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Abstract. We prove the equivalence of the singular cubical homology and the
path homology on the category of cubical digraphs. As a corollary we obtain a
new relation between the singular cubical homology of digraphs and simplicial
homology.
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1. Introduction

The path homology theory and the singular cubical homology theory for the
category of digraphs were introduced in [1, 2, 3, 4, ?]. In this category, there is a
natural mapping of the cubical homology theory to the path homology theory, that
induces an isomorphism of homology groups in dimensions 0 and 1. However, in
[1] an example of a digraph was constructed, for which the path homology is trivial
in dimension 2 while the singular cubical homology is non-trivial in this dimension.
Hence, in general, these two theories give different homologies in dimensions ≥ 2. A
natural question arises whether these two theories are equivalent on some subclass
of digraphs.

In this paper we present a class of cubical digraphs and prove the equivalence of
the singular cubical homology and the path homology theories on this class. As the
main technical tool for that, we prove that the image of every map of a digraph
cube to a cubical digraph is contractible.

The paper is organized as follows. In Section 2, we recall the basic definitions
from graph theory and describe some properties of singular cubical homology Hc

∗
and the path homology H∗ on the category of digraphs using the sources [1], [2],
[3], and [4]. In Section 3, we recall the definition of cubical digraph from [4] and
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prove the contractibility of the image of a digraph cube in a cubical digraph for any
digraph map. In Section 4, we prove the main result of the paper:

Theorem 1.1. On the category of cubical digraphs, the singular cubical homology
theory is equivalent to the path homology theory.

In Corollary 4.6 we obtain a consequence about the relation between the singular
cubical homology theory of digraphs and simplicial homology.

2. Singular cubical and path homology theories

In this Section we give necessary preliminary material about digraphs and homol-
ogy theories on the category of finite digraphs.

Definition 2.1. A digraph G is a pair (VG, EG) of a set V = VG of vertices and a
subset EG ⊂ {VG×VG \diagonal} of ordered pairs (v, w) of vertices which are called
arrows and are denoted v → w. The vertex v = orig (v → w) is called the origin of
the arrow and the vertex w = end(v → w) is called the end of the arrow.

For two vertices v, w ∈ VG, we write v−→=w if either v = w or v → w.

A subgraph H of a digraph G is a digraph whose set of vertices is a subset of that
of G and the set edges of H is a subset of the set of edges of G. In this case we
write G ⊂ H.

A subgraph H of G is called induced if the edges of H are all those edges of G
whose adjacent vertices belong to H. In this case we write G @ H.

A directed path p = (a1, α1, a2, α2, . . . , αn, an+1) in a digraph G is a sequence of
vertices ai and arrows αi such that αi = (ai → ai+1). The number n of arrows in
path is called length of the path and is denoted by |p|. The vertex a1 is called the
origin of the path and the vertex an+1 is called the end of the path.

Definition 2.2. A digraph map (or simply map) from a digraph G to a digraph
H is a map f : VG → VH such that v−→=w in G implies f (v)−→=f (w) in H.

A digraph map f is non-degenerate if v → w in G implies f(v)→ f (w) in H.

The set of all digraphs with digraph maps form the category of digraphs that will
be denoted by D.

Definition 2.3. For two digraphs G and H, the box product Π = G�H is defined
as a digraph with a set of vertices VΠ = VG × VH and a set of arrows EΠ given by
the rule

(x, y)→ (x′, y′) if x = x′ and y → y′, or x→ x′ and y = y′,

where x, x′ ∈ VG and y, y′ ∈ VH .

Fix n ≥ 0. Denote by In any digraph with the set of vertices V = {0, 1, . . . , n}
such that, for i = 0, 1, . . . n − 1, there is exactly one arrow i → i + 1 or i + 1 → i
and there are no other arrows. Such a digraph is called a line digraph. It is called
a direct line digraph if, additionally, all arrows have the form i→ i + 1. We denote
the digraph 0→ 1 by I.

