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Abstract. Let (M    ) be a metric measure space satisfying the volume doubling condition.
Assume also that (M    ) supports a heat kernel satisfying the upper and lower Gaussian bounds.
We study the problem of identity of two families of Besov spaces Bs

pq and Bs
pq , where the former

one is defined using purely the metric measure structure of M, while the latter one is defined
by means of the heat semigroup associated with the heat kernel. We prove that the identity
Bs

pq  Bs
pq holds for a range of parameters p, q, s given by some Hardy-Littlewood-Sobolev-

Kato diagram.
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1 Introduction

1.1 Motivation and background

This work is devoted to the notion of Besov spaces in the setting of metric measure spaces. It
is customary to use various scales of function spaces, in particular, Besov spaces Bs

pq, in order to
measure the degree of smoothness of functions. Introduction of the Besov spaces in d was motivated
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by the imbedding and extension problems [8]. Besides, the interpolation of Sobolev spaces leads also
to Besov spaces. For the theory of Besov spaces in d there is an extensive literature, see, for example,
[4, 15, 42, 44, 45, 46, 47, 50].

In a general metric measure space there are various natural ways to define the family of Besov
spaces. One possibility is to use directly the metric and measure of the underlying space in order to
define the Besov seminorm (see (1.6) and (1.7a) below). The function spaces obtained in this way are
called Lipschitz type Besov spaces and are denoted by Bs

pq. Another possibility to define the Besov
seminorm arises in the presence of a heat semigroup et with the generator  acting in L2 (see (1.8)
and (1.9a) below). We refer to such spaces as Bs

pq .
The Lipschitz type Besov spaces were considered in [18, 20, 21, 34, 38, 40, 43, 49]) while the

spaces Bs
pq were dealt with in [9, 10, 17, 28, 29, 33, 36]. For other definitions of Besov spaces, we

refer the reader to [1, 2, 3, 25, 27, 35, 48].
Jonsson [32] introduced the spaces Bs

pq on the Sierpiński gasket and proved that the domain of the
associated Dirichlet form coincides with B  2

2, where   is the walk dimension (see also [20, 21] for
an extension of this result to general metric measure spaces). Hu and Zähle [29] proved that, in the
setting of metric measure spaces, Bs

22 coincides with some Bessel potential space Hs
2.

In 2010 Pietruska-Pałuba raised in [41] the following question:

Under what conditions the two spaces Bs
pq and Bs

pq are identical?
This question has attracted a lot of attention. In d with    , the identity

Bs
pq  Bs

pq (1.1)

has been known for long time for all p, q  (1 ) and s  (0 1) (see [45, 46]). However, in the
case when   div(A) is a uniformly elliptic operator in d with real symmetric measurable
coe cients, the identity (1.1) can be only guaranteed when ( 1

p  s) lies in certain convex polygon
(shaded area on Fig.1), while q  (1) is any (see [11] for the details).

1p

s

Figure 1: the range for p and s for   div(A)

(0 0) (1 0)

(0, )

(1  1) (1 1)

Here    (0 1) is the Hölder exponent of the heat kernel as is described in (1.5) below, and    2 is
determined by the range of p  (1) such that the Riesz transform associated with  is Lp bounded.

Hu and Zähle [29] proved the identity (1.1) on metric measure spaces for p  q  2 and for all
s  (0 1) assuming that the heat semigroup et has the heat kernel satisfying certain upper and
lower bounds (see also [41] for a similar result).
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It was shown later in [22] that, under similar hypothesis, (1.1) holds for all p q  (1 ) and
s  (0  ) (see also [49] for some similar results in the setting of RD-space). On Fig. 2, the range of
the parameters p and s is shown for which (1.1) is true according to [22, 29, 41, 49].

1p

s

Figure 2: previously known range of p and s

(0 0)

(12 1)

(0 ) (1 )

(1 0) 1p

s

( )

Figure 3: the new range of p and s

(0 0)

(12 1)

(0 ) (1 )

(1 0)

In the present paper we study the aforementioned problem in the setting of metric measure spaces,
under the hypothesis that the heat kernel satisfies Gaussian upper and lower bounds. Our main result,
Theorem 1.2, says that (1.1) holds for any q  (1] and any ( 1

p  s) lying in a Hardy-Littlewood-
Sobolev-Kato diagram ( ) as shown on Fig. 3, which clearly significantly enlarges the domain of
p s from Fig. 2.

Besides, we prove in Theorem 1.3 that the identity (1.1) is true for the full range ( 1
p  s)  (0 1)2,

provided a further assumption on the domain of the square root of  in the Lp scale is satisfied.
Our proofs use completely new techniques based on wavelets with almost Lipschitz continuity.

Such wavelets were constructed in [6, 31] merely from the metric structure of the underlying space.
We use the wavelets to determine the interpolation spaces of certain Lipschitz type function spaces,
which together with the hypothesis about the heat kernel estimates enables us to prove some Hardy-
Littlewood-Sobolev-Kato estimates associated with . These estimates finally give us the range of
the parameters p s ensuring the validity of (1.1).

This paper is organized as follows. In Section 1.2, we state the main results of this paper: Theorems
1.2 and 1.3 as well as introduce some necessary notions and notation. In Section 2, we give the
wavelet characterizations of the Lipschitz-type function spaces. In Section 3, we establish the real
and complex interpolations of those spaces. Finally, in Section 4, we prove Theorems 1.2 and 1.3.

1.2 Setup and main results

Let (M    ) be a locally compact complete separable metric measure space, where   is a metric
and   is a nonnegative Radon measure with full support on M. We say that (M    ) satisfies volume
doubling (VD) if for any x  M and r  (0),

 (B(x 2r))   C0 (B(x r)) (VD)

where B(x r) : y  M :  (y x)  r denotes the open ball centered at x of radius r and C0  1 is a
positive constant independent of x and r. It is easy to see that the condition (VD) implies that, for all
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x  M, r  (0) and    (1),

 (B(x  r))   C0 
d (B(x r)) (1.2)

where d : log2 C0  0. For any p  [1], consider the Lebesgue space Lp(M) : Lp(M  ).
To conduct a smoothness analysis on (M    ), we use the notion of a heat kernel.

Definition 1.1 ([20]). A family ptt0 of    -measurable functions on M M is called a heat kernel
if the following conditions are satisfied for  -almost all x y  M and all s t  0:

(i) Positivity: pt(x y)   0.

(ii) Stochastic completeness:


M pt(x y) d (y)   1.

(iii) Symmetry: pt(x y)  pt(y x).

(iv) Semigroup property: pts(x y) 


M ps(x z)pt(z y) d (y).

(v) Approximation of identity: for any f  L2(M),

lim
t0



M
pt(  y) f (y) d (y)  f

in L2(M).

In many occasions, a heat kernel appears as the integral kernel of a heat semigroup Ptt 0 that is
associated with a regular Dirichlet form ( ) in L2(M) (see [16]). Conversely, given a heat kernel
ptt0 as in Definition 1.1, one constructs an associated heat semigroup Ptt 0 acting on L2(M) by

Pt f (x) :


M
pt(x y) f (y) d (y) (1.3)

for any f  L2(M), t  (0 ) and  -almost all x  M, and P0 f  f . Denote by  be the generator of
Ptt 0 so that Pt  et.

The metric measure space (M    ) is said to satisfy the Gaussian bounds (GB) if there exists a
heat kernel ptt0 on M   M such that

1
C1td2

exp

c0 (x y)2

t


  pt(x y)  

C1

td2
exp


c1 (x y)2

t


(GB)

for  -almost all x, y  M and any t  (0), where C1, d, c0 and c1 are positive constants that are
independent of x, y and t.

For example, the classical Gaussian-Weierstrass heat kernel in d

pt(x y) 
1

(4 t)d2 exp

x  y2

4t


(1.4)

is associated with the Dirichlet form

( f  f ) :


d
 f 2 dx

with domain   W1p(d), and its generator is  , where   is the Laplace operator. Clearly, (1.4)
satisfies (GB).

The condition (GB) implies the following two conditions:
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(i) the volume regularity: for any x  M and r  (0),

 (B(x r))  rd

where the implicit constants are independent of x and r (see [20, Theorem 3.1]). In this case, it
is easy to see (VD) is true and  (M)  ;

(ii) the Hölder regularity: the heat kernel ptt0 satisfies the estimate

   pt(x y)  pt(x y)
      C2


 (y y)


t

  1
td2

exp

c2[ (y y)]2

t


(1.5)

for any t  (0 ) and all x, y y  M such that  (y y)  


t, where the constants  , C2, c2 are
positive and depend only on M; besides    (0 1) (see [23, Section 5.3]).

