Correction to "Sub-Gaussian estimates of heat kernels on infinite graphs" by A.Grigor'yan and A.Telcs

Alexander Grigor'yan

December 2004

This note contains a corrected version of Section 10 of the paper [4]. The purpose of that section in [4] was to prove the implication $(G) \Rightarrow(H)$ using $(G) \Rightarrow(H G) \Rightarrow(H)$. However, the proof of the first implication $(G) \Rightarrow(H G)$ contained an error. Despite that, the result $(G) \Rightarrow(H)$ remains true, which is proved below using a modified definition of $(H G)$.

10 The Harnack inequality and the Green kernel

Recall that the weighted graph (Γ, μ) satisfies the elliptic Harnack inequality (H) if there exist constants $H, K>1$ such that, for all $z \in \Gamma, R \geq 1$, and for any nonnegative function u in $\overline{B(z, K R)}$ which is harmonic in $B(z, K R)$, the following inequality is satisfied ${ }^{1}$

$$
\begin{equation*}
\max _{B(z, R)} u \leq H \min _{B(z, R)} u . \tag{H}
\end{equation*}
$$

Note that this inequality always holds for $R<1$ because in this case $B(z, R)=\{z\}$.
In this section we establish that (H) is implied by the condition (G), where the latter means that

$$
\begin{equation*}
C^{-1} d(x, y)^{-\gamma} \leq g(x, y) \leq C d(x, y)^{-\gamma}, \quad \forall x \neq y . \tag{G}
\end{equation*}
$$

Consider the following Harnack inequality for the Green function ${ }^{2}(H G)$: for some constants $H^{\prime}>1, M>2$, for all $z \in \Gamma, R \geq 1$, and for any finite set $U \supset B(z, M R)$,

$$
\begin{equation*}
\max _{x \in B(z, R)^{c}} g_{U}(x, z) \leq H^{\prime} \min _{y \in B(z, 2 R)} g_{U}(y, z) . \tag{HG}
\end{equation*}
$$

It is easy to see that $(H G)$ can be equivalently stated as follows:

$$
\max _{B(z, 2 R) \backslash B(z, R)} g_{U}(\cdot, z) \leq H_{B(z, 2 R) \backslash B(z, R)}^{\prime} \min _{U}(\cdot, z) .
$$

Proposition 10.1 Assume that (p_{0}) hold and the graph (Γ, μ) is transient. Then

$$
(G) \Longrightarrow(H G) \Longrightarrow(H) .
$$

The essential part of the proof is contained in the following lemma.

[^0]Lemma 10.2 Let $U_{0} \subset U_{1} \subset U_{2} \subset U_{3}$ be a sequence of finite sets in Γ such that $\overline{U_{i}} \subset U_{i+1}$, $i=0,1,2$. Denote $A=U_{2} \backslash U_{1}, B=U_{0}$ and $U=U_{3}$. Then, for any function u which is nonnegative in \bar{U} and harmonic in U, we have

$$
\begin{equation*}
\max _{B} u \leq H \min _{B} u, \tag{10.1}
\end{equation*}
$$

where

$$
\begin{equation*}
H:=\max _{x, y \in B} \max _{z \in A} \frac{g_{U}(x, z)}{g_{U}(y, z)} \tag{10.2}
\end{equation*}
$$

(see Fig. 1).

Figure 1: The sets $B=U_{0}, A=U_{2} \backslash U_{1}$ and $U=U_{3}$

Remark 10.1 Note that no a priori assumption has been made about the graph (Γ, μ) except for connectedness and unboundedness.

