Heat Kernels and Besov Spaces on Metric Measure Spaces
Jun Cao and Alexander Grigor'yan

Abstract. Let (M, p, ) be a metric measure space satisfying the volume doubling condition.
Assume also that\, p, 1) supports a heat kernel satisfying the upper and lower Gaussian bounds.
We study the problem of identity of two families of Besov spaBggsand Bf;ﬁ where the former

one is defined using purely the metric measure structud ofvhile the latter one is defined

by means of the heat semigroup associated with the heat kernel. We prove that the identity
Bhg = Bf;ﬁ holds for a range of parameteps g, s given by some Hardy-Littlewood-Sobolev-

Kato diagram.
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1 Introduction

1.1 Motivation and background

This work is devoted to the notion of Besov spaces in the setting of metric measure spaces. It
is customary to use various scales of function spaces, in particular, Besov %céﬂ order to
measure the degree of smoothness of functions. Introduction of the Besov spatesimmotivated
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by the imbedding and extension problerf Besides, the interpolation of Sobolev spaces leads also
to Besov spaces. For the theory of Besov spaciS there is an extensive literature, see, for example,
[4, 15, 42, 44, 45, 46, 47, 50).

In a general metric measure space there are various natural ways to define the family of Besov
spaces. One possibility is to use directly the metric and measure of the underlying space in order to
define the Besov seminorm (see§) and (L.99 below). The function spaces obtained in this way are
calledLipschitz type Besov spacasd are denoted big; ,. Another possibility to define the Besov
seminorm arises in the presence of a heat semigedépwith the generatof acting inL? (see (.10
and (L.119 below). We refer to such spaces%g.

The Lipschitz type Besov spaces were considered @ 20, 21, 34, 38, 40, 43, 49]) while the
spacesB,S;ﬁ were dealt with in 9, 10, 17, 28, 29, 33, 36]. For other definitions of Besov spaces, we
refer the reader tal] 2, 3, 25, 27, 35, 49].

JonssongdZ] introduced the spacegy, , on the Sierpiski gasket and proved that the domain of the
associated Dirichlet form coincides wiBf{j, wherep is the walk dimension (see als2(, 21] for
an extension of this result to general metric measure spaces). Huahel [79] proved that, in the
setting of metric measure spacBgﬁ coincides with some Bessel potential spate

In 2010 Pietruska-Patuba raised #1] the following question:

Under what conditions the two space§Band B 5 are identical?
This question has attracted a lot of attentionRfhwith £ = —A, the identity

s _ pst
Bp,q = Bp’q (1.2)

has been known for long time for g, g € (1, ) ands € (0, 1) (see §5, 46]). However, in the
case whenL = —div(AV) is a uniformly elliptic operator irR? with real symmetric measurable
codficients, the identity X.1) can be only guaranteed wheg, §) lies in certain convex polygon
(shaded area on Fig.1), whites (1, ) is any (see11] for the details).

Here® € (0, 1) is the Hblder exponent of the heat kernel as is described.i) pelow, andr > 2 is
determined by the range pfe (1, o) such that the Riesz transform associated wjtis LP bounded.

Hu and zahle R9] proved the identity 1.1) on metric measure spaces for= g = 2 and for all
s € (0, 1) assuming that the heat semigroei: has the heat kernel satisfying certain upper and
lower bounds (see alsd ] for a similar result).
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It was shown later in32] that, under similar hypothesisl.() holds for all p,g € (1, «) and
se (0, ®) (see also49] for some similar results in the setting of RD-space). On Fig. 2, the range of
the parameterp andsis shown for which {.1) is true according tog2, 29, 41, 49].

S

In the present paper we study the aforementioned problem in the setting of metric measure spaces,
under the hypothesis that the heat kernel satisfies Gaussian upper and lower bounds. Our main result,
Theoreml.2, says that1.1) holds for anyg € (1, ] and any % s) lying in a Hardy-Littlewood-
Sobolev-Kato diagrar®(®) as shown on Fig. 3, which clearly significantly enlarges the domain of
p, sfrom Fig. 2.

Besides, we prove in Theorein3that the identity {.1) is true for the full range%, 9 € (0,1,
provided a further assumption on the domain of the square ragtiothe LP scale is satisfied.

Our proofs use completely new techniques based on wavelets with almost Lipschitz continuity.
Such wavelets were constructed & 81] merely from the metric structure of the underlying space.

We use the wavelets to determine the interpolation spaces of certain Lipschitz type function spaces,
which together with the hypothesis about the heat kernel estimates enables us to prove some Hardy-
Littlewood-Sobolev-Kato estimates associated withThese estimates finally give us the range of

the parameterp, s ensuring the validity of X.1).

This paper is organized as follows. In Sectiog, we state the main results of this paper: Theorems
1.2 and1.3 as well as introduce some necessary notions and notation. In S@ctiea give the
wavelet characterizations of the Lipschitz-type function spaces. In Segtiwe establish the real
and complex interpolations of those spaces. Finally, in Sedtiare prove Theorem$.2and1.3.

1.2 Setup and main results

Let (M, p, 1) be a locally compact complete separable metric measure space, miseaanetric
andu is a nonnegative Radon measure with full supporianiwWe say that, p, u) satisfiesvolume
doubling(VD) if for any x € M andr € (0, ),

:u(B(X’ Zr)) < CO:u(B(X’ r))’ (12)

whereB(x,r) ;= {y e M : p(y, X) < r} denotes the open ball centeredkatf radiusr andCy > 1is a
positive constant independentxoandr. It is easy to see that the conditipviD) implies that, for all
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X€ M,r € (0,00) and2 € (1, ),
(B(x, Ar)) < Co%u(B(x, 1)), (1.3)

whered := log, Cop > 0. For anyp € [1, o], consider the Lebesgue spac¥M) := LP(M, p).
To conduct a smoothness analysis dh 4, 1), we use the notion of a heat kernel.

Definition 1.1 ([20]). A family {pt}t~0 Oof u®u-measurable functions dvi x M is called aheat kernel
if the following conditions are satisfied faralmost allx,y € M and alls;t > O:

() Positivity: pi(x,y) > O.
(ii) Stochastic completenesj;h:/I pe(%,y) du(y) = 1.
(i) Symmetry: pi(x,y) = pi(y, X).
(iv) Semigroup propertypr,s(x.Y) = [, Ps(X. 2Ptz Y) du(y).
(v) Approximation of identity: for anyf e L2(M),

i [y 10)duty) = |

in L2(M).

In many occasions, a heat kernel appears as the integral kernel of a heat serffighogithat is
associated with a regular Dirichlet for8,(7) in L2(M) (see [L6]). Conversely, given a heat kernel
{Pt}t=0 as in Definition1.1, one constructs an associated heat semigfByp.o acting onL2(M) by

P = fM pe(x ) F () duy) (1.4)

forany f € L?(M), t € (0, o) andu-almost allx € M, andPyf = f. Denote by be the generator of
{Pt}t=0 SO thatPy = £,

The metric measure spachl,(o, u) is said to satisfy th&aussian bound&GB) if there exists a
heat kerne{pt}t=0 on M x M such that

2 2
exp{—w} < p(xy) < g—/lz exp{—w} (1.5)

Cltd/Z

for u-almost allx, y € M and anyt € (0, o), whereCy, d, ¢cp andc, are positive constants that are
independent ok, y andt.
For example, the classical Gaussian-Weierstrass heat kefR@l in

1 X — yi?
MKW—(MWwGM{ yr } (1.6)
is associated with the Dirichlet form
&Lfﬁ:f1Wﬂ2m<
Rd
with domainF = W-P(RY), and its generator isA, whereA is the Laplace operator. Clearlyl,.6)

satisfiegGB).
The condition(GB) implies the following two conditions:
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(i) the volume regularity: for any € M andr € (0, ),

u(B(x, 1) = re,
where the implicit constants are independent ahdr (see RO, Theorem 3.1]). In this case, it
is easy to seévD) is true angu(M) = oo;
(if) the Holder regularity: the heat kernf}i-o satisfies the estimate
PO\ 1 f cololy.y)P?
_— —_— p —_—_
Vi a2 t

for anyt € (0, o) and allx, y, y’ € M such thap(y,y’) < Vt, where the constan@®, C, ¢, are
positive and depend only dv; beside® € (0, 1) (see R3)).

(% y) - prlx, v)| < Cz( L.7)

Now let (M, p, 1) be a metric measure space satisfy{Mp). We introduce thd.ipschitz Besov
space B, foranyp € (1, ), q € (1, o] ands e (0, ) by

Bpq = {f € LP(M) : IIfllgg, 1= IIfllee + [ fllgs,, < oo}, (1.8)

Ifllgs = f r—sd
p.q 0

with the usual modification wheqp= «. Here and hearafter,

frml

denotes the integral mean over the Bet

Note that this definition 0B} , does not depend on the operatoor the heat kernel.

