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1 Introduction

The question of whether two independent random walks or Brownian motions intersect or not has
a long history and has attracted much interest both in Probability Theory and in Mathematical
Physics. This problem is related to the question of Triviality of continuous limits in Quantum
Field Theory, see [1] and [19]. However, this problem also has a glorious history in the framework
of Probability Theory starting from the classical works of Dvoretzky, Erdös, Kakutani and Taylor
[15], [16], [17], [33].

The following picture was established in the works cited above. In R
2, any finite number of

independent Brownian trajectories intersect with probability 1 (moreover, points of intersection
of cardinality of continuum exist almost surely). In R

3, any two independent trajectories still
intersect with probability 1, whereas the probability of intersection of three trajectories started
apart is equal to 0.

If d ≥ 4, then two independent Brownian trajectories in R
d started apart, intersect with

probability 0. Nevertheless, in the borderline case d = 4, the trajectories do approach arbitrarily
close each to other with probability 1, which is not the case when d > 4 (see also [21] and [39]
for intersections of trajectories quasi everywhere).

A similar but somewhat different picture is established for simple random walks in Z
d. If

d ≤ 4 then two independent walks intersect with probability 1, whereas in the case d ≥ 5, this
probability is smaller than 1 and tends to 0 when the starting points are moved apart. The
difference between the continuous and discrete cases is due to the fact that on the lattice there
is no difference between the notions of intersection and proximity.

The purpose of this paper is to study the properties of asymptotic proximity and asymptotic
separation of two or more trajectories in a rather general setting of Markov processes, including
certain diffusion processes, the α-stable processes and random walks.

Let M be a metric space with a distance function ρ, and let ξ(t) be a stochastic process on M
with infinite lifetime. The time t may have the range R+ or Z+. Denote by Px the distribution
law of ξ associated with the starting point x ∈ M . Given a sequence x = (x1, x2, ..., xn) of
n points of M , we consider independent processes ξx1

, ξx2
, ..., ξxn

with the joint distribution
Px := Px1 × Px2 × ...× Pxn .

Definition 1.1 We say that two processes ξx, ξy are asymptotically separated if, for some a > 0,

Px,y(∃T ∀t, s > T : ρ(ξx(t), ξy(s)) ≥ a) = 1. (1.1)

Otherwise, we say that ξx and ξy are asymptotically close.
Similarly, n processes ξx1

, ξx2
, ..., ξxn

are asymptotically separated if, for some a > 0,

Px

(
∃T ∀t1, ..., tn > T : max

1≤J,k≤n
ρ(ξxj

(tj), ξxk
(tk)) ≥ a

)
= 1. (1.2)

Otherwise, we say that ξx1
, ξx2

, ..., ξxn
are asymptotically close.

We have required that the process ξ(t) has an infinite lifetime a.s. that is, ξ is stochastically
complete. This is formally necessary in order to write down the conditions (1.1) and (1.2). The
definition may be modified to include also stochastically incomplete processes, but we do not
consider such processes for the sake of simplicity.

It is easy to see that two processes ξx and ξy are asymptotically close if, for any a > 0,

Px,y(∃ {ti} , {si} → ∞ : ρ(ξx(ti), ξy(si)) < a) > 0. (1.3)
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Similarly, n processes ξxk
are asymptotically close if, for any a > 0,

Px

(
∃{t(1)i }, {t

(2)
i }, ..., {t

(n)
i } → ∞ : max

1s<j,k≤n
ρ(ξxj

(t(j)i ), ξxk
(t(k)

i )) < a

)
> 0 (1.4)

(see Fig. 1).

Figure 1: Three trajectories are asymptotically close if, for any a > 0, they approach each other
within a distance a at arbitrarily large times, with positive probability.

The word “asymptotic” emphasizes that fact that we disregard segments of the trajectories
of finite time duration. On the contrary, we concentrate on the global behavior of the trajectories
and relations to the geometry “in the large” of the state space. It turns out that the property of
the trajectories being asymptotically separated is connected to certain estimates of the Green
kernel and of the heat kernel.

Let now M be a Riemannian manifold and ξ denote the Brownian motion on M governed by
the Laplace-Beltrami operator Δ. Denote by p(t, x, y) the transition density (=the heat kernel)
for the process ξ.

Theorem 1.1 (=Corollary 2.4) Let M be a manifold with bounded geometry (see Definition
2.1). Assume that, for some ν > 0 and all t large enough,

sup
x∈M

p(t, x, x) ≤ C

tν/2
, (1.5)

and, for some integer n ≥ 2,
2
ν

+
1
n

< 1. (1.6)

Then n independent processes ξx1
, ξx2

, ..., ξxn
on M are asymptotically separated.

If M = R
d then ν = d in (1.5). Therefore, (1.6) holds provided either n = 2 and d > 4,

or n = 3 and d > 3. In other words, any two trajectories of the Brownian motion in R
d are

asymptotically separated if d > 4, and any three trajectories are asymptotically separated if
d > 3. Of course, these statements are not new and can be deduced from much more detailed
information about the properties of the Brownian motion in R

d. However, Theorem 1.1 can be
applied on manifolds where the usual Euclidean methods of investigation of trajectories do not
work. On the other hand, there are many classes of manifolds where the heat kernel bounds
like (1.5) are available (see [30]). Note that the number ν in (1.5) may not be an integer. If
ν = 4 + ε, where ε > 0, then theorem 1.1 implies that two trajectories are asymptotically
separated, whereas if ν = 3+ε then three trajectories are asymptotically separated. See Section
2 for further discussion about the heat kernel’s upper bounds.
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Let ξ(α) be the α-process on the manifold M , that is the process generated by the operator
−(−Δ)α/2 where α ∈ (0, 2].

Theorem 1.2 (=Corollary 4.3) Let M be a manifold with bounded geometry. Assume that, for
some ν > 0 and all t large enough,

sup
x∈M

p(t, x, x) ≤ C

tν/2
, (1.7)

and, for some integer n ≥ 2,
α

ν
+

1
n

< 1. (1.8)

Then n independent α-processes ξ
(α)
x1 , ξ

(α)
x2 , ..., ξ

(α)
xn on M are asymptotically separated.

Let us emphasize that the condition (1.7) is given in terms of the transition density p(t, x, y)
of the Brownian motion ξ, rather than the α-process ξ(α). In contrast to obtaining estimates of
the transition density for the process ξ(α), the heat kernel p(t, x, y) can be effectively estimated
in many interesting cases - see Section 2.

If M = R
d then ν = d and ξ(α) is the α-stable process in R

d. Let us compare the condition
(1.8) with the results of S.J.Taylor [45] on self-intersections of the α-stable process in R

d. The
theorem of Taylor guaranties that if

α

d
+

1
n

> 1

then the set of n-multiple points of ξ is rather rich, which implies that n trajectories are asymp-
totically close. In the borderline case

α

d
+

1
n

= 1,

n trajectories already do not intersect, but they are still asymptotically close. Finally, under
the condition (1.8), n trajectories are asymptotically separated.

The structure of this paper is the following. We first present in Sections 2, 3 and 4 the
results for processes on Riemannian manifolds. Another particular case is random walks on
graphs, which is treated in Section 5. In Section 6 we consider Markov processes on abstract
metric measure spaces and state our results in the most general setting (including diffusions on
fractals). In Section 7 we show how the particular processes mentioned here fit into the abstract
scheme. Finally, we prove all the theorems in Section 8.

The dependences of the results are presented in the diagram below.

Theorem 5.1 ←− Theorem 6.2 −→ Theorem 2.1
↙ ↓ ↓

Theorem 4.2 Theorem 6.3 Theorem 2.3
↓ ↓ ↓

Corollary 4.3 Theorems 2.2, 4.1, 5.2 Corollary 2.4

2 Diffusion on Riemannian manifolds

Let M be a Riemannian manifold and ξ be the diffusion on M generated by the operator

L = σ−1div(σ∇), (2.1)
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where div and ∇ are the Riemannian divergence and the gradient respectively, and σ is a smooth
function on M . For example, if σ ≡ 1 then L = Δ - the Laplace-Beltrami operator on M .

It is known that the operator L is formally self-adjoint with respect to the measure μ defined
by

dμ = σdμ0,

where μ0 is the Riemannian measure on M . The operator L with the domain C0(M) can be
shown to be essentially self-adjoint in L2(M,μ). Then, by the spectral theory, it is possible to
define the operator semigroup etL. It possesses a smooth symmetric kernel p(t, x, y) with respect
to the measure μ, which simultaneously is the transition density of the diffusion ξ generated by L.
We will refer to ξ as the L-diffusion. In particular, if σ ≡ 1 then L = Δ is the Laplace-Beltrami
operator on M and ξ is the Brownian motion on M .

Denote by ρ(x, y) the geodesic distance on M , by B(x, r) the open geodesic ball of radius r
centered at x ∈M , and V (x, r) := μ(B(x, r)).

For a subset Ω ⊂ M , we will frequently use the notation |Ω| := μ(Ω). On any hypersurface
S, we introduce the surface area μ′ which is the measure on S having the density σ with respect
to the Riemannian measure of co-dimension 1.