Proof. The following potential-theoretic argument is borrowed from [2]. Given a nonnegative function u in \bar{U}, which is harmonic in U, denote by S_{u} the following class of superharmonic functions in U :

$$
S_{u}=\left\{v: v \geq 0 \text { in } \bar{U}, \quad v \geq u \text { in } \overline{U_{1}}, \quad \text { and } \Delta v \leq 0 \text { in } U\right\}
$$

and define the function w on \bar{U} by

$$
\begin{equation*}
w(x)=\min \left\{v(x): v \in S_{u}\right\} . \tag{10.3}
\end{equation*}
$$

Clearly, $w \in S_{u}$. Since the function u itself is also in S_{u}, we have $w \leq u$ in \bar{U}. On the other hand, by definition of $S_{u}, w \geq u$ in $\overline{U_{1}}$, whence we see that $u=w$ in $\overline{U_{1}}$ (see Fig. 2). In particular, it suffices to prove (10.1) for w instead of u.

Let us show that $w \in c_{0}(U)$, that is, w vanish on $\bar{U} \backslash U$. Indeed, let $v(x)$ solve the Dirichlet problem

$$
\begin{cases}\Delta v=-1 & \text { in } U, \\ v=0 & \text { on } \bar{U} \backslash U .\end{cases}
$$

Since v is superharmonic, by the strong minimum principle v is strictly positive in U. Hence, for a large enough constant C, we have $C v \geq u$ in $\overline{U_{1}}$ whence $C v \in S_{u}$ and $w \leq C v$. Since $v=0$ on $\bar{U} \backslash U$, this implies $w=0$ on $\bar{U} \backslash U$.

Figure 2: The function u, a function $v \in S_{u}$ and the function $w=\min _{S_{u}} v$. The latter is harmonic in U_{1} and in $U \backslash \overline{U_{1}}$.

Set $f:=-\Delta w$ and observe that by construction $f \geq 0$ in U. Since $w \in c_{0}(U)$, we have, for any $x \in U$,

$$
\begin{equation*}
w(x)=\sum_{z \in U} g_{U}(x, z) f(z) \mu(z) \tag{10.4}
\end{equation*}
$$

Next we will prove that $f=0$ outside A so that the summation in (10.4) can be restricted to $z \in A$. Given that much, we obtain, for all $x, y \in B$,

$$
\frac{w(x)}{w(y)}=\frac{\sum_{z \in A} g_{U}(x, z) f(z) \mu(z)}{\sum_{z \in A} g_{U}(y, z) f(z) \mu(z)} \leq H
$$

whence (10.1) follows.
We are left to verify that w is harmonic in U_{1} and outside $\overline{U_{1}}$. Indeed, if $x \in U_{1}$ then

$$
\Delta w(x)=\Delta u(x)=0
$$

because $w=u$ in $\overline{U_{1}}$. Let $\Delta w(x) \neq 0$ for some $x \in U \backslash \overline{U_{1}}$. Since w is superharmonic, we have $\Delta w(x)<0$ and

$$
w(x)>P w(x)=\sum_{y \sim x} P(x, y) w(y)
$$

Consider the function w^{\prime} which is equal to w everywhere in \bar{U} except for the point x, and w^{\prime} at x is defined to satisfy

$$
w^{\prime}(x)=\sum_{y \sim x} P(x, y) w^{\prime}(y)
$$

Clearly, $w^{\prime}(x)<w(x)$, and w^{\prime} is superharmonic in U. Since $w^{\prime}=w=u$ in $\overline{U_{1}}$, we have $w^{\prime} \in S_{u}$. Hence, by the definition (10.3) of $w, w \leq w^{\prime}$ in \bar{U} which contradicts $w(x)>w^{\prime}(x)$.

