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Abstract. Let (M, ρ, μ) be a metric measure space satisfying the volume doubling condition.
Assume also that (M, ρ, μ) supports a heat kernel satisfying the upper and lower Gaussian bounds.
We study the problem of identity of two families of Besov spacesBs

p,q andBs,L
p,q , where the former

one is defined using purely the metric measure structure ofM, while the latter one is defined
by means of the heat semigroup associated with the heat kernel. We prove that the identity
Bs

p,q = Bs,L
p,q holds for a range of parametersp, q, s given by some Hardy-Littlewood-Sobolev-

Kato diagram.
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1 Introduction

1.1 Motivation and background

This work is devoted to the notion of Besov spaces in the setting of metric measure spaces. It
is customary to use various scales of function spaces, in particular, Besov spacesBs

p,q, in order to
measure the degree of smoothness of functions. Introduction of the Besov spaces inRd was motivated
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by the imbedding and extension problems [8]. Besides, the interpolation of Sobolev spaces leads also
to Besov spaces. For the theory of Besov spaces inRd there is an extensive literature, see, for example,
[4, 15, 42, 44, 45, 46, 47, 50].

In a general metric measure space there are various natural ways to define the family of Besov
spaces. One possibility is to use directly the metric and measure of the underlying space in order to
define the Besov seminorm (see (1.8) and (1.9a) below). The function spaces obtained in this way are
calledLipschitz type Besov spacesand are denoted byBs

p,q. Another possibility to define the Besov
seminorm arises in the presence of a heat semigroupe−tL with the generatorL acting inL2 (see (1.10)
and (1.11a) below). We refer to such spaces asBs,L

p,q .
The Lipschitz type Besov spaces were considered in [18, 20, 21, 34, 38, 40, 43, 49]) while the

spacesBs,L
p,q were dealt with in [9, 10, 17, 28, 29, 33, 36]. For other definitions of Besov spaces, we

refer the reader to [1, 2, 3, 25, 27, 35, 48].
Jonsson [32] introduced the spacesBs

p,q on the Sierpínski gasket and proved that the domain of the

associated Dirichlet form coincides withBβ/2
2,∞, whereβ is the walk dimension (see also [20, 21] for

an extension of this result to general metric measure spaces). Hu and Zähle [29] proved that, in the
setting of metric measure spaces,Bs,L

2,2 coincides with some Bessel potential spaceHs
2.

In 2010 Pietruska-Pałuba raised in [41] the following question:

Under what conditions the two spaces Bs
p,q and Bs,L

p,q are identical?

This question has attracted a lot of attention. InRd with L = −Δ, the identity

Bs
p,q = Bs,L

p,q (1.1)

has been known for long time for allp, q ∈ (1, ∞) and s ∈ (0, 1) (see [45, 46]). However, in the
case whenL = −div(A∇) is a uniformly elliptic operator inRd with real symmetric measurable
coefficients, the identity (1.1) can be only guaranteed when (1

p, s) lies in certain convex polygon
(shaded area on Fig.1), whileq ∈ (1,∞) is any (see [11] for the details).

1/p

s

Figure 1: the range forp ands for L = −div(A∇)

(0,0) (1,0)

(0,Θ)

(1/σ, 1) (1,1)

HereΘ ∈ (0,1) is the Ḧolder exponent of the heat kernel as is described in (1.7) below, andσ > 2 is
determined by the range ofp ∈ (1,∞) such that the Riesz transform associated withL is Lp bounded.

Hu and Z̈ahle [29] proved the identity (1.1) on metric measure spaces forp = q = 2 and for all
s ∈ (0, 1) assuming that the heat semigroupe−tL has the heat kernel satisfying certain upper and
lower bounds (see also [41] for a similar result).



Heat Kernels and Besov Spaces on Metric Measure Spaces 3

It was shown later in [22] that, under similar hypothesis, (1.1) holds for all p,q ∈ (1, ∞) and
s ∈ (0, Θ) (see also [49] for some similar results in the setting of RD-space). On Fig. 2, the range of
the parametersp ands is shown for which (1.1) is true according to [22, 29, 41, 49].

1/p

s

Figure 2: previously known range ofp ands

(0,0)

(1/2,1)

(0,Θ) (1,Θ)

(1,0) 1/p

s

P(Θ)

Figure 3: the new range ofp ands

(0,0)

(1/2,1)

(0,Θ) (1,Θ)

(1,0)

In the present paper we study the aforementioned problem in the setting of metric measure spaces,
under the hypothesis that the heat kernel satisfies Gaussian upper and lower bounds. Our main result,
Theorem1.2, says that (1.1) holds for anyq ∈ (1,∞] and any (1p, s) lying in a Hardy-Littlewood-
Sobolev-Kato diagramP(Θ) as shown on Fig. 3, which clearly significantly enlarges the domain of
p, s from Fig. 2.

Besides, we prove in Theorem1.3 that the identity (1.1) is true for the full range (1p, s) ∈ (0,1)2,
provided a further assumption on the domain of the square root ofL in theLp scale is satisfied.

Our proofs use completely new techniques based on wavelets with almost Lipschitz continuity.
Such wavelets were constructed in [6, 31] merely from the metric structure of the underlying space.
We use the wavelets to determine the interpolation spaces of certain Lipschitz type function spaces,
which together with the hypothesis about the heat kernel estimates enables us to prove some Hardy-
Littlewood-Sobolev-Kato estimates associated withL. These estimates finally give us the range of
the parametersp, s ensuring the validity of (1.1).

This paper is organized as follows. In Section1.2, we state the main results of this paper: Theorems
1.2 and 1.3 as well as introduce some necessary notions and notation. In Section2, we give the
wavelet characterizations of the Lipschitz-type function spaces. In Section3, we establish the real
and complex interpolations of those spaces. Finally, in Section4, we prove Theorems1.2and1.3.

1.2 Setup and main results

Let (M, ρ, μ) be a locally compact complete separable metric measure space, whereρ is a metric
andμ is a nonnegative Radon measure with full support onM. We say that (M, ρ, μ) satisfiesvolume
doubling(VD) if for any x ∈ M andr ∈ (0,∞),

μ(B(x,2r)) ≤ C0μ(B(x, r)), (1.2)

whereB(x, r) := {y ∈ M : ρ(y, x) < r} denotes the open ball centered atx of radiusr andC0 > 1 is a
positive constant independent ofx andr. It is easy to see that the condition(VD) implies that, for all
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x ∈ M, r ∈ (0,∞) andλ ∈ (1,∞),

μ(B(x, λr)) ≤ C0λ
dμ(B(x, r)), (1.3)

whered := log2 C0 > 0. For anyp ∈ [1,∞], consider the Lebesgue spaceLp(M) := Lp(M, μ).
To conduct a smoothness analysis on (M, ρ, μ), we use the notion of a heat kernel.

Definition 1.1 ([20]). A family {pt}t>0 of μ⊗μ-measurable functions onM×M is called aheat kernel
if the following conditions are satisfied forμ-almost allx, y ∈ M and alls, t > 0:

(i) Positivity: pt(x, y) ≥ 0.

(ii) Stochastic completeness:
∫

M
pt(x, y) dμ(y) ≡ 1.

(iii) Symmetry: pt(x, y) = pt(y, x).

(iv) Semigroup property:pt+s(x, y) =
∫

M
ps(x, z)pt(z, y) dμ(y).

(v) Approximation of identity: for anyf ∈ L2(M),

lim
t→0+

∫

M
pt(∙, y) f (y) dμ(y) = f

in L2(M).

In many occasions, a heat kernel appears as the integral kernel of a heat semigroup{Pt}t≥0 that is
associated with a regular Dirichlet form (E,F ) in L2(M) (see [16]). Conversely, given a heat kernel
{pt}t>0 as in Definition1.1, one constructs an associated heat semigroup{Pt}t≥0 acting onL2(M) by

Pt f (x) :=
∫

M
pt(x, y) f (y) dμ(y) (1.4)

for any f ∈ L2(M), t ∈ (0, ∞) andμ-almost allx ∈ M, andP0 f = f . Denote byL be the generator of
{Pt}t≥0 so thatPt = e−tL.

The metric measure space (M, ρ, μ) is said to satisfy theGaussian bounds(GB) if there exists a
heat kernel{pt}t>0 on M × M such that

1

C1td/2
exp

{

−
c0ρ(x, y)2

t

}

≤ pt(x, y) ≤
C1

td/2
exp

{

−
c1ρ(x, y)2

t

}

(1.5)

for μ-almost allx, y ∈ M and anyt ∈ (0,∞), whereC1, d, c0 andc2 are positive constants that are
independent ofx, y andt.

For example, the classical Gaussian-Weierstrass heat kernel inRd

pt(x, y) =
1

(4πt)d/2
exp

{

−
|x− y|2

4t

}

(1.6)

is associated with the Dirichlet form

E( f , f ) :=
∫

Rd
|∇ f |2 dx

with domainF = W1,p(Rd), and its generator is−Δ, whereΔ is the Laplace operator. Clearly, (1.6)
satisfies(GB).

The condition(GB) implies the following two conditions:
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(i) the volume regularity: for anyx ∈ M andr ∈ (0,∞),

μ(B(x, r)) ' rd,

where the implicit constants are independent ofx andr (see [20, Theorem 3.1]). In this case, it
is easy to see(VD) is true andμ(M) = ∞;

(ii) the Hölder regularity: the heat kernel{pt}t>0 satisfies the estimate

∣∣∣pt(x, y) − pt(x, y′)
∣∣∣ ≤ C2

(
ρ(y, y′)
√

t

)Θ 1

td/2
exp

{

−
c2[ρ(y, y′)]2

t

}

(1.7)

for anyt ∈ (0, ∞) and allx, y, y′ ∈ M such thatρ(y, y′) ≤
√

t, where the constantsΘ, C2, c2 are
positive and depend only onM; besidesΘ ∈ (0, 1) (see [23]).

Now let (M, ρ, μ) be a metric measure space satisfying(VD). We introduce theLipschitz Besov
space Bsp,q for any p ∈ (1,∞), q ∈ (1, ∞] ands ∈ (0, ∞) by

Bs
p,q :=

{
f ∈ Lp(M) : ‖ f ‖Bs

p,q
:= ‖ f ‖Lp + ‖ f ‖Ḃs

p,q
< ∞

}
, (1.8)

where

‖ f ‖Ḃs
p,q

:=





∫ ∞

0
r−sq

[∫

M

?

B(x,r)
| f (x) − f (y)|p dμ(y) dμ(x)

]q/p dr
r





1/q

(1.9a)

with the usual modification whenq = ∞. Here and hearafter,
?

B
:=

1
μ(B)

∫

B

denotes the integral mean over the setB.
Note that this definition ofBs

p,q does not depend on the operatorL or the heat kernel.
On the other hand, let (M, ρ, μ) be a metric measure space satisfying(GB). We introduce theheat

Besov space Bs,Lp,q for any p ∈ (1,∞), q ∈ (1, ∞] ands ∈ [0, ∞) by

Bs,L
p,q :=

{
f ∈ Lp(M) : ‖ f ‖Bs,L

p,q
:= ‖ f ‖Lp + ‖ f ‖Ḃs,L

p,q
< ∞

}
, (1.10)

where

‖ f ‖Ḃs,L
p,q

:=

{∫ ∞

0

[
t−s/2

∥∥∥(tL)k e−tL f
∥∥∥

Lp

]q dt
t

}1/q

(1.11a)

with somek ∈ Z+ ∩ (s/2, ∞) and we make the usual modification whenq = ∞. As it was pointed
out in [22, Proposition 2.9] (see also [33, Theorem 6.1]), the norms‖ ∙ ‖Bs,L

p,q
in (1.10) are equivalent

for different choices ofk ∈ Z+ ∩ (s/2, ∞), so that the spaceBs,L
p,q does not depend onk. BothBs

p,q and

Bs,L
p,q are Banach spaces. We refer to [22, 33, 49] for further properties of these spaces.
We use the Ḧolder exponentΘ ∈ (0,1) from (1.7) in order to define the following domain

P(Θ) :=





(
1
p
, s

)

∈ (0, 1)× (0, 1) :
1
p
∈




(0, 1), s ∈ (0, Θ),

( s−Θ
2(1−Θ) ,

2−s−Θ
2(1−Θ) ), s ∈ [Θ, 1)





(1.12)

that is a convex polygon in the (1
p, s)-plane as illustrated on Fig. 3. Following the terminology in [5],

we refer toP(Θ) as aHardy-Littlewood-Sobolev-Kato diagram.
Our main result is stated in the next theorem.
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Theorem 1.2. Let (M, ρ, μ) be a metric measure space satisfying(GB), and letP(Θ) be as on Fig. 3
(see also(1.12)). Then, for any(1/p, s) ∈ P(Θ) and q∈ (1, ∞], we have the identity

Bs
p,q = Bs,L

p,q . (1.13)

For the proof of Theorem1.2 we use the same strategy that we employed in [11] in the setting
of elliptic operators in Euclidean spaces. For that, we first consider the corresponding question for
Triebel-Lizorkin spaces at the endpoint valuess= 1 ands< Θ, and use interpolation to produce the
desired range of parameters. However, unlike the Euclidean setting, in the present abstract setting
there is no interpolation theory for Lipschitz-type function spaces. To overcome this difficulty, we
apply the technique of wavelets that enables us to establish the desired interpolation. The wavelets on
metric measure spaces were constructed by Hytönen and Tapiola [31]. The almost Lipschitz regularity
of these wavelets is essential in Theorem1.2– this allows to extend the range of the parameters from
s ∈ (0,Θ) as in [22] to s ∈ (0,1).