Denote by g(x, y) the Green kernel of ξ, which is defined by

g(x, y) =
∫ ∞

0
p(t, x, y)dt.

Unlike the heat kernel, the Green kernel may be identically equal to infinity, which is equivalent
to the recurrence of the process ξ. If g �≡ ∞ then g(x, y) < ∞ for distinct x, y, and g is the
smallest positive fundamental solution to the operator L.

Throughout the paper, we assume that the operator L is uniformly elliptic, that is, for some
C > 1,

C−1 ≤ σ(x) ≤ C, ∀x ∈M. (2.2)

Definition 2.1 We say that the manifold M has bounded geometry if the Ricci curvature of M
is uniformly bounded from below, and if its injectivity radius is positive.

Assuming that M has bounded geometry, denote by r0 its injectivity radius. Then all
balls B(x, r0/2) are uniformly quasi-isometric to the Euclidean ball of radius r0/2 of the same
dimension. This allows us to use the technique of uniformly elliptic and parabolic equations
in R

d in order to locally estimate p(t, x, y) and g(x, y). Note also that manifolds of bounded
geometry are geodesically complete.

The following three theorems are our main results for diffusions on manifolds.

Theorem 2.1 Let M be a manifold with bounded geometry and L be uniformly elliptic. Assume
that, for some integer n > 1, a point x ∈M and ε > 0,∫

M\Ωε

gn(x, y) dμ(y) <∞ (2.3)

where Ωε is the ε-neighborhood of x. Then the independent processes ξx1
, ξx2

, ..., ξxn
are

asymptotically separated, for all x1, x2, ..., xn ∈M .

Let us observe that if the process ξ is recurrent, that is g ≡ ∞, then the trajectories ξx1
(t),

ξx2
(t), ..., ξxn

(t) are automatically asymptotically close, for any n. This can be regarded as a
limiting case for the divergence of the integral in (2.3).
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Note that the condition (2.3) is generally not necessary for the asymptotic separation of ξx1
,

ξx2
, ..., ξxn

- see Section 7.1.
The purpose of the following statements is to provide simpler sufficient conditions for (2.3),

in terms of the heat kernel decay.

Theorem 2.2 Let M be a manifold with bounded geometry and L be uniformly elliptic. Assume
that, for some x ∈M , ∫ ∞

1
t p(t, x, x) dt <∞. (2.4)

Then the independent processes ξx1
and ξx2

are asymptotically separated, for all x1, x2 ∈M .

Note that, for arbitrary points x, y ∈M , the ratio

p(t, x, x)
p(t, y, y)

remains bounded as t→∞ (see [12]). Therefore, the convergence of the integral (2.4) for some
x and for all x is the same.

Theorem 2.3 Let M be a manifold with bounded geometry, and L be uniformly elliptic. Assume
that, for an integer n > 1, and for a point x ∈M ,

sup
y∈M

∫ ∞

1
t

1
n−1 p(t, x, y) θ(t) dt <∞, (2.5)

where θ(t) is a continuous positive increasing function on (0,∞) such that∫ ∞

1

dt

t θn−1(t)
<∞. (2.6)

Then the condition (2.3) holds, and hence, the independent processes ξx1
, ξx2

,..., ξxn
are asymp-

totically separated, for all n-tuples x1, x2, ..., xn ∈M .

It is plausible that the hypothesis (2.6) may only be needed for technical reasons. We
conjecture that the statement of theorem 2.3 is true if, for some x ∈M ,∫ ∞

1
t

1
n−1 p(t, x, x) dt <∞,

similarly to theorem 2.2.

Corollary 2.4 (=Theorem 1.1) Let M be a manifold with bounded geometry, and L be uniformly
elliptic. Let us assume that, for all t large enough,

sup
x∈M

p(t, x, x) ≤ C

tν/2
, (2.7)

for some ν such that

ν >
2n

n− 1
. (2.8)

Then the hypothesis (2.3) holds, and hence, the independent processes ξx1
, ξx2

, ..., ξxn
are

asymptotically separated, for all n-tuples x1, x2, ..., xn ∈M .
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Proof. The hypotheses (2.8) implies ν
2 −

1
n−1 > 1. Let us set θ(t) = tε, for a small enough

positive ε so that
ν

2
− 1

n− 1
− ε > 1. (2.9)

The semigroup property of the heat kernel yields

p(t, x, y) ≤ [p(t, x, x)p(t, y, y)]1/2

(see (8.25) below). Thus, by the Cauchy-Schwarz inequality and (2.7),

∫ ∞

1
t

1
n−1 p(t, x, y) θ(t)dt ≤

[∫ ∞

1
t

1
n−1 p(t, x, x)θ(t)dt

]1/2 [∫ ∞

1
t

1
n−1 p(t, y, y)θ(t)dt

]1/2

≤
∫ ∞

1
t

1
n−1

C

tν/2
tεdt.

By (2.9), the above integral is finite, whence we obtain (2.5). Hence, Corollary 2.4 follows from
Theorem 2.3.

The supremum of numbers ν satisfying (2.7) is called the asymptotic dimension of the state
space, associated with the process ξ. The geometric background of the hypothesis (2.7) is well
understood – see [7], [27], [47] and the discussion below.
Examples. 1. If n = 2 then (2.8) yields ν > 4. Thus, if the asymptotic dimension is 4 + ε
where ε > 0, then any two trajectories are asymptotically separated. As was mentioned above,
in the 4-dimensional Euclidean space two trajectories are asymptotically close (see, for example,
[2]).

2. If n = 3 then (2.8) yields ν > 3. Hence, if the asymptotic dimension is 3 + ε where ε > 0
then any three independent trajectories are asymptotically separated. Let us observe that the
asymptotic dimension may be fractional, unlike the topological dimension. It is well-known that
three trajectories in R

3 are asymptotically close1.
3. If

sup
x∈M

p(t, x, x) ≤ C

t2 logγ t
, (2.10)

for some γ > 1 and all t large enough, then the condition (2.4) holds, and any two trajectories
are asymptotically separated.

The question of obtaining heat kernel upper bounds like (2.7) or (2.10) has been extensively
studied (see [27], [30, Section 7.4] and references therein). Let Ω be an open precompact subset
of M . Denote by λ1(Ω) the first Dirichlet eigenvalue for the operator L in Ω. Then the on-
diagonal heat kernel upper bound of the form p(t, x, x) ≤ f(t) for all x ∈ M and t > 0 is
equivalent to a certain lower bound for λ1(Ω) via the volume |Ω|, for all Ω (see [27, Theorems
2.1 and 2.2 ], [8]). If M has bounded geometry (which is the case now) then one can localize
this statement for large t and, respectively, for large volumes |Ω| (see [28, Theorem 4.2]). For
example, the heat kernel estimate (2.7) can be derived from the Faber-Krahn inequality

λ1 (Ω) ≥ c |Ω|−2/ν , (2.11)

for all Ω with a large enough volume and for some c > 0 . Similarly, (2.10) follows from the
estimate

λ1(Ω) ≥ c |Ω|−1/2 logγ/2 |Ω| . (2.12)
1However, we could not find a good reference for this.
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On the other hand, (2.11) can be derived from the following isoperimetric inequality:

μ′(∂Ω) ≥ c |Ω|
ν−1

ν ,

and (2.12) follows from
μ′(∂Ω) ≥ c |Ω|3/4 logγ/4 |Ω| (2.13)

(see [40, Theorem 2.3.2/1]). Recall that in R
4 the following isoperimetric inequality holds

μ′(∂Ω) ≥ c |Ω|3/4 .

As is well-known, any two independent trajectories in R
4 are asymptotically close, whereas a

slightly better isoperimetric inequality (2.13) implies that any two independent trajectories are
asymptotically separated.

In Theorems 2.1 and 2.3, n takes values 2, 3, 4, .... It would be interesting to find a proba-
bilistic meaning of the hypotheses (2.3) and (2.5) for other values of n. For example, if n = 1
then (2.3) implies that the process ξ is stochastically incomplete (see [26]). However, this cannot
take place on manifolds of bounded geometry (see [48]). If n =∞ then (2.3) does not make any
sense. However, (2.5) can be interpreted for the infinite n as∫ ∞

p(t, x, x)dt <∞, (2.14)

neglecting θ and supx. The condition (2.14) means exactly the transience of ξ. Thus, the
hypothesis (2.3) can be thought of as a kind of interpolation between the transience and the
stochastic incompleteness of ξ.

3 Asymptotic proximity and volume growth

We consider here some examples of applications of Theorem 2.3 related to the volume growth
of the manifold M . Assume for simplicity L = Δ so that ξ is the Brownian motion on M .

In the first example, let us assume that M has non-negative Ricci curvature and a positive
injectivity radius (which, of course, implies that M has bounded geometry). As follows from a
theorem of Li-Yau [37], the heat kernel on a complete manifold of non-negative Ricci curvature
satisfies the following inequality

sup
y

p(t, x, y) ≤ C

V (x,
√

t)

for all x ∈M and t > 0. Therefore, the hypothesis (2.5) is implied by

∫ ∞

1

t
1

n−1 θ(t) dt

V (x,
√

t)
<∞.