For any n ≥ 0, define a standard n-cube digraph In as follows. For n = 0 we
put I0 = {0} that is an one-vertex digraph. For n ≥ 1, the set of vertices of In

consists of all 2n binary sequences a = (a1, . . . , an), and there is an arrow a → b
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between two such vertices if and only if the sequence b = (b1, . . . , bn) is obtained
from a = (a1, . . . , an) by replacing a digit 0 by 1 at exactly one position. It is easy
to see that

In = I�I�I� . . .�I︸ ︷︷ ︸
n times

.

For example, the digraph 0 → 1 is an 1-cube. Any digraph that is isomorphic to I2

will be referred to as a square. Any digraphs that is isomorphic to In will be referred
to as an n-cube digraph any digraph that is isomorphic to the standard n-cube.

Let us recall the notion of homotopy in the category of digraphs that was intro-
duced in [2].

Definition 2.4. Two digraph maps f, g : G→ H are called homotopic if there exists
a line digraph In with n ≥ 1 and a digraph map

F : G�In → H,

such that
F |G�{0} = f and F |G�{n} = g,

where we identify G�{0} and G�{n} with G in a natural way. In this case we shall
write f ' g. The map F is called a homotopy between f and g.

In the case n = 1 we refer to the map F as an one-step homotopy.

Definition 2.5. Digraphs G and H are called homotopy equivalent if there exist
digraph maps

f : G→ H, g : H → G

such that
f ◦ g ' idH , g ◦ f ' idG.

In this case we shall write H ' G and the maps f and g are called homotopy
inverses of each other.

A digraph G is called contractible if G ' {∗} where {∗} is an one-vertex digraph.

Definition 2.6. [2, Def. 3.4] Let G be a digraph and H be its subgraph.
(i) A retraction of G onto H is a map r : G→ H such that r|H = idH .
(ii) A retraction r : G→ H is called a deformation retraction if i◦r ' idG, where

i : H → G is the natural inclusion.

Proposition 2.7. [2, Corollary 3.7] Let r : G→ H be a retraction of a digraph G
onto a sub-digraph H and

x−→=r (x) for all x ∈ VG or r (x) −→=x for all x ∈ VG. (2.1)

Then r is a deformation retraction, the digraphs G and H are homotopy equivalent,
and i, r are the homotopy inverses of each other..

Now we recall the definitions of path homology groups from [4] with the group
of coefficients Z. An elementary p-path on a finite set V is any (ordered) sequence
i0, ..., ip of p+1 vertices of V that will be denoted by ei0...ip . Denote by Λp = Λp (V )
the free abelian group generated by all elementary p-paths ei0...ip . The elements of
Λp are called p-paths. Thus, each p-path v ∈ Λp has the form

v =
∑

i0,...,ip∈V

vi0i1...ip ei0i1...ip ,
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where vi0i1...ip ∈ Z are the coefficients of v.
For p ≥ 0, define the boundary operator ∂ : Λp+1 → Λp on basic elements by

∂ei0...ip+1 =

p+1∑

q=0

(−1)q ei0...îq ...ip+1
, (2.2)

where k̂ means omission of the corresponding index, and extend ∂ to Λp+1 by lin-
earity. Set also Λ−1 = {0} and define ∂ : Λ0 → Λ−1 by ∂v = 0 for all v ∈ Λ0. It
follows from this definition that ∂2v = 0 for any p-path v.

An elementary p-path ei0...ip (p ≥ 1) is called regular if ik 6= ik+1 for all k. For
p ≥ 1, let Ip be the subgroup of Λp that is spanned by all irregular ei0...ip and we set
I0 = I−1 = 0. Then ∂Ip+1 ⊂ Ip for p ≥ −1. Consider the chain complex R∗ with

Rp = Rp (V ) = Λp/Ip

and with the chain map that is induced by ∂.
Now we define allowed paths on a digraph G = (V,E). A regular elementary

path ei0...ip in V is called allowed if ik−1 → ik for any k = 1, ..., p, and non-allowed
otherwise. For p ≥ 1, denote by Ap = Ap (G) the subgroup of Rp spanned by the
allowed elementary p-paths, that is,

Ap = span
{
ei0...ip : i0...ip is allowed

}
.