Now let (M    ) be a metric measure space satisfying (VD). We introduce the Lipschitz Besov
space Bs

pq for any p  (1), q  (1 ] and s  (0 ) by

Bs
pq :


f  Lp(M) :  f Bs

pq :  f Lp   f Ḃs
pq

 

 (1.6)

where

 f Ḃs
pq

:



 

0
rsq



M



B(xr)
 f (x)  f (y)p d (y) d (x)

qp dr
r



1q

(1.7a)

with the usual modification when q  . Here and hereafter,


B
:

1
 (B)



B

denotes the integral mean over the set B.
Note that this definition of Bs

pq does not depend on the operator  or the heat kernel.
On the other hand, let (M    ) be a metric measure space satisfying (GB). We introduce the heat

Besov space Bs
pq for any p  (1), q  (1 ] and s  [0 ) by

Bs
pq :

 
f  Lp(M) :  f Bs

pq
:  f Lp   f Ḃs

pq
 

 
 (1.8)

where

 f Ḃs
pq

:
 

0


ts2

   (t)k et f
   

Lp

q dt
t

1q

(1.9a)

with some k    (s2 ) and we make the usual modification when q  . As it was pointed
out in [22, Proposition 2.9] (see also [33, Theorem 6.1]), the norms    Bs

pq
in (1.8) are equivalent for

di erent choices of k    (s2 ), so that the space Bs
pq does not depend on k. Both Bs

pq and
Bs

pq are Banach spaces. We refer to [22, 33, 49] for further properties of these spaces.
We use the Hölder exponent    (0 1) from (1.5) in order to define the following domain

( ) :




1
p
 s


 (0 1)   (0 1) :

1
p


(0 1) s  (0  )
( s 
2(1 ) 

2s 
2(1 ) ) s  [  1)

 (1.10)

that is a convex polygon in the ( 1
p  s)-plane as illustrated on Fig. 3. Following the terminology in [5],

we refer to ( ) as a Hardy-Littlewood-Sobolev-Kato diagram.
Our main result is stated in the next theorem.
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Theorem 1.2. Let (M    ) be a metric measure space satisfying (GB), and let ( ) be as on Fig. 3
(see also (1.10)). Then, for any (1p s)  ( ) and q  (1 ], we have the identity

Bs
pq  Bs

pq  (1.11)

For the proof of Theorem 1.2 we use the same strategy that we employed in [11] in the setting
of elliptic operators in Euclidean spaces. For that, we first consider the corresponding question for
Triebel-Lizorkin spaces at the endpoint values s  1 and s   , and use interpolation to produce the
desired range of parameters. However, unlike the Euclidean setting, in the present abstract setting
there is no interpolation theory for Lipschitz-type function spaces. To overcome this di culty, we
apply the technique of wavelets that enables us to establish the desired interpolation. The wavelets on
metric measure spaces were constructed by Hytönen and Tapiola [31]. The almost Lipschitz regularity
of these wavelets is essential in Theorem 1.2 – this allows to extend the range of the parameter s from
s  (0 ) as in [22] to s  (0 1).

Another di culty in the metric measure setting occurs at the endpoint s  1, which is related to
the domain of the square root 12 of the generator . Recall that, for any p  (1) and s  (0 1],
the domain of the fractional power s2 of  in the space Lp is defined to be the space

domp(s2) :

f  Lp : s2 f  Lp


(1.12)

endowed with the norm

 f domp(s2) :  f Lp 
   s2 f

   
Lp  (1.13)

Recall that the fractional power s2 is defined via the functional calculus (see, for example, [24]).
In the Euclidean case with   div(A), we usually have

domp(12)  W1p

for any p  (1  ) with    2 depending on  (see Figure 1), where W1p is the classical Sobolev
space (see [5, Theorem 4.15]). However, in general metric measure spaces, we only have

dom2(12)  B1
2

see [20, Theorem 5.1]. Let us emphasize that the aforementioned di erence in the characterizations
of the domain of 12 leads to the di erence in the ranges of the parameters on Fig. 1 and Fig. 2.

To obtain the full range of parameters for the identity (1.11), we introduce the following condition
for the characterization of domp(12).

(DF). domp(12)  B1
p for any p  (1).

The condition (DF) holds true if M  d and     is the Laplace operator. In the general setting
of metric measure space (M    ) satisfying (GB), let ( ) be the Dirichlet form with the generator
. It was proved in [2, Corollary 4.10] that the condition (DF) holds provided ( ) is strongly local,
regular, and satisfies some strong Bakry-Émery curvature condition. On the other hand, there exist
examples of manifolds and graphs where (DF) is not satisfied for any p  2 (see [12, Theorem 5.1]).

Under Assumption (DF), the next theorem establishes the identity (1.1) for the full range of pa-
rameters.
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Theorem 1.3. Let (M    ) be a metric measure space satisfying (GB) and (DF). Then, for all p 
(1), q  (1] and s  (0 1), we have

Bs
pq  Bs

pq 

Acknowledgement. This work was done during a stay of the first author at the University of Bielefeld
in 2017-2019. He would like to thank this university for the hospitality. The authors would like to
thank the referee for hisher comments and suggestions to improve the manuscript.

Notation. Let  : 1 2    and  :   0. For any subset E   M, 1E denotes its characteristic
function. We use C to denote a positive constant that is independent of the main parameters involved,
whose value may di er on each occurrence. On the contrary, the constants with subscripts, such as C1,
keep the same value during the argument. For any function f on M, let( f ) be its Hardy-Littlewood
maximal function defined by for any x  M by

( f )(x) : sup
Bx

1
 (B)



B
 f (y) dy (1.14)

where the supremum is taken over all the balls in M containing x. For nonnegative functions f , g, we
write f  g if f   Cg in a specified range, for some constant C We write f  g if f  g  f . Finally,
we give the following list of symbols of the function spaces used in this paper.

List of symbols for function spaces
Bs

pq Lipschitz Besov space (see page 5)
Bs

pq heat Besov space (see page 5)
Ḃs

pq homogeneous Lipschitz Besov space (see page 10)
ḃs

pq homogeneous Besov sequence space (see page 11)
̇B

s
pq modified homogeneous Lipschitz Besov space (see page 13)

Ḃ0
pq homogeneous Lipschitz Besov space with zero order smoothness (see page 14)

Fs
pq Lipscthiz Triebel-Lizorkin space (see page 11)

Fs
pq heat Triebel-Lizorkin space (see page 32)

Ḟ s
pq homogeneous Lipschitz Triebel-Lizorkin space (see page 10)

ḟ s
pq homogeneous Triebel-Lizorkin sequence space (see page 11)

Ḟ0
pq homogeneous Lipschitz Triebel-Lizorkin space with zero order smoothness (see page 14)

Ḟ s
pq homogeneous heat Triebel-Lizorkin space (see page 32)

 
(   ) test function class (see page 10)

(
 
(   )) distribution class (see page 10)
Lp(l̇sq) mixed norm Lebesgue space (see page 22)
l̇sq(Lp) mixed norm Lebesgue space (see page 22)

2 Wavelet characterizations

The wavelets on a metric measure space are certain functions with “good” properties that serve
as basic bricks to build objects with more complicated structures. Usually, the wavelets form an or-
thonormal basis in L2(M) provided  (M)  . The latter condition will be always assumed through-
out the paper. Note that if (M    ) satisfies (GB), then  (M)  .
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The aim of this section is to establish the wavelet characterizations of the homogeneous Lipschitz-
type function spaces. In Section 2.1 we review some basic properties of wavelets on metric measure
spaces. In Section 2.2, we define the homogeneous Lipschitz-type function spaces and state their
wavelet characterizations. Finally, in Section 2.3, we prove these wavelet characterizations.

2.1 Wavelets on metric measure space

Let (M    ) be a metric measure space satisfying (VD). The following definition of dyadic points
is taken from [31]; this is a collection of reference points in M endowed with a partial order (see also
[6, 13, 30]).

Definition 2.1. Let    (0 1) and k : xk  k k be a sequence of points in M where k is a
countable index set. The family kk is called a sequence of dyadic points if k   k1 and if it
satisfies the following two properties:

(I) k is a maximal set of  k-separated points for any k  , namely, for any      k,

(I-1)  (xk  xk )    k for any    ,

(I-2) min
 k

 (x xk )   k for any x  M;

(II) let  : (k  ) : k     k be the parameter set associated with the dyadic points
kk. There exists a partial order   in  such that for any k   and rk  [ 1

4 
k 1

2 
k],

(II-1) if xk1   B(xk  rk), then (k  1  )   (k  );

(II-2) if (k  1  )   (k  ), then xk1   B(xk  4rk);

(II-3) for every (k  1  ), there exists exactly one (k  ), called its parent, such that (k  1  )  
(k  );

(II-4) for every (k  ), there are between one and N0 pairs (k1  ), called its children, such that
(k  1  )   (k  ). Here, N0   depends only on the doubling constant C0 in (VD);

(II-5) (l  )   (k  ) if and only if l   k and there exists a chain of ordered pairs ( j  1  j1)  
( j  j) for j  k k  1     l  1 with  k   and  l   . In this case, we called (l  ) and
(k  ) are one another’s descendant and ancestor, respectively.

The dyadic points lead to the following definition of dyadic cubes in M that are the analogues of
the dyadic cubes in the Euclidean space.

Definition 2.2. Let    (0 1) and kk be a sequence of dyadic points in (M    ) as in Definition
2.1. A collection of open sets Qk k k   M is called a system of (open) dyadic cubes associated
with kk if for any k l   and      k,

(i) M 


 Q̄k , where Q̄k denotes the closure of Qk ;

(ii) Q̄k  Qk    when    ;

(iii) B(xk 
1
5 

k)   Qk   Q̄k   B(xk  3 k);

(iv) Q̄k 


 :(l ) (k ) Q̄l  for any l   k.
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Based on the notion of dyadic cubes, the following definition of wavelets was introduced in [31,
Definition 6.9].

Definition 2.3. Let    (0 1),    [0 1] and Qk k k be a system of dyadic cubes associated
with the dyadic points kk as in Definition 2.2. For any k  , let k : k1  k. A set
of real-valued functions k k k on M is called a basis of wavelets with exp-localization and
Hölder-continuous of order  , if the following properties are satisfied for any k   and   k:

(i) (vanishing mean)


M k (x) d (x)  0;

(ii) (localization) for any x  M,

   k (x)
      C3

 (B(xk   k))
exp



 (x xk )

 k


 (2.1)

where xk k are the dyadic points as in Definition 2.1 and the constant C3  0 is independent
of x, k and  ;

(iii) (Hölder continuity) for any x y  M,

   k (x)  k (y)
      C4

 (B(xk   k))
exp



 (x xk )

 k

 
 (x y)
 k

 
 (2.2)

where the constant C4  0 is independent of x, y, k and  ;

(iv) (orthonormal basis) the functions k k k form an orthonormal basis of L2(M  ).

The existence of the wavelets satisfying Definition 2.3 is proved in [31, Corollary 6.13].