By changing to s = t
n

n−1 , this amounts to

∫ ∞

1

θ̃(s)ds

V (x, s
n−1
2n )

<∞ (3.1)
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where θ̃(s) = θ(t
n−1

n ). For example, let us take θ(t) = logγ t, where γ > 1
n−1 , so that (2.6) holds.

Then (3.1) is true provided ∫ ∞

1

logγ s

V (x, s
n−1
2n )

ds <∞. (3.2)

We conclude that, under the condition (3.2), any n independent Brownian trajectories are
asymptotically separated.

Based on this observation as well as on the arguments below, we conjecture the following.

1. If M is a manifold of non-negative Ricci curvature and positive injectivity radius and if∫ ∞

1

ds

V (x, s
n−1
2n )

<∞,

then any n independent Brownian trajectories are asymptotically separated.

2. If M is any manifold of bounded geometry and if∫ ∞

1

ds

V (x, s
n−1
2n )

=∞, (3.3)

then any n independent Brownian trajectories are asymptotically close.

It is known that the recurrence and the stochastic completeness of the Brownian motion on
geodesically complete manifolds can be obtained assuming only a volume growth condition. For
example, if for some x ∈M ∫ ∞

1

ds

V (x,
√

s)
=∞, (3.4)

then ξ is recurrent. Moreover, if the Ricci curvature of M is non-negative, then (3.4) is also
necessary for the recurrence of ξ (see [11], [23], [37], [46]). On the other hand, if∫ ∞

1

ds

log V (x,
√

s)
=∞, (3.5)

then ξ is stochastically complete (see [35] or [24]). The condition (3.3) can be considered as a
kind of interpolation between (3.4) and (3.5).

Consider now the second example, with M being a spherically symmetric manifold. As a
topological space, M = R

d. Fix a point x ∈ R
d, consider in R

d the polar coordinates (r, ϕ)
centered at x, and define the Riemannian metric of M by

ds2 = dr2 + h2(r)dϕ2, (3.6)

where dϕ is the standard metric on S
d−1. At the moment, the function h(r) is any smooth

positive function on (0,∞), such that h(r) = r for r ≤ 1. The surface area of any sphere
∂B(x, r) can be determined by

S(r) = ωdh
d−1(r),

where ωd is the area of the unit sphere in R
d. The volume V (x, r) is obviously given by

V (r) = V (x, r) =
∫ r

0
S(t)dt.
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To satisfy the bounded geometry condition, it suffices to assume that S(r)→∞ as r →∞ and,
for r large enough,

S′′(r)
S(r)

≤ C and
∣∣∣∣S′

S

∣∣∣∣ ≤ C (3.7)

(see [6]). Assume in addition that, for all r > 0,

V (2r) ≤ CV (r) and
S(r)
V (r)

≥ c

r
, (3.8)

for some c > 0. For example, (3.7) and (3.8) are satisfied if S(r) is a power function. Given
(3.8), the central value of the heat kernel admits the following upper bound

p(t, x, x) ≤ C

V (
√

t)
(3.9)

(see [29, Section 8]).
Let us show that either of the conditions (3.1) or (3.2) implies that any n independent

Brownian trajectories on M are asymptotically separated. It will be sufficient to verify the
hypothesis (2.5) of Theorem 2.3. Let us introduce the function

f(t) = t
1

n−1 θ(t), t > 1,

and extend f to the interval (0, 1) so that f(t) ≡ 0 on (0, 1/2). Without loss of generality, we
may assume that f ∈ C1 and f ′ ≥ 0. Denote also

F (y) =
∫ ∞

0
p(t, x, y)f(t)dt.

Then (2.5) will be implied by the boundedness of the function F . The finiteness of F (x) follows
from the hypothesis (3.1)/(3.2) and the estimate (3.9). By the local parabolic Harnack inequality
(see [12]), F (y) is also finite for all y. We need, however, to show that

sup
y

F (y) <∞.

Let us prove a stronger statement that

F (y) ≤ F (x), ∀y ∈M. (3.10)

First we check that ΔF ≤ 0. Indeed, we have

ΔF =
∫ ∞

0
Δp(t, x, y)f(t)dt =

∫ ∞

0

∂

∂t
p(t, x, y)f(t)dt

= −
∫ ∞

0
p(t, x, y)f ′(t)dt ≤ 0.

Therefore the function F (y) is superharmonic, and hence satisfies the minimum principle in
bounded regions. For a given y �= x, denote r = ρ(x, y). By the minimum principle,

min
∂B(x,r)

F = min
B(x,r)

F ≤ F (x).

Since p(t, x, y) is radial, the function F is also radial, that is F |∂B(x,r) ≡ F (y), whence (3.10)
follows.
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4 Asymptotic proximity for α-stable processes

Let ξ be the Brownian motion on M and ξ(α) be the α-process on a Riemannian manifold
M , that is the process generated by the operator − (−Δ)α/2, where 0 < α ≤ 2 (see [22] or
[41]). Theorem 2.1 holds again provided g(x, y) is replaced by gα(x, y), the latter being the
Green kernel of ξ(α). However, it is more convenient to have the conditions for the asymptotic
separation of the α-process in terms of the heat kernel p(t, x, y) of the Brownian motion ξ, which
is much easier to estimate. Let us note that gα(x, y) and p(t, x, y) are related by

gα(x, y) =
∫ ∞

0
tα/2−1p(t, x, y)dt. (4.1)

Theorem 4.1 Let M be a manifold with bounded geometry. Assume that, for a number α ∈
(0, 2] and for all x ∈M , ∫ ∞

1
tα−1 p(t, x, x) dt <∞. (4.2)

Then the independent α-processes ξ
(α)
x1 and ξ

(α)
x2 are asymptotically separated, for all x1, x2 ∈M .

Theorem 4.2 Let M be a manifold with bounded geometry. Assume that, for an integer n ≥ 2,
for a number α ∈ (0, 2] and for a point x ∈M ,

sup
y∈M

∫ ∞

1
tβ/2−1 p(t, x, y) θ(t) dt <∞, (4.3)

where
β =

αn

(n− 1)
(4.4)

and θ(t) is a continuous positive increasing function on (0,∞) such that∫ ∞

1

dt

t θn−1(t)
<∞. (4.5)

Then the independent α-processes ξ
(α)
x1 , ξ

(α)
x2 ,..., ξ

(α)
xn are asymptotically separated, for all n-tuples

x1, x2, ..., xn ∈M .

Note that for n = 2, we obtain β = 2α matching (4.2). Also, (4.4) can be rewritten as

α

β
+

1
n

= 1. (4.6)

Hence, we have the following corollary (cf. the proof of Corollary (2.4)).

Corollary 4.3 (=Theorem 1.2) Let M be a manifold with bounded geometry. Assume that, for
some ν > 0, the heat kernel of ξ satisfies the following upper bound, for all t large enough:

sup
x∈M

p(t, x, x) ≤ C

tν/2
. (4.7)

If α ∈ (0, 2] and an integer n ≥ 2 are such that

α

ν
+

1
n

< 1, (4.8)

then any n independent α-processes ξ
(α)
x1 , ξ

(α)
x2 , ..., ξ

(α)
xn are asymptotically separated.
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Since in R
d the condition (4.7) holds with ν = d, the condition (4.8) becomes

α

d
+

1
n

< 1. (4.9)

This condition is sharp, as can be seen from the results of S.J.Taylor [45] on n-intersections of
stable processes. The following table shows the range of α, n and d for which this condition is
satisfied, and hence any n trajectories of the α-stable process in R

d are asymptotically separated:

d | n n = 2 n = 3 n ≥ 4
d ≥ 4 α < 2 α ≤ 2 α ≤ 2
d = 3 α < 3

2 α < 2 α ≤ 2
d = 2 α < 1 α < 4

3 α < 2− 2
n

(4.10)

Let M be an arbitrary manifold of bounded geometry. The following heat kernel estimate
holds without any further hypothesis:

sup
x∈M

p(t, x, x) ≤ C

t1/2
, ∀t > 1

(see [9] and [28]). Hence, (4.7) holds automatically with ν = 1, and we see that any n independent
α-processes on M are asymptotically separated provided

α +
1
n

< 1. (4.11)

Of course, the condition (4.11) is more restrictive than (4.9). However, it does not involve any
further geometric assumption (for instance, dimension).

As follows from (4.1), the process ξ(β) is transient if and only if, for some x, y ∈M ,∫ ∞
tβ/2−1p(t, x, y)dt <∞.

The comparison with (4.3) suggests that the transience of ξ(β) might be linked to the fact that
n independent α-processes are asymptotically separated, where α, β and n are related by (4.4)
or (4.6).

5 Random walks on infinite graphs

Let M be an infinite graph, that is a countable set of points such that some pairs of them
are declared to be neighbors connected by an edge. If x, y ∈ M are neighbors then we write
x ∼ y. Denote by ρ(x, y) the combinatorial distance between x, y ∈ M which, by definition, is
the smallest number of edges in the paths connecting x to y. We always assume that the graph
M is connected so that ρ(x, y) <∞.