On the other hand, let\, p, 1) be a metric measure space satisfy{@B). We introduce thdeat
Besov space F; for anyp € (1, «), g € (1, o] ands € [0, o) by

where

dr

ap 4.2
|1 |f(x)—f(y)|pdu(y)dy(x)] —} (1.93)
M JB(x,r)

r

L ._ . .
B35 = { F € LPOW) ¢ Iflggz = Flo + 1fllgzz < ool (1.10)

where

Illgsz = { fo 092y et 5]l ] T} (1.11a)

with somek € Z, N (s/2, «) and we make the usual modification whgr- co. As it was pointed
out in [22, Proposition 2.9] (see als@3, Theorem 6.1]), the norms- ”ng in (1.10 are equivalent
for different choices df € Z, N (s/2, =), so that the spacB%ﬁ does not depend da Both Bg’q and

B‘:;é: are Banach spaces. We refer 22[33, 49 for further properties of these spaces.
We use the ldlder exponen® € (0, 1) from (1.7) in order to define the following domain

(0, 1), sdQ@}

O 2-5-0
(2(31—_@)9 2(15__®))’ Se [®7 1)

P(O) = {(% s) €(0,1)x(0,1): ;_13 € { (1.12)
that is a convex polygon in th%(s)—plane as illustrated on Fig. 3. Following the terminology5h [
we refer toP(®) as aHardy-Littlewood-Sobolev-Kato diagram.

Our main result is stated in the next theorem.
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Theorem 1.2. Let(M, p, ) be a metric measure space satisfy(@B), and letP(®) be as on Fig. 3
(see alsq1.12). Then, for any1/p, s) € P(B) and ge (1, =], we have the identity

s _ ps<L
BS, = B3%. (1.13)

For the proof of Theorem.2 we use the same strategy that we employedLiij in the setting
of elliptic operators in Euclidean spaces. For that, we first consider the corresponding question for
Triebel-Lizorkin spaces at the endpoint valigees 1 ands < ©, and use interpolation to produce the
desired range of parameters. However, unlike the Euclidean setting, in the present abstract setting
there is no interpolation theory for Lipschitz-type function spaces. To overcome fhiculty, we
apply the technigue of wavelets that enables us to establish the desired interpolation. The wavelets on
metric measure spaces were constructed byhi and Tapiolad1]. The almost Lipschitz regularity
of these wavelets is essential in Theorer@— this allows to extend the range of the paramsteom
se(0,0)asin 2 tose (0,1).

Another dfficulty in the metric measure setting occurs at the endpoiatl, which is related to
the domain of the square rog/? of the generator. Recall that, for any € (1, o) ands < (0, 1],
the domain of the fractional powei®? of £ in the spacé.P is defined to be the space

domy(£9?) = {f e LP: £9%f e LP) (1.14)
endowed with the norm
1 lldomyzs) = flle + (| £¥%F] o - (1.15)

Recall that the fractional powet¥? is defined via the functional calculus (see, for examd])[
In the Euclidean case with = —div(AV), we usually have

domp(£Y?) = WP

for any p € (1,0) with o > 2 depending o’ (see Figure 1), wher&/>P is the classical Sobolev
space (sees] Theorem 4.15]). However, in general metric measure spaces, we only have

domp(£?) = B},

see RO, Theorem 5.1]. Let us emphasize that the aforementiornéereince in the characterizations
of the domain of£1/2 leads to the dference in the ranges of the parameters on Fig. 1 and Fig. 2.

To obtain the full range of parameters for the identityl@, we introduce the following condition
for the characterization of dog£Y/?).

(DF). domy(£Y?) = B}, for any p € (1, ).

The condition DF) holds true ifM = RY and £ = A is the Laplace operator. In the general setting
of metric measure spac®(p, u) satisfying(GB), let (&, F) be the Dirichlet form with the generator
L. Itwas proved in2, Corollary 4.10] that the conditiofiDF) holds provided&, ) is strongly local,
regular, and satisfies some strong BaEnmery curvature condition. On the other hand, there exist
examples of manifolds and graphs whéé) is not satisfied for any # 2 (see 12, Theorem 5.1]).

Under Assumptior{DF), the next theorem establishes the identityl) for the full range of pa-
rameters.
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Theorem 1.3. Let (M, p, 1) be the metric measure space satisfy{(@B) and (DF). Then, for all
p € (1, ), g€ (1,0] and se (0, 1), we have

s _pst
Bpﬂ - BP»Q'

Acknowledgement.This work was done during a stay of the first author at the University of Bielefeld
in 2017-2019. He would like to thank this university for the hospitality.

Notation. LetN :={1,2,...} andZ, := NU{0}. For any subsef c M, 1g denotes itgharacteristic
function We useC to denote gositive constanthat is independent of the main parameters involved,
whose value may elier on each occurrence. On the contrary, the constants with subscripts, §li¢h as
keep the same value during the argument. For any fundtmmM, let M(f) be itsHardy-Littlewood
maximal functiordefined by for anyk € M by

1

M) = sup— [ [flay, (L.16)
Bax U(B) Jg

where the supremum is taken over all the ballMicontainingx. For nonnegative functionfs g, we

write f < gif f < Cgin a specified range, for some const&@niVe write f ~ gif f g < f.

2 Wavelet characterizations

The wavelets on a metric measure space are certain functions with “good” properties that serve
as basic bricks to build objects with more complicated structures. Usually, the wavelets form an or-
thonormal basis it.?(M) providedu(M) = c. The latter condition will be always assumed through-
out the paper.Note that if (M, p, 1) satisfieGB), thenu(M) = .

The aim of this section is to establish the wavelet characterizations of the homogeneous Lipschitz-
type function spaces. In Secti@il we review some basic properties of wavelets on metric measure
spaces. In SectioB.2, we define the homogeneous Lipschitz-type function spaces and state their
wavelet characterizations. Finally, in Secti®i3, we prove these wavelet characterizations.

2.1 Wavelets on metric measure space

Let (M, p, u) be a metric measure space satisfy(\@). The following definition of dyadic points
is taken from B1]; this is a collection of reference points M endowed with a partial order (see also
[6, 13, 30)).

Definition 2.1. Let ¢ € (0,1) and{Ax = {Xkolaer Jkez b€ @ sequence of points M wherely is a
countable index set. The familyAx}kez is calleda sequence of dyadic poinfsAx c Ax,1 and if it
satisfies the following two properties:

(I) Ay is a maximal set of¥-separated points for arkye Z, namely, for anyy, 8 € I,
(I-1) p(Xkas Xp) = 6% for anya # g,

(1-2) minp(X, Xcq) < 6% for anyx e M;
aely

@ let ¥ := {(k,a@) : k € Z, a € Iy} be the parameter set associated with the dyadic points
{Alkez- There exists artial order < in K such that for ank € Z andry € [$6%, $6],
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(II-1) if Xk+18 € B(Xkas M), then K+ 1,8) < (K, @);
(1-2) if (k+1,8) < (k @), thenX1,0 € B(Xcq- 4rk);

(11-3) for every k+ 1,8), there exists exactly oné, (), called itsparent such thatk + 1, 8) <
(k, @);

(11-4) for every k, @), there are between one aNg pairs k+ 1,3), called itschildren such that
(k+ 1,8) < (k,@). Here,Ng € N depends only on the doubling const&ltin (1.2);

(11-5) (1,8) < (k,@) if and only if| > k and there exists a chain of ordered pairs-(L, yj+1) <
(Joyj) for j =k k+1,...,1 = 1 withy = a andy, = . In this case, we called,{3) and
(k, @) are one anotherdescendanandancestoy respectively.

The dyadic points lead to the following definition of dyadic cubeMithat are the analogues of
the dyadic cubes in the Euclidean space.

Definition 2.2. Leté € (0, 1) and{Ax}kez be a sequence of dyadic points M, (o, 1) as in Definition
2.1 A collection of open setfQ , }kez.ocr, € M is calleda system of (open) dyadic cubes associated
with {Axlkez if forany k, | € Z anda, 8 € I,

(i) M = U, Qca, WhereQy, denotes the closure 6
(i) Qra N Qup = 0 whena # B;
(iii) B(Xcar 26¥) € Qua € Qua € B(Xkas 35%);
(V) Qe = Ugap<ka) Qs for anyl > k.

Based on the notion of dyadic cubes, the following definition of wavelets was introduc8d, in [
Definition 6.9].

Definition 2.3. Let s € (0,1), n € [0, 1] and{Qxq}kez.ecr, D€ @ system of dyadic cubes associated
with the dyadic pointdAxlkez as in Definition2.2 For anyk € Z, let Jx = Tx1 \ k. A set

of real-valued function$y . Jkez.oc7, ON M is calleda basis of wavelets with exp-localization and
Holder-continuous of ordey, if the following properties are satisfied for aky Z anda € Ji:

(i) (vanishing mean), ¥ q(x) du(x) = O;

(i) (localization) for anyx € M,

C (X, Xa)
o] € == exp{— . } (2.1)
Hu(B(Xia, 6%))
where{xk .}k are the dyadic points as in Definiti@l and the constar@@z > 0 is independent

of x, kande;

(iif) (H older continuity) for any,y € M,

C (% %) | (PO
|wk,a(x)—wk,a(y>|smﬁp{—p > }(” x ) (2.2)

where the constai@, > 0 is independent of, y, k ande;




Hear KERNELS AND BEsov Spaces oN METRIC MEASURE SpACES 9

(iv) (orthonormal basis) the functiofigy . lkez.«c.g, form an orthonormal basis & (M, ).

The existence of the wavelets satisfying DefinitthBis proved in B1, Corollary 6.13].

