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This note contains a corrected version of Section 10 of the paper [4]. The purpose of that
section in [4] was to prove the implication (G) ⇒ (H) using (G) ⇒ (HG) ⇒ (H). However,
the proof of the first implication (G) ⇒ (HG) contained an error. Despite that, the result
(G) ⇒ (H) remains true, which is proved below using a modified definition of (HG).

10 The Harnack inequality and the Green kernel

Recall that the weighted graph (Γ, μ) satisfies the elliptic Harnack inequality (H) if there
exist constants H,K > 1 such that, for all z ∈ Γ, R ≥ 1, and for any nonnegative function u
in B(z,KR) which is harmonic in B(z,KR), the following inequality is satisfied1

max
B(z,R)

u ≤ H min
B(z,R)

u . (H)

Note that this inequality always holds for R < 1 because in this case B (z,R) = {z}.
In this section we establish that (H) is implied by the condition (G), where the latter

means that
C−1d (x, y)−γ ≤ g(x, y) ≤ Cd(x, y)−γ , ∀x 6= y. (G)

Consider the following Harnack inequality for the Green function 2 (HG): for some constants
H ′ > 1, M > 2, for all z ∈ Γ, R ≥ 1, and for any finite set U ⊃ B (z,MR),

max
x∈B(z,R)c

gU (x, z) ≤ H ′ min
y∈B(z,2R)

gU (y, z). (HG)

It is easy to see that (HG) can be equivalently stated as follows:

max
B(z,2R)\B(z,R)

gU (∙, z) ≤ H ′ min
B(z,2R)\B(z,R)

gU (∙, z) .

Proposition 10.1 Assume that (p0) hold and the graph (Γ, μ) is transient. Then

(G) =⇒ (HG) =⇒ (H).

The essential part of the proof is contained in the following lemma.

1It seems to be unknown whether in general condition (H) with some value of K implies that for a smaller
value of K (but possibly with a larger value of H). However, this is true in the presence of the doubling
volume property.

2A slightly different version of (HG) – denote it by (HG′) – was considered in [5] and [1], where in the
right hand side of (HG) one takes the minimum over y ∈ B (z, R) rather than over y ∈ B (z, 2R). It was
shown in [1] that (H) ⇒ (HG′). It is easy to see that (H) + (HG′) ⇒ (HG) so that in fact (H) ⇒ (HG).
Proposition 10.1 contains the converse to that.
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Lemma 10.2 Let U0 ⊂ U1 ⊂ U2 ⊂ U3 be a sequence of finite sets in Γ such that Ui ⊂ Ui+1,
i = 0, 1, 2. Denote A = U2 \ U1, B = U0 and U = U3. Then, for any function u which is
nonnegative in U and harmonic in U , we have

max
B

u ≤ H min
B

u , (10.1)

where

H := max
x,y∈B

max
z∈A

gU (x, z)
gU (y, z)

(10.2)

(see Fig. 1).
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Figure 1: The sets B = U0, A = U2 \ U1 and U = U3

Remark 10.1 Note that no a priori assumption has been made about the graph (Γ, μ) except
for connectedness and unboundedness.

Proof. The following potential-theoretic argument is borrowed from [2]. Given a non-
negative function u in U , which is harmonic in U , denote by Su the following class of super-
harmonic functions in U :

Su =
{
v : v ≥ 0 in U , v ≥ u in U1, and Δv ≤ 0 in U

}
,

and define the function w on U by

w(x) = min {v(x) : v ∈ Su} . (10.3)

Clearly, w ∈ Su. Since the function u itself is also in Su, we have w ≤ u in U . On the other
hand, by definition of Su, w ≥ u in U1, whence we see that u = w in U1 (see Fig. 2). In
particular, it suffices to prove (10.1) for w instead of u.

Let us show that w ∈ c0(U), that is, w vanish on U \U . Indeed, let v(x) solve the Dirichlet
problem {

Δv = −1 in U,

v = 0 on U \ U.