Another difficulty in the metric measure setting occurs at the endpoints = 1, which is related to
the domain of the square rootL1/2 of the generatorL. Recall that, for anyp ∈ (1,∞) ands ∈ (0,1],
the domain of the fractional powerLs/2 of L in the spaceLp is defined to be the space

domp(Ls/2) :=
{
f ∈ Lp : Ls/2 f ∈ Lp

}
(1.14)

endowed with the norm

‖ f ‖domp(Ls/2) := ‖ f ‖Lp +
∥∥∥Ls/2 f

∥∥∥
Lp . (1.15)

Recall that the fractional powerLs/2 is defined via the functional calculus (see, for example, [24]).
In the Euclidean case withL = −div(A∇), we usually have

domp(L1/2) = W1,p

for any p ∈ (1, σ) with σ > 2 depending onL (see Figure 1), whereW1,p is the classical Sobolev
space (see [5, Theorem 4.15]). However, in general metric measure spaces, we only have

dom2(L1/2) = B1
2,∞

see [20, Theorem 5.1]. Let us emphasize that the aforementioned difference in the characterizations
of the domain ofL1/2 leads to the difference in the ranges of the parameters on Fig. 1 and Fig. 2.

To obtain the full range of parameters for the identity (1.13), we introduce the following condition
for the characterization of domp(L1/2).

(DF). domp(L1/2) = B1
p,∞ for any p ∈ (1,∞).

The condition (DF) holds true ifM = Rd andL = Δ is the Laplace operator. In the general setting
of metric measure space (M, ρ, μ) satisfying(GB), let (E,F ) be the Dirichlet form with the generator
L. It was proved in [2, Corollary 4.10] that the condition(DF) holds provided (E,F ) is strongly local,
regular, and satisfies some strong Bakry-Émery curvature condition. On the other hand, there exist
examples of manifolds and graphs where(DF) is not satisfied for anyp , 2 (see [12, Theorem 5.1]).

Under Assumption(DF), the next theorem establishes the identity (1.1) for the full range of pa-
rameters.
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Theorem 1.3. Let (M, ρ, μ) be the metric measure space satisfying(GB) and (DF). Then, for all
p ∈ (1,∞), q ∈ (1,∞] and s∈ (0,1), we have

Bs
p,q = Bs,L

p,q .

Acknowledgement.This work was done during a stay of the first author at the University of Bielefeld
in 2017-2019. He would like to thank this university for the hospitality.

Notation. LetN := {1,2, . . .} andZ+ := N ∪ {0}. For any subsetE ⊂ M, 1E denotes itscharacteristic
function. We useC to denote apositive constantthat is independent of the main parameters involved,
whose value may differ on each occurrence. On the contrary, the constants with subscripts, such asC1,
keep the same value during the argument. For any functionf on M, letM( f ) be itsHardy-Littlewood
maximal functiondefined by for anyx ∈ M by

M( f )(x) := sup
B3x

1
μ(B)

∫

B
| f (y)| dy, (1.16)

where the supremum is taken over all the balls inM containingx. For nonnegative functionsf , g, we
write f . g if f ≤ Cg in a specified range, for some constantC. We write f ' g if f . g . f .

2 Wavelet characterizations

The wavelets on a metric measure space are certain functions with “good” properties that serve
as basic bricks to build objects with more complicated structures. Usually, the wavelets form an or-
thonormal basis inL2(M) providedμ(M) = ∞. The latter condition will be always assumed through-
out the paper.Note that if (M, ρ, μ) satisfies(GB), thenμ(M) = ∞.

The aim of this section is to establish the wavelet characterizations of the homogeneous Lipschitz-
type function spaces. In Section2.1we review some basic properties of wavelets on metric measure
spaces. In Section2.2, we define the homogeneous Lipschitz-type function spaces and state their
wavelet characterizations. Finally, in Section2.3, we prove these wavelet characterizations.

2.1 Wavelets on metric measure space

Let (M, ρ, μ) be a metric measure space satisfying(VD). The following definition of dyadic points
is taken from [31]; this is a collection of reference points inM endowed with a partial order (see also
[6, 13, 30]).

Definition 2.1. Let δ ∈ (0,1) and{Ak := {xk,α}α∈Ik}k∈Z be a sequence of points inM whereIk is a
countable index set. The family{Ak}k∈Z is calleda sequence of dyadic pointsif Ak ⊂ Ak+1 and if it
satisfies the following two properties:

(I) Ak is a maximal set ofδk-separated points for anyk ∈ Z, namely, for anyα, β ∈ Ik,

(I-1) ρ(xk,α, xk,β) ≥ δk for anyα , β,

(I-2) min
α∈Ik

ρ(x, xk,α) < δk for anyx ∈ M;

(II) let K := {(k, α) : k ∈ Z, α ∈ Ik} be the parameter set associated with the dyadic points
{Ak}k∈Z. There exists apartial order≤ in K such that for anyk ∈ Z andrk ∈ [ 1

4δ
k, 1

2δ
k],
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(II-1) if xk+1,β ∈ B(xk,α, rk), then (k+ 1, β) ≤ (k, α);

(II-2) if ( k+ 1, β) ≤ (k, α), thenxk+1,α ∈ B(xk,α,4rk);

(II-3) for every (k+ 1, β), there exists exactly one (k, α), called itsparent, such that (k+ 1, β) ≤
(k, α);

(II-4) for every (k, α), there are between one andN0 pairs (k+1, β), called itschildren, such that
(k+ 1, β) ≤ (k, α). Here,N0 ∈ N depends only on the doubling constantC0 in (1.2);

(II-5) (l, β) ≤ (k, α) if and only if l ≥ k and there exists a chain of ordered pairs (j + 1, γ j+1) ≤
( j, γ j) for j = k, k + 1, . . . , l − 1 with γk = α andγl = β. In this case, we called (l, β) and
(k, α) are one another’sdescendantandancestor, respectively.

The dyadic points lead to the following definition of dyadic cubes inM that are the analogues of
the dyadic cubes in the Euclidean space.

Definition 2.2. Let δ ∈ (0,1) and{Ak}k∈Z be a sequence of dyadic points in (M, ρ, μ) as in Definition
2.1. A collection of open sets{Qk,α}k∈Z,α∈Ik ⊂ M is calleda system of (open) dyadic cubes associated
with {Ak}k∈Z if for any k, l ∈ Z andα, β ∈ Ik,

(i) M =
⋃
α Q̄k,α, whereQ̄k,α denotes the closure ofQk,α;

(ii) Q̄k,α ∩ Qk,β = ∅ whenα , β;

(iii) B(xk,α,
1
5δ

k) ⊂ Qk,α ⊂ Q̄k,α ⊂ B(xk,α,3δk);

(iv) Q̄k,α =
⋃
β:(l,β)≤(k,α) Q̄l,β for any l ≥ k.

Based on the notion of dyadic cubes, the following definition of wavelets was introduced in [31,
Definition 6.9].

Definition 2.3. Let δ ∈ (0,1), η ∈ [0,1] and{Qk,α}k∈Z,α∈Ik be a system of dyadic cubes associated
with the dyadic points{Ak}k∈Z as in Definition2.2. For anyk ∈ Z, let Jk := Ik+1 \ Ik. A set
of real-valued functions{ψk,α}k∈Z,α∈Jk on M is calleda basis of wavelets with exp-localization and
Hölder-continuous of orderη, if the following properties are satisfied for anyk ∈ Z andα ∈ Jk:

(i) (vanishing mean)
∫

M
ψk,α(x) dμ(x) = 0;

(ii) (localization) for anyx ∈ M,

∣∣∣ψk,α(x)
∣∣∣ ≤

C3
√
μ(B(xk,α, δk))

exp

{

−
ρ(x, xk,α)

δk

}

, (2.1)

where{xk,α}k,α are the dyadic points as in Definition2.1and the constantC3 > 0 is independent
of x, k andα;

(iii) (H ölder continuity) for anyx, y ∈ M,

∣∣∣ψk,α(x) − ψk,α(y)
∣∣∣ ≤

C4
√
μ(B(xk,α, δk))

exp

{

−
ρ(x, xk,α)

δk

} (
ρ(x, y)

δk

)η
, (2.2)

where the constantC4 > 0 is independent ofx, y, k andα;
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(iv) (orthonormal basis) the functions{ψk,α}k∈Z,α∈Jk form an orthonormal basis ofL2(M, μ).

The existence of the wavelets satisfying Definition2.3 is proved in [31, Corollary 6.13].

Proposition 2.4 ([31]). Let (M, ρ, μ) satisfy(VD). For anyη ∈ (0, 1), there existδ ∈ (0,1) small
enough and a basis of wavelets{ψk,α}k∈Z,α∈Jk associated with a system of dyadic cubes{Qk,α}k∈Z,α∈Ik

such that{ψk,α}k∈Z,α∈Jk is exp-localization and Hölder-continuous of orderη.

Remark 2.5. Let p ∈ (1,∞). The wavelets{ψk,α}k∈Z,α∈Jk also form an unconditional basis of the
spaceLp(M) = Lp(M, μ) (see [6, Corollary 10.2]). This implies that anyf ∈ Lp(M) has the following
wavelet expansion inLp(M) :

f =
∑

k∈Z

∑

α∈Jk

〈 f , ψk,α〉ψk,α . (2.3)

The wavelet expansion (2.3) can be extended fromLp(M) to a larger class of distributions onM.
For that let us recall the definition of test functions and distributions from [26, 27].

Definition 2.6. Let η ∈ (0, 1) be as in Definition2.3. A functionϕ : M → R is said to be in thetest
function classG(x0, r, β, γ) for somex0 ∈ M, r ∈ (0, ∞), β ∈ (0, η] andγ ∈ (0, ∞), if the following
three assertions hold:

(i) for any x ∈ M,

|ϕ(x)| ≤
C

Vr (x0) + V(x0, x)

(
r

r + ρ(x0, x)

)γ
, (2.4)

whereVr (x0) := μ(B(x0, r)), V(x0, x) := μ(B(x0, ρ(x0, x))) and the positiveC is independent of
x;

(ii) for any x, y ∈ M satisfyingρ(x, y) ≤ 1
2(r + ρ(x0, x)),

|ϕ(x) − ϕ(y)| ≤
C

Vr (x0) + V(x0, x)

(
r

r + ρ(x0, x)

)γ (
ρ(x, y)

r + ρ(x0, x)

)β
, (2.5)

where the positiveC is independent ofx andy;

(iii)
∫

M
ϕ(x) dμ(x) = 0.

For anyϕ ∈ G(x0, r, β, γ), endowϕ with a norm by setting

‖ϕ‖G(x0,r,β,γ) := inf {C > 0 : (i) and (ii) hold} . (2.6)

Further properties of the test function class can be fund in [26, 27]. It is known that the space
(G(x, r, β, γ), ‖ ∙ ‖G(x0,r,β,γ)) is a Banach space that is invariant under the changes ofx andr. Thus, we
can fix a reference pointx0 ∈ M and denoteG(β, γ) := G(x0,1, β, γ). It is easy to see the embedding
G(β′, γ) ⊂ G(β, γ) holds for anyβ ≤ β′.

Now for anyβ ∈ (0, η], let
◦
G(β, γ) be the completion of the spaceG(η, γ) in the norm ofG(β, γ).

Then (
◦
G(β, γ))′ is defined to be the set of allcontinuous linear functionalsL on

◦
G(β, γ) with the

property that, for allϕ ∈
◦
G(β, γ),

|L (ϕ)| . ‖ϕ‖ ◦
G(β,γ)

.

The following proposition extends the wavelet expansion to the space of distributions.

Proposition 2.7. [26, Corollary 3.5] Letβ, γ ∈ (0, η). Then the wavelet expansion(2.3) also holds

for any f ∈ (
◦
G(β, γ))′.
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2.2 Homogeneous function spaces and their wavelet characterizations

The vanishing mean condition in Definition2.3(i) indicates that the wavelets used in this paper
are mother wavelets. As the mother wavelets characterize homogeneous function spaces (see [37, 42,
50]), we need the following definition of the homogenous version of the Lipschitz Besov space (cf.
(1.8) and (1.9a)).

