Correction to "Sub-Gaussian estimates of heat kernels on infinite graphs" by A.Grigor'yan and A.Telcs

Alexander Grigor'yan

December 2004

This note contains a corrected version of Section 10 of the paper [4]. The purpose of that section in [4] was to prove the implication $(G) \Rightarrow (H)$ using $(G) \Rightarrow (HG) \Rightarrow (H)$. However, the proof of the first implication $(G) \Rightarrow (HG)$ contained an error. Despite that, the result $(G) \Rightarrow (H)$ remains true, which is proved below using a modified definition of (HG).

10 The Harnack inequality and the Green kernel

Recall that the weighted graph (Γ, μ) satisfies the elliptic Harnack inequality (H) if there exist constants H, K > 1 such that, for all $z \in \Gamma$, $R \ge 1$, and for any nonnegative function u in $\overline{B(z, KR)}$ which is harmonic in B(z, KR), the following inequality is satisfied¹

$$\max_{B(z,R)} u \le H \min_{B(z,R)} u. \tag{H}$$

Note that this inequality always holds for R < 1 because in this case $B(z, R) = \{z\}$.

In this section we establish that (H) is implied by the condition (G), where the latter means that

$$C^{-1}d(x,y)^{-\gamma} \le g(x,y) \le Cd(x,y)^{-\gamma}, \quad \forall x \ne y.$$
(G)

Consider the following Harnack inequality for the Green function² (HG): for some constants H' > 1, M > 2, for all $z \in \Gamma$, $R \ge 1$, and for any finite set $U \supset B(z, MR)$,

$$\max_{x \in B(z,R)^{c}} g_{U}(x,z) \le H' \min_{y \in B(z,2R)} g_{U}(y,z).$$
(HG)

It is easy to see that (HG) can be equivalently stated as follows:

$$\max_{B(z,2R)\setminus B(z,R)} g_U(\cdot,z) \le H' \min_{B(z,2R)\setminus B(z,R)} g_U(\cdot,z)$$

Proposition 10.1 Assume that (p_0) hold and the graph (Γ, μ) is transient. Then

$$(G) \Longrightarrow (HG) \Longrightarrow (H).$$

The essential part of the proof is contained in the following lemma.

¹It seems to be unknown whether in general condition (H) with some value of K implies that for a smaller value of K (but possibly with a larger value of H). However, this is true in the presence of the doubling volume property.

²A slightly different version of (HG) – denote it by (HG') – was considered in [5] and [1], where in the right hand side of (HG) one takes the minimum over $y \in B(z, R)$ rather than over $y \in B(z, 2R)$. It was shown in [1] that $(H) \Rightarrow (HG')$. It is easy to see that $(H) + (HG') \Rightarrow (HG)$ so that in fact $(H) \Rightarrow (HG)$. Proposition 10.1 contains the converse to that.

Lemma 10.2 Let $U_0 \subset U_1 \subset U_2 \subset U_3$ be a sequence of finite sets in Γ such that $\overline{U_i} \subset U_{i+1}$, i = 0, 1, 2. Denote $A = U_2 \setminus U_1$, $B = U_0$ and $U = U_3$. Then, for any function u which is nonnegative in \overline{U} and harmonic in U, we have

$$\max_{B} u \le H \min_{B} u \,, \tag{10.1}$$

where

$$H := \max_{x,y \in B} \max_{z \in A} \frac{g_U(x,z)}{g_U(y,z)}$$
(10.2)

(see Fig. 1).

Figure 1: The sets $B = U_0$, $A = U_2 \setminus U_1$ and $U = U_3$

Remark 10.1 Note that no a priori assumption has been made about the graph (Γ, μ) except for connectedness and unboundedness.

Proof. The following potential-theoretic argument is borrowed from [2]. Given a nonnegative function u in \overline{U} , which is harmonic in U, denote by S_u the following class of superharmonic functions in U:

$$S_u = \{ v : v \ge 0 \text{ in } \overline{U}, v \ge u \text{ in } \overline{U_1}, \text{ and } \Delta v \le 0 \text{ in } U \},$$

and define the function w on \overline{U} by

$$w(x) = \min\{v(x) : v \in S_u\}.$$
(10.3)

Clearly, $w \in S_u$. Since the function u itself is also in S_u , we have $w \leq u$ in \overline{U} . On the other hand, by definition of S_u , $w \geq u$ in $\overline{U_1}$, whence we see that u = w in $\overline{U_1}$ (see Fig. 2). In particular, it suffices to prove (10.1) for w instead of u.

Let us show that $w \in c_0(U)$, that is, w vanish on $\overline{U} \setminus U$. Indeed, let v(x) solve the Dirichlet problem

$$\begin{cases} \Delta v = -1 & \text{in } U, \\ v = 0 & \text{on } \overline{U} \setminus U \end{cases}$$

Since v is superharmonic, by the strong minimum principle v is strictly positive in U. Hence, for a large enough constant C, we have $Cv \ge u$ in $\overline{U_1}$ whence $Cv \in S_u$ and $w \le Cv$. Since v = 0 on $\overline{U} \setminus U$, this implies w = 0 on $\overline{U} \setminus U$.