Proposition 2.4 ([31]). Let (M    ) satisfy (VD). For any    (0 1), there exist    (0 1) small
enough and a basis of wavelets k k k associated with a system of dyadic cubes Qk k k

such that k k k is exp-localization and Hölder-continuous of order  .

Remark 2.5. Let p  (1). The wavelets k k k also form an unconditional basis of the
space Lp(M)  Lp(M  ) (see [6, Corollary 10.2]). This implies that any f  Lp(M) has the following
wavelet expansion in Lp(M) :

f 


k



 k

 f  k k  (2.3)

The wavelet expansion (2.3) can be extended from Lp(M) to a larger class of distributions on M.
For that let us recall the definition of test functions and distributions from [26, 27].

Definition 2.6. Let    (0 1) be as in Definition 2.3. A function  : M   is said to be in the test
function class (x0 r    ) for some x0  M, r  (0 ),    (0  ] and   (0 ), if the following
three assertions hold:

(i) for any x  M,

(x)   C
Vr(x0)  V(x0 x)


r

r   (x0 x)

 
 (2.4)

where Vr(x0) :  (B(x0 r)), V(x0 x) :  (B(x0  (x0 x))) and the positive C is independent of
x;



10 J C  A G’

(ii) for any x y  M satisfying  (x y)   1
2 (r   (x0 x)),

(x)  (y)   C
Vr(x0)  V(x0 x)


r

r   (x0 x)

 
 (x y)

r   (x0 x)

 
 (2.5)

where the positive C is independent of x and y;

(iii)


M (x) d (x)  0.

For any   (x0 r    ), endow  with a norm by setting

(x0 r  ) : inf C  0 : (i) and (ii) hold  (2.6)

Further properties of the test function class can be found in [26, 27]. It is known that the space
((x0 r    )    (x0r  )) is a Banach space that is invariant under the changes of x0 and r. Thus, we
can fix a reference point x0  M and denote (   ) : (x0 1    ). It is easy to see the embedding
(   )   (   ) holds for any      .

Now for any    (0  ], let
 
(   ) be the completion of the space (   ) in the norm of (   ).

Then (
 
(   )) is defined to be the set of all continuous linear functionals  on

 
(   ) with the

property that, for all  
 
(   ),

 ()    
(  )



The following proposition extends the wavelet expansion to the space of distributions.

Proposition 2.7. [26, Corollary 3.5] Let  ,   (0  ). Then the wavelet expansion (2.3) also holds

for any f  (
 
(   )).

2.2 Homogeneous function spaces and their wavelet characterizations

The vanishing mean condition in Definition 2.3(i) indicates that the wavelets used in this paper
are mother wavelets. As the mother wavelets characterize homogeneous function spaces (see [37, 42,
50]), we need the following definition of the homogenous version of the Lipschitz Besov space (cf.
(1.6) and (1.7a)).

Definition 2.8. (i) For any p  (1 ), q  (1 ] and s  (0 ), the homogeneous Lipschitz Besov
space Ḃs

pq is defined to be

Ḃs
pq :


f  Lp

loc (M) :  f Ḃs
pq

 



where  f Ḃs
pq

is defined as in (1.7a).
(ii) For any p  (1 ), q  (1 ] and s  (0 ), the homogeneous Lipschitz Triebel-Lizorkin

space Ḟ s
pq is defined to be

Ḟ s
pq :


f  Lp

loc (M) :  f Ḟ s
pq

 



where

 f Ḟ s
pq

:

       

 

0
rsq



B( r)
 f ( )  f (y) d (y)

q dr
r

1q       
Lp

(2.7)

with the usual modification when q  .
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As the spaces Ḃs
pq and Ḟ s

pq share many common properties, we will use the notation Ȧs
pq to denote

either space Ḃs
pq or Ḟ s

pq when there is no confusion. In particular, for any p  (1 ), q  (1 ] and
s  (0 ), it can be proved that (Ȧs

pq  Ȧs
pq

) is a Banach space, where Ȧs
pq denotes the quotient

space and  is the space of all constant functions on M (see [38, Propositions 3.1 and 3.2] and [49,
Proposition 2.2]). Furthermore, it is easy to see that for all p  (1 ), q  (1 ] and s  (0 ),

Bs
pq  Lp  Ḃs

pq

For any p  (1 ), q  (1 ] and s  (0 ), define the inhomogeneous Triebel-Lizorkin space
Fs

pq : Lp  Ḟ s
pq endowed with the norm

 f Fs
pq :  f Lp   f Ḟ s

pq


For functions in the above homogeneous function spaces, its wavelet coe cients are usually belong
to the following sequence spaces.

Definition 2.9. Let    (0 1) and Qk k k be a system of dyadic cubes as in Definition 2.2. For
any k  , denote by k  k1  k.

(i) For any p  (1 ), q  (1 ] and s  [0 ), the homogeneous Besov sequence space ḃs
pq is

defined to be the space of all sequences  k k k    satisfying

    k k k

   
ḃs

pq
:





k
 ksq




 k

 
 (Qk )

1
p

1
2
    k 

   
 p


q
p


1
q

  (2.8)

with the usual modification when q  .
(ii) For any p  (1 ), q  (1 ] and s  [0 ), the homogeneous Triebel-Lizorkin sequence

space ḟ s
pq is defined to be the space of all sequences  k k k    satisfying

    k k k

   
ḟ s
pq

:

         




k
 ksq




 k

 (Qk )
1
2 1Qk ( )

    k 
   


q

1
q

         
Lp

  (2.9)

with the usual modification when q  .

The next lemma collects some of the basic properties of the aforementioned spaces.

Lemma 2.10. Let p  (1 ), q  (1 ] and  ,   (0  ) with    (0 1) being as in (2.2). Then

(i) for any s  (0 1) and q1 q2  (1 ] with q1   q2, then

Ḃs
pq1

  Ḃs
pq2

; (2.10)

(ii) for any s  (0  ),

Ḃs
pq   (

 
(   )); (2.11)

(iii) for any s  [0  ) and  k k  ḃs
pq, the series



k



 k

 k k 

converges in (
 
(   )).
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Proof. The assertion (iii) was proved in [25, Proposition 1.1], so that we need to prove (i) and (ii).
We first show (i). By (1.7a), we know that

 f Ḃs
pq


       

 
ks



M



B(xc k)
 f (x)  f (y)p d (y) d (x)

1p


k

       
lq

for any fixed c  0. (i) then follows immediately from the increase property of the lq-norm.
We now prove (ii). By applying (i), it su ces to show

Ḃs
p   (

 
(   )) (2.12)

Indeed, let f  Ḃs
p. Then, for any g 

 
(   ), by Definition 2.6, (VD) and s   , we have

     


M
f (y)(y) d (y)

     



      



M


f (y) 



B(x01)
f (x) d (x)


(y) d (y)

      

  1
 (B(x0 1))



B(x01)



M
 f (y)  f (x) (y)d (y)


d (x)




1

 (B(x0 1))



B(x0 1)



M

 f (y)  f (x)
V1(x0)  V(x0 y)


1

1   (x0 y)

 
d (y)

p

d (x)
1p




1

 (B(x0 1))



B(x01)




j0

  j 


 (yx) ( j1)
 f (y)  f (x) d (y)



p

d (x)



1p




j0

  j( s)  js


M



 (yx) ( j1)
 f (y)  f (x) d (y)

p

d (x)
1p

 sup
j

  js


M



 (yx) ( j1)
 f (y)  f (x) d (y)

p

d (x)
1p




j0

  j( s)

   f Ḃs
p


which implies that (2.12) holds true. This finishes the proof of (ii) and hence Lemma 2.10.  

We now state the first main result of this section that establishes the wavelet characterizations of
the homogeneous Besov and Triebel-Lizorkin spaces Ḃs

pq.

Theorem 2.11. Let p  (1 ), q  (1 ] and s  (0 1). Assume (M    ) satisfies the condition
(VD) and that k k k is a basis of wavelets as in Definition 2.3 with    (s 1). Then the
following assertions hold:

(i) for any f  Ḃs
pq, let

E( f ) :
  f  k 

 
k k

 (2.13)

Then E( f )  ḃs
pq with

E( f )ḃs
pq
  C  f Ḃs

pq


where the positive constant C is independent of f ;
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(ii) for any  k k k  ḃs
pq, let

R( k k ) :


k



 k

 k k  (2.14)

Then R( k k )  Ḃs
pq with

   R( k k )
   

Ḃs
pq
  C

    k k 
   

ḃs
pq


where the positive constant C is independent of  k k .

Theorem 2.12. Let p  (1 ), q  (1 ] and s  (0 1). Assume (M    ) satisfies the condition
(VD) and that k k k is a basis of wavelets as in Definition 2.3 with    (s 1). Then the
following assertions hold:

(i) for any f  Ḟ s
pq, let E( f ) be as in (2.13). Then E( f )  ḟ s

pq with

E( f ) ḟ s
pq
  C  f Ḟ s

pq


where the positive constant C is independent of f ;

(ii) for any  k k k  ḟ s
pq, let R( k k ) be as in (2.14). Then R( k k )  Ḟ s

pq with
   R( k k )

   
Ḟ s

pq
  C

    k k 
   

ḟ s
pq


where the positive constant C is independent of  k k .

Theorems 2.11 and 2.12 will be proved in Section 2.3. In the remainder of this subsection, we
assume that the two theorems are true and consider their consequences.

