follows easily from (4.4), that

V (R) := μ(Ω−R,R) =

∫ R

−R

S(r)dr ≤ CR4 logβ R, (4.7)

which implies (4.6).
In order to prove that M is not biparabolic, it suffices to construct a positive harmonic

function h on M such that the function u := Gh is finite at least at one point. Indeed,
then we will conclude by Lemma 3.4 that u ∈ C∞(M) and Lu = h. Hence, Lu > 0 and
L2u = Lh = 0 so that u is bi-superharmonic, but not harmonic, and M is not biparabolic.

The desired function h(x) on M will depend only on the polar radius r of x, so define
it as follows:

h(r) =

∫ r

−∞

dt

S(t)
. (4.8)

The function h is harmonic on M because

Δh = h′′ +
S ′

S
h′ = 0.

Before we can prove that Gh < ∞, let us discuss some properties of the Green function
g(x, y) on M.

For any θ ∈ Sn−1, set yθ := (0, θ) ∈ M and denote by Y the set of all points yθ with
arbitrary θ ∈ Sn−1. Define a function ζ : M → R by

ζ(x) :=

∫

Sn−1

g(x, yθ)dθ.

Since the model manifold M is invariant under rotations of Sn−1, the Green function
g (x, y) is also invariant, which implies that ζ (x) depends only on the polar radius r of x.
Hence, we will write also ζ(r) = ζ(x).

Since the function g (x, yθ) is harmonic in x in the domain r 6= 0, it follows that ζ (x)
is also harmonic in the domains {r > 0} and {r < 0}.

Fix some x ∈ M with the polar radius r ≥ r0. Since the function g (x, y) is harmonic
in y in a neighborhood of Y , we obtain by the local Harnack inequality that

g(x, y) � ζ(r) for all y ∈ Y. (4.9)

It follows then from the well-known properties of the Green function that, for all R > 0,

sup
r>R

ζ(r) < ∞ (4.10)

and
inf

r<−R
ζ(r) = 0. (4.11)

Before we continue the proof of Proposition 4.1, let us determine explicitly the function
ζ as in the next statement.

Claim. Function ζ(r) is constant in the domain {r > 0}, and it is of the form of

ζ(r) = c

∫ r

−∞

dt

S(t)
(4.12)
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in the domain {r < 0}, where c is some positive constant.

Proof. Using the representation (4.3) of radial harmonic function on M , we obtain
that, in the domain {r > 0}, function ζ(r) has this form

ζ(r) = c1 + c2

∫ r

0

dt

S(t)
.

By definition (4.4) of S(r) , the integral tends to +∞ as r → +∞. Since by (4.10) the
function ζ (r) is bounded for r → +∞, we see that c2 = 0 and hence ζ(r) = const .

Since the integral ∫ r

−∞

dt

S(t)

converges due to (4.4), we obtain that the harmonic function ζ (r) admits in the domain
{r < 0} the following representation:

ζ(r) = c1 + c2

∫ r

−∞

dt

S(t)
.

It follows from (4.4), that this integral tends to zero as r → −∞, whence.

lim
r→−∞

ζ(r) = c1.

It follows from (4.11) that c1 = 0, which proves (4.12).
Returning to the proof of Proposition 4.1, consider the function u = Gh, where h is

given by (4.8). Let us verify that u (y) < ∞ for any y ∈ Y , which will finish the proof.
Indeed, for any y ∈ Y , we have

u(y) = Gh(y) =

∫

Ω−∞,−r0

g(∙, y)hdμ +

∫

Ω−r0,r0

g(∙, y)hdμ +

∫

Ωr0 ,+∞
g(∙, y)hdμ.

Noticing that the middle integral is a constant, and estimating the other two integrals by
(4.9), we obtain that

u(y) �
∫ −r0

−∞
ζ(r)h(r)S(r)dr + 1 +

∫ ∞

r0

ζ(r)h(r)S(r)dr. (4.13)

To estimate the first integral, observe that, for r < −r0, we have by (4.4), (4.8), (4.12)

h(r) �
1

|r|2 logβ |r|
and ζ(r) �

1

|r|2 logβ |r|
,

which implies that the first integral in (4.13) is comparable to
∫ −r0

−∞

1

|r| logβ |r|
dr

which is finite since β > 1. Similarly, for r > r0, we have

h (r) = const +

∫ r

r0

etαdt �
erα

rα−1

and ζ � 1, so that the third integral in (4.13) is comparable to
∫ ∞

r0

erα

rα−1
e−rα

dr,

which is finite because α > 2. Hence, the right hand side of (4.13) is finite, which finishes
the proof.

9



References

[1] S. Y. Cheng & S. T. Yau, Differential equations on Riemannian manifolds and their geo-
metric applications, Comm. Pure Appl. Math 28 (1975) 333–354.

[2] T. Coulhon, A. Grigor’yan, On-diagonal lower bounds for heat kernels on non-compact
manifolds and Markov chains, Duke Math. J. 89 (1997) 133–199.

[3] A. Grigor’yan, Stochastically complete manifolds and summable harmonic functions, USSR
Izvestiya 33 (1989) no.2, 425–432.

[4] A. Grigor’yan, Analytic and geometric background of recurrence and non-explosion of the
Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. 36 (1999) 135-249.

[5] A. Grigor’yan Heat Kernel and Analysis on Manifolds, AMS/IP, 2009.

[6] L. Saloff-Coste, A note on Poincare, Sobolev and Harnack inequalities, Duke Math. J. 65,
IMRN 2 (1992) 27–38.

[7] L. Saloff-Coste, Aspects of Sobolev Type Inequalities, LMS Lecture Notes series. 289, 2002.

[8] L. Sario, M. Nakai, C. Wang, L.O. Chung, Classification theory of Riemannian manifolds,
Lecture Notes Math. 605, Springer, 1977.

10


	Introduction
	Weighted manifolds
	Sufficient conditions for biparabolicity
	Biparabolicity and Green operator
	Volume growth and biparabolicity

	Counter example