and set A−1 = 0. The elements of Ap are called allowed p-paths.
Consider the following subgroup of Ap (p ≥ 0)

Ωp = Ωp (G) = {v ∈ Ap : ∂v ∈ Ap−1} . (2.3)

The elements of Ωp are called ∂-invariant p-paths. It is easy ti see that ∂Ωp+1 ⊂ Ωp

so that we obtain a chain complex

0 ← Ω0
∂
← Ω1

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . . (2.4)

The path homology groups H∗(G) of the digraph G are defined as the homology
groups of the chain complex (2.4), that is,

Hp (G) := ker ∂|Ωp

/
Im∂|Ωp+1 .

In what follows we will also need a natural augmentation ε : Ω0 → Z that is defined
by

ε
(∑

kiei

)
=
∑

ki, ki ∈ Z.

Clearly, ε is an epimorphism and ε ◦ ∂ = 0.
Now we recall from [1] the construction of the cubical singular homology theory

of digraphs.

Definition 2.8. A singular n-cube in a digraph G is a digraph map φ : In → G.

Fix n ≥ 1. For any 1 ≤ j ≤ n and ε = 0, 1, define the inclusion F n−1
jε : In−1 → In

of digraphs as follows: if n ≥ 2 then

F n−1
jε (c1, . . . , cn−1) =






(ε, c1, . . . , cn−1) for j = 1,

(c1, . . . , cj−1, ε, cj , . . . cn−1) for 1 < j < n,

(c1, . . . , cn−1, ε) for j = n,

(2.5)
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and if n = 1 then F n−1
1ε (0) = (ε) . We shall write shortly Fjε instead of F n−1

jε if the

dimension n − 1 is clear from the context. Denote by In−1
jε the image of F n−1

jε . We

shall write Ijε instead In−1
jε if the dimension is clear from the context.

Let Q−1 = 0. For n ≥ 0, denote Qn = Qn(G) the free abelian group generated
by all singular n-cubes in G, and denote φ� the singular n-cube φ as the element of
the group Qn. For n ≥ 1 and 1 ≤ p ≤ n, denote

φ�pε = (φ ◦ Fpε)
� ∈ Qn−1. (2.6)

For any n ≥ 1, define a homomorphism ∂c : Qn → Qn−1 on the basis elements φ�

by the rule

∂cφ� =
n∑

p=1

(−1)p
(
φ�p0 − φ�p1

)
, (2.7)

and ∂c = 0 for n = 0. Then (∂c)2 = 0 and the groups Qn(G) form a chain complex
that we denote Q∗ = Q∗(G).

For n ≥ 1 and 1 ≤ p ≤ n, consider the natural projection T p : In → In−1 on the
p-face In−1 defined as follows. For n = 1, T 1 is the unique digraph map I1 → I0. For
n ≥ 2, we have on the set of vertices T p(i1, . . . , in) = (i1, . . . , ip−1, ip+1, . . . , in). The
singular n-cube φ : In → G is degenerate if there is 1 ≤ p ≤ n such that φ = ψ ◦ T p

where ψ : In−1 → G is a singular (n− 1)-cube. Then an abelian group Bn = Bn(G)
that is generated by all degenerated n-cubes is a subgroup Qn for n ≥ 1. We put
also B0 = 0, B−1 = 0. Then the quotient group

Ωc
p(G) = Qp(G)/Bp(G) (2.8)

is defined for p ≥ 0. We have ∂(Bn) ⊂ Bn−1 and, hence, B∗(G) ⊂ Q∗(G). Hence
the quotient complex Ωc

∗(G) = Q∗(G)/B∗(G) is defined. We continue to denote the
boundary operator in this complex ∂c. The homology group Hk(Ω

c
∗(G)) is called the

singular cubical homology group of digraph G in dimension k and is denoted Hc
k(G).

We have a natural augmentation homomorphism ε : Ωc
0(G)→ Z, defined by

ε
(∑

kiφi

)
=
∑

ki, ki ∈ Z.

Then ε is an epimorphism and ε ◦ ∂c = 0.
Here are some basic properties of the path and the singular cubical homology

groups from [4] and [1].