Proposition 2.4 ([31]). Let (M, p, u) satisfy(VD). For anyn € (0, 1), there exists € (0, 1) small
enough and a basis of wavelgis , }kez..c g, associated with a system of dyadic cub®g, Jkez aer,
such that{y o Jkez.0c 7, IS €Xp-localization and Holder-continuous of order

Remark 2.5. Let p € (1, 0). The waveletdy . }kez.0cq, @lS0 form an unconditional basis of the
spacd.P(M) = LP(M, u) (see B, Corollary 10.2]). This implies that anfye LP(M) has the following

wavelet expansion ibP(M) :
f= Z Z <f= lﬁk,wﬁﬁk,a . (23)
keZ aeJx

The wavelet expansior2(3) can be extended fromP(M) to a larger class of distributions dvi.
For that let us recall the definition of test functions and distributions fra8n37].
Definition 2.6. Letn € (0, 1) be as in Definitior2.3. A functiony : M — R is said to be in théest
function clasgG(xo, 1, 8,y) for somexg € M, r € (0, o), 8 € (0, 5] andy € (0, o), if the following
three assertions hold:

(i) foranyxe M,

Y
()] < J ) , (2.4)

Vi (Xo) + V (X0, X) (r + p(Xo, X)
whereV, (xo) := u(B(xo, 1)), V(Xo0, X) := u(B(Xo, p(X0, X))) and the positiveC is independent of
X

(i) forany x,y € M satisfyingp(x,y) < 3(r + p(Xo, X)),

C r Y pxy) Y
09 =Wl < Ve, x)(r+p(xo, x)) (r+p(xo,x)) ’ (25)

where the positiv€ is independent ox andy;

(iii) [y $(9du(x) = 0.
For anyy € G(xo, 1, 8,7), endowy with a norm by setting
llellgoo.rpy) = INF{C >0 (i) and (ii) hold . (2.6)

Further properties of the test function class can be fun®@ 27]. It is known that the space
G r.B,7). - llgeor,sy) is a Banach space that is invariant under the changesoéir. Thus, we
can fix a reference poing € M and denot& (8, v) := G(Xo, 1,8,v). Itis easy to see the embedding

G(B',y) c G(B,y) holds for anys < 3.
Now for anyp € (0,7], let G(8,y) be the completion of the spagn, y) in the norm ofG(3, y).
Then G(B,y)) is defined to be the set of atbntinuous linear functionals”” on (5, y) with the

property that, for all € G(8,7),

A < o .
1-Z (o)l IIQDIIQW)

The following proposition extends the wavelet expansion to the space of distributions.
Proposition 2.7. [26, Corollary 3.5] Letg, y € (0,n). Then the wavelet expansi@¢2.3) also holds

for any f e (G(8,7))
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2.2 Homogeneous function spaces and their wavelet characterizations

The vanishing mean condition in Definiticgh3(i) indicates that the wavelets used in this paper
are mother wavelets. As the mother wavelets characterize homogeneous function spa8&s42ee [
50]), we need the following definition of the homogenous version of the Lipschitz Besov space (cf.
(1.8 and (L.99).

Definition 2.8. (i) For anyp € (1, ), g € (1, oo] ands € (0, =), thehomogeneous Lipschitz Besov
spaceBj , is defined to be

Bhg: {feLp

loc

(M) : [Ifllgg, < oo},
where|| f||gs is defined as inX.99.

(i) For anyp € (1, ), q € (1, ] ands € (0, «), the homogeneous Lipschitz Triebel-Lizorkin
spaceF  is defined to be

Ff,, : {feLp

loc

1/q
s, H ‘Sq(ﬁ(rlf()—f(Y)ldu(y)) dr]

with the usual modification wheqp= co.

(M) : [Iflles, < oo},

where

2.7)

LP

As the spaceES andF q Share many common properties, we will use the notaé@@to denote
either spacB or Fs When there is no confusion. In particular, for gmy (1, =), g € (1, co] and
se (0, ), it can be proved thalﬂ(f,q/(} II- ||As ) is a Banach space, whe@% /C denotes the quotient
space and is the space of all constant functions bh(see B8, Propositions 3.1 and 3.2] andy,
Proposition 2.2]). Furthermore, it is easy to see that fopal(1, =), q € (1, o] ands € (0, ),

S _|p aS
Bp,q_L me,q.

For anyp € (1, ), q € (1, o] and s € (0, c0), define theinhomogeneous Triebel-Lizorkin space
Foq = LP N F§ 4 endow with the norm

1flles, = IFlLe + 11 lles,

For functions in the above homogeneous function spaces, its wavelitisrds are usually belong
to the following sequence spaces.

Definition 2.9. Let s € (0, 1) and{Qx . }kez.cer, b€ @ system of dyadic cubes as in Definitib@ For
anyk € Z, denote byJy = Ty1 \ k- .

(i) Foranyp € (1, ), g € (1, o] ands € [0, ), thehomogeneous Besov sequence s;h%ﬁés
defined to be the space of all sequencks Jkez.ocq, C R satisfying

> () |ak,a|)pr}q <o (2.8)

a€Jk

’|{/1k,(z}k€Z,(l€jk||baq = {Z 6_ksq

kezZ
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with the usual modification wheqp= co.
(i) Forany p € (1, ), g € (1, o] ands € [0, ), thehomogeneous Triebel-Lizorkin sequence
spaceflg,q is defined to be the space of all sequen@®s }kez..c7, C R satisfying

a3
ahezosly, = [ S S @ tsa ol [| <= eo

kez = L
with the usual modification wheq = co.
The next lemma collects some of the basic properties of the aforementioned spaces.
Lemma 2.10. Let pe (1, =), g€ (1, o] andp, y € (0,7) with € (0, 1) being as in(2.2). Then
(i) forany se (0, 1) and q, g2 € (1, o] with op < gp, then

Bha: € Bhoys (2.10)
(i) forany se (0, y),
B3q € (6B (211)

(iii) for any se [0, y) and{Aalka € b, the series

Z Z /lk,(llvbk,(l

keZ aeJx

converges ir(é(ﬁ, Y)) .

Proof. The assertion (iii) was proved 2}, Proposition 1.1], so that we need to prove (i) and (ii).
We first show (i). By .99, we know that

1/p
—ks _ p
{5 £ 109 O duyeho] }kez

for any fixedc > 0. (i) then follows immediately from the increase property oflthaorm.
We now prove (ii). By applying (i), it sfices to show

~

1Flgs,, =

19

BS.. < (G(5,7)) (2.12)

Indeed, letf € B,S),OO. Then, for anyg € é(ﬁ, v), by Definition2.6, (VD) ands < y, we have

| fM () )

:| f (f(y>—f f(X)du(X))so(y)du(Y)l
M B(%o,1)

1
= (B0 1) BW)( fM |f(Y)—f(X)||90(Y)|dﬂ(Y)) du(x)
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(o9

If(y) = f(I 1 Y ]P }1/p
{#(B(Xo, 1)) JBo.1) |:j|\‘/| Vi(Xo) + V(Xo, Y) (1 +p(x0,y)) du(y)| du(x)
p 1/p
d
{:“(B(XO’ 1)) JB(xo.1) JZ:;) ,U(X)}

P 1/p
S) ¢js B
S [[f 10 01007 10

51 f 1E) - £ du(y)
(y.x)<6~(+D)

=0
. P Upf
ssup&JS{ f [f | |f(y)—f(x)|du(y)] dﬂ(X)} D079 < it
jez M [Jp(y,x)<s-(+1) =0 '
which implies that2.12) holds true. This finishes the proof of (ii) and hence Lengri O

We now state the first main result of this sectio_n that establishes the wavelet characterizations of
the homogeneous Besov and Triebel-Lizorkin sp£§g§

Theorem 2.11.Let pe (1, =), g € (1, o] and se (0, 1). Assum&M, p, u) satisfies the condition
(VD) and that{yyqlkez.ecq, 1S @ basis of wavelets as in Definitidh3 with n € (s,1). Then the
following assertions hold:

() forany fe BS,, let

P.gr
E(f) := {Ff, ¥kadlkez.aeq, - (2.13)
Then Ef) € bS, with
IECEllps, < Clifllgs,, »
where the positive constant C is independent of f;

(ii) for any{Aqkezoei € b5, let

R{dkalka) = ) D" Acatka- (2.14)

keZ aeJx

Then R{ ko }ke) € Bf),q with
IRGAahcallgs , < C [ltdatiallis,
where the positive constant C is independerilQf, }x o

Theorem 2.12.Let pe (1, =), q € (1, o] and se (0, 1). AssumdM, p, u) satisfies the condition
(VD) and that{ykqlkez.ecq, IS @ basis of wavelets as in Definitidh3 with n € (s,1). Then the
following assertions hold:

(i) forany fe F3_, let E(f) be asin(2.13. Then Kf) € friq with

p.q’
IE()ls, < Clifles,

where the positive constant C is independent of f;
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(i) for any{Akqlkez.acq € faq, let R{ Ak o}k o) be as in(2.14). Then R{Akolke) € Ifg,q with
R -s = aJKa|lfs >
IRGAe a5, < C [[fdcaticallzs,
where the positive constant C is independerlQf }k.q -

Theorems2.11and2.12will be proved in Sectior2.3. In the remainder of this subsection, we
assume that the two theorems are true and consider their consequences.