Figure 2: The function u, a function $v \in S_u$ and the function $w = \min_{S_u} v$. The latter is harmonic in U_1 and in $U \setminus \overline{U_1}$.

Set $f := -\Delta w$ and observe that by construction $f \ge 0$ in U. Since $w \in c_0(U)$, we have, for any $x \in U$,

$$w(x) = \sum_{z \in U} g_U(x, z) f(z) \mu(z) .$$
(10.4)

Next we will prove that f = 0 outside A so that the summation in (10.4) can be restricted to $z \in A$. Given that much, we obtain, for all $x, y \in B$,

$$\frac{w(x)}{w(y)} = \frac{\sum_{z \in A} g_U(x, z) f(z) \mu(z)}{\sum_{z \in A} g_U(y, z) f(z) \mu(z)} \le H,$$

whence (10.1) follows.

We are left to verify that w is harmonic in U_1 and outside $\overline{U_1}$. Indeed, if $x \in U_1$ then

$$\Delta w(x) = \Delta u(x) = 0,$$

because w = u in $\overline{U_1}$. Let $\Delta w(x) \neq 0$ for some $x \in U \setminus \overline{U_1}$. Since w is superharmonic, we have $\Delta w(x) < 0$ and

$$w(x) > Pw(x) = \sum_{y \sim x} P(x, y)w(y).$$

Consider the function w' which is equal to w everywhere in \overline{U} except for the point x, and w' at x is defined to satisfy

$$w'(x) = \sum_{y \sim x} P(x, y)w'(y).$$

Clearly, w'(x) < w(x), and w' is superharmonic in U. Since w' = w = u in $\overline{U_1}$, we have $w' \in S_u$. Hence, by the definition (10.3) of $w, w \leq w'$ in \overline{U} which contradicts w(x) > w'(x).

Proof of Proposition 10.1. Let us prove $(G) \Rightarrow (HG)$. It will be sufficient to prove that if $U \supset B(z, MR)$ (where M > 2 is to be specified below) then

$$g_U(y,z) \ge \frac{1}{2}g(y,z) \quad \text{for all } y \in B(z,2R).$$

$$(10.5)$$

Since also $g_U \leq g$, hypothesis (G) and (10.5) will imply

$$\max_{x \in B(z,R)^c} g_U(x,z) \le \max_{x \in B(z,R)^c} g(x,z) \le C \min_{y \in B(z,2R)} g(y,z) \le 2C \min_{y \in B(z,2R)} g_U(x,z).$$

The proof of (10.5) follows the approach of [3]. Consider the function $u = g(\cdot, z) - g_U(\cdot, z)$ which is nonnegative and harmonic in U. Since outside U the function u coincides with $g(\cdot, z)$, we obtain by the maximum principle and (G) that

$$\max_{U} u = \max_{U^c} u = \max_{U^c} g\left(\cdot, z\right) \le C \left(MR\right)^{-\gamma}$$

Therefore, for $y \in B(x, 2R)$,

$$g(y,z) \ge C^{-1} (2R)^{-\gamma} \ge 2C (MR)^{-\gamma} \ge 2 \max u$$

provided M is large enough, whence it follows that

$$g_U(y,z) \ge g(y,z) - \max u \ge \frac{1}{2}g(y,z).$$

Let us prove $(HG) \Rightarrow (H)$. Fix a point $x_0 \in \Gamma$ and write for shortness $B_r := B(x_0, r)$. Let u be a nonnegative harmonic function in $U := B_{6MR}$, where R > 1. By Lemma 10.2, we have

$$\max_{B_R} u \le H \min_{B_R} u \,, \tag{10.6}$$

where

$$H := \max_{x,y \in B_R} \max_{z \in A} \frac{g_U(x,z)}{g_U(y,z)},$$
(10.7)

and $A = B_{5R} \setminus B_{4R}$ (see Fig. 1). Let us show that $H \leq H'$ where H' is the constant from (HG). Indeed, if $x, y \in B_R$ and $z \in A$ then it is easy to see that $x \in B(z, 3R)^c$ and $y \in B(z, 6R)$. Since 5R + 3MR < 6MR, we see that $B(z, 3MR) \subset U$. By (HG) we obtain, for all $x, y \in B_R$,

$$g_U(x,z) \le H'g_U(y,z).$$

Substituting into (10.7), we obtain that (H) holds with K = 6M and H = H'.

References

- [1] Barlow M.T., Some remarks on the elliptic Harnack inequality, preprint
- [2] Boukricha A., Das Picard-Prinzip und verwandte Fragen bei Störung von harmonischen Räumen, Math. Ann., 239 (1979) 247-270.
- [3] Grigor'yan A., Hansen W., Lower estimates for a perturbed Green function, preprint
- [4] Grigor'yan A., Telcs A., Sub-Gaussian estimates of heat kernels on infinite graphs, Duke Math. J., 109 (2001) no.3, 452-510.
- [5] Grigor'yan A., Telcs A., Harnack inequalities and sub-Gaussian estimates for random walks, Math. Ann., 324 no.3, (2002) 521-556.