Remark 2.13. (i) For any p  (1 ), q  (1 ], s  (0 1) and f  Lp
loc (M), let

 f ̇Bs
pq

:



 

0
rsq



M



B(xr)
 f (x)  f (y) d (y)

p

d (x)
qp dr

r



1q

(2.15)

with the usual modification when q  . By the Hölder inequality, it is easy to see that

 f ̇Bs
pq
   f Ḃs

pq
 (2.16)

On the other hand, in the proof of Theorem 2.11 (see (2.23) below), we will prove that

E( f )ḃs
pq

  f ̇Bs
pq
 (2.17)

By Proposition 2.7 and Lemma 2.10(ii), we know that

R   E  I (2.18)

on Ḃs
pq. This combined with Theorem 2.11(ii) implies that for any f  Ḃs

pq,

 f Ḃs
pq

 E( f )ḃs
pq
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which together with (2.16) and (2.17) implies the following equivalence of norms:

 f ̇Bs
pq
  f Ḃs

pq
 (2.19)

(ii) In view of Theorem 2.11, we can introduce the homogeneous Besov space Ḃ0
pq with zero order

smoothness. To be precise, for any p  (1) and q  (1], let

Ḃ0
pq :


f  Lp

loc (M) : E( f )  ḃ0
pq


 (2.20)

where E( f ) is defined as in (2.13). By the increase property of the lq-norm in (2.8), it is easy to see
that for any p  (1 ) and q1 q2  (1 ] with q1   q2,

Ḃ0
pq1

  Ḃ0
pq2

 (2.21)

which is a limiting case of Lemma 2.10(i).
Similarly, for any p  (1) and q  (1], the homogeneous Triebel-Lizorkin space Ḟ0

pq with
zero order smoothness is defined by

Ḟ0
pq :


f  Lp

loc (M) : E( f )  ḟ 0
pq


 (2.22)

It is easy to see that Ḟ0
p2  Lp for any p  (1 ) due to the Littlewood-Paley square function

characterization of Lp (see [26, Theorem 4.3]). These two kinds of spaces will be useful in the
endpoint interpolation of Besov spaces (see the proof of Theorem 3.9 below).

Corollary 2.14. Let p  (1 ), q  (1 ] and s  [0 ). Then

(i) Ḃs
pminpq   Ḟ s

pq   Ḃs
pmaxpq. In particular, Ḃs

pp  Ḟ s
pp;

(ii) ḃs
pminpq   ḟ s

pq   ḃs
pmaxpq. In particular, ḃs

pp  ḟ s
pp.

Proof. The proof of Corollary 2.14 is similar to the corresponding result in the classical Euclidean
space (see, for example, [47, Section 11.4 and Proposition 13.6]), the details being omitted.

 

2.3 Proofs of Theorems 2.11 and 2.12

Proof of Theorem 2.11(i). For any f  Ḃs
pq, let E( f ) be as in (2.13). As claimed in Remark 2.13, we

only need to prove

E( f )ḃs
pq

  f ̇Bs
pq

(2.23)

with  f ̇Bs
pq

as in (2.15). By (2.13) and (2.8), we know

E( f )ḃs
pq






k
 ksq




 k

 
 (Qk )

1
p

1
2  f  k 

 p


q
p


1
q

 (2.24)

We first estimate the term  f  k . By Definition 2.3, we know for any k  ,   k and
x  B(xk  3 k),

    f  k 
    

      



M
k (y)


f (y) 



Qk 

f d 


d (y)

       (2.25)
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 (B(xk   

k))
 1

2



M
exp



 (y xk )

 k

        f (y) 


Qk 

f d 

       d (y)



 (B(xk   

k))
 1

2


j0



S k j(Bk )
exp



 (y xk )

 k

        f (y) 


Qk 

f d 

       d (y)

where S k j(Bk ) : B(xk   
k j)  B(xk   

k j1) for any j   and S k(Bk ) : B(xk   
k). Thus by

(2.25), (VD) and Definition 2.2(iii), we conclude that

    f  k 
    


 (B(xk   

k))
 1

2


j0

exp

 1 j

  (B(xk   
k j))

 (Qk )
(2.26)

 


Qk 



B(xk  k j)
 f (y)  f (x) d (y)


d (x)


 
 (Qk )

  1
2



j0

exp

 1 j


  jd



Qk 



B(xk  k j)
 f (y)  f (x) d (y)


d (x)

:
 
 (Qk )

  1
2



j0

exp

 1 j


  jdIk j( f  Qk )

Note that for any k   and   k, we have

 
 (Qk )

  1
p1 Ik j( f Qk ) 

 
 (Qk )

  1
p



Qk 



B(xk  k j)
 f (y)  f (x) d (y)


d (x)

 


Qk 



B(xk  k j)
 f (y)  f (x) d (y)

p

d (x)
 1

p



which combining (2.24), (2.26), (2.15) and Definition 2.2 implies that

E( f )ḃs
pq

(2.27)







k
 ksq




 k

 
 (Qk )

1
p

1
2  f  k 

 p


q
p


1
q




j0

exp

 1 j


  jd





k
 ksq




 k



Qk 



B(xk  k j)
 f (y)  f (x) d (y)

p

d (x)



q
p


1
q




j0

exp

 1 j


  jd





k
 ksq




 k



Qk 



B(x4 k j)
 f (y)  f (x) d (y)

p

d (x)



q
p


1
q




j0

exp

 1 j


  j(ds)





k
 (k j)sq



M



B(x4 k j)
 f (y)  f (x) d (y)

p

d (x)
 q

p



1
q

  f ̇Bs
pq


where in the third inequality, we have used Definition 2.2(iii) and the fact that j   0. This shows
(2.23) and hence finishes the proof of Theorem 2.11(i).
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To prove Theorem 2.11(ii), we need the following lemma.

Lemma 2.15. For any p  (1 ), q  (1 ], s  [0  ) and     (0  ) with   as in (2.2). Let

 k k  ḃs
pq and f :


k


 k  k k converge in (

 
(   )). Then f  Lp

loc .

Proof. As f  (
 
(   )), by Definition 2.6(iii), we know that for any x0  M and l0  ,

f 
l01

k



 k

 k 

k  k (x0)

 




kl0



 k

 k k : f1  f2 (2.28)

in (
 
(   )). Thus, to finish the proof of this lemma, we only need to show that for, any x0  M and

l0  ,

I1 :


B(x0 
l0 )
 f1(x)p d (x)

 1
p

  (2.29)

and

I2 :


B(x0 
l0 )
 f2(x)p d (x)

 1
p

  (2.30)

We first prove (2.29). By (2.28), Definition 2.3 and (VD), we have

I1 





B(x0 
l0 )


l01

k



 k

    k 
     (B(xk   

k))
1
2 exp



 (x xk )

 k

 
 (x x0)

 k

 

p

d (x)



1
p

(2.31)


l01

k





M




 k

    k 
     (Qk )

1
2  (l0k)  exp



 (x xk )

 k



p

d (x)



1
p



We now need the following pointwise estimate on the Hardy-Littlewood maximal function from [14,
15] (see also [49, Lemma 3.10]): for any x  M,



 k

    k 
     (Qk )

1
2  (l0k)  exp



 (x xk )

 k


 





 k

    k 
     (Qk )

1
2  (l0k) 1Qk 


 (x) (2.32)

where  denotes the Hardy-Littlewood maximal function as in (1.14). By (2.31), Definition 2.2, the
assumption s    and using Hölder’s inequality and the Lp boundedness of , we conclude

I1 
l01

k






M





 k

    k 
     (Qk )

1
2  (l0k) 1Qk (x)




p

d (x)




1
p

(2.33)


l01

k




 k

     k 
     (Qk )

1
p

1
2  (l0k) 

 p


1
p


l01

k
 (l0k)( s) (l0k)s




 k

     k 
     (Qk )

1
p

1
2

 p


1
p
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l01

k
 (l0k)sq




 k

     k 
     (Qk )

1
p

1
2

 p


q
p


1q

    k 
 
k ḃs

pq
 

which proves (2.29).
To prove (2.30), by an argument similar to that of (2.33), we see

I2 


kl0





M




 k

    k 
     (Qk )

1
2 1Qk (x)



p

d (x)



1
p




kl0

 (kl0)s (kl0)s




 k

     k 
     (Qk )

1
p

1
2

 p


1
p







kl0

 (l0k)sq




 k

     k 
     (Qk )

1
p

1
2

 p


q
p


1q

    k 
 
k ḃs

pq
 

which proves (2.30) and hence completes the proof of Lemma 2.15.
 

Now we prove Theorem 2.11(ii) using Lemma 2.15.

Proof of Theorem 2.11(ii). Let  k k k  ḃs
pq and f : R( k k ) be as in (2.14). By Lemmas

2.10(iii) and 2.15, we know that f  (
 
(   ))  Lp

loc (M). Thus, to finish the proof of Theorem
2.11(ii), we only need to show that

 f Ḃs
pq


    k k 

   
ḃs

pq
 (2.34)

For any j   and x, y  M satisfying  (x y)    j, write

f 


k j



 k

 k k 


k  j



 k

 k k : f1  f2 (2.35)

Then, by Definition 2.3, the assumption  (x y)    j and by (2.32), we have

 f1(x)  f1(y)  


k j



 k

    k 
   
   k (x)  k (y)

   




k j



 k

    k 
     (Qk )12 exp



 (x xk )

 k

 
 (x y)
 k

 




k j






 k

    k 
     (Qk )12 ( jk) 1Qk 


 (x)

This implies that, for any x  M,

d jp( f1)(x) :


B(x  j)
 f1(x)  f1(y)p d (y)

 1
p

(2.36)
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k j

 (k j) 




 k

    k 
     (Qk )121Qk 


 (x)

By (1.7a), (2.36) and Young’s convolution inequality (note that   j( s) j0  l1 as    s), we see

 f1Ḃs
pq







j

     jsd jp( f1)
   q

Lp




1
q

(2.37)








j




k j

 (k j)( s) ks

        





 k

    k 
     (Qk )121Qk 



        
Lp



q


1
q







j





k j

 (k j)( s) ks





 k

 
 k  (Qk )

1
p

1
2

 p



1
p



q

1
q








k
 ksq




 k

 
 k  (Qk )

1
p

1
2

 p


q
p



1
q


    k k 

   
ḃs

pq


For f2, we have

 f2(x)  f2(y)    f2(x)   f2(y)  (2.38)

We first estimate  f2(y). By (2.35), Definition 2.3, (VD) and (2.32), we obtain

 f2(y) 


k  j



 k

    k 
     (Qk )12 exp



 (y xk )

 k






k  j





 k

    k 
     (Qk )121Qk 

 (y)

Thus, similar to (2.37), we have

I :





j

       
  js



B(   j)
 f2(y)p d (y)

 1
p
       

q

Lp



1
q

(2.39)







j





k  j

 (k j)s ks

        
 




 k

    k 
     (Qk )121Qk 



        
Lp




q

1
q







j




k  j

 (k j)s ks




 k

 
 k  (Qk )

1
p

1
2

 p


1
p


q

1
q







k
 ksq




 k

 
 k  (Qk )

1
p

1
2

 p


q
p


1
q


    k k 

   
ḃs

pq


Similarly, we obtain

J :





j

       
  js



B(   j)
 f2(x)p d (y)

 1
p
       

q

Lp



1
q


    k k 

   
ḃs

pq
 (2.40)
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Combining (2.35) and (2.37) through (2.40), we conclude that (2.34) holds true. This finishes the
proof of Theorem 2.11(ii).