Definition 2.8. (i) For anyp ∈ (1, ∞), q ∈ (1, ∞] and s ∈ (0, ∞), thehomogeneous Lipschitz Besov
spaceḂs

p,q is defined to be

Ḃs
p,q :=

{
f ∈ Lp

loc (M) : ‖ f ‖Ḃs
p,q
< ∞

}
,

where‖ f ‖Ḃs
p,q

is defined as in (1.9a).
(ii) For any p ∈ (1, ∞), q ∈ (1, ∞] and s ∈ (0, ∞), thehomogeneous Lipschitz Triebel-Lizorkin

spaceḞs
p,q is defined to be

Ḟs
p,q :=

{
f ∈ Lp

loc (M) : ‖ f ‖Ḟs
p,q
< ∞

}
,

where

‖ f ‖Ḟs
p,q

:=

∥∥∥∥∥∥∥

[∫ ∞

0
r−sq

(?

B(∙,r)
| f (∙) − f (y)| dμ(y)

)q dr
r

]1/q
∥∥∥∥∥∥∥

Lp

(2.7)

with the usual modification whenq = ∞.

As the spaceṡBs
p,q andḞs

p,q share many common properties, we will use the notationȦs
p,q to denote

either spacėBs
p,q or Ḟs

p,q when there is no confusion. In particular, for anyp ∈ (1, ∞), q ∈ (1, ∞] and
s ∈ (0, ∞), it can be proved that (̇As

p,q/C, ‖∙‖Ȧs
p,q

) is a Banach space, whereȦs
p,q/C denotes the quotient

space andC is the space of all constant functions onM (see [38, Propositions 3.1 and 3.2] and [49,
Proposition 2.2]). Furthermore, it is easy to see that for allp ∈ (1, ∞), q ∈ (1, ∞] ands ∈ (0, ∞),

Bs
p,q = Lp ∩ Ḃs

p,q.

For anyp ∈ (1, ∞), q ∈ (1, ∞] and s ∈ (0, ∞), define theinhomogeneous Triebel-Lizorkin space
Fs

p,q := Lp ∩ Ḟs
p,q endow with the norm

‖ f ‖Fs
p,q

:= ‖ f ‖Lp + ‖ f ‖Ḟs
p,q
.

For functions in the above homogeneous function spaces, its wavelet coefficients are usually belong
to the following sequence spaces.

Definition 2.9. Let δ ∈ (0,1) and{Qk,α}k∈Z,α∈Ik be a system of dyadic cubes as in Definition2.2. For
anyk ∈ Z, denote byJk = Ik+1 \ Ik.

(i) For anyp ∈ (1, ∞), q ∈ (1, ∞] and s ∈ [0, ∞), thehomogeneous Besov sequence spaceḃs
p,q is

defined to be the space of all sequences{λk,α}k∈Z,α∈Jk ⊂ R satisfying

∥∥∥{λk,α}k∈Z,α∈Jk

∥∥∥
ḃs

p,q
:=





∑

k∈Z

δ−ksq



∑

α∈Jk

(
μ(Qk,α)

1
p−

1
2
∣∣∣λk,α

∣∣∣
)p




q
p




1
q

< ∞ (2.8)
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with the usual modification whenq = ∞.
(ii) For any p ∈ (1, ∞), q ∈ (1, ∞] and s ∈ [0, ∞), thehomogeneous Triebel-Lizorkin sequence

spaceḟ s
p,q is defined to be the space of all sequences{λk,α}k∈Z,α∈Jk ⊂ R satisfying

∥∥∥{λk,α}k∈Z,α∈Jk

∥∥∥
ḟ s
p,q

:=

∥∥∥∥∥∥∥∥∥



∑

k∈Z

δ−ksq



∑

α∈Jk

μ(Qk,α)−
1
2 1Qk,α(∙)

∣∣∣λk,α

∣∣∣




q

1
q

∥∥∥∥∥∥∥∥∥
Lp

< ∞ (2.9)

with the usual modification whenq = ∞.

The next lemma collects some of the basic properties of the aforementioned spaces.

Lemma 2.10. Let p∈ (1, ∞), q ∈ (1, ∞] andβ, γ ∈ (0, η) with η ∈ (0,1) being as in(2.2). Then

(i) for any s∈ (0, 1) and q1,q2 ∈ (1, ∞] with q1 ≤ q2, then

Ḃs
p,q1
⊂ Ḃs

p,q2
; (2.10)

(ii) for any s∈ (0, γ),

Ḃs
p,q ⊂ (

◦
G(β, γ))′; (2.11)

(iii) for any s∈ [0, γ) and{λk,α}k,α ∈ ḃs
p,q, the series

∑

k∈Z

∑

α∈Jk

λk,αψk,α

converges in(
◦
G(β, γ))′.

Proof. The assertion (iii) was proved in [25, Proposition 1.1], so that we need to prove (i) and (ii).
We first show (i). By (1.9a), we know that

‖ f ‖Ḃs
p,q
'

∥∥∥∥∥∥∥




δ−ks

[∫

M

?

B(x,cδk)
| f (x) − f (y)|p dμ(y) dμ(x)

]1/p




k∈Z

∥∥∥∥∥∥∥
lq

for any fixedc > 0. (i) then follows immediately from the increase property of thelq-norm.
We now prove (ii). By applying (i), it suffices to show

Ḃs
p,∞ ⊂ (

◦
G(β, γ))′. (2.12)

Indeed, letf ∈ Ḃs
p,∞. Then, for anyg ∈

◦
G(β, γ), by Definition2.6, (VD) ands< γ, we have

∣∣∣∣∣

∫

M
f (y)ϕ(y) dμ(y)

∣∣∣∣∣

=

∣∣∣∣∣∣

∫

M

(

f (y) −
?

B(x0,1)
f (x) dμ(x)

)

ϕ(y) dμ(y)

∣∣∣∣∣∣

≤
1

μ(B(x0,1))

∫

B(x0,1)

(∫

M
| f (y) − f (x)| |ϕ(y)|dμ(y)

)

dμ(x)
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.

{
1

μ(B(x0,1))

∫

B(x0,1)

[∫

M

| f (y) − f (x)|
V1(x0) + V(x0, y)

(
1

1+ ρ(x0, y)

)γ
dμ(y)

]p

dμ(x)

}1/p

.





1
μ(B(x0,1))

∫

B(x0,1)




∞∑

j=0

δ jγ
?

ρ(y,x)<δ−( j+1)
| f (y) − f (x)| dμ(y)




p

dμ(x)





1/p

.
∞∑

j=0

δ j(γ−s)δ js
{∫

M

[?

ρ(y,x)<δ−( j+1)
| f (y) − f (x)| dμ(y)

]p

dμ(x)

}1/p

. sup
j∈Z

δ js
{∫

M

[?

ρ(y,x)<δ−( j+1)
| f (y) − f (x)| dμ(y)

]p

dμ(x)

}1/p



∞∑

j=0

δ j(γ−s)


 . ‖ f ‖Ḃs

p,∞
,

which implies that (2.12) holds true. This finishes the proof of (ii) and hence Lemma2.10. �

We now state the first main result of this section that establishes the wavelet characterizations of
the homogeneous Besov and Triebel-Lizorkin spacesḂs

p,q.

Theorem 2.11. Let p ∈ (1, ∞), q ∈ (1, ∞] and s∈ (0, 1). Assume(M, ρ, μ) satisfies the condition
(VD) and that{ψk,α}k∈Z,α∈Jk is a basis of wavelets as in Definition2.3 with η ∈ (s,1). Then the
following assertions hold:

(i) for any f ∈ Ḃs
p,q, let

E( f ) :=
{
〈 f , ψk,α〉

}
k∈Z,α∈Jk

. (2.13)

Then E( f ) ∈ ḃs
p,q with

‖E( f )‖ḃs
p,q
≤ C ‖ f ‖Ḃs

p,q
,

where the positive constant C is independent of f ;

(ii) for any{λk,α}k∈Z,α∈Jk ∈ ḃs
p,q, let

R({λk,α}k,α) :=
∑

k∈Z

∑

α∈Jk

λk,αψk,α. (2.14)

Then R({λk,α}k,α) ∈ Ḃs
p,q with

∥∥∥R({λk,α}k,α)
∥∥∥

Ḃs
p,q
≤ C

∥∥∥{λk,α}k,α
∥∥∥

ḃs
p,q
,

where the positive constant C is independent of{λk,α}k,α.

Theorem 2.12. Let p ∈ (1, ∞), q ∈ (1, ∞] and s∈ (0, 1). Assume(M, ρ, μ) satisfies the condition
(VD) and that{ψk,α}k∈Z,α∈Jk is a basis of wavelets as in Definition2.3 with η ∈ (s,1). Then the
following assertions hold:

(i) for any f ∈ Ḟs
p,q, let E( f ) be as in(2.13). Then E( f ) ∈ ḟ s

p,q with

‖E( f )‖ ḟ s
p,q
≤ C ‖ f ‖Ḟs

p,q
,

where the positive constant C is independent of f ;
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(ii) for any{λk,α}k∈Z,α∈Jk ∈ ḟ s
p,q, let R({λk,α}k,α) be as in(2.14). Then R({λk,α}k,α) ∈ Ḟs

p,q with
∥∥∥R({λk,α}k,α)

∥∥∥
Ḟs

p,q
≤ C

∥∥∥{λk,α}k,α
∥∥∥

ḟ s
p,q
,

where the positive constant C is independent of{λk,α}k,α.

Theorems2.11and2.12will be proved in Section2.3. In the remainder of this subsection, we
assume that the two theorems are true and consider their consequences.

Remark 2.13. (i) For anyp ∈ (1, ∞), q ∈ (1, ∞], s ∈ (0, 1) and f ∈ Lp
loc (M), let

‖ f ‖˜̇Bs
p,q

:=





∫ ∞

0
r−sq

[∫

M

(?

B(x,r)
| f (x) − f (y)| dμ(y)

)p

dμ(x)

]q/p dr
r





1/q

(2.15)

with the usual modification whenq = ∞. By the Ḧolder inequality, it is easy to see that

‖ f ‖˜̇Bs
p,q
≤ ‖ f ‖Ḃs

p,q
. (2.16)

On the other hand, in the proof of Theorem2.11(see (2.23) below), we will prove that

‖E( f )‖ḃs
p,q
. ‖ f ‖˜̇Bs

p,q
. (2.17)

By Proposition2.7and Lemma2.10(ii), we know that

R◦ E = I (2.18)

on Ḃs
p,q. This combined with Theorem2.11(ii) implies that for anyf ∈ Ḃs

p,q,

‖ f ‖Ḃs
p,q
. ‖E( f )‖ḃs

p,q
,

which together with (2.16) and (2.17) implies the following equivalence of norms:

‖ f ‖˜̇Bs
p,q
' ‖ f ‖Ḃs

p,q
. (2.19)

(ii) In view of Theorem2.11, we can introduce thehomogeneous Besov spaceḂ0
p,q with zero order

smoothness. To be precise, for anyp ∈ (1,∞) andq ∈ (1,∞], let

Ḃ0
p,q :=

{
f ∈ Lp

loc (M) : E( f ) ∈ ḃ0
p,q

}
, (2.20)

whereE( f ) is defined as in (2.13). By the increase property of thelq-norm in (2.8), it is easy to see
that for anyp ∈ (1, ∞) andq1,q2 ∈ (1, ∞] with q1 ≤ q2,

Ḃ0
p,q1
⊂ Ḃ0

p,q2
, (2.21)

which is a limiting case of Lemma2.10(i).
Similarly, for anyp ∈ (1,∞) andq ∈ (1,∞], the homogeneous Triebel-Lizorkin spaceḞ0

p,q with
zero smoothnessis defined by

Ḟ0
p,q :=

{
f ∈ Lp

loc (M) : E( f ) ∈ ḟ 0
p,q

}
. (2.22)

It is easy too see thaṫF0
p,2 = Lp for any p ∈ (1, ∞) due to the Littlewood-Paley square function

characterization ofLp (see [26, Theorem 4.3]). These two kinds of spaces will be useful in the
endpoint interpolation of Besov spaces (see the proof of Theorem3.9below).
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Corollary 2.14. Let p∈ (1, ∞), q ∈ (1, ∞] and s∈ [0, ∞). Then

(i) Ḃs
p,min{p,q} ⊂ Ḟs

p,q ⊂ Ḃs
p,max{p,q}. In particular, Ḃs

p,p = Ḟs
p,p;

(ii) ḃs
p,min{p,q} ⊂ ḟ s

p,q ⊂ ḃs
p,max{p,q}. In particular, ḃs

p,p = ḟ s
p,p.

Proof. The proof of Corollary2.14 is similar to the corresponding result in the classical Euclidean
space (see, for example, [47, Section 11.4 and Proposition 13.6]), the details being omitted.