A random walk ξ = {ξx(k), k ∈ Z+} on M is determined by transition probability P (x, y)
where x, y ∈ M . We denote by Px the law of ξx. In the sequel, we always assume that ξ is a
nearest neighborhood random walk, that is P (x, y) = 0 whenever ρ(x, y) > 1. The random walk
is stochastically complete if, for all x ∈M ,∑

y∼x

P (x, y) = 1, (5.1)

12



this is P is a Markov kernel. An analogue of the bounded geometry hypothesis is the assumption
that, for some ε0 > 0 and all x ∼ y,

P (x, y) ≥ ε0. (5.2)

This implies that the number dx of the neighbors of any point x is uniformly bounded from
above by ε−1

0 .
The random walk ξx(k) started at x has, after k steps, the law Pk(x, ·) where Pk(x, y) is the

(x, y)-entry of the matrix P k – the kth convolution power of P . The Green kernel G(x, y) of ξ
is defined by

G(x, y) =
∞∑

k=0

Pk(x, y).

The definitions of asymptotic separation and asymptotic proximity are simpler for random
walks.

Definition 5.1 We say that n walks ξx1
, ξx2

, ..., ξxn
are asymptotically separated if

Px

(
∃T ∀k1, ..., kn > T : max

1≤j,k≤n
ρ(ξxi

(ki), ξxj
(kj)) > 0

)
= 1.

Otherwise, we say that ξx1
, ξx2

, ..., ξxn
are asymptotically close.

The following is our main result for random walks.

Theorem 5.1 Let M be a connected graph and ξ be a random walk on M satisfying (5.1) and
(5.2). Assume that, for some point x ∈M and for an integer n > 1,∑

y∈M

Gn(x, y) <∞. (5.3)

Then any n independent random walks ξx1
,ξx2

,...,ξxn
are asymptotically separated.

The random walk ξ is called reversible with respect to a measure μ on M if

P (x, y)μ(x) ≡ P (y, x)μ(y). (5.4)

Theorem 5.2 Let M be a connected graph and ξ be a reversible random walk on M satisfying
(5.1) and (5.2). Assume in addition that

inf
x∈M

μ(x) > 0. (5.5)

If the following condition holds for x = x1 and x = x2

∞∑
k=1

kPk(x, x) <∞, (5.6)

then the two independent walks ξx1
and ξx2

are asymptotically separated.
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6 Abstract Markov processes

Let M be a metric space with a distance function ρ(x, y). Assume that M is equipped with a
Radon measure μ, that is a σ-additive measure defined on Borel subsets of M , such that μ is
finite on compact sets. Let us denote by

B(x, r) = {y ∈M : ρ(x, y) < r}

a metric ball in M, and by V (x, r) := μ(B(x, r)) its measure.
We start with assumptions (A) and (B) on the state space M .

(A) Any ball B(x, r) ⊂ M is precompact. Moreover, for all small enough r > 0, there exists
a countable family Br of balls B(yi, r), i = 1, 2, 3, ..., which covers all of M, and such
that the family {B(yi, 2r)}i≥1 of concentric balls of double radius has a uniformly finite
multiplicity.

(B) For all r > 0, we have
inf

x∈M
V (x, r) > 0. (6.1)

Let us observe that (A) and (B) imply that any ball B(x,R) intersects only finitely many
balls from Br. Indeed, denote by I the set of all balls from Br which intersect B(x,R). Then
B(x,R + 2r) contains all balls from I. Since the family Br has a finite multiplicity, we have∑

B∈I

μ(B) ≤ CV (x,R + 2r),

whence, by (6.1),
|I| ≤ C ′V (x,R + 2r) <∞.

Let a Markov process ξ(t) be defined on M . The range T of time t is either R+ or Z+

(including 0). The time variable is always assumed to belong to T . As usual, Px and Ex

are, respectively, the probability measure and the expectation associated with the process ξx(t)
started at the point x ∈M . We assume throughout that the process ξ has a transition density
p(t, x, y) with respect to the measure μ, that is, for any open set U , any x ∈M and all t > 0,

Px(ξ(t) ∈ U) =
∫

U
p(t, x, y)dμ(y).

Denote by g(x, y) the Green kernel of ξ(t) (possibly infinite) defined by

g(x, y) =
∫ ∞

0
p(t, x, y) dt.

Here dt is either the Lebesgue measure if T = R+, or the counting measure if T = Z+.

Definition 6.1 The process ξ is called transient if g(x, y) < ∞ for all x �= y. Otherwise, ξ is
called recurrent.

It is well known that transience of ξ is equivalent to fact that, for any precompact set U ⊂M ,

Px {∀T > 0 ∃ t ≥ T such that ξ(t) ∈ U} = 0. (6.2)
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Definition 6.2 We say that the process ξ is stochastically complete if, for all x ∈M and t ∈ T ,∫
M

p(t, x, y)dμ(y) = 1.

Stochastic completeness may fail at least for two reasons. There may be some killing con-
ditions like for a process generated by an elliptic Schrödinger operator or for Brownian motion
in a bounded region of R

d with absorbing boundary. On the other hand, Brownian motion on
a geodesically complete manifold may escape to infinity in finite time for a geometric reason –
see [3].

Let us fix some exhaustion {Wi} of M , that is, an increasing sequence of precompact open
subsets Wi. If M satisfies (A) then we may take Wi = B(o, i) for some o. The following two
definitions do not depend on the choice of {Wi}.

Definition 6.3 We say that the process ξ is minimal if, for any precompact open set U ⊂ M
and for all x ∈M and t ∈ T ,

Px(ξ(t) ∈ U) = lim
i→∞

Px (ξ(t) ∈ U and ξ(s) ∈Wi for all s ∈ [0, t]) .

In particular, if we denote by ξWi the process ξ inside Wi with the killing condition on
M \Wi, then ξWi converges to ξ in distribution as i→∞.

The diffusion on a manifold discussed in Section 2 is automatically minimal, by construction
(see [14]). On the other hand, Brownian motion in a bounded open set in R

n with the reflecting
boundary condition is not minimal. A random walk on a graph is minimal just because of its
finite propagation speed.

Definition 6.4 We say that the process ξ is stochastically compact if, for all x ∈M and T > 0,

lim
i→∞

Px (ξ(t) /∈Wi for some t ≤ T ) = 0. (6.3)

If the process ξ escapes to infinity in a finite time then it may be not stochastically compact.
In the same way, Brownian motion in a bounded region in R

n with the reflecting boundary
condition is not stochastically compact. However, the following is true.

Lemma 6.1 If ξ is stochastically complete and minimal, then ξ is stochastically compact.

Proof. We have

Px (∃t ≤ T : ξ(t) /∈Wi) = 1− Px (∀t ≤ T : ξ(t) ∈Wi)
= 1− Px

(
∀t ≤ T : ξWi(t) ∈Wi

)
= 1− Px

(
ξWi(T ) ∈Wi

)
.

Take any precompact open set U ⊂M, and let i be so large that U ⊂Wi. Therefore,

Px (∃t ≤ T : ξ(t) /∈Wi) ≤ 1− Px

(
ξWi(T ) ∈ U

)
.

By the minimality of ξ,
lim
i→∞

Px

(
ξWi(T ) ∈ U

)
= Px (ξ(T ) ∈ U) .

By letting U ↗M , we have
lim

U↗M
Px (ξ(T ) ∈ U) = 1.
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Hence, for any ε > 0 there exist i and U such that

Px

(
ξWi(T ) ∈ U

)
> 1− ε,

whence
Px (∃t ≤ T : ξ(t) /∈Wi) < ε,

and (6.3) follows.

The following conditions (C), (D) and (E) in general may be true or not.

(C) For some a0 > 0,
inf

x,y∈M, ρ(x,y)≤a0

g(x, y) > 0 . (6.4)

(D) (A local Harnack inequality) For any a ∈ (0, a0) and for all x, y ∈M such that ρ(x, y) > 4a,
we have

sup
z∈B(y,2a)

g(x, z) ≤ CH inf
z∈B(y,2a)

g(x, z) , (6.5)

with a constant CH which is independent of x, y, a.

x

y

z

2aρ(x,y)>4a

Figure 2: The ball B(y, 2a) in which the Green kernel satisfies the Harnack inequality

(E) The process ξ is strong Markov, right continuous in t, minimal and stochastically complete.

The next statement is our main result for the abstract setting.

Theorem 6.2 Assume that all the hypotheses (A)–(E) hold. Suppose also that, for some points
x1, x2, ..., xn ∈M and a number ε ∈ (0, ε0),∫

M\Ωn
ε

g(x1, y)g(x2, y)...g(xn, y)dμ(y) <∞, (6.6)

where Ωn
ε is the ε-neighborhood in M of the set {x1, x2, ..., xn}. Then the independent processes

ξx1
, ξx2

,... ξxn
are asymptotically separated. Here ε0 is a positive number which is determined

by the constants in the hypotheses (A)–(D).
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In many cases, the condition (6.6) amounts to∫
M\B(x,ε)

gn(x, y)dμ(y) <∞, (6.7)

for some/all x ∈M . Let us note for comparison that, for Lévy processes in R
d, the convergence

of the integral (6.7) in a neighborhood of x is equivalent to the existence of n-multiple points -
see [18] and [20].