 

We now prove Theorem 2.12.

Proof of Theorem 2.12. We first prove Theorem 2.12(i). Let f  Ḟ s
pq and E( f ) be as in (2.13). By

(2.9), we need to show that

I :

         




k
 ksq




 k

 (Qk )
1
2 1Qk ( )

    f  k 
   


q

1
q

         
Lp

  f Ḟ s
pq
 (2.41)

Similar to (2.25), we know that for any k  ,   k and x  Qk ,

    f  k 
    

     


M
k (y) ( f (y)  f (x)) d (y)

      (2.42)


 
 (Qk )

  1
2



M
exp



 (y xk )

 k


 f (y)  f (x) d (y)


 
 (Qk )

  1
2



j0



S k j(Bk )
exp



 (y xk )

 k


 f (y)  f (x) d (y)


 
 (Qk )

  1
2



j0

exp

  j


 (B(xk   

k j))


B(xk  k j)
 f (y)  f (x) d (y)


 
 (Qk )

  1
2



j0

exp

  j


  jd



B(xk 4 k j)
 f (y)  f (x) d (y)

:
 
 (Qk )

  1
2



j0

exp

  j


  jdD jk ( f )(x)

By (2.41) together with (2.42) and (2.7), we conclude

I 

         




k
 ksq




 k

 (Qk )
1
2 1Qk ( )

 
 (Qk )

  1
2



j0

exp

  j


  jdD jk ( f )( )



q

1
q
         

Lp




j0

exp

  j


  j(ds)

         




k
 (k j)sq

 
D jk ( f )( )

 q


1
q

         
Lp




j0

exp

  j


  j(ds)

         




k
 (k j)sq



B( 4 k j)
 f (y)  f ( ) d (y)

q


1
q

         
Lp

  f Ḟ s
pq


which implies that (2.41) holds true and hence completes the proof of Theorem 2.12(i).
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We now prove Theorem 2.12(ii). For any  k k k  ḟ s
pq, let f : R( k k ) be as in (2.14).

By Corollary 2.14(ii) and Lemma 2.15, we know that f  (
 
(   ))  Lp

loc . Thus, to finish the proof
of Theorem 2.12(ii), it su ces to prove that  f Ḟ s

pq
  k k  ḟ s

pq
, namely,

J :

        





j
  jsq



B(x  j)
 f ( )  f (y) d (y)

q



1q        
Lp

  k k  ḟ s
pq
 (2.43)

By (2.14), write

f 


k j



 k

 k k 


k j



 k

 k k : f1  f2 (2.44)

For f1, by (2.36), we know that for any x  M,

d jp( f1)(x) :


B(x  j)
 f1(x)  f1(y)p d (y)

 1
p




k j

 (k j) 



 k

    k 
     (Qk )121Qk 

 (x)

Combined with the Fe erman-Stein vector valued maximal inequality (see [19, Theorem 1.2]), this
yields

        





j
  jsq

 
d jp( f1)

 q



1q        
Lp



         




j
  jsq




k j

 (k j) 



 k

    k 
     (Qk )121Qk 





q

1q
         

Lp



         





j





k j

 (k j)( s)



 k

 ksq
    k 

     (Qk )121Qk 






q

1q
         

Lp



        





k








 k

 ks
    k 

     (Qk )121Qk 







q

1q
        

Lp



        




k
 ksq




 k

    k 
     (Qk )121Qk 



q

1q
        

Lp

  k k  ḟ s
pq

The estimates for f2 is similar.
 

3 Real and complex interpolations

In this section, we establish the real and complex interpolations of the homogeneous Lipschitz-
type function spaces and some of their inhomogeneous versions. Throughout this section, we assume
that the underlying metric measure space (M    ) is unbounded and satisfy the condition (VD).
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We first in Section 3.1 review some basic facts and properties of interpolation; then in Section 3.2,
we consider the interpolations of the homogeneous Lipschitz-type function spaces with smoothness
parameter s  (0 1). Finally, in Section 3.3, we extend the interpolations of Section 3.2 to the
endpoint case s  0 and also to some of their inhomogeneous versions.

3.1 Preliminaries on interpolation

Let (01) be a compatible couple of Banach spaces, namely, there exists a Hausdor topological
vector space  such that for any i  1 2, i   . For any compatible Banach couple (01), the
sum 0  1 is defined to the Banach space under the norm

a01 : inf
 a00  a11 : a  a0  a1 with a0  0 a1  1

 


For any a  0  1 and t  (0 ), the K-functional of f is defined by

K(a t;01) : inf
 a00  ta11 : a  a0  a1 with a0  0 a1  1

 
 (3.1)

Notice that K(a t;01) is increasing in t.

Definition 3.1. Let (01) be a compatible Banach couple and    (0 1), q  (1 ]. The real
interpolation space (01) q is defined to be the space of all a  0  1 such that

 f (01) q :
 

0

 
t K(a t;01)

 q dt
t

 1
q

(3.2)

with the usual modification when q  .

Let

S 0 : z   : 0  Re z  1 (3.3)

be an open strip in the complex plane  and

S : z   : 0   Re z   1 (3.4)

be its closure. Let (01) be the set of all bounded analytic functions F : S 0  0  1, which
can be extended to continuous functions on S and satisfy that for any j  0 1, the function t 
F( j  it) :   j is bounded and continuous. For any F  (01), endow the space with the norm

F(0 1) : max

sup
t

F(it)0  sup
t

F(1  it)1


 (3.5)

Definition 3.2. Let (01) be a compatible Banach couple and    (0 1). The complex interpolation
space [01]  is defined to be the space of all

a  (01)( ) : F( ) : F  (01)

endowed with the norm

a[01]  : inf

F(0 1) : F( )  a


 (3.6)
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The real and complex interpolations are the two most important interpolation methods in the liter-
ature (see [7, 44]). In particular, they satisfy the following interpolation property (see [7, Theorems
3.1.2 and 4.1.2]).

Lemma 3.3. Let (01) and (01) be two compatible couples of Banach spaces. Consider a
bounded linear operator T :  j   j for j  0 1. Then for any    (0 1) and q  (1 ], T
induces a bounded linear operator T  satisfying

T  : (01) q  (01) q

and

T  : [01]   [01] 

with the operator norm T    T 1 00
T  11

.

Let (01) and (01) be two compatible couples of Banach spaces. We recall that (01) is
a retract of (01) if there exist two bounded linear operators such that

(i) E :  j   j for j  0 1;

(ii) R :  j   j for j  0 1;

(iii) R   E  I on  j for j  0 1.

The following result on the retract of interpolation can be found in [44, p. 22].

Lemma 3.4. Let (01) and (01) be two compatible couples of Banach spaces. Assume that
(01) is a retract of (01). Then for any    (0 1) and q  (1 ],

(01) q  R
 
(01) q

 

and

[01]   R ([01] ) 

The advantage of Lemma 3.4 is that it provides an approach to reduce the interpolation of the
spaces (01) to that of (01), whose interpolation is usually easier to establish. One typical
example of such -space is the following mixed norm Lebesgue space. To be precise, for any p 
(1 ), q  (1 ] and s  [0), let

l̇sq
 
Lp

 
:


 fk( )k : fk( )  Lp(M) and  fk( )kl̇sq(Lp)  




where

 fk( )kl̇sq(Lp) :




k
 ksq  fk( )qLp



1
q

(3.7)

with    (0 1).
Let

Lp
 
l̇sq
 
:


 fk( )k :  fk( )kLp(l̇sq)  
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where

 fk( )kLp(l̇sq) :

        





k
 ksq  fk( )q




1
q
        

Lp

 (3.8)

The following interpolation of mixed norm Lebesgue spaces can been found in [7, Chapter 5] (see
also [44, Section 1.18]).

Lemma 3.5. Let p0, p1  (1 ), q0, q1  (1], s0, s1  [0) and    (0 1).

(i) For p  (1 ), q  (1 ] and s  [0) satisfying 1
p  1 

p0
  

p1
, 1

q  1 
q0

  
q1

and
s  (1   )s0   s1, it holds


l̇s0
q0

 
Lp0

 
 l̇s1

q1
(Lp1 )


 
 l̇sq(Lp) (3.9)

and


Lp0

 
l̇s0
q0

 
 Lp1

 
l̇s1
q1

 
 
 Lp

 
l̇sq
 
 (3.10)

(ii) If s0  s1, then for any p  (1 ), q  (1 ] and s  [0) satisfying s  (1   )s0   s1, it
holds

 
l̇s0
q0

 
Lp

 
 l̇s1q1

(Lp)
 
 q

 l̇sq(Lp) (3.11)

and

 
Lp

 
l̇s0
q0

 
 Lp

 
l̇s1
q1

  
 q

 l̇sq
 
Lp

 
 (3.12)

3.2 Interpolations of Besov and Triebel-Lizorkin spaces

Let (M    ) satisfy (VD). The following two theorems give the real and complex interpolations of
the homogeneous Besov and Triebel-Lizorkin spaces with s  (0 1).