�

2.3 Proofs of Theorems2.11and 2.12

Proof of Theorem2.11(i). For any f ∈ Ḃs
p,q, let E( f ) be as in (2.13). As claimed in Remark2.13, we

only need to prove

‖E( f )‖ḃs
p,q
. ‖ f ‖˜̇Bs

p,q
(2.23)

with ‖ f ‖˜̇Bs
p,q

as in (2.15). By (2.13) and (2.8), we know

‖E( f )‖ḃs
p,q

=





∑

k∈Z

δ−ksq



∑

α∈Jk

(
μ(Qk,α)

1
p−

1
2 |〈 f , ψk,α〉|

)p



q
p




1
q

. (2.24)

We first estimate the term|〈 f , ψk,α〉|. By Definition 2.3, we know for anyk ∈ Z, α ∈ Jk and
x ∈ B(xk,α,3δk),

∣∣∣〈 f , ψk,α〉
∣∣∣ =

∣∣∣∣∣∣

∫

M
ψk,α(y)

(

f (y) −
?

Qk,α

f dμ

)

dμ(y)

∣∣∣∣∣∣ (2.25)

.
[
μ(B(xk,α, δ

k))
]− 1

2

∫

M
exp

{

−
ρ(y, xk,α)

δk

} ∣∣∣∣∣∣ f (y) −
?

Qk,α

f dμ

∣∣∣∣∣∣ dμ(y)

.
[
μ(B(xk,α, δ

k))
]− 1

2

∞∑

j=0

∫

Sk− j (Bk,α)
exp

{

−
ρ(y, xk,α)

δk

} ∣∣∣∣∣∣ f (y) −
?

Qk,α

f dμ

∣∣∣∣∣∣ dμ(y),

whereSk− j(Bk,α) := B(xk,α, δ
k− j) \ B(xk,α, δ

k− j+1) for any j ∈ N andSk(Bk,α) := B(xk,α, δ
k). Thus by

(2.25), (VD) and Definition2.2(iii), we conclude that

∣∣∣〈 f , ψk,α〉
∣∣∣ .

[
μ(B(xk,α, δ

k))
]− 1

2

∞∑

j=0

exp
{
−δ1− j

} μ(B(xk,α, δ
k− j))

μ(Qk,α)
(2.26)

×
∫

Qk,α

(?

B(xk,α,δk− j )
| f (y) − f (x)| dμ(y)

)

dμ(x)

.
[
μ(Qk,α)

]− 1
2

∞∑

j=0

exp
{
−δ1− j

}
δ− jd

∫

Qk,α

(?

B(xk,α,δk− j )
| f (y) − f (x)| dμ(y)

)

dμ(x)

=:
[
μ(Qk,α)

]− 1
2

∞∑

j=0

exp
{
−δ1− j

}
δ− jdIk, j( f ,Qk,α).
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Note that for anyk ∈ Z andα ∈ Jk, we have

[
μ(Qk,α)

] 1
p−1 Ik, j( f ,Qk,α) =

[
μ(Qk,α)

] 1
p

?

Qk,α

(?

B(xk,α,δk− j )
| f (y) − f (x)| dμ(y)

)

dμ(x)

≤

[∫

Qk,α

(?

B(xk,α,δk− j )
| f (y) − f (x)| dμ(y)

)p

dμ(x)

] 1
p

,

which combining (2.24), (2.26), (2.15) and Definition2.2 implies that

‖E( f )‖ḃs
p,q

(2.27)

.





∑

k∈Z

δ−ksq



∑

α∈Jk

(
μ(Qk,α)

1
p−

1
2 |〈 f , ψk,α〉|

)p



q
p




1
q

.
∞∑

j=0

exp
{
−δ1− j

}
δ− jd





∑

k∈Z

δ−ksq



∑

α∈Jk

∫

Qk,α

(?

B(xk,α,δk− j )
| f (y) − f (x)| dμ(y)

)p

dμ(x)




q
p




1
q

.
∞∑

j=0

exp
{
−δ1− j

}
δ− jd





∑

k∈Z

δ−ksq



∑

α∈Jk

∫

Qk,α

(?

B(x,4δk− j )
| f (y) − f (x)| dμ(y)

)p

dμ(x)




q
p




1
q

.
∞∑

j=0

exp
{
−δ1− j

}
δ− j(d+s)





∑

k∈Z

δ−(k− j)sq
[∫

M

(?

B(x,4δk− j )
| f (y) − f (x)| dμ(y)

)p

dμ(x)

] q
p




1
q

. ‖ f ‖˜̇Bs
p,q
,

where in the third inequality, we have used Definition2.2(iii) and the fact thatj ≥ 0. This shows
(2.23) and hence finishes the proof of Theorem2.11(i).

�

To prove Theorem2.11(ii), we need the following lemma.

Lemma 2.15. For any p ∈ (1, ∞), q ∈ (1, ∞], s ∈ [0, η) andβ, γ ∈ (0, η) with η as in (2.2). Let

{λk,α}k,α ∈ ḃs
p,q and f :=

∑
k∈Z

∑
α∈Jk

λk,αψk,α converges in(
◦
G(β, γ))′. Then f∈ Lp

loc .

Proof. As f ∈ (
◦
G(β, γ))′, by Definition2.6(iii), we know that for anyx0 ∈ M andl0 ∈ Z,

f =

l0−1∑

k=−∞

∑

α∈Jk

λk,α
(
ψk,α − ψk,α(x0)

)
+

∞∑

k=l0

∑

α∈Jk

λk,αψk,α =: f1 + f2 (2.28)

in (
◦
G(β, γ))′. Thus, to finish the proof of this lemma, we only need to show that for, anyx0 ∈ M and

l0 ∈ Z,

I1 :=

(∫

B(x0,δ
l0)
| f1(x)|p dμ(x)

) 1
p

< ∞ (2.29)
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and

I2 :=

(∫

B(x0,δ
l0)
| f2(x)|p dμ(x)

) 1
p

< ∞. (2.30)

We first prove (2.29). By (2.28), Definition2.3and(VD), we have

I1 .





∫

B(x0,δ
l0)




l0−1∑

k=−∞

∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(B(xk,α, δ
k))−

1
2 exp

{

−
ρ(x, xk,α)

δk

} (
ρ(x, x0)

δk

)η

p

dμ(x)





1
p

(2.31)

.
l0−1∑

k=−∞





∫

M



∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(Qk,α)−
1
2δ(l0−k)η exp

{

−
ρ(x, xk,α)

δk

}

p

dμ(x)





1
p

.

We now need the following pointwise estimate on the Hardy-Littlewood maximal function from [14,
15] (see also [49, Lemma 3.10]): for anyx ∈ M,

∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(Qk,α)−
1
2δ(l0−k)η exp

{

−
ρ(x, xk,α)

δk

}

.M



∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(Qk,α)−
1
2δ(l0−k)η1Qk,α


 (x), (2.32)

whereM denotes the Hardy-Littlewood maximal function as in (1.16). Together with (2.31), theLp

boundedness ofM and the facts< η, this implies that

I1 .
l0−1∑

k=−∞





∫

M



∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(Qk,α)−
1
2δ(l0−k)η1Qk,α(x)




p

dμ(x)





1
p

(2.33)

.
l0−1∑

k=−∞



∑

α∈Jk

(∣∣∣λk,α

∣∣∣ μ(Qk,α)
1
p−

1
2δ(l0−k)η

)p



1
p

.
l0−1∑

k=−∞

δ(l0−k)(η−s)δ(l0−k)s



∑

α∈Jk

(∣∣∣λk,α

∣∣∣ μ(Qk,α)
1
p−

1
2

)p



1
p

.





l0−1∑

k=−∞

δ(l0−k)sq



∑

α∈Jk

(∣∣∣λk,α

∣∣∣ μ(Qk,α)
1
p−

1
2

)p



q
p




1/q

. ‖
{
λk,α

}
k,α ‖ḃs

p,q
< ∞,

which proves (2.29).
To prove (2.30), by an argument similar to that of (2.33), we see

I2 .
∞∑

k=l0





∫

M



∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(Qk,α)−
1
2 1Qk,α(x)




p

dμ(x)





1
p

.
∞∑

k=l0

δ(k−l0)sδ−(k−l0)s



∑

α∈Jk

(∣∣∣λk,α

∣∣∣ μ(Qk,α)
1
p−

1
2

)p



1
p

.





∞∑

k=l0

δ(l0−k)sq



∑

α∈Jk

(∣∣∣λk,α

∣∣∣ μ(Qk,α)
1
p−

1
2

)p



q
p




1/q

. ‖
{
λk,α

}
k,α ‖ḃs

p,q
< ∞,
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which proves (2.30) and hence completes the proof of Lemma2.15.
�

Now we prove Theorem2.11(ii) using Lemma2.15.

Proof of Theorem2.11(ii). Let {λk,α}k∈Z,α∈Jk ∈ ḃs
p,q and f := R({λk,α}k,α) be as in (2.14). By Lemmas

2.10(iii) and 2.15, we know that f ∈ (
◦
G(β, γ))′ ∩ Lp

loc (M). Thus, to finish the proof of Theorem
2.11(ii), we only need to show that

‖ f ‖Ḃs
p,q
.

∥∥∥{λk,α}k,α
∥∥∥

ḃs
p,q
. (2.34)

For any j ∈ Z andx, y ∈ M satisfyingρ(x, y) < δ j , write

f =
∑

k< j

∑

α∈Jk

λk,αψk,α +
∑

k≥ j

∑

α∈Jk

λk,αψk,α =: f1 + f2. (2.35)

Then, by Definition2.3, the assumptionρ(x, y) < δ j and by (2.32), we have

| f1(x) − f1(y)| ≤
∑

k< j

∑

α∈Jk

∣∣∣λk,α

∣∣∣
∣∣∣ψk,α(x) − ψk,α(y)

∣∣∣

.
∑

k< j

∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(Qk,α)−1/2 exp

{

−
ρ(x, xk,α)

δk

} (
ρ(x, y)

δk

)η

.
∑

k< j

M



∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(Qk,α)−1/2δ( j−k)η1Qk,α


 (x).

This implies that, for anyx ∈ M,

dj,p( f1)(x) :=

{?

B(x,δ j )
| f1(x) − f1(y)|p dμ(y)

} 1
p

(2.36)

.
∑

k< j

δ−(k− j)ηM



∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(Qk,α)−1/21Qk,α


 (x).

By (1.9a), (2.36) and Young’s convolution inequality (note that{δ j(η−s)} j>0 ∈ l1 asη > s), we see

‖ f1‖Ḃs
p,q
'





∑

j∈Z

∥∥∥δ− jsdj,p( f1)
∥∥∥q

Lp





1
q

(2.37)

.





∑

j∈Z




∑

k< j

δ−(k− j)(η−s)δ−ks

∥∥∥∥∥∥∥∥
M



∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(Qk,α)−1/21Qk,α




∥∥∥∥∥∥∥∥
Lp




q


1
q

.





∑

j∈Z




∑

k< j

δ−(k− j)(η−s)δ−ks



∑

α∈Jk

(
|λk,α|μ(Qk,α)

1
p−

1
2

)p



1
p



q


1
q

.





∑

k∈Z

δ−ksq



∑

α∈Jk

(
|λk,α|μ(Qk,α)

1
p−

1
2

)p



q
p




1
q

'
∥∥∥{λk,α}k,α

∥∥∥
ḃs

p,q
.
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For f2, we have

| f2(x) − f2(y)| ≤ | f2(x)| + | f2(y)| . (2.38)

We first estimate| f2(y)|. By (2.35), Definition2.3, (VD) and (2.32), we obtain

| f2(y)| .
∑

k≥ j

∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(Qk,α)−1/2 exp

{

−
ρ(y, xk,α)

δk

}

.
∑

k≥ j

M



∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(Qk,α)−1/21Qk,α


 (y).

Thus, similar to (2.37), we have

I :=





∑

j∈Z

∥∥∥∥∥∥∥
δ− js

(?

B(∙,δ j )
| f2(y)|p dμ(y)

) 1
p

∥∥∥∥∥∥∥

q

Lp





1
q

(2.39)

.





∑

j∈Z




∑

k≥ j

δ(k− j)sδ−ks

∥∥∥∥∥∥∥∥
M◦M



∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(Qk,α)−1/21Qk,α




∥∥∥∥∥∥∥∥
Lp




q


1
q

.





∑

j∈Z




∑

k≥ j

δ(k− j)sδ−ks



∑

α∈Jk

(
|λk,α|μ(Qk,α)

1
p−

1
2

)p



1
p



q


1
q

.





∑

k∈Z

δ−ksq



∑

α∈Jk

(
|λk,α|μ(Qk,α)

1
p−

1
2

)p



q
p




1
q

'
∥∥∥{λk,α}k,α

∥∥∥
ḃs

p,q
.

Similarly, we obtain

J :=





∑

j∈Z

∥∥∥∥∥∥∥
δ− js

(?

B(∙,δ j )
| f2(x)|p dμ(y)

) 1
p

∥∥∥∥∥∥∥

q

Lp





1
q

.
∥∥∥{λk,α}k,α

∥∥∥
ḃs

p,q
. (2.40)

Combining (2.35) and (2.37) through (2.40), we conclude that (2.34) holds true. This finishes the
proof of Theorem2.11(ii).