For reversible processes and for n = 2 Theorem 6.2 can be simplified as follows.

Theorem 6.3 Assume that all the hypotheses (A)–(E) hold, and in addition, that the process
ξ is transient and reversible with respect to measure μ. Suppose also∫ ∞

1
t p(t, x, x)dt <∞, (6.8)

for x = x1 and x = x2, where x1 and x2 are two distinct points on M . Then the processes ξx1

and ξx2
are asymptotically separated.

Normally in applications the rate of decay of the heat kernel p(t, x, x) as t → ∞ does not
depend on the choice of x. In such cases, it suffices to assume (6.8) for some x ∈M . Also, the
transience of ξ normally follows from (6.8).

As we have seen in the previous sections, for diffusions and α-processes on manifolds, there
are extensions of Theorem 6.3 to n processes. In the general case, it is possible to state such
a theorem as well but the statement becomes very bulky because of numerous additional hy-
potheses. This is why we have chosen to state the case of n processes only for the manifold
case.

Another setting when all the hypotheses (A)–(E) are satisfied is a Brownian motion on
fractals. Uniform heat kernel and Green kernel estimates on fractals are also available – see
[5], [4]. For certain unbounded Sierpinski carpets, one has the following properties, for some
α > β ≥ 2:

1. a uniform volume growth

V (x, r) � rα, ∀x ∈M, r > 0,

2. and a uniform Green kernel decay

g(x, y) � ρ(x, y)−(α−β), ∀x �= y.

Then the condition (6.6) for asymptotic separation of n processes easily amounts to

n >
α

α− β
. (6.9)

This includes also the case M = R
d with α = d and β = 2 (cf. (2.8)).

7 Examples

Let us consider examples of spaces and processes satisfying the hypotheses (A)–(E). Note that
in all the examples below, the process ξ will also be reversible. Therefore, application of one of
the above theorems amounts to verifying one of the conditions (6.6) or (6.8).
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7.1 Diffusions on manifolds

Let M be a manifold with bounded geometry and L be a uniformly elliptic operator on M
defined in Section 2. The conditions (A) and (B) are known to hold on such a manifold (see, for
example, [32], [34]). The local Harnack inequality (D) follows from the fact that the operator L
can be written in a local chart as a uniformly elliptic operator for which the Harnack inequality
was proved by Moser [42]. To verify (C), let us take a0 = r0/4 where r0 is the injectivity radius,
and consider the Green function gU with the vanishing Dirichlet boundary value on ∂U where
U = B(x, 2a0). Then gU is the Green function of a uniformly elliptic operator in U, and by
theorem of Littman, Stampaccia and Weinberger [38], gU (x, y) admits a positive uniform lower
bound provided y ∈ B(x, a0). Since g ≥ gU , the inequality (6.4) in condition (C) follows. By
definition, the L-diffusion on M is constructed as a minimal process - see [14]. On the manifold
M with bounded geometry, the L-diffusion is stochastically complete (see [24], [48]). Finally,
diffusion processes are strong Markov and have continuous paths. Hence, the condition (E) is
also satisfied.

Let us discuss the notion of asymptotic proximity in the present context. As follows from
Definition 1.1, the processes ξx and ξy are asymptotically close if, for any a > 0,

Px,y(∀T > 0 ∃t, s > T : ρ(ξx(t), ξy(s)) < a) > 0. (7.1)

In particular, this condition is satisfied provided

Px,y(∃ {tk} , {sk} → ∞ : ρ(ξx(tk), ξy(sk))→ 0) = 1 (7.2)

(see Fig. 3).

Figure 3: Two trajectories are asymptotically close provided with probability 1 they become
arbitrarily close at a sequence of large times.

If a tail σ-algebra of the L-diffusion is trivial, then the probability in (7.1) is equal to 1, and
by letting a→ 0, we obtain (7.2). Hence, in this case, (7.1) and (7.2) are equivalent. However,
in general (7.1) does not imply (7.2). For example, let M be a connected sum of two copies of
R

3 (see Fig. 4). Then there is a positive probability that the independent processes ξx and ξy

will escape to infinity along different sheets so that (7.2) is false (see [36]). Nevertheless, ξx and
ξy are asymptotically close. Indeed, with a positive probability, both trajectories will eventually
stay on the same sheet (see Fig. 4). Under this condition, they intersect infinitely many times
with probability 1, as in R

3.
Let us consider another example showing that the condition (6.8) of Theorem 6.3 is not

necessary for asymptotic separation of two processes. Let M be a connected sum of R
d (where
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x

y

Figure 4: Two Brownian trajectories can escape to ∞ along the same sheet or along different
sheets (both with positive probabilities).

d is large enough) and of the manifold R+ ×K, where K is a compact manifold of dimension
d − 1 (see Fig. 5). We claim that any two independent trajectories of Brownian motion on M
are asymptotically separated, whereas the heat kernel’s long time behavior is given by

p(t, x, x) � t−3/2, t→∞ (7.3)

(the latter implies that the condition (6.6) fails).

y

x

d

+

K

Figure 5: The connected sum of R
d and R+ ×K

Indeed, the asymptotic proximity of ξx and ξy would mean that, for any a > 0,

Px,y(∃ {ti} , {si} → ∞ : ρ(ξx(ti), ξy(si)) < a) > 0.
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The sequence {ξx(ti)} cannot belong to R+ ×K with positive probability, because R
d is tran-

sient and R+ × K is recurrent. However, if both ξx(ti) and ξy(si) are in R
d, then they are

asymptotically separated provided d > 4.
The estimate (7.3) follows from the following estimate (see [31, Corollary 5]):

p(t, x, y) �
(

1
td/2

+
|x|

t3/2 |y|d−2

)
exp

(
−ρ2(x, y)

ct

)
,

where x ∈ R+ × K, y ∈ R
d and |x| > 1,|y| > 1 (see Fig. 5), and from the observation that

p(t,x,y)
p(t,x,x) remains bounded from above and below as t→∞.

7.2 The α-process

Let ξ(α) be the α-process on a manifold M with bounded geometry. The Green kernel gα(x, y)
for ξ(α) is given by

gα(x, y) =
∫ ∞

0
tα/2−1p(t, x, y)dt. (7.4)

Let us emphasize that p(t, x, y) is the heat kernel for the Brownian motion ξ on M , not for the
α-process. For example, if M = R

d with the standard Lebesgue measure μ, then ξ(α) is the
α-stable Lévy process with the Green function

gα(x, y) =
cα,d

|x− y|d−α
. (7.5)

In order to verify (C) and (D) for gα, we will use the following properties of the heat kernel
on manifolds of bounded geometry.

(i) A local parabolic Harnack inequality for the heat kernel p(t, x, y). Let a0 > 0 be a small
fraction of the injectivity radius of M . Then, for all r ≤ 2a0, x, y ∈M and t ≥ r2,

sup
z∈B(y,r)

p(t, x, z) ≤ C inf
z∈B(y,r)

p(t + r2, x, z). (7.6)

This follows from Moser’s Harnack inequality [43] (see also [44]), since p(t, x, y) locally
satisfies a uniformly parabolic equation.

(ii) A lower bound of the heat kernel: for all x, y ∈M and t > 0,

p(t, x, y) ≥ 1
Ctd/2

exp
[
−C

(
ρ2

t
+ t

)]
, (7.7)

for some large constant C > 0, where d = dimM and ρ = ρ(x, y) (see [10], [13]).

(iii) An upper bound of the heat kernel: for all x, y ∈M and t > 0,

p(t, x, y) ≤ C

min(ad
0, t

d/2)
exp

(
− ρ2

Ct

)
(7.8)

(see [9], [25], [28]).
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Note that all the properties (i)–(iii) hold also for the heat kernel associated with the uniform
elliptic operator L given by (2.1).

To prove (C), let us assume that ρ(x, y) ≤ a0, and integrate (7.7) in time. We obtain from
(7.4)

gα(x, y) ≥
∫ ∞

0

tα/2−1

Ctd/2
exp

[
−C

(
a2

0

t
+ t

)]
dt = const > 0

which implies (6.4).
Let us prove (D). We will verify that if r ≤ 2a0, z1, z2 ∈ B(y, r) and ρ(x, y) > 2r then

gα(x, z1) ≤ const gα(x, z2), (7.9)

which is equivalent to (D) with a = 2r (see also Fig. 6).

x

y

z2

rz1

ρ1

ρ2

>2r

Figure 6: The ratio ρ2/ρ1 is bounded from above and below.

The Harnack inequality (7.6) implies, for all t ≥ r2,

p(t, x, z1) ≤ Cp(t + r2, x, z2).