• The groups Hc
∗(X) and H∗(X) are functors from the category D to the

category of abelian groups.
• Let f ' g : X → Y be two homotopic digraph maps. Then the induced

homomorphisms f∗, g∗ of homology groups are equal for k ≥ 0 for the both
theories.

3. Maps from cube to cubical digraph

In this section we reformulate slightly the definition of a cubical digraph from
[4] and prove Theorem 3.6 saying that an image of a cube in a cubical digraph is
contractible.
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Recall, that any vertex of a a cube In is given by a sequence of binary numbers
(a1, . . . , an). For any arrow a→ b in a digraph cube In we have also the arrow

γi = (0, . . . , 0)→ (b1 − a1, . . . , bn − an) (3.1)

in In where the right sequence represents a vertex in In that has only one non-trivial
element 1 at some position i. We say that two arrows α = (a→ b) and β = (c→ d)
of In are parallel and write α||β if

(b1 − a1, . . . , bn − an) = (d1 − c1, . . . , dn − cn).

In the opposite case we say that the arrows α and β are orthogonal.
An arrow α ∈ EIn defines two (n−1) – faces of In: the face I0 = Iα

0 that contains
the origin vertices of the arrows that are parallel to α and the face I1 = Iα

1 that
contains the end vertices of the arrows that are parallel to α. Note that any arrow
that is orthogonal to α lies in I0 or in I1.

For the digraph cube In, there is a natural partial order on the set of its vertices
VIn that is defined as follows: we write a ≤ b if there exists a path along the arrows
with the origin vertex a and the end vertex b. Now we introduce the distance Δ(a, b)
for a pair of vertex a, b ∈ In that is defined only for comparable pair of vertices. Let
a, b be two vertices of In such that a ≤ b. As it follows from the definition of In,
the length of the path p from a to b does not depend on the choice of the path, and
we set

Δ(a, b) = Δ(b, a) : = |p|.

We shall refer to the vertex a = (0, . . . , 0) of a cube as the origin vertex and to the
vertex d = (1, . . . , 1) as the end vertex.

It follows immediately from the definition of In that, for any vertex x, the distances
Δ(a, x) and Δ(x, d) are well defined. For an arrow α = (x→ y) we define Δ(α, d) : =
Δ(y, d).

Let a ≤ b be a pair of comparable vertices of In. Denote by Ia,b the induced
subgraph of In with the set of vertices {c ∈ VIn |a ≤ c ≤ b}. Clearly, Ia,b is
isomorphic to a digraph cube Ik, where k = |p| = Δ(a, b).

Definition 3.1. A subgraph G of In is called cubical if, for any two vertices a, b ∈
VG ⊂ VIn with a ≤ b, we have Ia,b @ G.

Note that the set of all paths from a to b in Ia,b coincides with the set of all paths
from a to b in G. It is easy to see that cubical digraphs with digraph maps form
a category. Now we prove that the image of a cube In in any cubical digraph is
contractible. Note, that this statement is not true for general digraphs.

Example 3.2. Consider a digraph map f presented on Fig. 1 that maps the cube
I3 onto the cycle digraph G and that is defined by f(1) = f(8) = x, f(2) = f(3) =
f(5) = y, f(4) = f(6) = f(7) = z. Then the images of this map, that is, G, is
non-contractible.

Now consider a digraph map f : In → G where G is a cubical digraph. The image
f(In) is connected as the image of a connected digraph. Let s = (0, . . . , 0) ∈ VIn

be the origin vertex and z = (1, . . . , 1) ∈ VIn be the end vertex of In. Then
f(s) ∈ VG, f(z) ∈ VG and f(In) ⊂ If(s),f(z) ⊂ G where If(s),f(z) is isomorphic to
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Figure 1. The map f : I3 → G with non-contractible image.

a m-dimensional cube which we denote J = Jm ∼= Im where m = Δ(f(s), f(z)).
Hence, without loss of generality, we can assume that G = If(s),f(z) = J , that is,

f(s) = (0, . . . , 0) ∈ VJ , f(z) = d = (1, . . . , 1) ∈ VJ .