�

We now prove Theorem2.12.

Proof of Theorem2.12. We first prove Theorem2.12(i). Let f ∈ Ḟs
p,q andE( f ) be as in (2.13). By

(2.9), we need to show that

I :=

∥∥∥∥∥∥∥∥∥



∑

k∈Z

δ−ksq



∑

α∈Jk

μ(Qk,α)−
1
2 1Qk,α(∙)

∣∣∣〈 f , ψk,α〉
∣∣∣




q

1
q

∥∥∥∥∥∥∥∥∥
Lp

. ‖ f ‖Ḟs
p,q
. (2.41)

Similar to (2.25), we know that for anyk ∈ Z, α ∈ Jk andx ∈ Qk,α,

∣∣∣〈 f , ψk,α〉
∣∣∣ =

∣∣∣∣∣

∫

M
ψk,α(y) ( f (y) − f (x)) dμ(y)

∣∣∣∣∣ (2.42)
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.
[
μ(Qk,α)

]− 1
2

∫

M
exp

{

−
ρ(y, xk,α)

δk

}

| f (y) − f (x)| dμ(y)

.
[
μ(Qk,α)

]− 1
2

∞∑

j=0

∫

Sk− j (Bk,α)
exp

{

−
ρ(y, xk,α)

δk

}

| f (y) − f (x)| dμ(y)

.
[
μ(Qk,α)

]− 1
2

∞∑

j=0

exp
{
−δ− j

}
μ(B(xk,α, δ

k− j))
?

B(xk,α,δk− j )
| f (y) − f (x)| dμ(y)

.
[
μ(Qk,α)

] 1
2

∞∑

j=0

exp
{
−δ− j

}
δ− jd

?

B(x,4δk− j )
| f (y) − f (x)| dμ(y)

=:
[
μ(Qk,α)

] 1
2

∞∑

j=0

exp
{
−δ− j

}
δ− jdD j,k,α( f )(x).

By (2.41) together with (2.42) and (2.7), we conclude

I .

∥∥∥∥∥∥∥∥∥




∑

k∈Z

δ−ksq




∑

α∈Jk

μ(Qk,α)−
1
2 1Qk,α(∙)

[
μ(Qk,α)

] 1
2

∞∑

j=0

exp
{
−δ− j

}
δ− jdD j,k,α( f )(∙)




q

1
q

∥∥∥∥∥∥∥∥∥
Lp

.
∞∑

j=0

exp
{
−δ− j

}
δ− j(d+s)

∥∥∥∥∥∥∥∥∥



∑

k∈Z

δ−(k− j)sq
(
Dj,k,α( f )(∙)

)q



1
q

∥∥∥∥∥∥∥∥∥
Lp

.
∞∑

j=0

exp
{
−δ− j

}
δ− j(d+s)

∥∥∥∥∥∥∥∥∥



∑

k∈Z

δ−(k− j)sq
(?

B(∙,4δk− j )
| f (y) − f (∙)| dμ(y)

)q



1
q

∥∥∥∥∥∥∥∥∥
Lp

. ‖ f ‖Ḟs
p,q
,

which implies that (2.41) holds true and hence completes the proof of Theorem2.12(i).
We now prove Theorem2.12(ii). For any{λk,α}k∈Z,α∈Jk ∈ ḟ s

p,q, let f := R({λk,α}k,α) be as in (2.14).

By Corollary2.14(ii) and Lemma2.15, we know thatf ∈ (
◦
G(β, γ))′ ∩ Lp

loc . Thus, to finish the proof
of Theorem2.12(ii), it suffices to prove that‖ f ‖Ḟs

p,q
. ‖{λk,α}k,α‖ ḟ s

p,q
, namely,

J :=

∥∥∥∥∥∥∥∥




∑

j∈Z

δ− jsq
(?

B(x,δ j )
| f (∙) − f (y)| dμ(y)

)q



1/q∥∥∥∥∥∥∥∥
Lp

. ‖{λk,α}k,α‖ ḟ s
p,q
. (2.43)

By (2.14), write

f =
∑

k< j

∑

α∈Jk

λk,αψk,α +
∑

k< j

∑

α∈Jk

λk,αψk,α =: f1 + f2. (2.44)

For f1, by (2.36), we know thatx ∈ M,

dj,p( f1)(x) :=

{?

B(x,δ j )
| f1(x) − f1(y)|p dμ(y)

} 1
p

.
∑

k< j

δ−(k− j)ηM



∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(Qk,α)−1/21Qk,α


 (x).
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Combined with the Fefferman-Stein vector valued maximal inequality (see [19, Theorem 1.2]), this
yields

∥∥∥∥∥∥∥∥




∑

j∈Z

δ− jsq
(
dj,p( f1)

)q




1/q∥∥∥∥∥∥∥∥
Lp

.

∥∥∥∥∥∥∥∥∥




∑

j∈Z

δ− jsq




∑

k< j

δ−(k− j)ηM



∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(Qk,α)−1/21Qk,α







q

1/q
∥∥∥∥∥∥∥∥∥

Lp

.

∥∥∥∥∥∥∥∥∥




∑

j∈Z




∑

k< j

δ−(k− j)(η−s)M



∑

α∈Jk

δ−ksq
∣∣∣λk,α

∣∣∣ μ(Qk,α)−1/21Qk,α







q

1/q
∥∥∥∥∥∥∥∥∥

Lp

.

∥∥∥∥∥∥∥∥



∑

k∈Z


M



∑

α∈Jk

δ−ks
∣∣∣λk,α

∣∣∣ μ(Qk,α)−1/21Qk,α







q

1/q
∥∥∥∥∥∥∥∥

Lp

.

∥∥∥∥∥∥∥∥



∑

k∈Z

δ−ksq



∑

α∈Jk

∣∣∣λk,α

∣∣∣ μ(Qk,α)−1/21Qk,α




q

1/q
∥∥∥∥∥∥∥∥

Lp

. ‖{λk,α}k,α‖ ḟ s
p,q

The estimates forf2 is similar.
�

3 Real and complex interpolations

In this section, we establish the real and complex interpolations of the homogeneous Lipschitz-
type function spaces and some of their inhomogeneous versions. Throughout this section, we assume
that the underlying metric measure space (M, ρ, μ) is unbounded and satisfy the condition(VD).

We first in Section3.1review some basic facts and properties of interpolation; then in Section3.2,
we consider the interpolations of the homogeneous Lipschitz-type function spaces with smoothness
parameters ∈ (0,1). Finally, in Section3.3, we extend the interpolations of Section3.2 to the
endpoint cases= 0 and also to some of their inhomogeneous versions.

3.1 Preliminaries on interpolation

Let (X0,X1) be a compatible couple of Banach spaces, namely, there exists a Hausdorff topological
vector spaceY such that for anyi ∈ {1, 2}, Xi ⊂ Y. For any compatible Banach couple (X0,X1), the
sumX0 + X1 is defined to the Banach space under the norm

‖a‖X0+X1 := inf
{
‖a0‖X0 + ‖a1‖X1 : a = a0 + a1 with a0 ∈ X0,a1 ∈ X1

}
.

For anya ∈ X0 + X1 andt ∈ (0, ∞), theK-functionalof f is defined by

K(a, t;X0,X1) := inf
{
‖a0‖X0 + t‖a1‖X1 : a = a0 + a1 with a0 ∈ X0,a1 ∈ X1

}
. (3.1)

Notice thatK(a, t;X0,X1) is increase int.
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Definition 3.1. Let (X0,X1) be a compatible Banach couple andθ ∈ (0,1), q ∈ (1, ∞]. The real
interpolation space(X0,X1)θ,q is defined to be the space of alla ∈ X0 + X1 such that

‖ f ‖(X0,X1)θ,q :=

[∫ ∞

0

(
t−θK(a, t;X0,X1)

)q dt
t

] 1
q

(3.2)

with the usual modification whenq = ∞.

Let

S0 := {z ∈ C : 0 < Rez< 1} (3.3)

be an open strip in the complex planeC and

S := {z ∈ C : 0 ≤ Rez≤ 1} (3.4)

be its closure. LetA(X0,X1) be the set of all bounded analytic functionsF : S0 → X0 + X1, which
can be extended to continuous functions onS and satisfy that for anyj ∈ {0,1}, the functiont 7→
F( j + it) : R→ X j is bounded and continuous. For anyF ∈ A(X0,X1), endow with the norm

‖F‖A(X0,X1)
:= max

{

sup
t∈R
‖F(it)‖X0

, sup
t∈R
‖F(1+ it)‖X1

}

. (3.5)

Definition 3.2. Let (X0,X1) be a compatible Banach couple andθ ∈ (0,1). Thecomplex interpolation
space[X0,X1]θ is defined to be the space of all

a ∈ A(X0,X1)(θ) := {F(θ) : F ∈ A(X0,X1)}

endow with the norm

‖a‖[X0,X1]θ := inf
{
‖F‖A(X0,X1)

: F(θ) = a
}
. (3.6)

The real and complex interpolations are the two most important interpolation methods in the liter-
ature (see [7, 44]). In particular, they satisfy the following interpolation property (see [7, Theorems
3.1.2 and 4.1.2]).

Lemma 3.3. Let (X0,X1) and (Y0,Y1) be two compatible couples of Banach spaces. Consider a
bounded linear operator T: X j → Y j for j ∈ {0,1}. Then for anyθ ∈ (0,1) and q ∈ (1, ∞], T
induces a bounded linear operator Tθ satisfying

Tθ : (X0,X1)θ,q→ (Y0,Y1)θ,q

and

Tθ : [X0,X1]θ → [Y0,Y1]θ

with the operator norm‖Tθ‖ ≤ ‖T‖1−θX0→Y0
‖T‖θX1→Y1

.

Let (X0,X1) and (Y0,Y1) be two compatible couples of Banach spaces. We call that (Y0,Y1) is a
retractof (X0,X1) if there exist two bounded linear operators such that

(i) E : Y j → X j for j ∈ {0,1};
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(ii) R : X j → Y j for j ∈ {0,1};

(iii) R◦ E = I onY j for j ∈ {0,1}.

The following result on the retract of interpolation can be found in [44, p. 22].

Lemma 3.4. Let (X0,X1) and (Y0,Y1) be two compatible couples of Banach spaces. Assume that
(Y0,Y1) is a retract of(X0,X1). Then for anyθ ∈ (0,1) and q∈ (1, ∞],

(Y0,Y1)θ,q = R
(
(X0,X1)θ,q

)

and

[Y0,Y1]θ = R([X0,X1]θ) .

The advantage of Lemma3.4 is that it provides an approach to reduce the interpolation of the
spaces (Y0,Y1) to that of (X0,X1), whose interpolation is usually easier to establish. One typical
example of suchX-space is the following mixed norm Lebesgue space. To be precise, for anyp ∈
(1, ∞), q ∈ (1, ∞] ands ∈ [0,∞), let

l̇ sq
(
Lp

)
:=

{
{ fk(∙)}k∈Z : fk(∙) ∈ Lp(M) and ‖{ fk(∙)}k∈Z‖l̇ sq(Lp) < ∞

}
,

where

‖{ fk(∙)}k∈Z‖l̇ sq(Lp) :=



∑

k∈Z

δ−ksq‖ fk(∙)‖
q
Lp




1
q

(3.7)

with δ ∈ (0,1).
Let

Lp

(
l̇ sq
)

:=
{
{ fk(∙)}k∈Z : ‖{ fk(∙)}k∈Z‖Lp(l̇ sq) < ∞

}
,

where

‖{ fk(∙)}k∈Z‖Lp(l̇ sq) :=

∥∥∥∥∥∥∥∥





∑

k∈Z

δ−ksq| fk(∙)|
q





1
q

∥∥∥∥∥∥∥∥
Lp

. (3.8)

The following interpolation of mixed norm Lebesgue spaces can been found in [7, Chapter 5] (see
also [44, Section 1.18]).

Lemma 3.5. Let p0, p1 ∈ (1, ∞), q0, q1 ∈ (1,∞], s0, s1 ∈ [0,∞) andθ ∈ (0,1).

(i) For p ∈ (1, ∞), q ∈ (1, ∞] and s ∈ [0,∞) satisfying 1
p = 1−θ

p0
+ θ

p1
, 1

q = 1−θ
q0

+ θ
q1

and
s= (1− θ)s0 + θs1, it holds

[
l̇ s0
q0

(
Lp0

)
, l̇ s1

q1
(Lp1)

]

θ
= l̇ sq(Lp) (3.9)

and
[
Lp0

(
l̇ s0
q0

)
, Lp1

(
l̇ s1
q1

)]

θ
= Lp

(
l̇ sq
)
. (3.10)
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(ii) If s0 , s1, then for any p∈ (1, ∞), q ∈ (1, ∞] and s∈ [0,∞) satisfying s= (1− θ)s0 + θs1, it
holds

(
l̇ s0
q0

(
Lp

)
, l̇ s1

q1
(Lp)

)

θ,q
= l̇ sq(Lp) (3.11)

and
(
Lp

(
l̇ s0
q0

)
, Lp

(
l̇ s1
q1

))

θ,q
= l̇ sq

(
Lp

)
. (3.12)

3.2 Interpolations of Besov and Triebel-Lizorkin spaces

Let (M, ρ, μ) satisfy(VD). The following two theorems give the real and complex interpolations of
the homogeneous Besov and Triebel-Lizorkin spaces withs ∈ (0,1).