Remark 2.13. (i) For anyp € (1, =), q € (1, «], s€ (0, 1) andf € LP (M), let

loc
oo a/p 1/a
dr
fll== = r—sd — 2.15
Ifllgs; {fo r} (2.15)

109 = F(y)l duly) p dp(x)
Sl |

with the usual modification wheq= co. By the Holder inequality, it is easy to see that

1fllgz, <1 fllgg, - (2.16)
On the other hand, in the proof of Theor@ni1(see 2.23 below), we will prove that
IE(H) g, < fllgs- - (217)
By Proposition2.7 and Lemma2.1((ii), we know that
RoE=1I (2.18)

on B3 . This combined with Theorem. 11(ii) implies that for anyf € BS

PO
Iflles, < IE(Fll, -
which together withZ.16) and @.17) implies the following equivalence of norms:

fllgs. = leg, - (2.19)

(i) In view of Theorem2.11, we can introduce theomogeneous Besov spa'zg?q with zero order
smoothnessTo be precise, for ang € (1, c0) andq € (1, oo}, let

BYqi={f € Lio(M): E(f) e b}, (2.20)

loc
whereE(f) is defined as in4.13. By the increase property of th&norm in 2.8), it is easy to see
that for anyp € (1, o) andqy, gy € (1, oo] with g; < qp,

c BY

~0
B p.g2°

0 (2.22)

which is a limiting case of Lemma2.1Q(i). _
Similarly, for anyp € (1, ) andq € (1, «], the homogeneous Triebel-Lizorkin spaE%,q with
zero smoothness defined by
0 ._ p
Fog={fel

loc

(M) : E(f) € fog}. (2.22)

It is easy too see th.elffo2 = LP for any p € (1, o) due to the Littlewood-Paley square function
characterization of.P (see R6, Theorem 4.3]). These two kinds of spaces will be useful in the
endpoint interpolation of Besov spaces (see the proof of The8reirelow).
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Corollary 2.14. Let pe (1, =), g€ (1, o] and s€ [0, ). Then

N\ RS -S S ; S S .
0] Bp’min{p’q} C Fp’q C Bp’max{p’q}. In particular, Bp’p = Fp’p,
i RS 'S 1S ; S _ fS

(i) Y mintpar € foa © Bpmaxpg IN Particular by o = fo .

Proof. The proof of Corollary2.14is similar to the corresponding result in the classical Euclidean
space (see, for exampléq, Section 11.4 and Proposition 13.6]), the details being omitted.
|

2.3 Proofs of Theorem<.11and 2.12

Proof of Theoren2.11(i). For anyf € Bg,q, let E(f) be asin2.13. As claimed in RemarR.13 we
only need to prove

IEDlig, < 1fllgz (2.23)

with Hf”é% asin @.19. By (2.13 and @.8), we know

IE(Fllgs,, = {Z gksa

keZ €Tk

Z (ﬂ(Qk,a)%}_%Kf,wk,a>|)p}p} . (224)

We first estimate the termdf, Y« ). By Definition 2.3, we know for anyk € Z, a € Jx and
X € B(Xcq» 36%),

!(f,tﬁk,a>|=’fM slfk,a(Y)(f(y)—Jg fdu) d,u(Y)| (2.25)
S[F(B(Xk,a,ék))]_% fM exp{—p (y’é)lf"’“)}‘f(y)— Jg kﬂfd,u‘ du(y)

< [uBoan o] * Y [ exp{—p(y’df"“)}|f(y)— f. fd/x‘ duty).

=0 v Sk-i(Bka)
whereSy_j(Bya) = B(Xca» 1) \ B(Xca, 0<1*1) for any j € N andSy(Bx,) := B(Xca, 6¥). Thus by
(2.25, (VD) and Definition2.Z(iii), we conclude that

1(B(Xq, 6571))
ﬂ(Qk,rl)

g j(;k,a (Ji(xk’mk_j) 1f(y) = T3l dﬂ(Y)) du(x)

DY _stil gmid _
<@l 3 erpl-7)3 Jo (o, 1160 100 00 0

[e9)

= [1(Qua)] 2 Y exp{~621} 671 j(F. Qua):
j=0

(o)) < [(BO%a D] D exp{~51) (2.26)
i—0
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Note that for anyk € Z anda € Jk, we have

HQF i Q) = (@)l f ( £ -1 du(y)) du(x)
Qe \WB(Xia.0K 1)

p b
s[ f (f If(y) - F(X) d,u(y)) du<x)],
Qua \WB(Xia.0K1)

which combining 2.24), (2.26), (2.15 and Definition2.2implies that

IECHis,, (2.27)
< {Z sksa Z (F‘(Qka)p 2(f, Lbka>| }
keZ a€Jk

i exp(—¢*1} 571 {Za—"sq
j=0

kezZ Lae Tk

ol

f 110~ 109) d#(Y) dﬂ(x)} }
B(Xa,0K

, o
1-j| 5~id -ksq -
exp|-6*1}s {Za le(ﬁw-»'f(y) 1) du(y)) (o) }

'M8

1l
o

J

< Z exp (51_ }5 j(d+s) {Zé (k—])sq[

kezZ

kezZ Lae Tk

1
_9 q

p P
If(y) = f(3I dﬂ(Y)) du(x)
B(x45% 1) ]

S ||f||-
Ba’

where in the third inequality, we have used Definit@i2(iii)) and the fact thatj > 0. This shows
(2.23 and hence finishes the proof of Theor2ri(i).

m|
To prove Theoren2.11(ii), we need the following lemma.
Lemma 2.15. For any pe (1, «), q € (1, ], s€ [0, n) and,B v € (0, ) withnp as in(2.2). Let

{Ak,a}k,a € bs and f:= ZkeZ Zaejk AkaPka CONVErges Ir(g(ﬁ 7)) Then fe L|0C

Proof. As f € (é(ﬁ, v))’, by Definition2.(iii), we know that for anyx, € M andlg € Z,

lo—-1 o
f= Z Z /lk’a (lﬁk,a - wk,a(XO)) + Z Z Ak,a‘ﬂk,a = fl + f2 (228)
k=—co @€ Jk k=lp @€ T

in (é(ﬂ, v))’. Thus, to finish the proof of this lemma, we only need to show that forxaryM and
|o €Z,

Iy = (fB(XO,(;lo)lfl(X)'p d/«t(X))% <o (2.29)



16 Jun Cao AND ALEXANDER GRIGOR’ YAN

and

1

PEE (f | f2(X)|P d,u(x))ﬁ < 0. (2.30)
B(x0.6'0)

We first prove 2.29. By (2.28), Definition2.3and(VD), we have

1
p

[ lo—-1 . n p
l1 S { fB st Z Z | ko] 1(B(Xcar 6¥)) 2 eXp{_P(X;;((k,a)}(p(EkXo)) } d,u(X)} (2.31)

L k=—00 a€Jk
1
lo-1 [ p P
1 (lo— P(X, X.a)
s Z {L Z |/1k,(z|:u(Qk,a) 2600 Kin exp{_T}l d,u(x)} .
k=—o00 | €T«

We now need the following pointwise estimate on the Hardy-Littlewood maximal function ftdm [
15] (see also49, Lemma 3.10]): forank e M,

X, Xk, 1 (-
D7 ko] 1(Qua) 2600707 exp{—’%} sM[Z o] 1(Qia) 2500 k)"lqk,(,](x), (2.32)

ac€Jk aeJk

where M denotes the Hardy-Littlewood maximal function as1nl©). Together with 2.31), theLP
boundedness oM and the fack < 5, this implies that

.1s“’§{fM

1 _
3 ] 1(Qen) 260714, ()
@€k

k=—o00

p P
dﬂ(x)} (2.33)

lo—-1 3
1.1 4 i \P

S Z Z (|/lk,a/|/vl(Qk,a/)p 2600 k)n) ]

k=—o0 La€Jk

NI 1_1\P %’
s, olorRmasoos) (Iﬂk,alu(Qk,a)ﬁ‘ﬁ)}

k=—co aeJk

gy 1/q
o 1_1\P|P

< Z slo-H)sa Z (|/1k,(z|,u(Qk,(z)l_3_§) < kel llsg,, < o

k=—co @€k

which proves 2.29.
To prove .30, by an argument similar to that 02.33, we see

o p b
Iy < d
2<kz.{fM ﬂ(X)}

1
) P

< Z Sk-lo)sg—(k-lo)s
k=lp

< {Z slo-Ksq

k=To

Z |/lk,<1| /'[((1?k,a)_:_2L 1Qk)a (X)
ek

Z (|/lk’”| ﬂ(Qk,a)%—% )1

a€Jk
1/q
P

9
1_1\P
D (|/lk,a|ﬂ(Qk,a)p 2) S HAkalka b, < o

a€Jk
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which proves 2.30 and hence completes the proof of Lemhas

Now we prove Theorerd.11(ii) using Lemma2.15

Proof of Theoren2.11(ii). Let{Axqlkez.acq, € l':)S andf := R({Akq}ko) be asin2.14). By Lemmas

2.1Q(ii) and 2.15 we know thatf € (G(3,7)) n LP

ioc (M). Thus, to finish the proof of Theorem
2.11(ii), we only need to show that

1flleg, S [[{Acatcollys, - (2.34)

For anyj € Z andx, y € M satisfyingp(x,y) < &/, write

f= Z Z /lk,awk,w + Z Z /lk,a‘pk,(t = 1El + f2- (235)

k<j aeJx k>j a€Jk

Then, by Definitior2.3, the assumptiop(x, y) < ¢! and by .32, we have
1f1() — fa(Y)I < Z Z | o [Pka () = Yk Y)|

k<] aeJk

n
s Z Z |/lka|,u(Qka) 12 exp{ (%, Xka)}(ﬂ(;(;(y))

k<] aeJk

SO M [ D Iﬂk,alu(Qk,a)-”Zé“‘k)"lqkﬂ] ().

k<j €Tk

This implies that, for anyx € M,
1
i (1)) = { Jg( LR du(y)} (2.36)
X,

sy sty [ D Akl 1(Qua) ™ 21%) ().

k<] a€Jk

By (1.99, (2.36 and Young’s convolution inequality (note th@"-9};.0 € I1* asp > ), we see

1
q
Ifallgs, = {Z |16‘J'de,p(f1)|1‘ﬂp} (2.37)
i€z

i i
2
|

Zé (k=D 3)5"3‘ (Z | Ao 14(Qua) ™Y 21Qk,a]

J€Z | k<] a€Jk
jez

r 119
(- D)r-9 ks 1P
Z‘S V=S Z (l/lk,(lllu(Qk,a)p 2)

| k<] a€Jk

Ql=

1_1\P 5
|/1k,a|ﬂ(Qk,a) P 2) = ||{ﬂ'k"l}k’a||b‘s,yq .