Since v is superharmonic, by the strong minimum principle v is strictly positive in U . Hence,
for a large enough constant C, we have Cv ≥ u in U1 whence Cv ∈ Su and w ≤ Cv. Since
v = 0 on U \ U , this implies w = 0 on U \ U .
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Figure 2: The function u, a function v ∈ Su and the function w = minSu v. The latter is
harmonic in U1 and in U \ U1.

Set f := −Δw and observe that by construction f ≥ 0 in U . Since w ∈ c0(U), we have,
for any x ∈ U ,

w(x) =
∑

z∈U

gU (x, z)f(z)μ (z) . (10.4)

Next we will prove that f = 0 outside A so that the summation in (10.4) can be restricted
to z ∈ A. Given that much, we obtain, for all x, y ∈ B,

w(x)
w(y)

=

∑
z∈A gU (x, z)f(z)μ (z)

∑
z∈A gU (y, z)f(z)μ (z)

≤ H,

whence (10.1) follows.
We are left to verify that w is harmonic in U1 and outside U1. Indeed, if x ∈ U1 then

Δw(x) = Δu(x) = 0,

because w = u in U1. Let Δw(x) 6= 0 for some x ∈ U \ U1. Since w is superharmonic, we
have Δw(x) < 0 and

w(x) > Pw(x) =
∑

y∼x

P (x, y)w(y).

Consider the function w′ which is equal to w everywhere in U except for the point x, and
w′ at x is defined to satisfy

w′(x) =
∑

y∼x

P (x, y)w′(y).

Clearly, w′(x) < w(x), and w′ is superharmonic in U . Since w′ = w = u in U1, we have
w′ ∈ Su. Hence, by the definition (10.3) of w, w ≤ w′ in U which contradicts w(x) > w′(x).

Proof of Proposition 10.1. Let us prove (G) ⇒ (HG). It will be sufficient to prove
that if U ⊃ B (z,MR) (where M > 2 is to be specified below) then

gU (y, z) ≥
1
2
g (y, z) for all y ∈ B (z, 2R) . (10.5)

Since also gU ≤ g, hypothesis (G) and (10.5) will imply

max
x∈B(z,R)c

gU (x, z) ≤ max
x∈B(z,R)c

g(x, z) ≤ C min
y∈B(z,2R)

g(y, z) ≤ 2C min
y∈B(z,2R)

gU (x, z).
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The proof of (10.5) follows the approach of [3]. Consider the function u = g (∙, z) − gU (∙, z)
which is nonnegative and harmonic in U . Since outside U the function u coincides with
g (∙, z), we obtain by the maximum principle and (G) that

max
U

u = max
Uc

u = max
Uc

g (∙, z) ≤ C (MR)−γ .

Therefore, for y ∈ B (x, 2R),

g (y, z) ≥ C−1 (2R)−γ ≥ 2C (MR)−γ ≥ 2max u

provided M is large enough, whence it follows that

gU (y, z) ≥ g (y, z) − max u ≥
1
2
g (y, z) .

Let us prove (HG) ⇒ (H). Fix a point x0 ∈ Γ and write for shortness Br := B (x0, r).
Let u be a nonnegative harmonic function in U := B6MR, where R > 1. By Lemma 10.2, we
have

max
BR

u ≤ H min
BR

u , (10.6)

where

H := max
x,y∈BR

max
z∈A

gU (x, z)
gU (y, z)

, (10.7)

and A = B5R \ B4R (see Fig. 1). Let us show that H ≤ H ′ where H ′ is the constant
from (HG). Indeed, if x, y ∈ BR and z ∈ A then it is easy to see that x ∈ B (z, 3R)c and
y ∈ B (z, 6R). Since 5R + 3MR < 6MR, we see that B (z, 3MR) ⊂ U . By (HG) we obtain,
for all x, y ∈ BR,

gU (x, z) ≤ H ′gU (y, z).

Substituting into (10.7), we obtain that (H) holds with K = 6M and H = H ′.
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