Proof of Proposition 10.1. Let us prove $(G) \Rightarrow(H G)$. It will be sufficient to prove that if $U \supset B(z, M R)$ (where $M>2$ is to be specified below) then

$$
\begin{equation*}
g_{U}(y, z) \geq \frac{1}{2} g(y, z) \quad \text { for all } y \in B(z, 2 R) \tag{10.5}
\end{equation*}
$$

Since also $g_{U} \leq g$, hypothesis (G) and (10.5) will imply

$$
\max _{x \in B(z, R)^{c}} g_{U}(x, z) \leq \max _{x \in B(z, R)^{c}} g(x, z) \leq C \min _{y \in B(z, 2 R)} g(y, z) \leq 2 C \min _{y \in B(z, 2 R)} g_{U}(x, z)
$$

The proof of (10.5) follows the approach of [3]. Consider the function $u=g(\cdot, z)-g_{U}(\cdot, z)$ which is nonnegative and harmonic in U. Since outside U the function u coincides with $g(\cdot, z)$, we obtain by the maximum principle and (G) that

$$
\max _{U} u=\max _{U^{c}} u=\max _{U^{c}} g(\cdot, z) \leq C(M R)^{-\gamma}
$$

Therefore, for $y \in B(x, 2 R)$,

$$
g(y, z) \geq C^{-1}(2 R)^{-\gamma} \geq 2 C(M R)^{-\gamma} \geq 2 \max u
$$

provided M is large enough, whence it follows that

$$
g_{U}(y, z) \geq g(y, z)-\max u \geq \frac{1}{2} g(y, z)
$$

Let us prove $(H G) \Rightarrow(H)$. Fix a point $x_{0} \in \Gamma$ and write for shortness $B_{r}:=B\left(x_{0}, r\right)$. Let u be a nonnegative harmonic function in $U:=B_{6 M R}$, where $R>1$. By Lemma 10.2, we have

$$
\begin{equation*}
\max _{B_{R}} u \leq H \min _{B_{R}} u \tag{10.6}
\end{equation*}
$$

where

$$
\begin{equation*}
H:=\max _{x, y \in B_{R}} \max _{z \in A} \frac{g_{U}(x, z)}{g_{U}(y, z)} \tag{10.7}
\end{equation*}
$$

and $A=B_{5 R} \backslash B_{4 R}$ (see Fig. 1). Let us show that $H \leq H^{\prime}$ where H^{\prime} is the constant from $(H G)$. Indeed, if $x, y \in B_{R}$ and $z \in A$ then it is easy to see that $x \in B(z, 3 R)^{c}$ and $y \in B(z, 6 R)$. Since $5 R+3 M R<6 M R$, we see that $B(z, 3 M R) \subset U$. By $(H G)$ we obtain, for all $x, y \in B_{R}$,

$$
g_{U}(x, z) \leq H^{\prime} g_{U}(y, z)
$$

Substituting into (10.7), we obtain that (H) holds with $K=6 M$ and $H=H^{\prime}$.

References

[1] Barlow M.T., Some remarks on the elliptic Harnack inequality, preprint
[2] Boukricha A., Das Picard-Prinzip und verwandte Fragen bei Störung von harmonischen Räumen, Math. Ann., 239 (1979) 247-270.
[3] Grigor'yan A., Hansen W., Lower estimates for a perturbed Green function, preprint
[4] Grigor'yan A., Telcs A., Sub-Gaussian estimates of heat kernels on infinite graphs, Duke Math. J., 109 (2001) no.3, 452-510.
[5] Grigor'yan A., Telcs A., Harnack inequalities and sub-Gaussian estimates for random walks, Math. Ann., 324 no.3, (2002) 521-556.

[^0]: ${ }^{1}$ It seems to be unknown whether in general condition (H) with some value of K implies that for a smaller value of K (but possibly with a larger value of H). However, this is true in the presence of the doubling volume property.
 ${ }^{2}$ A slightly different version of $(H G)$ - denote it by $\left(H G^{\prime}\right)$ - was considered in [5] and [1], where in the right hand side of $(H G)$ one takes the minimum over $y \in B(z, R)$ rather than over $y \in B(z, 2 R)$. It was shown in [1] that $(H) \Rightarrow\left(H G^{\prime}\right)$. It is easy to see that $(H)+\left(H G^{\prime}\right) \Rightarrow(H G)$ so that in fact $(H) \Rightarrow(H G)$. Proposition 10.1 contains the converse to that.