Z 6—ksq

keZ

a€Jk
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For f,, we have

1f2(%) — f2(y)l < [f2(91 + [f2(Y)I. (2.38)

We first estimatefa(y)|. By (2.35, Definition2.3, (VD) and @.32, we obtain

201 Y, 3 ol Q) H2erp{ -LEZ < 57 M[Z |ak,a|ﬂ(Qk,a)-1/21Qk,,} o).

k>j aeJk k> j N

Thus, similar to 2.37), we have

s

jez

1

5 ( f O du(y))5

< {Z > olkDsgks IM o M [ D kel #(Qua) ™ Zlok.a]

a)a
} (2.39)

L
:I[ é
LP }

J€Z | k=] a€Jk

[ 190 5
PN DY (mk,au(Qk,a)%-%)p] }

ez ngj a€Jk

< {Z 6—ksq

kez

LN
D (|ﬂk,a|u(Qk,a)%‘%)p]p} = [l(adolis, -

a€Jk

Similarly, we obtain

ol

q

~Jjs p %
5 (Ji("éj)lfz(x)l dﬂ(Y))

Combining @.35 and .37 through @.40, we conclude thatX.34) holds true. This finishes the
proof of Theoren®.1(ii).

q
} s “{Ak,a}k,a”baq . (240)
i€z p '

L

O

We now prove Theorer@.12

Proof of Theoren2.12 We first prove Theorer?.14i). Let f € Fg’q andE(f) be as in 2.13. By
(2.9, we need to show that

a3
- Zé—kSQ[Z #(Qka) 21q,, () |<f,¢k,a>|] } < Hllgs,- (2.41)
keZ a€Jk Lp

Similar to .25, we know that for ank € Z, a € Jx andx € Q,,

(F,vad| = UM Ya(y) (F(y) = £(X) dﬂ(Y)‘ (2.42)
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< Q) ? | exp{—”(y’;k"’)}|f<y)— F(l du(y)

< [1(Qxa)] ‘%Z f . )exp{—p(y;f”")}u(y)— F(9) dy)

S

[59)

< [1(Qua) LRI f 1100 1091 0ty

Xk(Y

S [:u(Qk rz)]

Nl
(Nl

_5- il s-id -
Y exel-s7}o Frpany 160 101 0

= [1(Qua)]? Y exp{-571} 67D ja()(9).
j=0

3 &

By (2.41]) together with 2.42) and @.7), we conclude

a3
Z(S_ksq[z #(Qka) 1Qka()[/1(Qka) Zexp 6 I lea(f)( )] ‘
LP

keZ a€Jk

1

o

. . [ . a

< exp{_é—]} 5-i@d+9) Z 5—(k—1)sq(Dj’k’a(f)(.))q‘

j=0 | keZ

LP
) a3

< Yol a9 || 3 st £ o) 161 dut)

j=0 | keZ B(46"7)) Lp
< flles,»

which implies that2.41) holds true and hence completes the proof of Thedeifi).
We now prove Theorer.1Jii). For any{Axq}kez.cc i € qu, let f := R({Akq)ke) De asin2.14).

By Corollary2.14(ii) and Lemma2.15 we know thatf € (g(ﬁ )Y nLP

loc*

of Theorenm?2.1Jii), it suffices to prove thattf”,iaq < ||{/lk,a}k,a||f-3q, namely,

[Za ,sq( f RCE f(y)|du(y))q}l/q

jez

Thus, to finish the proof

< ”{/lk,(l}k,d”f&q' (243)
LP

By (2.14), write

f= Z Z Ak aWka + Z Z Ak a¥ka =: fr + f2. (2.44)

k<j aeJk k<j aeJk
For f1, by (2.36), we know thatx € M,

d; p(f)() = { f 00 )P du(v)}ﬁ

sy 5ty [ D Akl #(Qua) ™ 21%) ().

k<] a€Jk
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Combined with the F&erman-Stein vector valued maximal inequality (s&€8 [Theorem 1.2]), this
yields

1/q
{Z 57159 (d j,p(fl))ﬂ

jez

LP

_ qil/q
< || a7isa {Z 5—<'<—J')"M[Z || 1(Qa) ™ Zlom]]
| jez k<j a€Jk
LP
i ay1/q
<> [Z 6_("‘1)(”‘5)/\/1[2 5% Ao 1(Qua) ™ 21%]]
| jeZ \ k<] @€k :
LP
_ q11/q
< Z [M ( Z 57| Ao 1(Qua) ™ 21(%}]
| kez @€k Lp
_ q11/q
< Zé—ksq(z ’Ak’a|#(Qk’a)_l/21QM] < Ak tkalls,
LkeZ a€Jk LP

The estimates fof, is similar.

3 Real and complex interpolations

In this section, we establish the real and complex interpolations of the homogeneous Lipschitz-
type function spaces and some of their inhomogeneous versions. Throughout this section, we assume
that the underlying metric measure spabk4, ) is unbounded and satisfy the conditirD).

We first in SectiorB8.1review some basic facts and properties of interpolation; then in Sex@pn
we consider the interpolations of the homogeneous Lipschitz-type function spaces with smoothness
parameters € (0,1). Finally, in Section3.3, we extend the interpolations of Secti8 to the
endpoint case = 0 and also to some of their inhomogeneous versions.

3.1 Preliminaries on interpolation

Let (Xo, X1) be a compatible couple of Banach spaces, namely, there exists a Hatutdogical
vector spacé’ such that for any € {1, 2}, X; c Y. For any compatible Banach coupléy X1), the
sumXg + X; is defined to the Banach space under the norm

llallxo+3x, = Inf {llacllx, + llallx, : a=ag+as with ag € Xo, a1 € Xy} .
For anya € X, + X3 andt € (0, o), theK-functionalof f is defined by
K(a, t; Xo, X1) := inf {|lagllx, + tllaullx, : &= ap+ a1 with ag € Xo,a1 € X1}. (3.2)

Notice thatK(a, t; Xp, X1) is increase in.
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Definition 3.1. Let (Xo,X1) be a compatible Banach couple até (0,1), g € (1, «]. Thereal
interpolation spac€Xo, X1)gq is defined to be the space of alk X + X; such that

o 1
Flltg g = [ [ (k@ zox)' ¢ 3.2)
with the usual modification wheq= oo.
Let
Sp:={zeC: O0<Rez< 1} (3.3)
be an open strip in the complex pla@eand
Si={zeC: 0<Rez< 1} (3.4)

be its closure. LetAx,x,) be the set of all bounded analytic functiofs So — Xo + X4, which
can be extended to continuous functions®and satisfy that for any € {0, 1}, the functiont —
F(j +it) : R — X is bounded and continuous. For Ry Ax, x,), endow with the norm

1Pl gy ey = max{supnF(it)uXO  SUplIF(1+ it)“xl} . (3.5)
teR teR

Definition 3.2. Let (Xo, X1) be a compatible Banach couple ahd (0, 1). Thecomplex interpolation
spacgXp, X1]y is defined to be the space of all

ae ﬂ(xo,xl)(e) = {F(Q) c Fe ﬂ(Xle)}
endow with the norm

o 1, = N {IF Il .., = FO) = a}. (3.6)

The real and complex interpolations are the two most important interpolation methods in the liter-
ature (seeT, 44]). In particular, they satisfy the following interpolation property (séeTheorems
3.1.2and 4.1.2]).

Lemma 3.3. Let (Xg, X3) and (Y, Y1) be two compatible couples of Banach spaces. Consider a
bounded linear operator T X; — Yj for j € {0,1}. Then for any € (0,1) and qe (1, co], T
induces a bounded linear operatoy Fatisfying

Ty (Xo,X1)a,g — (Yo, Y1)oq
and
To : [Xo,X1]o — [Yo, Y1]o
with the operator nornjiTy|| < ||T||§§:)9_)YO||T||§§1_)Y1.

Let (Xp, X1) and (Yo, Y1) be two compatible couples of Banach spaces. We call thafi(y) is a
retract of (Xo, X;) if there exist two bounded linear operators such that

() E: Y; - Xjforje{0,1};
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(i) R: X; - Yjforje{0,1};
(i) RoE=1onYjforje{01}.
The following result on the retract of interpolation can be foundiiy p. 22].

Lemma 3.4. Let (Xp, X1) and (Yo, Y1) be two compatible couples of Banach spaces. Assume that
(Yo, Y1) is a retract of(Xg, X3). Then for anyd € (0,1) and qe (1, ],

(Yo, Y1)aq = R((Xo0, X1)ag)
and
[Yo, Y1]g = R([X0, X1]s) .