For m = 0, 1, 2 the image f(In) ⊂ G is contractible since all connected subgraphs
of the digraphs J0, J1, and J2 are contractible.

Consider the case J = Jm where m ≥ 3 and d = (1, . . . , 1) ∈ VJ is the end vertex
of the cube J . Since d = f(z) ∈ Image(f), there exists a nonempty set of arrows
Γ ⊂ EJ defined as follows

[τ ∈ Γ] ⇔ [end(τ) = d & τ = f(α), α ∈ EIn ].

The set Γ consists of arrows in EJ with the end vertex d that are lying in the image
of the map f . Let γ = (c→ d) ∈ Γ be an arrow such that

f(α) = f(x→ y) = (c→ d) = γ and
Δ(α, z) = Δ(y, z) = k ≥ 0 is minimal.

(3.2)

Note that α is not uniquely defined.

Lemma 3.3. For every vertex v ∈ VIn with Δ(v, z) ≤ k we have f(v) = d. Hence
the cube Iy,z @ In is mapped by f into the vertex d.

Proof. It follows immediately from definition of k in (3.2).
The arrow γ defines two (m−1) – dimensional faces J0 and J1 of the cube J with

c ∈ VJ0 , d ∈ VJ1 and we have the natural projection π : J → J0 along the arrow γ.
Let H be a subgraph of In. We define subgraphs K0, K1, K ⊂ J that depend on the
map f : In → J and H ⊂ In as follows:

K : = f(H) ⊂ J, K0 : = f(H) ∩ J0 ⊂ J0, and K1 : = f(H) ∩ J1 ⊂ J1. (3.3)

It is easy to see that for an arrow (v → w) ∈ EJ we have:

[(v → w)||γ] ⇔ [(v ∈ J0) & (w ∈ J1)]. (3.4)

For technical reasons we introduce the following definition.
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Definition 3.4. Let H be a subgraph of In and f : In → J be a digraph map. Let
the digraphs K0, K1, K ⊂ J be defined as above using (3.2) and (3.3). We say that
the subgraph H satisfies to the Π-condition if the following conditions are satisfied

(1) ∀ w ∈ VK1 there is a vertex v ∈ VK0 such that (v → w) ∈ EK .
(2) ∀ (w → w′) ∈ EK1 we have π(w → w′) ∈ EK0 .

(3.5)

The next statement is our key technical result,

Proposition 3.5. Consider the map f : In → J = Jm with m ≥ 3. Let k and γ are
defined in (3.2). Then the cube In satisfies to the Π-condition.

Proof. Using induction on k ≥ 0.
The base of induction, k = 0. Hence y = z = (1, . . . , 1) ∈ VIn is the end vertex of

In and n ≥ m ≥ 3. The arrow α = (x→ z) ∈ EIn with

f(α) = f(x→ z) = γ = (c→ d)

defines (n − 1)-face I0 = Is,x and opposite (n-1)-face I1 of the cube In. Let a =
(0, . . . , 0) be the origin vertex of J (and hence origin vertex of J0) and b be the origin
vertex of J1. Then a→ b is parallel γ = (c→ d). We have

f(I0) = f(Is,x) ⊂ If(s),f(x) = Ia,c = J0 (3.6)

and, hence, by (3.3) for H = In, we have f(I0) ⊂ K0. Let t be a vertex of I1 such
that w = f(t) /∈ VK0 that is w ∈ VK1 ⊂ VJ1 . There exists an unique vertex r ∈ VI0

such that (r → t) ∈ EIn is parallel to α and

f(r) = v ∈ K0 ⊂ J0

by (3.6). Thus f(r → t) = v → w with v ∈ VK0 and condition (1) of (3.5) is
satisfied.

Now let τ = (w → w′) ∈ EK1 be an arrow such that f(t→ t′) = τ, that is

f(t) = w, f(t′) = w′, t, t′ ∈ VI1 .

The same line of arguments as above gives the vertices r, r′ ∈ VI0 such that (r → t)
and r′ → t′ are parallel to α and, hence, π(τ) = f(r → r′) since f(r), f(r′) ∈ VK0 .
This proves condition (2) of (3.5). Thus Π-condition is satisfied for the cube In and
k = 0.