Theorem 3.6. Let p0, p1 ∈ (1, ∞), q0, q1 ∈ (1,∞], s0, s1 ∈ (0,1) and θ ∈ (0,1). Then for any
p ∈ (1,∞), q ∈ (1,∞] and s∈ (0,1) satisfying1

p = 1−θ
p0

+ θ
p1

, 1
q = 1−θ

q0
+ θ

q1
and s= (1− θ)s0 + θs1,

[
Ḃs0

p0,q0, Ḃ
s1
p1,q1

]

θ
= Ḃs

p,q (3.13)

and
[
Ḟs0

p0,q0, Ḟ
s1
p1,q1

]

θ
= Ḟs

p,q. (3.14)

Theorem 3.7. Let q0, q1 ∈ (1,∞], s0, s1 ∈ (0,1) with s0 , s1 andθ ∈ (0,1). Then for any p∈ (1,∞),
q ∈ (1,∞] and s∈ (0,1) satisfying s= (1− θ)s0 + θs1,

(
Ḃs0

p,q0, Ḃ
s1
p,q1

)

θ,q
= Ḃs

p,q (3.15)

and
(
Ḟs0

p,q0, Ḟ
s1
p,q1

)

θ,q
= Ḃs

p,q. (3.16)

We prove Theorems3.6 and3.7 by using Lemma3.4. To this end, we need the following retract
operators. For any sequence{λk,α}k∈Z,α∈Jk ⊂ R with Jk as in (2.8), let

Ẽ
(
{λk,α}k,α

)
:= { fk}k∈Z (3.17)

be a sequence of functions onM with

fk :=
∑

α∈Jk

λk,α1Qk,αμ(Qk,α)−1/2, (3.18)

where{Qk,α}k∈Z,α∈Jk denotes the dyadic cubes as in Definition2.2.
On the other hand, for any sequence of functions{ fk}k∈Z in L1

loc (M), let

R̃
(
{ fk}k

)
:=

{
λk,α

}
k∈Z,α∈Jk

(3.19)

be a sequence of numbers inR with

λk,α := μ(Qk,α)−1/2
∫

Qk,α

fk(x) dμ(x). (3.20)
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Lemma 3.8. Let p ∈ (1,∞), q ∈ (1,∞], s ∈ (0,1) and Ẽ, R̃ be respectively as in(3.17) and (3.19).
Then,

(i) Ẽ : ḃs
p,q→ l̇ sq(Lp), ḟ s

p,q→ Lp(l̇ sq) are bounded;

(ii) R̃ : l̇ sq(Lp)→ ḃs
p,q, Lp(l̇ sq)→ ḟ s

p,q are bounded;

(iii) R̃◦ Ẽ = I on ḃs
p,q and ḟ s

p,q.

Proof. We first prove (iii). For any sequence of numbers{λk,α}k∈Z,α∈Jk ⊂ R, by (3.18), (3.20) and
Definition2.2(ii), we have

R̃◦ Ẽ
(
{λk,α}k,α

)
= R̃








∑

α̃∈Jk

λk,α̃1Qk,α̃μ(Qk,α̃)−1/2





k




=





∑

α̃∈Jk

λk,α̃

∫

Qk,α

1Qk,α̃(x) dμ(x)μ(Qk,α̃)−1/2μ(Qk,α)−1/2





k,α

=
{
λk,α

}
k,α ,

which immediately implies that (iii) holds true.
Let us now prove (i). We first show that̃E : ḃs

p,q → l̇ sq(Lp) is bounded. Indeed, for any{λk,α}k,α ∈
ḃs

p,q, by (3.7), (3.17), (3.18) and Definition2.2, we know

∥∥∥Ẽ
(
{λk,α}k,α

)∥∥∥
l̇ sq(Lp) =




∑

k∈Z

δ−ksq

∥∥∥∥∥∥∥∥

∑

α∈Jk

λk,α1Qk,αμ(Qk,α)−1/2

∥∥∥∥∥∥∥∥

q

Lp




1
q

.





∑

k∈Z

δ−ksq



∑

α∈Jk

(∣∣∣λk,α

∣∣∣ μ(Qk,α)
1
p−

1
2

)p



q
p




1
q

'
∥∥∥
{
λk,α

}
k,α

∥∥∥
ḃs

p,q
,

which implies that̃E : ḃs
p,q→ l̇ sq(Lp) is bounded. The proof of the boundedness ofẼ : ḟ s

p,q→ Lp(l̇ sq)
is similar, the details being omitted.

We now prove (ii). As in the proof of (i), we only prove one of the claimed boundedness. In
particular, we will show that̃R : Lp(l̇ sq)→ ḟ s

p,q is bounded. Indeed, for any{ fk}k∈Z ∈ Lp(l sq), by (2.9),
(3.19), (3.20) and (3.7), we see

∥∥∥R̃
(
{ fk}k

)∥∥∥
ḟ s
p,q
≤

∥∥∥∥∥∥∥∥∥



∑

k∈Z

δ−ksq



∑

α∈Jk

∥∥∥ fk1Qk,α

∥∥∥
L1 μ(Qk,α)−1/21Qk,αμ(Qk,α)−1/2




q

1
q

∥∥∥∥∥∥∥∥∥
Lp

.

∥∥∥∥∥∥∥∥∥



∑

k∈Z

δ−ksq



∑

α∈Jk

[?

Qk,α

| fk| dμ(x)

]

1Qk,α




q

1
q

∥∥∥∥∥∥∥∥∥
Lp

.

∥∥∥∥∥∥∥∥∥



∑

k∈Z

δ−ksq(M ( fk))
q




1
q

∥∥∥∥∥∥∥∥∥
Lp
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.

∥∥∥∥∥∥∥∥∥



∑

k∈Z

δ−ksq| fk|
q




1
q

∥∥∥∥∥∥∥∥∥
Lp

'
∥∥∥{ fk}k

∥∥∥
Lp(l̇ sq)

.

This implies that̃R : Lp(l̇ sq) → ḟ s
p,q is bounded. The proof of the boundednessR̃ : l̇ sq(Lp) → ḃs

p,q is
similar. This finishes the proof of (ii).

Altogether, we finish the proof of Lemma3.8.
�

With the help of Lemma3.8, we now turn to the proof of Theorems3.6and3.7.

Proofs of Theorems3.6and3.7. Let p0, p1 ∈ (1, ∞), q0, q1 ∈ (1,∞] ands0, s1 ∈ (0,1). Let E andR
be respectively as in (2.13) and (2.14). Then by Theorem2.11, Proposition2.7and Lemma2.10(ii),
we know that forj ∈ {0,1},

(i) E : Ḃ
sj
pj ,qj
→ ḃ

sj
pj ,qj

is bounded;

(ii) R : ḃ
sj
pj ,qj
→ Ḃ

sj
pj ,qj

is bounded;

(iii) R◦ E = I on Ḃ
sj
pj ,qj

.

Thus, (Ḃs0
p0,q0, Ḃ

s1
p1,q1) is a retract of (̇bs0

p0,q0, ḃ
s1
p1,q1) as described in Section3.1. By Lemma3.4, we

know that for anyθ ∈ (0,1) andq ∈ (1,∞],

(
Ḃs0

p0,q0, Ḃ
s1
p1,q1

)

θ,q
= R

((
ḃs0

p0,q0, ḃ
s1
p1,q1

)

θ,q

)
(3.21)

and
[
Ḃs0

p0,q0, Ḃ
s1
p1,q1

]

θ
= R

([
ḃs0

p0,q0, ḃ
s1
p1,q1

]

θ

)
. (3.22)

On the other hand, let̃E andR̃be respectively as in (3.17) and (3.19). By Lemmas3.8and3.4, we
know that for anyθ ∈ (0,1) andq ∈ (1,∞],

(
ḃs0

p0,q0, ḃ
s1
p1,q1

)

θ,q
= R̃

((
l̇ s0
q0(Lp0), l̇

s1
q1

(Lp1)
)

θ,q

)
(3.23)

and
[
ḃs0

p0,q0, ḃ
s1
p1,q1

]

θ
= R̃

([
l̇ s0
q0(L

p0), l̇ s1
q1

(Lp1)
]

θ

)
. (3.24)

Moreover, by Lemma3.5, we find for anyp0, p1 ∈ (1, ∞), q0, q1 ∈ (1,∞] ands0, s1 ∈ (0,1),

(a) if s0 , s1, then for anyp ∈ (1, ∞), q ∈ (1, ∞] ands ∈ (0,1) satisfyings= (1− θ)s0 + θs1,
(
l̇ s0
q0

(
Lp

)
, l̇ s1

q1
(Lp)

)

θ,q
= l̇ sq(Lp); (3.25)

(b) for p ∈ (1, ∞), q ∈ (1, ∞] and s ∈ (0,1) satisfying 1
p = 1−θ

p0
+ θ

p1
, 1

q = 1−θ
q0

+ θ
q1

and s =

(1− θ)s0 + θs1,

[
l̇ s0
q0

(
Lp0

)
, l̇ s1

q1
(Lp1)

]

θ
= l̇ sq(Lp). (3.26)
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Note thatR◦ R̃(l̇ sq(Lp)) = R(ḃs
p,q) = Ḃs

p,q. This combined with (3.21) through (3.26) implies that

(
Ḃs0

p0,q0, Ḃ
s1
p1,q1

)

θ,q
= Ḃs

p,q,

[
Ḃs0

p0,q0
, Ḃs1

p1,q1

]

θ
= Ḃs

p,q.

and hence proves Theorems3.6and3.7for the Besov spaces.
The proofs of Theorem3.6 and3.7 for the Triebel-Lizorkin spaces are similar, we only need to

replace the sequence spacesḃs
p,q andl̇ sq(Lp) respectively byḟ s

p,q andLp(l̇ sq), the details being omitted.
This finishes the proofs of Theorems3.6and3.7.

�

3.3 Interpolations at the endpoint case

The next theorem extends some of the interpolations of Section3.2to the cases= 1.

Theorem 3.9. Let p0, p1 ∈ (1, ∞), q1 ∈ (1, ∞] and s, θ ∈ (0,1). Then,

(i)
(
Lp0, Ḃs

p0,q1

)

θ,q
= Ḃθs

p0,q for any q∈ (1,∞];

(ii)
[
Lp0, Ḟs

p1,q1

]

θ
= Ḟθs

p,q with p ∈ (1,∞) satisfying 1
p = 1−θ

p0
+ θ

p1
and q ∈ (1,∞] satisfying1

q =
1−θ
2 + θ

q1
.

Before proving Theorem3.9, we need the following wavelet characterization of the Lebesgue
spaceLp(M) from [26, Theorem 4.3].

Lemma 3.10([26]). Supposeβ, γ ∈ (0, η) and p∈ (1,∞). Then for any f∈ Lp(M),

‖ f ‖Lp '
∥∥∥
{
〈 f , ψk,α〉

}
k∈Z,α∈Jk

∥∥∥
ḟ 0
p,2
,

where the implicit constants are independent of f .

We now turn to the proof of Theorem3.9.

Proof of Theorem3.9. Observe that (ii) follows immediately from Lemma3.10and an argument sim-
ilar to the proof of (3.14) in Theorem3.6. Thus, it suffices to prove (i). To simply the notation we set
p0 = p in the remainder of the proof. We divide the proof into three steps.

Step I: we first show that for anỹq ∈ (max{2,q1},∞] (here we takẽq = ∞ if q1 = ∞),
(
Lp, Ḃs

p,̃q

)

θ,q
⊂ Ḃsθ

p,q. (3.27)

Indeed, for anyf ∈ (Lp, Ḃs
p,̃q)θ,q ⊂ Lp + Ḃs

p,̃q ⊂ Lp
loc . Let f = f0 + f1 be an arbitrary decomposition

with f0 ∈ Lp and f1 ∈ Ḃs
p,̃q

. Assume firstq < ∞. By Theorem2.11, we have

‖ f ‖q
Ḃsθ

p,q
.

∫ ∞

0
t−θsq

(
Ep( f0, t)

)q dt
t
+ ‖ f1‖

q
Bsθ

p,q
(3.28)

.
∑

k∈Z

δ−kθsq
(
Ep( f0, δ

k)
)q
+

∑

k∈Z

δ−kθsq



∑

α∈Jk

(
μ(Qk,α)

1
p−

1
2
∣∣∣〈 f1, ψk,α〉

∣∣∣
)p




q
p

,
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where, for anyt ∈ (0,∞) andg ∈ Lp
loc ,

Ep(g, t) :=

(∫

M

?