The advantage of Lemma4 is that it provides an approach to reduce the interpolation of the
spaces Yo, Y1) to that of Ko, X1), whose interpolation is usually easier to establish. One typical
example of suckX-space is the following mixed norm Lebesgue space. To be precise, fqv any
(1, ), g€ (1, o] ands € [0, =), let

15 (Lp) = {{feCkez 1 () € LP(M) and [ fu(Miezlig,y < o}

where
%
||{fk(')}keZ|||'a(|_p) = (Z 6‘k5q||fk(-)||ﬁp] (3.7)
keZ

with 6 € (0,1).

Let

Lo (1§) = {(iez IR ezllLyigy < o}

where

It fk(')}keZ”Lp([a) = (3.8)

{Z 5‘ksq|fk(-)|‘*}q

keZ

Lp

The following interpolation of mixed norm Lebesgue spaces can been foudd@i@pter 5] (see
also g4, Section 1.18]).

Lemma 3.5. Let p, p1 € (1, ), o, 1 € (1, ], S, &1 € [0, o0) andd € (0, 1).

(i) For p € (1, ), g € (1, ] and s € [0, ) satisfying% = 1%'09 + & % = %’ + & and
s=(1-0)s + 0sy, it holds

[13 (Loo) - 2 (Lp)], = T3(0L) (3.9

and

[ Lo (15) - Lo (161, = Lo (15) (3.10)
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(i) If sg # s1, then for any pe (1, ), q € (1, o] and se [0, o) satisfying s= (1 - 0)sp + s, it
holds

(i3 (L )|Sl(|_p)) = I5(Lp) (3.11)

and
(Lo (12)- Lo (1)), q = 15 (Le)- (3.12)

3.2 Interpolations of Besov and Triebel-Lizorkin spaces

Let (M, p, u) satisfy(VD). The following two theorems give the real and complex interpolations of
the homogeneous Besov and Triebel-Lizorkin spaces w0, 1).

Theorem 3.6. Let p, p1 € (1, =), Qo, G1 € (1 =], S, &1 € (0,1) and g € (0,1). Then for any

pe (L), ge (1 0] and se (0, 1) satisfyings = £ + £, 2 = € + £ and s= (1 - 6)so + 65,

[ngqo, 'plql] = B, (3.13)
and
[Fp0 w0 F3L Ch]e =FSg (3.14)

Theorem 3.7. Let oy, g1 € (1, 0], S, &1 € (0, 1) with § # 51 andé € (0, 1). Then for any pe (1, o),
g € (1, o0] and se (0, 1) satisfying s= (1 — 8)sg + 051,

(BBOQO’ Bp. ql) = Bz,q (3.15)
and
(Fgoqo, Ff)lql) =B (3.16)

We prove Theorem8.6 and3.7 by using Lemma&B.4. To this end, we need the following retract
operators. For any sequencR , Jkez..cq, C R with i as in @.8), let

E ({Akalka) = {filkez (3.17)
be a sequence of functions dhwith
fk = Z /lk,ale,a/l(Qk,a)_l/za (318)
a€Jk

where{Qx . Jkez.0c g, denotes the dyadic cubes as in Definitiha
On the other hand, for any sequence of functipifez in Llloc(M), let

ﬁ({ fk}k) = {Ak,a}kez,aejk (319)

be a sequence of numbersRwith

Yo 1= 1(Qua) 2 fQ (%) dhu(). (3.20)
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Lemma 3.8. Let pe (1, ), q € (1,»], s€ (0,1) andE, R be respectively as i{8.17) and (3.19.
Then,

() E:bSq— IS(Lp), f5q — Lp(is) are bounded;

(i) R:I§(Lp) = b5 Lp(S) — f5, are bounded;
(i) RoE=1lonby,andfg,.

Proof. We first prove (iii). For any sequence of numb@ig, }kez.0c7, € R, by (3.18, (3.20 and

Definition 2.2(ii), we have

Ro E ({Aceka) = ﬁ[{ > /lk,ale,;;ﬂ(Qk,a)‘l/z} ]
k

acJk
1 4 [ 2009 h90(Q) V(@ P = (b
Eejk Qk,a k,oz

which immediately implies that (iii) holds true. _
Let us now prove (i). We first show thé&t : bf),q - Ig(Lp) is bounded. Indeed, for afylx .}k €
by o bY 3-7), (3.17), (3.18 and Definition2.2, we know

|E ({Akalka)

Z /lk,(l 1Qk,(y#(Qk,Q)_1/2
@€Jk

o ksq
is(Lp) [Z 0
kez

— o
e}
D ——

L Q-

hS 9
bp-q

< {Z 6—ksq Z (|/lk,a|/“‘(Qk,a)%_%)p p} = “{/lk,a}k,a

kezZ Lae Tk

which implies tha€ : b, — IS(Lp) is bounded. The proof of the boundednesgof {5, — Ly(I5)
is similar, the details being omitted.

We now prove (ii). As in the proof of (i), we only prove one of the claimed boundedness.

particular, we will show thaR : Lp(l'g) - f';q is bounded. Indeed, for anfylkez € Lp(lg), by (2.9),
(3.19, (3.20 and B.7), we see

] .
”R({ fk}k)“friq < Z5‘k5q Z ”flekﬂ |_1ﬂ(Qk,a)_1/21Qk,mu(Qk’a)_l/2) ]
L keZ erk g
] 0!
s>kl > [ f |fid dﬂ(x)] 1%)
L keZ aeJk Qo o
. 1
q
s Zé‘ksqwuk»ﬂ
LkeZ L

In
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%‘.
< [Z 57ksq fqu} ~ ||t fk}k”Lp(ia '

kezZ Lp

This implies thaR : Lp(i§) — f3, is bounded. The proof of the boundednBss I§(Lp) — bS is
similar. This finishes the proof of (ii).
Altogether, we finish the proof of Lemnga8.

With the help of Lemma.8, we now turn to the proof of Theoren3s6and3.7.

Proofs of Theorem3.6and3.7. Let pg, p1 € (1, =), go, 01 € (1, 0] and sy, 51 € (0,1). LetE andR
be respectively as ir2(13 and @.14. Then by Theoren2.11, Propositior2.7 and Lemma2.1((ii),
we know that forj € {0, 1},

(i) E: By g — bp g is bounded;
(i) R: by g — By g is bounded;
(i) RoE=1o0n BIOJ g

Thus, B 4, Br.qy) iS @ retract of % ¢, b ¢,) as described in Sectichl By Lemma3.4, we
know that for anyd € (0, 1) andq € (1, 0],

(B0 By = R(OBaor D)y o) (3.21)
and
[BpO do> 813311 Ch] = R([bpo Qo> p1 ql] ) (3.22)

On the other hand, & andR be respectively as ir8(17) and @.19. By Lemmas3.8and3.4, we
know that for anyd € (0, 1) andq € (1, 0],

(Do D)y = ﬁ((l'é';(Lpo), l'éi(Lpl))g,q) (3.23)
and
[6%.00- B3y |, = R[IBLP) 15LP],)- (3.24)

Moreover, by Lemma.5, we find for anypo, p1 € (1, ), go, 01 € (1, 0] and sy, 51 € (0, 1),
(@) if sg # s1, then foranyp € (1, =), g € (1, ] ands e (0, 1) satisfyings = (1 — 6)sy + 051,

(i (Lp) 1§ (Lp)), = Ta(Lp): (3.25)
(b) for p € (1, ), g € (1, o] ands € (0,1) satisfying% =& L 2= 84 Lands =

(1 9) 0 Po P’ q o q
—0)S + 09,

|15 (Lpo) 152 (Lp) ], = 15(Le). (3.26)
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Note thatR o R(I§(Lp)) = R(b5) = B4 This combined with.21) through 8.26) implies that

S S1 _ RS
(Bpo do> Bp1 q1)9q Bp q°
S0 S| — RS
[Bpo Jo> Bpl,fh]g - BP,Q'

and hence proves Theore®$ and3.7 for the Besov spaces.

The proofs of Theoren3.6 and 3.7 for the Triebel-Lizorkin spaces are similar, we only need to
replace the sequence spabgg andi§(Lp) respectively byfs, andL(l3), the details being omitted.
This finishes the proofs of Theorer@and3.7.

|
3.3 Interpolations at the endpoint case
The next theorem extends some of the interpolations of Se8tiio the cases = 1.
Theorem 3.9. Let p, p1 € (1, ), 01 € (1, =] and s6 € (0, 1). Then,
(i) (LP. B3, ql) = Bfs , for any ge (1, ];
(ii) [LPO F;snlql] = Fis, with p € (1, ) satlsfylng— = Wf) % and g e (1, ] satisfyingé =
2 Ty Q1

Before proving Theoren3.9, we need the following wavelet characterization of the Lebesgue
spaceLP(M) from [26, Theorem 4.3].

Lemma 3.10([2€]). Supposg, v € (0,77) and pe (1, ). Then for any fe LP(M),
1 llLp = ||{<f,wk,(,>}kez,(,ejk||f-82,

where the implicit constants are independent of f.
We now turn to the proof of Theoref9.

Proof of Theoren3.9. Observe that (ii) follows immediately from Lemm3alOand an argument sim-
ilar to the proof of 8.14) in Theorem3.6. Thus, it sdifices to prove (i). To simply the notation we set
po = p in the remainder of the proof. We divide the proof into three steps.