Theorem 3.6. Let p0, p1  (1 ), q0, q1  (1], s0, s1  (0 1) and    (0 1). Then for any
p  (1), q  (1] and s  (0 1) satisfying 1

p 
1 
p0

  
p1

, 1
q 

1 
q0

  
q1

and s  (1   )s0   s1,


Ḃs0

p0q0  Ḃ
s1
p1q1


 
 Ḃs

pq (3.13)

and


Ḟ s0

p0q0  Ḟ
s1
p1q1


 
 Ḟ s

pq (3.14)
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Theorem 3.7. Let q0, q1  (1], s0, s1  (0 1) with s0  s1 and    (0 1). Then for any p  (1),
q  (1] and s  (0 1) satisfying s  (1   )s0   s1,

 
Ḃs0

pq0  Ḃ
s1
pq1

 
 q

 Ḃs
pq (3.15)

and
 
Ḟ s0

pq0  Ḟ
s1
pq1

 
 q

 Ḃs
pq (3.16)

We prove Theorems 3.6 and 3.7 by using Lemma 3.4. To this end, we need the following retract
operators. For any sequence  k k k    with k as in (2.8), let

E  k k 
 
:  fkk (3.17)

be a sequence of functions on M with

fk :


 k

 k 1Qk  (Qk )12 (3.18)

where Qk k k denotes the dyadic cubes as in Definition 2.2.
On the other hand, for any sequence of functions  fkk in L1

loc (M), let

R  fkk
 
:

 
 k 

 
k k

(3.19)

be a sequence of numbers in  with

 k :  (Qk )12


Qk 

fk(x) d (x) (3.20)

Lemma 3.8. Let p  (1), q  (1], s  (0 1) and E, R be respectively as in (3.17) and (3.19).
Then,

(i) E : ḃs
pq  l̇sq(Lp), ḟ s

pq  Lp(l̇sq) are bounded;

(ii) R : l̇sq(Lp)  ḃs
pq, Lp(l̇sq)  ḟ s

pq are bounded;

(iii) R   E  I on ḃs
pq and ḟ s

pq.

Proof. We first prove (iii). For any sequence of numbers  k k k   , by (3.18), (3.20) and
Definition 2.2(ii), we have

R   E  k k 
 
 R







 k

 k 1Qk  (Qk )12


k










 k

 k 



Qk 

1Qk (x) d (x) (Qk )12 (Qk )12




k 


 
 k 

 
k 

which immediately implies that (iii) holds true.
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Let us now prove (i). We first show that E : ḃs
pq  l̇sq(Lp) is bounded. Indeed, for any  k k 

ḃs
pq, by (3.7), (3.17), (3.18) and Definition 2.2, we know

   E  k k 
    

l̇sq(Lp)






k
 ksq

        



 k

 k 1Qk  (Qk )12

        

q

Lp




1
q







k
 ksq




 k

     k 
     (Qk )

1
p

1
2

 p


q
p


1
q


     k 

 
k 

   
ḃs

pq


which implies that E : ḃs
pq  l̇sq(Lp) is bounded. The proof of the boundedness of E : ḟ s

pq  Lp(l̇sq)
is similar, the details being omitted.

We now prove (ii). As in the proof of (i), we only prove one of the claimed boundedness. In
particular, we will show that R : Lp(l̇sq)  ḟ s

pq is bounded. Indeed, for any  fkk  Lp(lsq), by (2.9),
(3.19), (3.20) and (3.7), we see

   R  fkk
    

ḟ s
pq
 

         




k
 ksq




 k

   fk1Qk 

   
L1  (Qk )121Qk  (Qk )12



q

1
q

         
Lp



         





k
 ksq





 k



Qk 

 fk  d (x)

1Qk 




q

1
q

         
Lp



         




k
 ksq ( ( fk))q



1
q

         
Lp



         





k
 ksq fk q




1
q

         
Lp


    fkk

   
Lp(l̇sq)



This implies that R : Lp(l̇sq)  ḟ s
pq is bounded. The proof of the boundedness R : l̇sq(Lp)  ḃs

pq is
similar. This finishes the proof of (ii).

Altogether, we finish the proof of Lemma 3.8.
 

With the help of Lemma 3.8, we now turn to the proof of Theorems 3.6 and 3.7.

Proofs of Theorems 3.6 and 3.7. Let p0, p1  (1 ), q0, q1  (1] and s0, s1  (0 1). Let E and R
be respectively as in (2.13) and (2.14). Then by Theorem 2.11, Proposition 2.7 and Lemma 2.10(ii),
we know that for j  0 1,

(i) E : Ḃs j
p jq j  ḃs j

p jq j is bounded;

(ii) R : ḃs j
p jq j  Ḃs j

p jq j is bounded;

(iii) R   E  I on Ḃs j
p jq j .
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Thus, (Ḃs0
p0q0  Ḃ

s1
p1q1 ) is a retract of (ḃs0

p0 q0  ḃ
s1
p1q1 ) as described in Section 3.1. By Lemma 3.4, we

know that for any    (0 1) and q  (1],

 
Ḃs0

p0q0  Ḃ
s1
p1q1

 
 q

 R
  

ḃs0
p0 q0  ḃ

s1
p1q1

 
 q

 
(3.21)

and


Ḃs0

p0q0  Ḃ
s1
p1q1


 
 R

 
ḃs0

p0q0  ḃ
s1
p1q1


 

 
 (3.22)

On the other hand, let E and R be respectively as in (3.17) and (3.19). By Lemmas 3.8 and 3.4, we
know that for any    (0 1) and q  (1],

 
ḃs0

p0q0  ḃ
s1
p1q1

 
 q

 R
  

l̇s0
q0 (Lp0 ) l̇

s1
q1

(Lp1 )
 
 q

 
(3.23)

and


ḃs0

p0q0  ḃ
s1
p1q1


 
 R

 
l̇s0
q0 (L

p0 ) l̇s1
q1

(Lp1 )

 

 
 (3.24)

Moreover, by Lemma 3.5, we find for any p0, p1  (1 ), q0, q1  (1] and s0, s1  (0 1),

(a) if s0  s1, then for any p  (1 ), q  (1 ] and s  (0 1) satisfying s  (1   )s0   s1,

 
l̇s0
q0

 
Lp

 
 l̇s1

q1
(Lp)

 
 q

 l̇sq(Lp); (3.25)

(b) for p  (1 ), q  (1 ] and s  (0 1) satisfying 1
p  1 

p0
  

p1
, 1

q  1 
q0

  
q1

and s 

(1   )s0   s1,


l̇s0
q0

 
Lp0

 
 l̇s1

q1
(Lp1 )


 
 l̇sq(Lp) (3.26)

Note that R   R(l̇sq(Lp))  R(ḃs
pq)  Ḃs

pq. This combined with (3.21) through (3.26) implies that

 
Ḃs0

p0q0  Ḃ
s1
p1q1

 
 q

 Ḃs
pq


Ḃs0

p0q0  Ḃ
s1
p1q1


 
 Ḃs

pq

and hence proves Theorems 3.6 and 3.7 for the Besov spaces.
The proofs of Theorem 3.6 and 3.7 for the Triebel-Lizorkin spaces are similar, we only need to

replace the sequence spaces ḃs
pq and l̇sq(Lp) respectively by ḟ s

pq and Lp(l̇sq), the details being omitted.
This finishes the proofs of Theorems 3.6 and 3.7.
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3.3 Interpolations at the endpoint case

The next theorem extends some of the interpolations of Section 3.2 to the case s  1.

Theorem 3.9. Let p0, p1  (1 ), q1  (1 ] and s    (0 1). Then,

(i)
 
Lp0  Ḃs

p0q1

 
 q

 Ḃ s
p0q for any q  (1];

(ii)

Lp0  Ḟ s

p1q1


 
 Ḟ s

pq with p  (1) satisfying 1
p  1 

p0
  

p1
and q  (1] satisfying 1

q 
1 
2   

q1
.

Before proving Theorem 3.9, we need the following wavelet characterization of the Lebesgue
space Lp(M) from [26, Theorem 4.3].

Lemma 3.10 ([26]). Suppose  ,   (0  ) and p  (1). Then for any f  Lp(M),

 f Lp 
     f  k 

 
k k

   
ḟ 0
p2


where the implicit constants are independent of f .

We now turn to the proof of Theorem 3.9.

Proof of Theorem 3.9. Observe that (ii) follows immediately from Lemma 3.10 and an argument sim-
ilar to the proof of (3.14) in Theorem 3.6. Thus, it su ces to prove (i). To simplify the notation we
set p0  p in the remainder of the proof. We divide the proof into three steps.