The induction step. By inductive assumption we have that any map f : In → J
satisfies the Π-condition if Δ(y, z) ≤ k − 1 ≥ 0. Consider the case Δ(y, z) = k ≥ 1
and, hence,

Δ(x, z) = Δ(y, z) + 1 = k + 1 ≥ 2

where

z = (1, . . . , 1
︸ ︷︷ ︸

n

) ∈ VIn .

Thus, without loss of generality, we can suppose that

x = (1, . . . , 1,
︸ ︷︷ ︸

n−k−1

0, 0, . . . , 0,
︸ ︷︷ ︸

k+1

), y = (1, . . . , 1,
︸ ︷︷ ︸

n−k−1

1, 0, . . . , 0,
︸ ︷︷ ︸

k

). (3.7)
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From now we put y0 = y ∈ VIn and let the vertex yi is obtained from y by replacing
the last coordinate ”1” in y by ”0”, and i-th coordinate ”0” of y by ”1” for 1 ≤ i ≤ k.
For example,

y2 = (1, . . . , 1,
︸ ︷︷ ︸

n−k−1

0, 0, 1, 0 . . . , 0,
︸ ︷︷ ︸

k

), yk = (1, . . . , 1,
︸ ︷︷ ︸

n−k−1

0, 0, 0 . . . , 0, 1
︸ ︷︷ ︸

k

).

We define also

αi = (x→ yi) ∈ EIn for 0 ≤ i ≤ k.

By Lemma 3.3 we have

f(αi) = f(x→ yi) = (c→ d) = γ for 0 ≤ i ≤ k.

Let I0 = Is,x be (n− k − 1)-dimensional subcube of In. Then, as before,

f(I0) ⊂ K0 ⊂ J0.

Consider a vertex t ∈ VIn and t /∈ VI0 that has the form

t = (a1, . . . , an−k−1, b0, . . . , bk) /∈ I0 where ai, bj ∈ {0, 1}

where at least one coordinate bj is ”1”. If at least one coordinate bj is zero we obtain
that t ∈ Is,zj

@ In where

zj = (1, . . . , 1
︸ ︷︷ ︸

n−k−1

, 1, . . . ,
j

0̂, . . . , 1
︸ ︷︷ ︸

k+1

).

The (n− 1)-dimensional subcube Is,zj
⊂ In contains the vertices x and t. Moreover

Δ(x, zj) = k and there is an arrow

αi = (x→ yi) ∈ EIs,zj

with

f(αi) = γ and Δ(αi, zj) = k − 1.

Hence, by the inductive assumption, the map

f |Is,zj
: Is,zj

→ J

satisfies the Π-condition. Hence the conditions (1) and (2) of (3.5) are satisfied for
every (n− 1)-dimensional subcube Is,zj

⊂ In.
Now consider a vertex t for which all (k + 1)-coordinates bj are equal ”1” such

that t /∈ Ix,z. This means that at least one of the first (n− k − 1)-coordinates ai is
”0”. Recall that (k + 1) ≥ 2. Thus consider the vertices

t = (a1, . . . , an−k−1, 1, . . . , 1︸ ︷︷ ︸
k+1

) /∈ I0, r = (a1, . . . , an−k−1, 0, . . . , 0︸ ︷︷ ︸
k+1

) ∈ I0 (3.8)

where ai ∈ {0, 1}. Consider a directed path p in the digraph I0 from the vertex
r ∈ VI0 to the vertex x ∈ VI0 of the length l = |p| ≥ 1 (since t /∈ Ix,z). Write this
path in the following form

p = (r → x1 → x2 → ∙ ∙ ∙ → xl−1 → xl = x) ⊂ Ir,x ⊂ I0.

Consider a directed path q from the vertex r ∈ VI0 to the vertex t of the length

k + 1 = |q| ≥ 2.
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Note that q lies in the digraph Ir,t of dimension k+1. Write this path in the following
form

q = (r → r1 → r2 → ∙ ∙ ∙ → rk → rk+1 = t) ⊂ Ir,t.