By integrating this in t from r2 to ∞, we obtain∫ ∞

r2

tα/2−1p(t, x, z1)dt ≤ C

∫ ∞

r2

tα/2−1p(t + r2, x, z2)dt

= C

∫ ∞

2r2

(
t− r2

)α/2−1
p(t, x, z2)dt

≤ C

∫ ∞

0
(t/2)α/2−1 p(t, x, z2)dt

= C ′gα(x, z2). (7.10)

Let us show that ∫ r2

0
tα/2−1p(t, x, z1)dt ≤ C ′′gα(x, z2). (7.11)

Denote ρi = ρ(x, zi), i = 1, 2. By (7.8), we have

∫ r2

0
tα/2−1p(t, x, z1)dt ≤

∫ r2

0

Ctα/2−1

td/2
exp

(
− ρ2

1

Ct

)
dt.
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On the other hand, by (7.7) and for some (large) K,

gα(x, z2) =
∫ ∞

0
tα/2−1p(t, x, z2)dt

≥
∫ Kr2

0

tα/2−1

Ctd/2
exp

[
−C

(
ρ2

2

t
+ t

)]
dt

= K
α−d

2

∫ r2

0

tα/2−1

Ctd/2
exp

[
−C

(
ρ2

2

Kt
+ Kt

)]
dt

By taking K large enough, we can ensure that

C
ρ2

2

Kt
≤ ρ2

1

Ct
,

since the ratio ρ2/ρ1 stays bounded (see Fig. 6). The term exp [−C(Kt)] is bounded from below
because t ≤ r2 ≤ (2a0)2 . Therefore,

exp
(
− ρ2

1

Ct

)
≤ const exp

[
−C

(
ρ2

2

Kt
+ Kt

)]
,

whence (7.11) follows. Together with (7.10), this implies (7.9).
Finally, the α-process ξ(α) is strong Markov, right continuous, minimal and stochastically

complete (see, for example, [22] and [41]) so that (E) holds.

7.3 Random walks

Let M be a graph endowed with a Markov kernelP (x, y) as was described in Section 5. Let us
introduce a measure μ on M by setting μ(x) ≡ 1, for any point x ∈ M . Assuming (5.1) and
(5.2), the conditions (A) and (B) are trivially satisfied, because a ball B(x, r) with radius r < 1
amounts to a singe point set {x}.

To verify (C), let us observe that, by (5.1) and (5.2),

G(x, x) =
∞∑

k=0

Pk(x, x) ≥ P2(x, x)

=
∑
y∼x

P (x, y)P (y, x) ≥ ε0

∑
y∼x

P (x, y) = ε0.

Note that the Green kernel g(x, y) is defined by

g(x, y) =
G(x, y)
μ(y)

.

Hence, (6.4) follows for a0 < 1 by μ ≡ 1.
The Harnack inequality (6.5) of the condition (D) follows trivially for a0 < 1/2 since z = y.

However, we will need (D) also for all a0 < 1. This means that in (6.5), the point z is a neighbor
of y. In this case, (6.5) follows from the following inequality

G(x, y) ≥ ε0G(x, z), (7.12)

for any two neighboring points y, z �= x. To show (7.12), we use the fact that the Green function
u = G(x, ·) is harmonic outside x, whence

u(y) =
∑
v∼y

u(v)P (y, v) ≥ ε0u(z).

The hypothesis (E) is obvious.
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8 Proofs

We continue using notations introduced in Section 6.

8.1 Intersections of trajectories with covering balls

Denote by [ξx] the set of points {ξx(t)}t∈T , and call it the trace of ξx. The following statement
is one of the tools for proving Theorem 6.2.

Proposition 8.1 Suppose that the space M satisfies the hypothesis (A). Assume also that the
process ξ is transient, minimal and stochastically complete. Denote by Nb the number of the
balls B(yi, b) ∈ Bb intersected by all traces

[
ξx1

]
,
[
ξx2

]
, ...,

[
ξxn

]
. Then the processes ξx1

, ξx2
,

... ξxn
are asymptotically separated if and only if, for some b > 0,

Nb <∞ Px-a.s.

(see Fig. 7).

Remark: This statement does not make sense if ξ is recurrent since the recurrence already
implies that ξx1

, ξx2
, ... ξxn

are asymptotically close. It is easy to see that the hypothesis of the
minimality of ξ cannot be eliminated. Indeed, if ξ is the Brownian motion in a Euclidean open
ball with a reflecting boundary condition (which obviously is not minimal) then the number Na

is always finite whereas the processes ξx1
, ξx2

, ... ξxn
are asymptotically close.

Figure 7: The trajectories are asymptotically separated if the number of balls from Bb intersected
by all of them, is finite with probability 1.

Proof. Fix some a > 0 and, for any T ∈ T , introduce the event BT by

BT =
{

ω : ∃ t1, t2, ..., tn > T such that max
j,k

ρ(ξxj
(tj), ξxk

(tk)) ≤ a

}
.

Clearly, the processes ξx1
, ξx2

, ..., ξxn
are asymptotically separated if and only if, for some a > 0,

lim
T→∞

Px (BT ) = 0 (8.1)

(cf. (1.4)). Let us assume that Px̄(Nb = ∞) = 0 and prove (8.1) for a = b/2, which will imply
that the processes ξx1

, ξx2
, ..., ξxn

are asymptotically separated. Introduce another event, for
T ∈ T and i = 1, 2, ...,

Ai,T =
{
ω : ∃ t1, t2, ..., tn > T such that ξxj

(tj) ∈ B(yi, 2a)
}

,
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where B(yi, 2a) ∈ B2a. In other words, Ai,T is the event that any trajectory ξxj
visits B(yi, 2a)

after time T. We claim that

BT ⊂
∞⋃
i=1

Ai,T . (8.2)

Indeed, assume that BT is true. The point ξx1
(t1) belongs to one of the balls B(yi, a). Therefore,

by the triangle inequality and by definition of BT , all ξxj
(tj), j = 1, 2, ..., n, belong to B(yi, 2a).

Thus, BT implies that one of Ai,T occurs, whence (8.2) follows.

B(yi,a)

B(yi,2a)

ξ (t1)x1

ξ (t2)x2

ξ (t3)x3ξ (t4)x4

Figure 8: All points ξxj
(tj) belong to B(yi, 2a)

The transience of the process ξ implies that

Px

( ⋂
T∈T

Ai,T

)
= 0

(cf. (6.2)) whence we obtain
lim

T→∞
1Ai,T

= 0, Px-a.s.

Therefore,

lim
T→∞

∞∑
i=1

1Ai,T
=

∞∑
i=1

lim
T→∞

1Ai,T
= 0, Px-a.s. (8.3)

The interchanging of the summation and the limit is justified by the dominated convergence
theorem, because

1Ai,T
≤ 1Ai,0

and ∞∑
i=1

1Ai,0 = N2a <∞, Px-a.s.

We obtain, from (8.2) and (8.3),

lim
T→∞

1BT
≤ lim

T→∞

∞∑
i=1

1Ai,T
= 0, Px-a.s.
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whence (8.1) follows.
Now let us assume that the processes ξx1

, ξx2
, ..., ξxn

are asymptotically separated and prove
that Na/2 <∞, Px-a.s. Clearly, we have from (8.1)

Px

( ⋂
T∈T
BT

)
= 0. (8.4)

Hence, for Px-almost all trajectories ω, there is T (ω) <∞ such that, for all t1, ..., tn ≥ T (ω),

max
1≤j,k≤n

ρ(ξxj
(tj), ξxk

(tk)) > a.

By the triangle inequality, for all such tj, ξxj
(tj) cannot be in the same ball B(yi, a/2) ∈ Ba/2.

Therefore Na/2(ω) equals the number of balls from Ba/2 intersected by all trajectories ξxj
(t)

before time T (ω). Clearly, this number does not exceed the number of the balls intersected by
one trajectory ξx1

. Hence, we are left to verify that (denote for simplicity x1 = z)

Pz

(
ξ intersects infinitely many balls from Ba/2 before time T (ω)

)
= 0. (8.5)

For any θ ∈ (0,∞), denote Tθ(ω) = T (ω)∧ θ. By the Lebesgue monotone convergence theorem,
(8.5) amounts to

lim
θ→∞

Pz

(
ξ intersects infinitely many balls from Ba/2 before time Tθ(ω)

)
= 0 (8.6)

which, in turn, will follow from

Pz

(
ξ intersects infinitely many balls from Ba/2 before time θ

)
= 0, ∀θ <∞. (8.7)

Fix a point o ∈ M and observe that, for any R ∈ (0,∞), the ball B(o,R) intersects only
finitely many balls from Ba/2. Therefore, ξz can intersect infinitely many balls from Ba/2 before
θ only if ξz(t) exits B(o,R) before θ. Hence, (8.7) will follow from

lim
R→∞

Pz (ξ exits B(o,R) before time θ) = 0. (8.8)

By Lemma 6.1, the process ξ is stochastically compact, whence (8.8) follows.

8.2 Hitting probability and Green kernel

The purpose of this section is to prove the estimate (8.11) for the hitting probability. Given a
set K ⊂M , denote by Ψ(x,K) the Px-probability that ξ(t) ever hits K, that is,

Ψ(x,K) = Px (∃t ∈ T : ξ(t) ∈ K) .

Let τK be the first time the process ξ(t) enters K, this is

τK = inf {t ≥ 0 : ξ(t) ∈ K} .