Step I: we first show that for any q  (max2 q1] (here we take q   if q1  ),
 
Lp Ḃs

pq

 
 q
  Ḃs 

pq (3.27)

Indeed, for any f  (Lp Ḃs
pq) q   Lp  Ḃs

pq   Lp
loc . Let f  f0  f1 be an arbitrary decomposition

with f0  Lp and f1  Ḃs
pq. Assume first q  . By Theorem 2.11, we have

 f q
Ḃs 

pq


 

0
t sq

 
Ep( f0 t)

 q dt
t
  f1qBs 

pq
(3.28)




k
 k sq

 
Ep( f0  k)

 q



k
 k sq





 k

 
 (Qk )

1
p

1
2
    f1 k 

   
 p



q
p



where, for any t  (0) and g  Lp
loc ,

Ep(g t) :


M



B(xt)
g(x)  g(y)p d (y)d (x)

 1
p



As p  (1), it is easy to see

Ep(g t)  gLp 

This implies that


k
 k sq

 
Ep( f0  k)

 q




k
 k sq  f0qLp  (3.29)
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On the other hand, by (2.8), Lemma 2.10 and Theorem 2.11 again, we find



k
 k sq





 k

 
 (Qk )

1
p

1
2
    f1 k 

   
 p



q
p




k
 k( 1)sq



 ks




 k

 
 (Qk )

1
p

1
2
    f1 k 

   
 p


1
p



q

 sup
k


 ks




 k

 
 (Qk )

1
p

1
2
    f1 k 

   
 p


1
p


q

 



k
 k( 1)sq






k
 k( 1)sq  f1qḂs

p




k
 k( 1)sq  f1qḂs

pq


which combined with (3.28) and (3.29) implies that

 f q
Ḃs 

pq




k
 k sq

 
 f0Lp   ks f1Ḃs

pq

 q


By (3.1), (3.2) and the arbitrariness of the decomposition f  f0  f1, we conclude that

 f q
Ḃs 

pq




k
 k sqKq( f   ks; Lp Ḃs

pq) 
 

0
t qKq( f  t; Lp Ḃs

pq)
dt
t
  f q

(LpḂs
pq) q



which proves (3.27) for q  . The case q   follows from a similar argument with a minor
modification on the norm  f Ḃs 

p
.

Step II: we show that for any 1  r  min2 p q,

Ḃ s
pq  

 
Ḃ0

pr Ḃ
s
pr

 
 q

 (3.30)

where Ḃ0
pr is as in (2.20).

Indeed, for any f  Ḃ s
pq, write

f 


k j




 k

 f  k 
k 



k  j




 k

 f  k 
k : f0  f1 (3.31)

where j   will be determined later.
By Theorem 2.11, we have

 f0rḂ0
pr




k j1





 k

 
 (Qk )

1
p

1
2
    f  k 

   
 p



r
p

:


k j1

 r
k (3.32)

By the Hölder inequality and the assumption that f  Ḃ s
pq, we know that  f0rḂ0

pr
  and hence

f0  Ḃ0
pr.

Similarly, we have

 f1rḂs
pr


j

k
 ksr




 k

 
 (Qk )

1
p

1
2
    f  k 

   
 p


r
p

:
j

k
 ksr r

k (3.33)
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and f1  Ḃs
pr. Thus the decomposition in (3.31) is a decomposition of f in Ḃ0

pr  Ḃs
pr. Combining

(3.1), (3.32) with (3.33), we find

K( f    js; Ḃ0
pr Ḃ

s
pr) 

 
 f0rḂ0

pr
   jsr  f1rḂs

pr

  1
r





k j1

 r
k    jsr

j

k
 ksr r

k



1
r



This implies that

I :
 

0
t qKq

 
f  t; Ḃ0

pr Ḃ
s
pr

  dt
t

(3.34)




j
  j sq




k j1

 r
k    jsr

j

k
 ksr r

k



q
r




j
  j sq




k j1

 r
k



q
r




j
  j(1 )sq




j

k
 ksr r

k




q
r

: I1  I2

For I1, let 0   2   s   1  s and    r satisfying r
q 

r
   1. We find

I1 


j
  j sq






k j1

 k 2r k 2r r
k




q
r




j
  j sq






k j1

 k 2q 
q
k









k j1

 k 2 




q
 

(3.35)




j
  jq( s 2)






k j1

 k 2q 
q
k


 



j



k j1

 ( jk)q( s 2) k sq 
q
k




k

k1

j

 
 ( jk)q( s 2)

 
 k sq 

q
k 



k
 k sq 

q
k 

For I2, we have

I2 


j
  jsq(1 )




j

k
 k(s 1)r k 1r r

k




q
r

(3.36)




j
  jsq(1 )




j

k
 k 1q 

q
k







j

k
 k(s 1) 




q
 




j
  jq[s(1 )s 1]




j

k
 k 1q 

q
k







k





jk

 ( jk)q[s(1 )s 1]


  

k sq 
q
k 



k
 k sq 

q
k 

Combining (3.33) through (3.36) and Theorem 2.11, we conclude that

 f (Ḃ0
prḂs

pr) q 

 

0
t qKq

 
f  t; Ḃ0

pr Ḃ
s
pr

  dt
t

 1
q

 I1q
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k
 k sq 

q
k



1
q







k
 k sq




 k

 
 (Qk )

1
p

1
2
    f  k 

   
 p


q
p


1
q

  f Ḃ s
pr


This proves (3.30).
Step III: We finally prove (i). Let 1  r  min2 p q be as in Step II. By (2.21) and Corollary

2.14, we have

Ḃ0
pr   Ḃ0

pminp2   Ḟ0
p2  Lp

This combined with Steps I and II implies that

Ḃ s
pq  

 
Ḃ0

pr Ḃ
s
pr

 
 q
 

 
Lp Ḃs

pr

 
 q
 

 
Lp Ḃs

pq

 
 q
  Ḃ s

pq

which completes the proof of Theorem 3.9.
 

Based on Theorem 3.9 and Corollary 2.14, we immediately obtain the following endpoint real
interpolation of the homogeneous Triebel-Lizorkin spaces.

Corollary 3.11. Let p  (1 ), q1  (1] and s  (0 1). Then, for any    (0 1) and q  (1],
 
Lp Ḟ s

pq1

 
 q

 Ḟ s
pq

The following theorem establishes the endpoint real interpolation of the inhomogeneous spaces.

Theorem 3.12. Let p  (1), q1  (1] and s  (0 1). Then for any    (0 1) and q  (1],

(i)
 
Lp Bs

pq1

 
 q

 B s
pq;

(ii)
 
Lp Fs

pq1

 
 q

 B s
pq.

For the proof of Theorem 3.12, we need the following lemma.

Lemma 3.13. Let p  (1) and    Lp
loc (M) be a Banach space satisfying that (Lp  Lp) is a

compatible Banach couple. Then for any t  (0) and f  Lp,

min1 t f Lp  K( f  t; Lp)  K( f  t; Lp  Lp)

Proof. We prove this lemma using the idea from the proof of [18, Theorem 4.2]. Let f  Lp(M). By
(3.1), it is easy to see that K( f  t; Lp)   K( f  t; Lp  Lp). Moreover, as Lp  (  Lp)   Lp, we
have

min1 t f Lp  min1 t f Lp(Lp)  K( f  t; Lp  Lp)

which implies that

min1 t f Lp  K( f  t; Lp)  K( f  t; Lp  Lp) (3.37)

We now prove the opposite inequality. By the definition of K-functional, it is easy to see that

K( f  t; Lp  Lp)    f Lp 
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Thus, to finish the proof, we only need to show that for any t  (0 1),

K( f  t; Lp  Lp)  K( f  t; Lp)  t f Lp  (3.38)

Indeed, for any    (0 1) small enough, let f  f0  f1 be a decomposition satisfying f0  Lp, f1  
and

 f0Lp  t f1  K( f  t; Lp)   2

Since f  Lp, we see that f1    Lp. Since t  (0 1), we obtain

K( f  t; Lp  Lp)    f0Lp  t ( f1Lp   f1)

 K( f  t; Lp)  t f1Lp   2

 K( f  t; Lp)   f0Lp  t f Lp   2  2K( f  t; Lp)  t f Lp   

Since   is arbitrary, we obtain (3.38) and finish the proof.  

With the help of Lemma 3.13, we now prove Theorem 3.12.

Proof of Theorem 3.12. Without loss of generality, we only prove (i). The inclusion (Lp Bs
pq1

) q  
B s

pq is an easy consequence of Theorem 3.9(i) and the facts Bs
pq1

 Ḃs
pq1

 Lp and B s
pq  Ḃ s

pq  Lp.
To prove the converse inclusion, let f  Lp(M). By (3.2), Lemma 3.13 and Theorem 3.9, we have

 f (LpBs
pq1 ) q 

 

0

 
t K( f  t; Lp Ḃs

pq1
 Lp)

 q dt
t

 1
q


 

0

 
t K( f  t; Lp Ḃs

pq1
)
 q dt

t

 1
q



 

0

 
t  min1 t f Lp

 q dt
t

 1
q

  f (Lp Ḃs
pq1 ) q   f Lp   f B s

pq1


which implies the inclusion B s
pq   (Lp Bs

pq1
) q and hence (i). By (i) and Corollary 2.14(i), we

conclude that (ii) is also satisfied, which finishes the proof of Theorem 3.12.
 

4 Proofs of main results

In this section, we prove the main results of this paper. To that end, we first prove in Section 4.1 a
Hardy-Littlewood-Sobolev-Kato estimates for parameters in ( ) as on Fig. 3; then in Section 4.2,
we prove Theorems 1.2 and 1.3.

4.1 The Hardy-Littlewood-Sobolev-Kato estimates

Let    (0 1) be as in (1.5) and ( ) be as in (1.10) (see also Figure 3). The following proposition
gives a Hardy-Littlewood-Sobolev-Kato estimates for parameters p and s in ( ).
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Proposition 4.1. Let (M    ) be a metric measure space satisfying the condition (GB). Let U :
( 1

p  s) and N : ( 1
q  r)  ( ) as in (1.10). Assume that    (0  ) and    (  ) is in the extended

Dunford-Riesz class and satisfies the following estimate
   z (UN)

   
L(  )

 

with

 (UN) :
r  s

2


d
2


1
p
 1

q


 (4.1)

where d denotes the Hausdor dimension of M as in (GB). Then for any f  Ḟ s
p2,

() f Ḟr
q2


   z (UN)

   
L  f Ḟ s

p2
 (4.2)

To prove Proposition 4.1, we need the following result on the characterization on the domain of
the fractional power of the generator .