Step |: we first show that for ang € (max2, g1}, o] (here we tak@ = oo if q; = =),

(L. B} )y © BRer (3.27)

Indeed, for anyf € (LP, Bzﬁ)g c LP+ B 7 C LI‘(’)c Let f = fp + f; be an arbitrary decomposition

with fo € LPandf; € B’S)a. Assume firsg < co0. By Theorenm2.11, we have

dt
111 < [ e (Eato ) T+l (3.28)
q
11 PP
s > 67K09(Eg(fo. ) Zé‘k"sq D (/J(Qk,a)p 2|<f1,wk,a>|)‘ :
keZ keZ €Tk
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where, for anyt € (0,0) andg € L ,

1
p
a0 ([ £ 1009~ 900 chiccs)
M JB(x,t)
As p e (1,), itis easy to see
Ep(g. 1) < ligllLe.
This implies that
Z(s—"“q (Ep(fo. 5") Zé—k95q||f 19, (3.29)
kezZ keZ
On the other hand, by Lemn2al0Oand Theoren2.11again, we find

q
p
Z 6—k€sq

> (#(Qk,a)%—% |(fa, wk,a>|)p}_
kezZ

erk

1.9
p P
sZé‘k‘g‘l)sq{é‘ks > (@ |<f1,wk,a>|)} } < 25D,

keZ a€Jk keZ
which combined with3.28 and @.29 implies that
11, < > 6% ifolls + Ul |
P ez
By (3.1, (3.2) and the arbitrariness of the decompositioa fy + f1, we conclude that

ha kezZ 0 q

- ~|| .

which proves 8.27) for q < o. The caseq = oo follows from a similar argument with a minor
modification on the norrnf||Bsg .
Step II: we show that for any kX r < min{2, p, q},

0 0
B, < (B B;r)e,q’ (3.30)
whereBS is as in @.20).
Indeed, for anyf € B%Sq, write
=, ( D, wm) Uka + ) ( D, wm) Yo = fo+ fo, (331)
k>j \aeJx k<j \a€Jk
wherej € Z will be determined later.
By Theorem2.11, we have
lollgy < D" | D (1(Qea)P ™ [(F. vl } = > 4 (3.32)
k=j+1 LaeJk k=j+1
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By the Holder inequality and the assumption tHag B?S

.o’
fo S B%,r
Similarly, we have

i
-k
Ifally, s Y ok
p.r

k=—o00

we know '[ha11|fo||:-30 < oo and hence
p.r

D, (#(Qka)p 2 [¢f, wml) ] Z 57, (3.33)

aeJk

andf; € B},. Thus the decomposition i831) is a decomposition of in BS, + BS,. Combining
(3.1), (3.32 with (3.33, we find
J. 1
K(1,6% B3, B5) < (Ifollyy + 0 1l ) [Z g+ 6‘“%&] .
k=j+1 k=—00

This implies that

dt
. -0 0
|._j; “KI(f.t By, BY,) — (3.34)

szé—jesq Z & 4 glsr 2 5—ksr§|r(]

j€z k=j+1

SZ(S—jGSq Z gk] +Z§J(l e)sq[z 5K ] =11+ 1p.

jez k=j+1 jez

a
r

Forli, letO< ar < 9s< a1 < sando > r satisfyingg + < = 1. We find

Iy < Zé Jesq[ Z (5kazr6—ka2r ]r < 26 Jesq[ Z 6—ka2q§Q][ Z 6ka2<r] (3.35)

jez k=j+1 jez k=j+1 k=j+1
< Z 5—jQ(95—02)[ Z 5—'«!2%:3] ~ Z Z 5—(i—k)Q(95—02)5—k93q§E
jez k=j+1 J€Z k=j+1
k-1 _
~ Z Z ((«)-—(J—k)q(é)s—az))5—kﬁsq§E ~ Z 6—k€sq§E.
keZ j=—oco keZ

For I, we have

q

o 2
|2 < Zé‘jsq(l—ﬁ) Z 6—k(S—al)r6—k(11régil’<j| (336)

jeZ lk=—c0

. . q
[ J 2
< Z 6jsq(l—0) Z 5—k(21q§|((1} Z 6—k(s—al)aw

jez Lk=—c0 k=—o0

j
< Z slals(l-6)-sta1] { Z 6—kalQ§:E]

jez k=—o0
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j—kK 1-6)- —kfsqea —kfsqg¢d
< Z 26(1 )als(1-6) S+<Yl]}5 SQé:k ~ 25 Sqé:k'

kezZ | j=k kezZ

Combining 8.33 through @.36 and Theoren2.11, we conclude that

1
. . _ -0\ . po s Y
”f”(B%"Bf’-r)"’q_{fo‘ t%K9(f,t; B3, B3, ) T} — |1/d

s {Z 5‘k95q63}q - {Z 5K 3" (1 Q)P |<f,wk,a>|)p]p} ~ il

keZ keZ a€Jk

This proves 8.30.
Step Ill: We finally prove (i). Let 1< r < min{2, p, g} be as in Step Il. ByZ.21) and Corollary
2.14 we have

50 ~0 0 _p
Bp,,r C Bp,min{p,Z} C Fp,Z = LP.

This combined with Steps | and Il implies that

s, (B

p.r .B;,")e,q c (Lp’ BISJ»T)H,q c (Lp’ BZﬁ)O,q < By

p.9°

which completes the proof of Theore3rd.
|

Based on Theorer8.9 and Corollary2.14, we immediately obtain the following endpoint real
interpolation of the homogeneous Triebel-Lizorkin spaces.

Corollary 3.11. Let pe (1, =), g1 € (1, ] and se (0, 1). Then, for any € (0, 1) and ge (1, o],
(Lp’ 'irsml)g,q - 'ig,stx
The following theorem establishes the endpoint real interpolation of the inhomogeneous spaces.
Theorem 3.12.Let pe (1, ), 01 € (1, o] and se (0, 1). Then for any € (0, 1) and qe (1, o],
() (LP. Bhay)y q = BRw
() (LP.F3q.),q = B
For the proof of Theorer.12 we need the following lemma.

Lemma 3.13. Let pe (1,00) andX c L? (M) be a Banach space satisfying thaP, X n LP) is a

loc
compatible Banach couple. Then for ang (0, o) and f € LP,

min{1, t}|| f|je + K(f,t; LP,X) = K(f,t;LP,X N LP).
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Proof. We prove this lemma using the idea from the proofi8,[Theorem 4.2]. Lef € LP(M). By
(3.1, itis easy to see tha€(f,t; L, X) < K(f,t;LP,X N LP). Moreover, ad.? + (XN LP) c LP, we
have
min{1, t}{| fllLe < min{L, I fllLe+eney < K(F, 6 LP, X N LP),

which implies that

min{1, t}|| flle + K(f,t; LP,X) < K(f,t; LP, X N LP). (3.37)

We now prove the opposite inequality. By the definitiorkefunctional, it is easy to see that
K(f,t; LP,X N LP) <||f]|Le.
Thus, to finish the proof, we only need to show that for aay0, 1),
K(f,t; LP, X N LP) 5 K(f,t;LP,X) + t|| f]lLe. (3.38)

Indeed, for any € (0, 1) small enough, let = fy + f; be a decomposition satisfyinfg € LP, f; € X
and

lIfollLe + tl fallx < K(,t; LP,X) + €/2.
Sincef € LP, we see thaf; € X n LP. Sincet € (0, 1), we obtain

K(f,t; LP,X N LP) <|follLe + t (I fallLe + [ fallx)
< K(f,t; LP,X) + tl| fallLe + €/2
< K(f,t; LP.X) + [IfollLe + tll fllLe + €/2 < 2K(f, t; LP, X) + t|flLe + €.

Sincee is arbitrary, we obtain3.38 and finish the proof. O
With the help of Lemm&.13 we now prove Theorerf.12

Proof of Theoren8.12 Without loss of generality, we only prove (i). The inclusidrP(Bf)’ql)g’q -
Bl is an easy consequence of_TheoKé@(i) and the fact®8} , = B3, N LPandBj, = BY, N LP.
To prove the converse inclusion, Iet LP(M), by (3.2), Lemma3.13and Theoren3.9, we have

1
- . : qdt|a
””'(Lp,saql)e.q:[ fo (EK(F.6LP. By, N LP)) T]

1 1
oo _ dtla 00 . dt|a
f (tOK(F G LP, B[S)’ql))qT} + UO (t‘emm{l,t}llfllw)q?}

0

<

~

< : ~
S IFlp 880,000 + 1Tlo = g,

which implies the incIusiorBflg’Sq C (LP,Bj¢,)eq and hence (i). By (i) and Corollarg.14i), we
conclude that (i) is also satisfied, which finishes the proof of The@dra
m|
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4 Proofs of main results

In this section, we prove the main results of this paper. To that end, we first prove in Skéteoon
Hardy-Littlewood-Sobolev-Kato estimates for parameter®(®) as on Fig. 3; then in Sectioh?2,
we prove Theorem$.2and1.3

4.1 The Hardy-Littlewood-Sobolev-Kato estimates

Let® € (0,1) be asin{.7) andP(®) be asin 1.12) (see also Figure 3). The following proposition
gives a Hardy-Littlewood-Sobolev-Kato estimates for parameiensds in P(0).