For any z ∈M, introduce the following measure on Borel subsets of M

γz,K(A) = Pz(ξ(τK) ∈ A),

which is called a harmonic measure of the set K (see Fig.9).
Clearly, if the trajectories of the process ξ are right continuous and if K is closed then the

measure γz,K sits on K. Moreover, its total mass γz,K(K) is equal to the Pz-probability of ξ(t)
ever hitting K whence

γz,K(K) = Ψ(z,K). (8.9)
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z

x=ξz(τK)

K

A

y

Figure 9: Entering the set K at the set A

Lemma 8.2 Assume that the process ξ is strong Markov property, right continuous, and tran-
sient. Then, for any closed set K ∈M and for all y ∈ K and z /∈ K,

g(z, y) =
∫

K
g(x, y)dγz,K(x). (8.10)

Corollary 8.3 Under the above hypotheses,

Ψ(z,K) ≤ g(z, y)
infx∈K g(x, y)

. (8.11)

Indeed, inequality (8.11) follows immediately from (8.10) and (8.9).

Proof of Lemma 8.2. Denote for simplicity τ = τK and γ = γz,K . For any y ∈ K and z /∈ K,
we have, by the strong Markov property,

p(t, z, y) = Ez

(
1{τ≤t} p(t− τ , ξ(τ), y)

)
=

∫
K

∫ t

0
p(t− s, x, y) dγ(s, x)

where γ(s, x) is a joint law of (τ , ξz(τ)). By integrating in t, we obtain

g(z, y) =
∫ ∞

0

∫
K

∫ t

0
p(t− s, x, y) dγ(s, x) dt

=
∫ ∞

0

∫
K

∫ ∞

s
p(t− s, x, y) dt dγ(s, x)

=
∫ ∞

0

∫
K

g(x, y) dγ(s, x)

=
∫

K
g(x, y) dγ(x),

which completes the proof.
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8.3 Asymptotic separation in terms of the Green kernel

Here we prove Theorems 6.2, 2.1 and 5.1.

Proof of Theorem 6.2. By Corollary 8.3, we have, for any positive a and all distinct points
x, y ∈M such that ρ(x, y) > a,

Ψ(x,B(y, a)) ≤ g(x, y)
infv∈B(y,a) g(v, y)

. (8.12)

Let us denote
Ca := sup

y,v∈M, ρ(y,v)≤a

1
g(v, y)

.

The hypothesis (C) implies that Ca < ∞, for all a small enough, and we can rewrite (8.12) as
follows

Ψ(x,B(y, a)) ≤ Cag(x, y). (8.13)

Let us fix a > 0 to be small enough. By the hypothesis (A), the metric space M can be
covered by a countable family of balls B(yi, a) ∈ Ba so that the family of double balls {B(yi, 2a)}
has a uniformly finite multiplicity. Let us denote Ui = B(yi, 2a), and introduce the events

Ai =
{

ω : ∀j = 1, 2, ..., n ∃ tj(ω) such that ξxj
(tj) ∈ Ui

}
.

In other words, Ai is the event that all traces [ξxi
] intersect Ui. Let N = N2a be the number of

sets Ui which intersect all traces [ξxj
] for j = 1, 2, ..., n. Clearly,

N =
∑

i

1Ai .

Let us prove that Ex(N) <∞. Since the processes ξxi
are independent, we have

Px(Ai) =
n∏

j=1

Pxj([ξxj
] ∩ Ui �= ∅) =

n∏
j=1

Ψ(xj , Ui).

Therefore, by (8.13),

Ex(N) = Ex

(∑
i

1Ai

)
=
∑

i

Px(Ai) =
∑

i

n∏
j=1

Ψ(xj, Ui)

=
∑

i

∏n
j=1 Ψ(xj, Ui)

μ (Ui)
μ (Ui)

≤ Cn
a

∑
i

∏n
j=1 g(xj , yi)

μ (Ui)
μ (Ui)

≤ Cn
a

infy∈M V (y, 2a)

∑
i

n∏
j=1

g(xj , yi)μ (Ui) . (8.14)

By the hypothesis (B), we have
inf

y∈M
V (y, 2a) > 0.
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Next, we claim that ∑
i

n∏
j=1

g(xj , yi)μ(Ui) <∞. (8.15)

As follows from the hypothesis (A), the number of points yi which are located at a distance ≤ 4a
from some of xj , is finite. Therefore, it suffices to restrict the summation in (8.15) to those i for
which ρ(yi, xj) > 4a, for any j = 1, 2, ...n. For such i, we have, by the Harnack inequality (6.5)
of the hypothesis (D),

g(xj , yi) ≤ CH inf
y∈Uj

g(xj , y).

Therefore,
n∏

j=1

g(xj , yi)μ(Ui) ≤ CH

n∏
j=1

∫
Ui

g(xj , y) dμ(y).

Let us denote by CM the maximal multiplicity of the cover set {Ui}. Then we have

∑
i

n∏
j=1

g(xj , yi)μ(Ui) ≤ CH

∑
i

∫
Ui

n∏
j=1

g(xj , y) dμ(y)

≤ CHCM

∫
M\Ω2a

n∏
j=1

g(xj , y) dμ(y),

which is finite by (6.6).
Hence, we have proved (8.15) and thus, by (8.14), Ex(N) < ∞. This implies immedi-

ately N < ∞, Px-a.s. By Proposition 8.1, the processes ξxj
, j = 1, 2, ..., n, are asymptotically

separated.

Proof of Theorem 2.1. We will reduce this theorem to Theorem 6.2. As was mentioned in
Sections 7.1 all hypotheses (A)-(E) are satisfied for the manifold M with bounded geometry,
and for the process ξ generated by the uniformly elliptic operator L given by (2.1). We are left
to verify that (6.6) follows from (2.3). Assuming that (2.3) holds, we have also∫

M\B(x,ε/2)
gn(x, y)dμ(y) <∞, (8.16)

for some ε > 0 and x ∈M .
Let us connect x with every xj by a finite set of covering balls B(yi, ε/2) ∈ Bε/2, i =

1, 2, ....,m, with ε > 0 small enough. Denote by K the closure of the union of the balls B(yi, ε)
over all i = 1, 2, ...,m. For any point y outside Ωn

ε , we have by the local Harnack inequality (6.5)
and by the symmetry of the Green function,

g(xj , y) ≤ Cm
H g(x, y).

Thus,∫
M\(Ωn

ε ∪K)
g(x1, y)g(x2, y)...g(xn, y) dμ(y) ≤ Cnm

H

∫
M\(Ωn

ε ∪K)
gn(x, y) dμ(y)

≤ Cnm
H

∫
M\B(x,ε/2)

gn(x, y) dμ(y),
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y

x

x1

x2

x3

Figure 10: Point y is disjoint from K, which is the union of the white balls

which is finite by (8.16). We have used the fact that K ⊃ B(x, ε/2).
Finally, we are left to observe that∫

K\Ωn
ε

g(x1, y)g(x2, y)...g(xn, y) dμ(y) <∞ ,

due to the continuity of the Green function outside Ωn
ε .

Proof of Theorem 5.1. This theorem also follows from Theorem 6.2. As was mentioned in
Section 7.3, all hypotheses (A)-(E) are satisfied. Clearly, (6.6) follows from (5.3) by (7.12).

8.4 Asymptotic separation for two trajectories

Here we prove the results of asymptotic separation of two independent processes in terms of the
heat kernel decay, that is Theorems 6.3, 2.2, 4.1 and 5.2.

Proof of Theorems 6.3, 2.2 and 4.1. Theorem 2.2 is clearly a particular case of Theorem
6.3, due to the following remark. The starting points x1 and x2 are assumed to be different in
Theorem 6.3, whereas they are arbitrary in Theorem 2.2. However, if x1 = x2, then it suffices to
consider the processes started at the random points y1 = ξ1(ε) and y2 = ξ2 (ε), for some ε > 0,
because y1 �= y2 almost surely.

In what follows, we will simultaneously prove Theorems 6.3 and 4.1. By the same argument
as above, we can assume x1 �= x2.

In the setting of Theorem 4.1, we set ξ = ξ(α), i.e. ξ is the α-process on a Riemannian
manifold M. As before, p(t, x, y) denotes the heat kernel of the Brownian motion on M . Recall
that the Green kernel gα of ξ(α) is given by

gα(x, y) =
∫ ∞

0
tα/2−1p(t, x, y)dt. (8.17)

In the setting of Theorem 6.3, ξ is a reversible Markov process on the space M (satisfying the
hypotheses of Theorem 6.3), p(t, x, y) is the heat kernel of ξ and g(x, y) is the Green kernel of
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ξ, that is,

g(x, y) =
∫ ∞

0
p(t, x, y)dt (8.18)

(here t ranges either in R+ or in Z+; in the latter case dt means the counting measure).
Note that in both theorems in question, the heat kernel p(t, x, y) is symmetric in x and

y, and (8.18) is formally a particular case of (8.17) for α = 2. So, we can use (8.17) in all
computations, assuming that, in the case of Theorem 6.3, α = 2. Also, both hypotheses (6.8)
and (4.2) formally look the same: ∫ ∞

1
tα−1 p(t, x, x) dt <∞. (8.19)

This allows us to conduct the proof of both theorems simultaneously.
In both cases, we will apply Theorem 6.2. All the hypotheses of this theorem, except for

(6.6), are satisfied (see Section 7.2 for the case of α-processes), so we are left to verify that each
of the hypotheses (6.8) and (4.2) implies (6.6). In fact, we will prove even more:∫

M
gα(x1, y)gα(x2, y)dμ(y) <∞. (8.20)

The next lemma is related to continuous time processes.