Any such two paths p and q defines a unique subgraph of the digraph In that has
the following form

t = rk+1 −→ rk+1
1 −→ rk+1

2 −→ . . . −→ rk+1
l = z

↑ ↑ ↑ ↑ ↑
rk −→ rk

1 −→ rk
2 −→ . . . −→ rk

l

↑ ↑ ↑ ↑ ↑
. . . −→ . . . −→ . . . −→ . . . −→ . . .
↑ ↑ ↑ ↑ ↑
r1 −→ r1

1 −→ r1
2 −→ . . . −→ r1

l

↑ ↑ ↑ ↑ ↑
r −→ x1 −→ x2 −→ . . . −→ xl = x

(3.9)

Now we prove, using induction in the length l = |p| ≥ 1 the following statement.
(L): For every path q and every path p, as above, there is a path

p′ = (r → x′
1 → x′

2 → . . . x′
l−1 → x′

l = x) ⊂ Ir,x ⊂ I0,

(that may be equal to p) such that q and p′ defines the subgraph (similarly above)

t = rk+1 −→ rk+1
1

′
−→ rk+1

2

′
−→ . . . −→ rk+1

l

′
= z

↑ ↑ ↑ ↑ ↑
rk −→ rk

1
′ −→ rk

2
′ −→ . . . −→ rk

l
′

↑ ↑ ↑ ↑ ↑
. . . −→ . . . −→ . . . −→ . . . −→ . . .
↑ ↑ ↑ ↑ ↑
r1 −→ r1

1
′ −→ r1

2
′ −→ . . . −→ r1

l
′

↑ ↑ ↑ ↑ ↑
r −→ x′

1 −→ x′
2 −→ . . . −→ x′

l = x

(3.10)

and at least one of the following conditions is satisfied

(i) f(t) = f(rk),
(ii) f(t) = f(rk

1),

(iii) f(t) = f(rk
1
′
).

(3.11)

The base of induction for (L), the case l = 1. Consider the unique path p = (r →
x) ⊂ I0 of the length l = 1 an a path q as above. We have the following subgraph
of the digraph In::

t = rk+1 −→ rk+1
1 = z

↑ ↑
rk −→ rk

1

↑ ↑
. . . −→ . . .
↑ ↑
r1 −→ r1

1

↑ ↑
r −→ x1 = x

(3.12)
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where
r, x ∈ VI0 and f(r), f(x) ∈ VK0 ,

and
f(ri

1) = d for 1 ≤ i ≤ k + 1

since k ≥ 1. Hence,
f(rk

1) = f(rk+1
1 ) = d

and thus at least one of the conditions (i) or (ii) in (3.11) is satisfied because there
are no triangles in the digraph J . We put in this case p′ = p, and the base of
induction l = 1 is proved.

Inductive step of induction for (L). Consider vertices t, r ∈ VJ given in (3.8)
where

Δ(t, r) = k + 1 ≥ 2 and Δ(r, x) ≥ 2.

Let p be a path from r to x and q be a path from r to t as the above. Recall that

|q| = k + 1 ≥ 2 and |p| = l ≥ 2.

These paths define the subgraph of In given on (3.9). By the inductive assumption,
for the vertex rk+1

1 at least one of the conditions

(i) f(rk+1
1 ) = f(rk

1),
(ii) f(rk+1

1 ) = f(rk
2),

(iii) f(rk+1
1 ) = f(rk

2
′′
),

(3.13)

that is similar to (3.11) is realized. In (3.13) we have a path

rk → rk
1 → rk

2

′′
→ ∙ ∙ ∙ → rk

l

that is similar to the path

rk → rk
1 → rk

2 → ∙ ∙ ∙ → rk
l

from (3.9).
If condition (i) is realized, that is f(rk+1

1 ) = f(rk
1), then for f(t) at least one of the

conditions (i) or (ii) in (3.11) is satisfied since there are no triangles in the digraph
J (similarly to the case l = 1).