Proposition 4.1. Let (M, p, u) be a metric measure space satisfying the condi(®B). Let U :=
(%, s)and N := (é,r) € P(®) as in(1.12. Assume that € (0,7) andy € &(Z,) is in the extended
Dunford-Riesz class and satisfies the following estimate

[N ey < 0
with
o(U,N) = %ﬂg(%}ﬁ), (4.1)

where d denotes the Hausgtdimension of M as iifl1.5). Then for any fe Ii;z,

(L) Fller, < 27Vl Nl (4.2)

To prove Propositiort.1, we need the following result on the characterization on the domain of
the fractional power of the generatér

Lemma 4.2. Let (M, p, 1) be a metric measure space satisfy(@B). Then the following is true.

(i) Forany se (0,1), we havedomy(L£%?) = F3,. Moreover, for all fe domy(L%?),

L2 8[] o = 11flles,.
(if) For any se (0,0) and p € (1, ), we havedomy,(£%?) = F;’z. Moreover, for all f €
domy(£5?),

”‘ES/ZfHLp = ||f |||i;2-

Proof. The assertion (i) was proved i@, Corollary 5.5]. Thus, it sfiices to prove (ii). AsM, p, u)
satisfies the condition®D) and(GB), we have

£l = 1l
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whereFS*L and FS*L LP N F5’£ denote respectively the homogeneous and inhomogeneous heat
Triebel- L|zork|n spaces (seé3§ Theorem 7.8] and1]7, Theorem 6.5]). Moreover, by using an
argument similar to the proof ofl[, Theorem 3.1], we obtain that, for arsye (0,0) andp,q €

(1, ),

FS&=F3

pq p.a° (4'3)

which implies (ii). Note that although irL[l, Theorem 3.1],4.3) is proved only in the setting of the
Euclidean space, the proof can be extended easily to the present setting bfvimirrgd(GB). O

We also need the following result of the boundedness of the Riesz poténti&lfrom LP to LY.

Lemma 4.3. Let (M, p, u) be a metric measure space satisfying the condi®B). Then for any
1< p<q< o anda € (0,d) satisfyingg = % - % the Riesz potential=*/? is bounded from P.to
La.

Proof. By the functional calculus for the Riesz potential (s24 [Corollary 3.3.6]), we know that

1 0 dt
—a/2 _ a/2-tL F
L ‘r(a/z)fo veT T

which combined with the conditio(GB) implies that£~%/? has an integral kerné{(-, -) satisfying
that for anyx, y € M,

IK(xy)I < [0 y)]* .

This implies that£~*/? is a generalized fractional integral dh defined as in39]. By [39, Corollary
2.5], we know that£=*/? is bounded frorLP to L9, which completes the proof of Lemrda3. O

We now turn to the proof of Propositiahl

Proof of Propositiod.1 LetU := (£, 9), N := (£,r) € P(0) be as as inX.12 andm(U, N) the slop

of the vectolUN. We consider three cases based on the siza(af, N)|.
Case I:m(U, N)| = oo. In this case, we always haye= g and hencex(U, N) = %(r —9). If further
p == 2, then foranyf F22, by Lemmad.2(i), we know

Z%(r—s) Z%(r—s)so

(D) lleg, = [£720(L)F| 2 <

i

Ll @4

which verifies 4.2) in this subcase.
On the other hand, if mdx s} < ©, then by Lemma4.2ii) and the bounded., functional
calculus, we have for anf/ € sz,

le(L)lley, ~ [ L2l < 209

¢l o I1lles s (4.5)

which shows that4.2) also holds in this subcase.

If p=qg# 2andmax,s} > 0, without loss of generality, we assume thrat § < ©. Otherwise,
we may decompose the veciaN into a finite number of vectors with equally small lengtt® and
then use the above estimates by composition (see the proafiloTheorem 4.3] in the Euclidean



Hear KERNELS AND BEsov Spaces oN METRIC MEASURE SpACES 33

case). Asr — § < O, we know that there exidtly := (%,so), No = (%,Fo), Ui = (3, 50),
N; := (3,11) € P(®) andd € (0, 1) satisfying

max S, o} < O,
fo—S=r—-s=r1-9, (4.6)
_ Il _ 5%

T rn-ro T si-s°
Note that by the definition oP(®) as illustrated on Figure 3, such points always exist. By Theorem
3.6and @.6), we find

. re oy
Fo2= [Fp%,z’ Fsz]g’
4.7)
S SR
FS,Z - [Fpo,Z’ F;?Z]y'
Moreover, @.6) implies thatUgNp andU;N; belong to the above sub-cases which have already been
dealt with. This yields that

s
29| Nl

k(L) fllro <
Po-2
(L)l <

1
229 || fllest
@l e

which together with4.6), (4.7) and Lemma3.3 shows that for any € F;z,

(DTl , <

Thus @.2) holds under Case I.

Case II: Im(U, N)| = 0. In this case, we always have= sand hencex(U, N)
consider two subcases: fay s€ (0,0); b)r =se€[0,1).

For the case ll-a), by Lemmads2(ii) and 4.3, we have that for any € lflro’z,

1
22(-9 ” flles .
o 111

Il
NI
—~~
el
|

I=
\_./
2
Q
3

k(D) Fller, < [£7%(D) ||
_%(%’_é)-ﬁr/ztp(-ﬁ)f

< <

Ld

del 1
om0y
yZACHK

® Loo

3G3-9
2670g|| il

which verifies 4.2) under Case ll-a).
. . rrersd
For the case II-b), letlg := (,rg) andNp := (%, ro) with rg € (0, ®). It is easy to see thailMg

andﬁo_ﬁ belong to Case I, whildgNg belong to Case Il-a). This implies that for afye Iilro,2

||g0(£)f||,5(r42 ~ ‘L%(ro—r)dﬁ)L—%(ro—r)fH'ir < ”¢(£)£—%(To—r)f’ ‘
, "

"0
Fq,2
1_

d 1 1 1
5(5-3) —Z(ro—r
220 | |1 £ 200 f o S
P.

< z%(ﬁ_é) H e
= o Nfler

which implies @.2) under Case lI-b) and hence Case Il.
i . i 1 —_— rrered A
The Case lll: [Im(U, N)| € (0, o). In this case, letg := (G’S)' By the factUN = UUg + UgN,
we know that 4.2) follows from a composition argument similar to that used in Case 1lI-b), the details
being omitted. This finishes the proof of Proposita.
i
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Corollary 4.4. Let(2, 9) € P(®). Thendomy(L5?) = FS o

Proof. For any ¢, ) € P(0), letU := (5,0),N := (5,9, ¢(2) := Z%? and f € domy(£L?). By the
fact £32f € LP = Iigz and Propositiort. 1, we know thaf|flle: = (L)LY% || < 1LY,
, ) p.2

This combined with {.15 and the facF5, = LP n F, shows that

1F1les, < 1 laomyz+2)

which implies that inclusion dogf£%/?) c F;’z.

On the other hand, for anfy FS’Z, letU := (%, 9), N := (%,0) andg(2) := z¥2. By Proposition
4.1again, we find

12528, < s,

which implies the converse inclusidﬁg2 C donb(LS/z) and hence finishes the proof of Corollary
4.4
|
4.2 Proofs of Theoremsl.2and 1.3
We now prove Theorerh.2
Proof of Theoremi..2 For any % s) € P(®) andq € (1, =], let e € (0,1) small enough such that
1 's+¢€) e P(©). AsP(B) is open, we know that suchexists (see Figure 3). By Corollad4, we

P’
find

domy(£LE92) = FSt. (4.8)
Moreover, from p4, Chapter 6], it follows that there exisis= > € (0, 1) so that

(|_I°,olornpu;(s+€>/2))9q = B3 (4.9)

On the other hand, as= =2, by TheorenB.12 we see

Ste’
(LP, F;f;)g’q = B} (4.10)
Combining @.8) through @.10), we conclude that
L_
B%’q - B[SJ’q’
which completes the proof of Theoreh?. O

Finally we prove Theorernt.3

Proof of Theoreni.3. For anyp € (1, ), g € (1, o] ands € (0, 1), by [22, Theorem 1.5(a)], we
know that

L
BS,  BSZ. (4.12)
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We now turn to the proof of the converse inclusion. Fr@#, [Chapter 6], it follows that
L _ 1/2
B35 = (L. domy(£19))

This together witDF) and @.2) implies that for anyf € Bfiq,

1
« dt)a
||f||B;ﬁ ~ {fo t7SIKA(f, t; LP, B‘l”‘x’)T} ) (4.12)

On the other hand, let

. _ P
Ep(f.) { fM J€<x,t)'f(x) Hy) du(v)du(X)}

For any decompositiof = fy + f; with fg € LP andf; € Bl’oo, it follows from (VD), that Ey(fo,t) <
Il follLr and

1
p

(4.13)

1
p
Ep(f1,t) < tsupjt™ Stifallgy -
t>0 P

f f 1209 — F)IP dpaly) du(x)
M JB(x.t)

By this, (4.13 and the arbitrariness of the decompositibr= fg + f1, we conclude that, for any
t € (0, ),

which together with4.12 yields

1 1
« dt|a « dt|a
o~ -sqEd —-sdkd 1P gL ~
||f||B§)q—[jO‘ C9ER(F. 1) t] s[fo USRI G LP B = | > Ifllgse

This implies the incIusiorBf;ﬁ c Bflq and hence finishes the proof of Theor&r8. O
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