B(x,t)
|g(x) − g(y)|p dμ(y)dμ(x)

) 1
p

.

As p ∈ (1,∞), it is easy to see

Ep(g, t) . ‖g‖Lp.

This implies that
∑

k∈Z

δ−kθsq
(
Ep( f0, δ

k)
)q
.

∑

k∈Z

δ−kθsq‖ f0‖
q
Lp . (3.29)

On the other hand, by Lemma2.10and Theorem2.11again, we find

∑

k∈Z

δ−kθsq



∑

α∈Jk

(
μ(Qk,α)

1
p−

1
2
∣∣∣〈 f1, ψk,α〉

∣∣∣
)p




q
p

.
∑

k∈Z

δ−k(θ−1)sq




δ−ks



∑

α∈Jk

(
μ(Qk,α)

1
p−

1
2
∣∣∣〈 f1, ψk,α〉

∣∣∣
)p




1
p




q

.
∑

k∈Z

δ−k(θ−1)sq‖ f1‖
q
Ḃs

p,̃q

,

which combined with (3.28) and (3.29) implies that

‖ f ‖q
Ḃsθ

p,q
.

∑

k∈Z

δ−kθsq
[
‖ f0‖Lp + δks‖ f1‖Ḃs

p,̃q

]q
.

By (3.1), (3.2) and the arbitrariness of the decompositionf = f0 + f1, we conclude that

‖ f ‖q
Ḃsθ

p,q
.

∑

k∈Z

δ−kθsqKq( f , δks; Lp, Ḃs
p,̃q) '

∫ ∞

0
t−θqKq( f , t; Lp, Ḃs

p,̃q)
dt
t
' ‖ f ‖q

(Lp,Ḃs
p,̃q

)θ,q
,

which proves (3.27) for q < ∞. The caseq = ∞ follows from a similar argument with a minor
modification on the norm‖ f ‖Ḃsθ

p,∞
.

Step II: we show that for any 1< r < min{2, p,q},

Ḃθs
p,q ⊂

(
Ḃ0

p,r , Ḃ
s
p,r

)

θ,q
, (3.30)

whereḂ0
p,r is as in (2.20).

Indeed, for anyf ∈ Ḃθs
p,q, write

f =
∑

k> j



∑

α∈Jk

〈 f , ψk,α〉


ψk,α +

∑

k≤ j



∑

α∈Jk

〈 f , ψk,α〉


ψk,α =: f0 + f1, (3.31)

where j ∈ Z will be determined later.
By Theorem2.11, we have

‖ f0‖
r
Ḃ0

p,r
.

∞∑

k= j+1



∑

α∈Jk

(
μ(Qk,α)

1
p−

1
2
∣∣∣〈 f , ψk,α〉

∣∣∣
)p




r
p

=:
∞∑

k= j+1

ξr
k. (3.32)
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By the Hölder inequality and the assumption thatf ∈ Ḃθs
p,q, we know that‖ f0‖rḂ0

p,r
< ∞ and hence

f0 ∈ Ḃ0
p,r .

Similarly, we have

‖ f1‖
r
Ḃs

p,r
.

j∑

k=−∞

δ−ksr



∑

α∈Jk

(
μ(Qk,α)

1
p−

1
2
∣∣∣〈 f , ψk,α〉

∣∣∣
)p




r
p

=:
j∑

k=−∞

δ−ksrξr
k (3.33)

and f1 ∈ Ḃs
p,r . Thus the decomposition in (3.31) is a decomposition off in Ḃ0

p,r + Ḃs
p,r . Combining

(3.1), (3.32) with (3.33), we find

K( f , δ js; Ḃ0
p,r , Ḃ

s
p,r ) .

(
‖ f0‖

r
Ḃ0

p,r
+ δ jsr ‖ f1‖

r
Ḃs

p,r

) 1
r
.




∞∑

k= j+1

ξr
k + δ

jsr
j∑

k=−∞

δ−ksrξr
k




1
r

.

This implies that

I :=
∫ ∞

0
t−θqKq

(
f , t; Ḃ0

p,r , Ḃ
s
p,r

) dt
t

(3.34)

.
∑

j∈Z

δ− jθsq




∞∑

k= j+1

ξr
k + δ

jsr
j∑

k=−∞

δ−ksrξr
k




q
r

.
∑

j∈Z

δ− jθsq




∞∑

k= j+1

ξr
k




q
r

+
∑

j∈Z

δ j(1−θ)sq




j∑

k=−∞

δ−ksrξr
k




q
r

=: I1 + I2.

For I1, let 0< α2 < θs< α1 < s andσ > r satisfying r
q + r

σ = 1. We find

I1 .
∑

j∈Z

δ− jθsq




∞∑

k= j+1

δkα2rδ−kα2rξr
k




q
r

.
∑

j∈Z

δ− jθsq




∞∑

k= j+1

δ−kα2qξ
q
k







∞∑

k= j+1

δkα2σ




q
σ

(3.35)

.
∑

j∈Z

δ− jq(θs−α2)




∞∑

k= j+1

δ−kα2qξ
q
k


 '

∑

j∈Z

∞∑

k= j+1

δ−( j−k)q(θs−α2)δ−kθsqξ
q
k

'
∑

k∈Z

k−1∑

j=−∞

(
δ−( j−k)q(θs−α2)

)
δ−kθsqξ

q
k '

∑

k∈Z

δ−kθsqξ
q
k .

For I2, we have

I2 .
∑

j∈Z

δ jsq(1−θ)




j∑

k=−∞

δ−k(s−α1)rδ−kα1rξr
k




q
r

(3.36)

.
∑

j∈Z

δ jsq(1−θ)




j∑

k=−∞

δ−kα1qξ
q
k







j∑

k=−∞

δ−k(s−α1)σ




q
σ

.
∑

j∈Z

δ jq[s(1−θ)−s+α1]




j∑

k=−∞

δ−kα1qξ
q
k
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.
∑

k∈Z




∞∑

j=k

δ( j−k)q[s(1−θ)−s+α1]


 δ
−kθsqξ

q
k '

∑

k∈Z

δ−kθsqξ
q
k .

Combining (3.33) through (3.36) and Theorem2.11, we conclude that

‖ f ‖(Ḃ0
p,r ,Ḃ

s
p,r )θ,q

=

{∫ ∞

0
t−θqKq

(
f , t; Ḃ0

p,r , Ḃ
s
p,r

) dt
t

} 1
q

= I1/q

.





∑

k∈Z

δ−kθsqξ
q
k





1
q

'





∑

k∈Z

δ−kθsq



∑

α∈Jk

(
μ(Qk,α)

1
p−

1
2
∣∣∣〈 f , ψk,α〉

∣∣∣
)p




q
p




1
q

' ‖ f ‖Ḃθs
p,r
.

This proves (3.30).
Step III: We finally prove (i). Let 1< r < min{2, p,q} be as in Step II. By (2.21) and Corollary

2.14, we have

Ḃ0
p,r ⊂ Ḃ0

p,min{p,2} ⊂ Ḟ0
p,2 = Lp.

This combined with Steps I and II implies that

Ḃθs
p,q ⊂

(
Ḃ0

p,r , Ḃ
s
p,r

)

θ,q
⊂

(
Lp, Ḃs

p,r

)

θ,q
⊂

(
Lp, Ḃs

p,̃q

)

θ,q
⊂ Ḃθs

p,q,

which completes the proof of Theorem3.9.
�

Based on Theorem3.9 and Corollary2.14, we immediately obtain the following endpoint real
interpolation of the homogeneous Triebel-Lizorkin spaces.

Corollary 3.11. Let p∈ (1, ∞), q1 ∈ (1,∞] and s∈ (0,1). Then, for anyθ ∈ (0,1) and q∈ (1,∞],

(
Lp, Ḟs

p,q1

)

θ,q
= Ḟθs

p,q.

The following theorem establishes the endpoint real interpolation of the inhomogeneous spaces.

Theorem 3.12.Let p∈ (1,∞), q1 ∈ (1,∞] and s∈ (0,1). Then for anyθ ∈ (0,1) and q∈ (1,∞],

(i)
(
Lp, Bs

p,q1

)

θ,q
= Bθs

p,q;

(ii)
(
Lp, Fs

p,q1

)

θ,q
= Bθs

p,q.

For the proof of Theorem3.12, we need the following lemma.

Lemma 3.13. Let p ∈ (1,∞) andX ⊂ Lp
loc (M) be a Banach space satisfying that(Lp,X ∩ Lp) is a

compatible Banach couple. Then for any t∈ (0,∞) and f ∈ Lp,

min{1, t}‖ f ‖Lp + K( f , t; Lp,X) ' K( f , t; Lp,X ∩ Lp).
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Proof. We prove this lemma using the idea from the proof of [18, Theorem 4.2]. Letf ∈ Lp(M). By
(3.1), it is easy to see thatK( f , t; Lp,X) ≤ K( f , t; Lp,X ∩ Lp). Moreover, asLp + (X ∩ Lp) ⊂ Lp, we
have

min{1, t}‖ f ‖Lp . min{1, t}‖ f ‖Lp+(X∩Lp) . K( f , t; Lp,X ∩ Lp),

which implies that

min{1, t}‖ f ‖Lp + K( f , t; Lp,X) . K( f , t; Lp,X ∩ Lp). (3.37)

We now prove the opposite inequality. By the definition ofK-functional, it is easy to see that

K( f , t; Lp,X ∩ Lp) ≤ ‖ f ‖Lp.

Thus, to finish the proof, we only need to show that for anyt ∈ (0,1),

K( f , t; Lp,X ∩ Lp) . K( f , t; Lp,X) + t‖ f ‖Lp. (3.38)

Indeed, for anyε ∈ (0,1) small enough, letf = f0 + f1 be a decomposition satisfyingf0 ∈ Lp, f1 ∈ X
and

‖ f0‖Lp + t‖ f1‖X < K( f , t; Lp,X) + ε/2.

Since f ∈ Lp, we see thatf1 ∈ X ∩ Lp. Sincet ∈ (0,1), we obtain

K( f , t; Lp,X ∩ Lp) ≤ ‖ f0‖Lp + t (‖ f1‖Lp + ‖ f1‖X)

< K( f , t; Lp,X) + t‖ f1‖Lp + ε/2

< K( f , t; Lp,X) + ‖ f0‖Lp + t‖ f ‖Lp + ε/2 < 2K( f , t; Lp,X) + t‖ f ‖Lp + ε.

Sinceε is arbitrary, we obtain (3.38) and finish the proof. �

With the help of Lemma3.13, we now prove Theorem3.12.

Proof of Theorem3.12. Without loss of generality, we only prove (i). The inclusion (Lp, Bs
p,q1

)θ,q ⊂
Bθs

p,q is an easy consequence of Theorem3.9(i) and the factsBs
p,q1

= Ḃs
p,q1
∩ Lp andBθs

p,q = Ḃθs
p,q ∩ Lp.

To prove the converse inclusion, letf ∈ Lp(M), by (3.2), Lemma3.13and Theorem3.9, we have

‖ f ‖(Lp,Bs
p,q1

)θ,q =

[∫ ∞

0

(
t−θK( f , t; Lp, Ḃs

p,q1
∩ Lp)

)q dt
t

] 1
q

.

[∫ ∞

0

(
t−θK( f , t; Lp, Ḃs

p,q1
)
)q dt

t

] 1
q

+

[∫ ∞

0

(
t−θ min{1, t}‖ f ‖Lp

)q dt
t

] 1
q

. ‖ f ‖(Lp,Ḃs
p,q1

)θ,q + ‖ f ‖Lp ' ‖ f ‖Bθs
p,q1
,

which implies the inclusionBθs
p,q ⊂ (Lp, Bs

p,q1
)θ,q and hence (i). By (i) and Corollary2.14(i), we

conclude that (ii) is also satisfied, which finishes the proof of Theorem3.12.
�



Heat Kernels and Besov Spaces on Metric Measure Spaces 31

4 Proofs of main results

In this section, we prove the main results of this paper. To that end, we first prove in Section4.1a
Hardy-Littlewood-Sobolev-Kato estimates for parameters inP(Θ) as on Fig. 3; then in Section4.2,
we prove Theorems1.2and1.3.

4.1 The Hardy-Littlewood-Sobolev-Kato estimates

LetΘ ∈ (0,1) be as in (1.7) andP(Θ) be as in (1.12) (see also Figure 3). The following proposition
gives a Hardy-Littlewood-Sobolev-Kato estimates for parametersp ands in P(Θ).

Proposition 4.1. Let (M, ρ, μ) be a metric measure space satisfying the condition(GB). Let U :=
( 1

p, s) and N := (1
q, r) ∈ P(Θ) as in (1.12). Assume thatν ∈ (0, π) andϕ ∈ E (Σν) is in the extended

Dunford-Riesz class and satisfies the following estimate
∥∥∥zα(U,N)ϕ

∥∥∥
L∞(Σν)

< ∞

with

α(U,N) :=
r − s

2
+

d
2

(
1
p
−

1
q

)

, (4.1)

where d denotes the Hausdorff dimension of M as in(1.5). Then for any f∈ Ḟs
p,2,

‖ϕ(L) f ‖Ḟr
q,2
.