Lemma 4.2. Let (M    ) be a metric measure space satisfying (GB). Then the following is true.

(i) For any s  (0 1), we have dom2(s2)  Fs
22. Moreover, for all f  dom2(s2),

   s2 f
   

L2   f Ḟ s
22


(ii) For any s  (0 ) and p  (1), we have domp(s2)  Fs
p2. Moreover, for all f 

domp(s2),
   s2 f

   
Lp   f Ḟ s

p2


Proof. The assertion (i) was proved in [20, Corollary 5.5]. Thus, it su ces to prove (ii). As (M    )
satisfies the conditions (VD) and (GB), we have

domp(s2)  Fs
p2

and
   s2 f

   
Lp   f Ḟ s

p2

where Ḟ s
p2 and Fs

p2  Lp  Ḟ s
p2 denote respectively the homogeneous and inhomogeneous heat

Triebel-Lizorkin spaces (see [33, Theorem 7.8] and [17, Theorem 6.5]). Moreover, by using an
argument similar to the proof of [11, Theorem 3.1], we obtain that, for any s  (0 ) and p q 
(1 ),

Ḟ s
pq  Ḟ s

pq (4.3)

which implies (ii). Note that although in [11, Theorem 3.1], (4.3) is proved only in the setting of the
Euclidean space, the proof can be extended easily to the present setting by using (VD) and (GB).  

We also need the following result of the boundedness of the Riesz potential  2 from Lp to Lq.
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Lemma 4.3. Let (M    ) be a metric measure space satisfying the condition (GB). Then for any
1  p  q   and   (0 d) satisfying  

d  1
p 

1
q , the Riesz potential  2 is bounded from Lp to

Lq.

Proof. By the functional calculus for the Riesz potential (see [24, Corollary 3.3.6]), we know that

 2 
1

( 2)

 

0
t 2et dt

t


which combined with the condition (GB) implies that  2 has an integral kernel K(   ) satisfying
that for any x, y  M,

K(x y)   
 (x y)

  d 

This implies that  2 is a generalized fractional integral on M defined as in [39]. By [39, Corollary
2.5], we know that  2 is bounded from Lp to Lq, which completes the proof of Lemma 4.3.  

We now turn to the proof of Proposition 4.1.

Proof of Proposition 4.1. Let U : ( 1
p  s), N : ( 1

q  r)  ( ) be as as in (1.10) and m(UN) the slop

of the vector

UN . We consider three cases based on the size of m(UN).

Case I: m(UN)  . In this case, we always have p  q and hence  (UN)  1
2 (r s). If further

p  q  2, then for any f  Ḟ s
22, by Lemma 4.2(i), we know

() f Ḟr
22


   r2() f
   

L2 
    z

1
2 (rs)

    
L

   s2 f
   

L2 
    z

1
2 (rs)

    
L
 f Ḟ s

22
 (4.4)

which verifies (4.2) in this subcase.
On the other hand, if maxr s   , then by Lemma 4.2(ii) and the bounded H functional

calculus, we have for any f  Ḟ s
p2,

() f Ḟr
p2


   r2() f
   

Lp 
    z

1
2 (rs)

    
L
 f Ḟ s

p2
 (4.5)

which shows that (4.2) also holds in this subcase.
If p  q  2 and maxr s    , without loss of generality, we assume that r  s   . Otherwise,

we may decompose the vector

UN into a finite number of vectors with equally small length     and

then use the above estimates by composition (see the proof of [11, Theorem 4.3] in the Euclidean
case). As r  s   , we know that there exist U0 : ( 1

p0
 s0), N0 : ( 1

p0
 r0), U1 : ( 1

2  s1),
N1 : ( 1

2  r1)  ( ) and    (0 1) satisfying


maxs0 r0   

r0  s0  r  s  r1  s1

   rr0
r1r0


ss0
s1s0



(4.6)

Note that by the definition of ( ) as illustrated on Figure 3, such points always exist. By Theorem
3.6 and (4.6), we find



Ḟr
p2 


Ḟr0

p0 2
 Ḟr1

22


 


Ḟ s
p2 


Ḟ s0

p0 2
 Ḟ s1

22


 


(4.7)



34 J C  A G’

Moreover, (4.6) implies that

U0N0 and


U1N1 belong to the above sub-cases which have already been

dealt with. This yields that


() f Ḟ
r0
p0 2


    z

1
2 (rs)

    
L
 f Ḟ

s0
p0 2



() f Ḟr1
22


    z

1
2 (rs)

    
L
 f Ḟ s1

22


which together with (4.6), (4.7) and Lemma 3.3 shows that for any f  Ḟ s
p2,

() f Ḟr
p0 2


    z

1
2 (rs)

    
L
 f Ḟ s

p0 2


Thus (4.2) holds under Case I.
Case II: m(UN)  0. In this case, we always have r  s and hence  (UN)  d

2 ( 1
p 

1
q ). Now

consider two subcases: a) r  s  (0 ); b) r  s  [  1).
For the case II-a), by Lemmas 4.2(ii) and 4.3, we have that for any f  Ḟr

p2,

() f Ḟr
q2


   r2() f

   
Lq


    z

d
2 ( 1

p
1
q )

    
L

     d
2 ( 1

p
1
q )r2() f

    
Lq


    z

d
2 ( 1

p
1
q )

    
L
 f Ḟr

ps


which verifies (4.2) under Case II-a).
For the case II-b), let U0 : ( 1

p  r0) and N0 : ( 1
q  r0) with r0  (0 ). It is easy to see that


MM0

and

N0N belong to Case I, while


M0N0 belong to Case II-a). This implies that for any f  Ḟr

p2

() f Ḟr
q2


    
1
2 (r0r)() 1

2 (r0r) f
    

Ḟr
q2


    () 1

2 (r0r) f
    

Ḟ
r0
q2


    z

d
2 ( 1

p
1
q )

    
L

     1
2 (r0r) f

    
Ḟr0

p2


    z

d
2 ( 1

p
1
q )

    
L
 f Ḟr

p2


which implies (4.2) under Case II-b) and hence Case II.
The Case III: m(UN)  (0). In this case, let U0 : ( 1

q  s). By the fact

UN 


UU0 


U0N ,

we know that (4.2) follows from a composition argument similar to that used in Case II-b), the details
being omitted. This finishes the proof of Proposition 4.1.

 

Corollary 4.4. Let ( 1
p  s)  ( ). Then domp(s2)  Fs

p2.

Proof. For any ( 1
p  s)  ( ), let U : ( 1

p  0), N : ( 1
p  s) , (z) : zs2 and f  domp(s2). By the

fact s2 f  Lp  Ḟ0
p2 and Proposition 4.1, we know that  f Ḟ s

p2


   ()s2 f
   

Ḟ s
p2

 s2 f Lp .

This combined with (1.13) and the fact Fs
p2  Lp  Ḟ s

p2 shows that

 f Fs
p2

  f domp(s2) 

which implies that inclusion domp(s2)   Fs
p2.

On the other hand, for any f  Ḟ s
p2, let U : ( 1

p  s), N : ( 1
p  0) and (z) : zs2. By Proposition

4.1 again, we find
   s2 f

   
Lp   f Ḟ s

p2


which implies the converse inclusion Fs
p2   domp(s2) and hence finishes the proof of Corollary

4.4.
 



H K  B S  M M S 35

4.2 Proofs of Theorems 1.2 and 1.3

We now prove Theorem 1.2.

Proof of Theorem 1.2. For any ( 1
p  s)  ( ) and q  (1 ], let    (0 1) small enough such that

( 1
p  s   )  ( ). As ( ) is open, we know that such   exists (see Figure 3). By Corollary 4.4, we

find

domp((s )2)  Fs 
p2  (4.8)

Moreover, from [24, Chapter 6], it follows that there exists    s
s   (0 1) so that

 
Lp domp((s )2)

 
 q

 Bs
pq  (4.9)

On the other hand, as    s
s  , by Theorem 3.12, we see

 
Lp Fs 

p2

 
 q

 Bs
pq (4.10)

Combining (4.8) through (4.10), we conclude that

Bs
pq  Bs

pq

which completes the proof of Theorem 1.2.  

Finally we prove Theorem 1.3.

Proof of Theorem 1.3. For any p  (1), q  (1] and s  (0 1), by [22, Theorem 1.5(a)], we
know that

Bs
pq   Bs

pq  (4.11)

We now turn to the proof of the converse inclusion. From [24, Chapter 6], it follows that

Bs
pq 

 
Lp domp(12)

 
sq



This together with (DF) and (3.2) implies that for any f  Bs
pq ,

 f Bs
pq


 

0
tsqKq( f  t; Lp B1

p)
dt
t

 1
q

 (4.12)

On the other hand, let

Ep( f  t) :


M



B(xt)
 f (x)  f (y)p d (y) d (x)

 1
p

 (4.13)

For any decomposition f  f0  f1 with f0  Lp and f1  B1
p, it follows from (VD), that Ep( f0 t) 

 f0Lp and

Ep( f1 t)  t sup
t0

t1


M



B(xt)
 f1(x)  f1(y)p d (y) d (x)

 1
p
  t f1B1

p
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By this, (4.13) and the arbitrariness of the decomposition f  f0  f1, we conclude that, for any
t  (0),

Ep( f  t)  K( f  t; Lp B1
p)

which together with (4.12) yields

 f Ḃs
pq


 

0
tsqEq

p( f  t)
dt
t

 1
q


 

0
tsqKq( f  t; Lp B1

p)
dt
t

 1
q

  f Bs
pq


This implies the inclusion Bs
pq   Bs

pq and hence finishes the proof of Theorem 1.3.  
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Verlag [MR0781540].

[47] H. Triebel. Fractals and spectra. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel, 2011.
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