Lemma 8.4 For all α, β > 0, we have the identity∫
M

gα(x1, y)gβ(x2, y)dμ(y) = cαβgα+β(x1, x2) (8.21)

where cαβ ∈ (0,∞).

Proof. Using (8.17) and the Markov property∫
M

p(t, x, y)p(s, y, z)dμ(y) = p(t + s, x, z),

we obtain∫
M

gα(x1, y)gβ(x2, y)dμ(y) =
∫

M

∫ ∞

0

∫ ∞

0
tα/2−1sβ/2−1p(t, x1, y)p(s, x2, y) dt ds dμ(y)

=
∫ ∞

0

∫ ∞

0
tα/2−1sβ/2−1

∫
M

p(t, x1, y)p(s, x2, y) dμ(y) dt ds

=
∫ ∞

0

∫ ∞

0
tα/2−1sβ/2−1p(t + s, x1, x2) dt ds

=
∫ ∞

0

∫ ∞

s
(t− s)α/2−1sβ/2−1p(t, x1, x2) dt ds

=
∫ ∞

0

(∫ t

0
(t− s)α/2−1sβ/2−1ds

)
p(t, x1, x2) dt.

Clearly, we have∫ t

0
(t− s)α/2−1sβ/2−1ds = tα/2+β/2−1

∫ 1

0
(1− u)α/2−1uβ/2−1du = cαβtα/2+β/2−1 (8.22)
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whence (8.21) follows.
By Lemma 8.4, we obtain2

∫
M

gα(x1, y)gα(x2, y)dμ(y) = cα

∫ ∞

0
tα−1p(t, x1, x2)dt

= cα

[∫ 1

0
+
∫ ∞

1

]
tα−1p(t, x1, x2)dt. (8.23)

The first integral in (8.23) is finite by transience because∫ 1

0
tα−1p(t, x1, x2) dt ≤

∫ 1

0
tα/2−1p(t, x1, x2) dt ≤ g(x1, x2) <∞. (8.24)

The finiteness of the second integral in (8.23) follows from the hypothesis (8.19). Indeed, by the
semigroup identity, the symmetry of heat kernel and the Cauchy-Schwarz inequality, we have

p(t, x1, x2) =
∫

M
p(

t

2
, x1, z)p(

t

2
, z, x2) dμ(z)

≤
[∫

M
p2(

t

2
, x1, z) dμ(z)

]1/2 [∫
M

p2(
t

2
, x2, z) dμ(z)

]1/2

= [p(t, x1, x1)p(t, x2, x2)]1/2 . (8.25)

Therefore, by (8.25) and (8.19),

∫ ∞

1
tα−1 p(t, x1, x2) dt ≤

[∫ ∞

1
tα−1 p(t, x1, x1) dt

]1/2 [∫ ∞

1
tα−1 p(t, x2, x2) dt

]1/2

<∞. (8.26)

Thus, (8.24) and (8.26) imply that the right-hand side in (8.23) is finite, whence (8.20) follows.

Proof of Theorem 5.2. The heat kernel is defined by

p(k, x, y) =
Pk(x, y)

μ(y)
.

The reversibility of the random walk ξ was defined by (5.4). Clearly, this is equivalent to the
symmetry of the heat kernel p(k, x, y) in x and y. The hypotheses (5.6) and (5.5) imply∑

k

kp(k, x, x) <∞,

and the rest follows by Theorem 6.3.

8.5 Asymptotic separation for n trajectories

Here we prove Theorems 2.3 and 4.2, which contain sufficient conditions for the asymptotic
separation of n trajectories in terms of the heat kernel decay.

Proof of Theorem 2.3. We shall prove that the hypotheses of Theorem 2.3 imply those of
Theorem 2.1, so that the latter can be applied. We only have to verify that (2.5) implies (2.3).

2Strictly speaking, the reference to Lemma 8.4 is illegal if the time t is discrete. However, most of the proof of
Lemma 8.4 goes through in this case too, except for the change in the integral (8.22). However, in the discrete
case we need this Lemma only for α = β = 2, in which case the integral in (8.22) is obviously equal to t.
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Let us first show that (2.5) implies

sup
y∈M\B(x,ε)

∫ ∞

0
φ(t) p(t, x, y) dt <∞, (8.27)

where the function φ(t) is defined by

φ(t) =

{
θ(1), 0 < t ≤ 1,
t

1
n−1 θ(t), t > 1.

(8.28)

Indeed, we have∫ ∞

0
φ(t) p(t, x, y) dt = θ(1)

∫ 1

0
p(t, x, y) dt +

∫ ∞

1
t

1
n−1 p(t, x, y) θ(t) dt. (8.29)

The first integral in (8.29) is uniformly bounded from above. Indeed, the heat kernel of L
admits the upper bound (7.8). Integrating (7.8) from 0 to t and using ρ(x, y) ≥ ε, we obtain

∫ 1

0
p(t, x, y) dt ≤ const.

The second integral in (8.29) is uniformly (in y) bounded from above by the hypothesis (2.5).
Let us show (2.3). By the definition of the Green function, (2.3) is equivalent to∫

M ′

(∫ ∞

0
p(t, x, y)dt

)n

dμ(y) <∞, (8.30)

where M ′ := M \B(x, ε). Let us apply the Hölder inequality

∫
fg ≤

(∫
fa

)1/a (∫
gb

)1/b

with a = n
n−1 , b = n, f = (pφ)

n−1
n and g = p

1
n φ−n−1

n . We obtain

(∫ ∞

0
p(t, x, y)dt

)n

≤
(∫ ∞

0
p(t, x, y)φ(t)dt

)n−1(∫ ∞

0
p(t, x, y)

dt

φn−1(t)

)
. (8.31)

The first integral in the right-hand side of (8.31) is uniformly bounded from above by (8.27).
Therefore, the integral in (8.30) is majorized up to a constant factor by∫

M ′

∫ ∞

0
p(t, x, y)

dt

φn−1(t)
dμ(y) =

∫ ∞

0

∫
M ′

p(t, x, y)dμ(y)
dt

φn−1(t)

≤
∫ ∞

0

dt

φn−1(t)

= const +
∫ ∞

1

dt

tθn−1(t)
<∞, (8.32)

which completes the proof. Here we have used the general property of the heat kernel∫
M

p(t, x, y)dμ(y) ≤ 1,
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and the hypothesis (2.6) which yields the last inequality in (8.32).
Remark: If we take θ ≡ 1 in (8.28) then the integral (8.32) diverges at ∞. This is the reason
why we have to introduce the function θ satisfying (2.6).

Proof of Theorem 4.2. The proof uses Theorem 6.2 and follows the same line as the proofs
of Theorem 2.1 and 2.3. All the hypotheses of Theorem 6.2, except for (6.6), were verified in
this setting in Section 7.2. Let us prove that (6.6) follows from the hypothesis (4.3) of Theorem
4.2. The Green kernel gα(x, y) for the α-process ξ is given by

gα(x, y) =
∫ ∞

0
tα/2−1p(t, x, y)dt. (8.33)

Let us emphasize that p(t, x, y) is the heat kernel for the Brownian motion on M , not for the
α-process.

Clearly, the condition (6.6) of Theorem 6.2 follows from∫
M\Ωε

gn
α(x, y)dμ(y) <∞ (8.34)

in the same way as in the proof of Theorem 2.1. Let us deduce (8.34) from the hypothesis (4.3).
In view of (8.33), this amounts to∫

M ′

(∫ ∞

0
tα/2−1p(t, x, y)dt

)n

dμ(y) <∞ (8.35)

where M ′ = M \B(x, ε). Define φ(t) by

φ(t) =
{

θ(1), 0 < t ≤ 1,
tβ/2−1θ(t), t > 1.

(8.36)

Then (8.27) is true again. By the Hölder inequality, we have

(∫ ∞

0
tα/2−1p(t, x, y)dt

)n

≤
(∫ ∞

0
p(t, x, y)φ(t)dt

)n−1
(∫ ∞

0
p(t, x, y)

tn(α/2−1)dt

φn−1(t)

)
.

The first integral on the right-hand side is uniformly bounded from above, which follows from
(8.27). Hence, the integral in (8.35) is majorized by

∫ ∞

0

∫
M ′

p(t, x, y)dμ(y)
tn(α/2−1)dt

φn−1(t)
≤ const +

∫ ∞

1

dt

tθn−1(t)
<∞,

where we have used φ(t) = tβ/2−1θ(t) and

(n− 1)(β/2− 1)− n(α/2− 1) = 1,

which is a consequence of the definition (4.4) of β.
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