∥∥∥zα(U,N)ϕ
∥∥∥

L∞
‖ f ‖Ḟs

p,2
. (4.2)

To prove Proposition4.1, we need the following result on the characterization on the domain of
the fractional power of the generatorL.

Lemma 4.2. Let (M, ρ, μ) be a metric measure space satisfying(GB). Then the following is true.

(i) For any s∈ (0,1), we havedom2(Ls/2) = Fs
2,2. Moreover, for all f∈ dom2(Ls/2),

∥∥∥Ls/2 f
∥∥∥

L2 ' ‖ f ‖Ḟs
2,2
.

(ii) For any s ∈ (0,Θ) and p ∈ (1,∞), we havedomp(Ls/2) = Fs
p,2. Moreover, for all f ∈

domp(Ls/2),
∥∥∥Ls/2 f

∥∥∥
Lp ' ‖ f ‖Ḟs

p,2
.

Proof. The assertion (i) was proved in [20, Corollary 5.5]. Thus, it suffices to prove (ii). As (M, ρ, μ)
satisfies the conditions(VD) and(GB), we have

domp(Ls/2) = Fs,L
p,2

and
∥∥∥Ls/2 f

∥∥∥
Lp ' ‖ f ‖Ḟs,L

p,2
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where Ḟs,L
p,2 and Fs,L

p,2 = Lp ∩ Ḟs,L
p,2 denote respectively the homogeneous and inhomogeneous heat

Triebel-Lizorkin spaces (see [33, Theorem 7.8] and [17, Theorem 6.5]). Moreover, by using an
argument similar to the proof of [11, Theorem 3.1], we obtain that, for anys ∈ (0,Θ) and p,q ∈
(1, ∞),

Ḟs,L
p,q = Ḟs

p,q, (4.3)

which implies (ii). Note that although in [11, Theorem 3.1], (4.3) is proved only in the setting of the
Euclidean space, the proof can be extended easily to the present setting by using(VD) and(GB). �

We also need the following result of the boundedness of the Riesz potentialL−α/2 from Lp to Lq.

Lemma 4.3. Let (M, ρ, μ) be a metric measure space satisfying the condition(GB). Then for any
1 < p < q < ∞ andα ∈ (0,d) satisfyingαd = 1

p −
1
q, the Riesz potentialL−α/2 is bounded from Lp to

Lq.

Proof. By the functional calculus for the Riesz potential (see [24, Corollary 3.3.6]), we know that

L−α/2 =
1

Γ(α/2)

∫ ∞

0
tα/2e−tL dt

t
,

which combined with the condition(GB) implies thatL−α/2 has an integral kernelK(∙, ∙) satisfying
that for anyx, y ∈ M,

|K(x, y)| .
[
ρ(x, y)

]α−d .

This implies thatL−α/2 is a generalized fractional integral onM defined as in [39]. By [39, Corollary
2.5], we know thatL−α/2 is bounded fromLp to Lq, which completes the proof of Lemma4.3. �

We now turn to the proof of Proposition4.1.

Proof of Proposition4.1. Let U := ( 1
p, s), N := (1

q, r) ∈ P(Θ) be as as in (1.12) andm(U,N) the slop

of the vector
−−→
UN. We consider three cases based on the size of|m(U,N)|.

Case I: |m(U,N)| = ∞. In this case, we always havep = q and henceα(U,N) = 1
2(r − s). If further

p = q = 2, then for anyf ∈ Ḟs
2,2, by Lemma4.2(i), we know

‖ϕ(L) f ‖Ḟr
2,2
'

∥∥∥Lr/2ϕ(L) f
∥∥∥

L2 .
∥∥∥∥z

1
2(r−s)ϕ

∥∥∥∥
L∞

∥∥∥Ls/2 f
∥∥∥

L2 '
∥∥∥∥z

1
2(r−s)ϕ

∥∥∥∥
L∞
‖ f ‖Ḟs

2,2
, (4.4)

which verifies (4.2) in this subcase.
On the other hand, if max{r, s} < Θ, then by Lemma4.2(ii) and the boundedH∞ functional

calculus, we have for anyf ∈ Ḟs
p,2,

‖ϕ(L) f ‖Ḟr
p,2
'

∥∥∥Lr/2ϕ(L) f
∥∥∥

Lp .
∥∥∥∥z

1
2(r−s)ϕ

∥∥∥∥
L∞
‖ f ‖Ḟs

p,2
, (4.5)

which shows that (4.2) also holds in this subcase.
If p = q , 2 and max{r, s} ≥ Θ, without loss of generality, we assume that|r − s| < Θ. Otherwise,

we may decompose the vector
−−→
UN into a finite number of vectors with equally small length≤ Θ and

then use the above estimates by composition (see the proof of [11, Theorem 4.3] in the Euclidean
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case). As|r − s| < Θ, we know that there existU0 := ( 1
p0
, s0), N0 := ( 1

p0
, r0), U1 := (1

2, s1),

N1 := (1
2, r1) ∈ P(Θ) andθ ∈ (0,1) satisfying





max{s0, r0} < Θ,

r0 − s0 = r − s= r1 − s1,

θ = r−r0
r1−r0

=
s−s0
s1−s0

.

(4.6)

Note that by the definition ofP(Θ) as illustrated on Figure 3, such points always exist. By Theorem
3.6and (4.6), we find





Ḟr
p,2 =

[
Ḟr0

p0,2
, Ḟr1

2,2

]

θ
,

Ḟs
p,2 =

[
Ḟs0

p0,2
, Ḟs1

2,2

]

θ
.

(4.7)

Moreover, (4.6) implies that
−−−−→
U0N0 and

−−−−→
U1N1 belong to the above sub-cases which have already been

dealt with. This yields that




‖ϕ(L) f ‖Ḟr0
p0,2
.

∥∥∥∥z
1
2(r−s)ϕ

∥∥∥∥
L∞
‖ f ‖Ḟs0

p0,2
,

‖ϕ(L) f ‖Ḟr1
2,2
.

∥∥∥∥z
1
2(r−s)ϕ

∥∥∥∥
L∞
‖ f ‖Ḟs1

2,2
,

which together with (4.6), (4.7) and Lemma3.3shows that for anyf ∈ Ḟs
p,2,

‖ϕ(L) f ‖Ḟr
p0,2
.

∥∥∥∥z
1
2(r−s)ϕ

∥∥∥∥
L∞
‖ f ‖Ḟs

p0,2
.

Thus (4.2) holds under Case I.
Case II: |m(U,N)| = 0. In this case, we always haver = s and henceα(U,N) = d

2( 1
p −

1
q). Now

consider two subcases: a)r = s ∈ (0,Θ); b) r = s ∈ [Θ,1).
For the case II-a), by Lemmas4.2(ii) and4.3, we have that for anyf ∈ Ḟr

p,2,

‖ϕ(L) f ‖Ḟr
q,2
.

∥∥∥Lr/2ϕ(L) f
∥∥∥

Lq

.
∥∥∥∥z

d
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞

∥∥∥∥L
− d

2 ( 1
p−

1
q )Lr/2ϕ(L) f

∥∥∥∥
Lq
.

∥∥∥∥z
d
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞
‖ f ‖Ḟr

p,s
,

which verifies (4.2) under Case II-a).
For the case II-b), letU0 := ( 1

p, r0) andN0 := (1
q, r0) with r0 ∈ (0,Θ). It is easy to see that

−−−−→
MM0

and
−−−→
N0N belong to Case I, while

−−−−→
M0N0 belong to Case II-a). This implies that for anyf ∈ Ḟr

p,2

‖ϕ(L) f ‖Ḟr
q,2
'

∥∥∥∥L
1
2(r0−r)ϕ(L)L−

1
2(r0−r) f

∥∥∥∥
Ḟr

q,2

.
∥∥∥∥ϕ(L)L−

1
2(r0−r) f

∥∥∥∥
Ḟ

r0
q,2

.
∥∥∥∥z

d
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞

∥∥∥∥L−
1
2(r0−r) f

∥∥∥∥
Ḟ

r0
p,2

.
∥∥∥∥z

d
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞
‖ f ‖Ḟr

p,2
,

which implies (4.2) under Case II-b) and hence Case II.

TheCase III: |m(U,N)| ∈ (0,∞). In this case, letU0 := (1
q, s). By the fact

−−→
UN =

−−−→
UU0 +

−−−→
U0N,

we know that (4.2) follows from a composition argument similar to that used in Case II-b), the details
being omitted. This finishes the proof of Proposition4.1.

�
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Corollary 4.4. Let ( 1
p, s) ∈ P(Θ). Thendomp(Ls/2) = Fs

p,2.

Proof. For any (1p, s) ∈ P(Θ), let U := ( 1
p,0), N := ( 1

p, s) , ϕ(z) := z−s/2 and f ∈ domp(Ls/2). By the

factLs/2 f ∈ Lp = Ḟ0
p,2 and Proposition4.1, we know that‖ f ‖Ḟs

p,2
=

∥∥∥ϕ(L)Ls/2 f
∥∥∥

Ḟs
p,2
. ‖Ls/2 f ‖Lp.

This combined with (1.15) and the factFs
p,2 = Lp ∩ Ḟs

p,2 shows that

‖ f ‖Fs
p,2
. ‖ f ‖domp(Ls/2) ,

which implies that inclusion domp(Ls/2) ⊂ Fs
p,2.

On the other hand, for anyf ∈ Ḟs
p,2, let Ũ := ( 1

p, s), Ñ := ( 1
p,0) andϕ̃(z) := zs/2. By Proposition

4.1again, we find
∥∥∥Ls/2 f

∥∥∥
Lp . ‖ f ‖Ḟs

p,2
,

which implies the converse inclusionFs
p,2 ⊂ domp(Ls/2) and hence finishes the proof of Corollary

4.4.
�

4.2 Proofs of Theorems1.2and 1.3

We now prove Theorem1.2.

Proof of Theorem1.2. For any (1p, s) ∈ P(Θ) andq ∈ (1, ∞], let ε ∈ (0,1) small enough such that

( 1
p, s+ ε) ∈ P(Θ). AsP(Θ) is open, we know that suchε exists (see Figure 3). By Corollary4.4, we

find

domp(L(s+ε)/2) = Fs+ε
p,2 . (4.8)

Moreover, from [24, Chapter 6], it follows that there existsθ = s
s+ε ∈ (0,1) so that

(
Lp,domp(L(s+ε)/2)

)

θ,q
= Bs,L

p,q . (4.9)

On the other hand, asθ = s
s+ε , by Theorem3.12, we see

(
Lp, Fs+ε

p,2

)

θ,q
= Bs

p,q. (4.10)

Combining (4.8) through (4.10), we conclude that

Bs,L
p,q = Bs

p,q,

which completes the proof of Theorem1.2. �

Finally we prove Theorem1.3.

Proof of Theorem1.3. For anyp ∈ (1,∞), q ∈ (1,∞] and s ∈ (0,1), by [22, Theorem 1.5(a)], we
know that

Bs
p,q ⊂ Bs,L

p,q . (4.11)
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We now turn to the proof of the converse inclusion. From [24, Chapter 6], it follows that

Bs,L
p,q =

(
Lp,domp(L1/2)

)

s,q
.

This together with(DF) and (3.2) implies that for anyf ∈ Bs,L
p,q ,

‖ f ‖Bs,L
p,q
'

{∫ ∞

0
t−sqKq( f , t; Lp, B1

p,∞)
dt
t

} 1
q

. (4.12)

On the other hand, let

Ep( f , t) :=

{∫

M

?

B(x,t)
| f (x) − f (y)|p dμ(y) dμ(x)

} 1
p

. (4.13)

For any decompositionf = f0 + f1 with f0 ∈ Lp and f1 ∈ B1
p,∞, it follows from (VD), that Ep( f0, t) .

‖ f0‖Lp and

Ep( f1, t) . t sup
t>0




t−1

[∫

M

?

B(x,t)
| f1(x) − f1(y)|p dμ(y) dμ(x)

] 1
p



. t‖ f1‖B1

p,∞
.

By this, (4.13) and the arbitrariness of the decompositionf = f0 + f1, we conclude that, for any
t ∈ (0,∞),

Ep( f , t) . K( f , t; Lp, B1
p,∞),

which together with (4.12) yields

‖ f ‖Ḃs
p,q
'

[∫ ∞

0
t−sqEq

p( f , t)
dt
t

] 1
q

.

[∫ ∞

0
t−sqKq( f , t; Lp, B1

p,∞)
dt
t

] 1
q

' ‖ f ‖Bs,L
p,q
.

This implies the inclusionBs,L
p,q ⊂ Bs

p,q and hence finishes the proof of Theorem1.3. �
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