If condition (ii) is realized and condition (i) is not realized, that is

f(rk+1
1 ) = f(rk

2) and f(rk
1) 6= f(rk

2),

we can consider the subcube of In given on Fig. 2 that is defined by the subgraph
of (3.9) given below in (3.14):

t = rk+1 −→ rk+1
1 −→ rk+1

2

↑ ↑ ↑
rk −→ rk

1 −→ rk
2 .

(3.14)

We have
f(rk+1

1 ) = f(rk
2) and f(rk

1) 6= f(rk
2),

that is
f(rk

1 → rk+1
1 ) = f(rk

1 → rk
2) ∈ EJ

is an arrow. If f(rk) = f(rk
1) then the same line of above gives that

f(t) = f(rk
1) or f(t) = f(rk

2)
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Figure 2. The subcube of In that is defined by the digraph on (3.13).

and the step of induction is proved. Let f(rk) 6= f(rk
1) then

f
(
Irk, rk

2

)
⊂ f

(
If(rk), f(rk

2)

)
and f

(
Irk, rk+1

1

)
⊂ f

(
If(rk), f(rk

2)

)

where If(rk),f(rk
2)

is the digraph square. Hence at least one of conditions

f(rk+1) = f(rk
1) or f(rk+1) = f(rk

1

′
)

is satisfied and the inductive assumption is proved.
Consider the case when condition (iii) is realized and conditions (i) and (ii) are not

realized. This case is the same as the case (ii). We must to start the consideration
from the path

rk → rk
1 → rk

2

′′
→ ∙ ∙ ∙ → rk

l

on the place of the path
rk → rk

1 → rk
2 → ∙ ∙ ∙ → rk

l

from (3.9). This finishes the proof of the inductive step and, statement (L) is proved.

Since each of the vertices rk, rk
1 , rk

1
′
lies in the image of a subcube Ir,zj

it follows
from the statement (L) that image w = f(t) lies in the image of a subcube Ir,zj

with

Δ(x, zj) = Δ(r, zj) = k

which satisfies to Π-condition by the inductive assumption in k. Hence the condition
(1) of (3.5) is satisfied for every subcube Ir,t ⊂ In. By a similar way, it follows from
the statement (L) that the image of every arrow with end or origin t lies in the
image of a subcube Ir,zj

which satisfies to Π-condition by the inductive assumption
in k. Hence the condition (2) of (3.5) is satisfied for every subcube Ir,t ⊂ In. Hence
every cube Ir,t satisfies to the Π-condition and, hence, the cube In satisfies to the
Π-condition. The Proposition is proved.

Theorem 3.6. Let f : In → G be a digraph map to a cubical digraph. Then the
image f(In) ⊂ G is contractible.

Proof. By the above the image f(In) lies in the digraph J = Jm. Now we
use the induction in m. For m = 0, 1, 2 the image f(In) is contractible since all
connected subgraphs of J are contractible. For m ≥ 3 the digraph In satisfies
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the Π-condition, then Proposition 2.7 and (3.5) imply that restriction π|K of the
projection π : Jm → Jm−1

0 to the image K of the map f is well defined deformation
retraction to K0. But K0 is contractible by the inductive assumption in m. Thus
the theorem is proved.

4. Equivalence to homology theories on cubical digraphs

In this section we prove our main result – Theorem 1.1, that is stated below as
Theorem 4.5. For that we use the Acyclic Carrier Theorem from homology theory
(see, for example, [5, §3.4] and [6, §1.2.1]). Recall that a chain complex C∗ is called
non-negative if Cp = 0 for p < 0 and is called free if Cp are finitely generated
free abelian groups for all p. We say that C∗ is a geometric chain complex if it
is non-negative, free, and if a basis Bp is chosen in the group Cp for any p ≥ 0.
For example, any finite simplicial complex gives rise to a geometric chain complex,
where Bp consists of all p-simplexes.

Let C∗ be a geometric chain complex with fixed bases Bp. For b ∈ Bp−1 and
b′ ∈ Bp, we write b ≺ b′ if b enters with a non-zero coefficient into the expansion of
∂b′ in the basis Bp−1. The augmentation homomorphism ε : C0 → Z is defined as

ε

(
∑

i

kibi

)

=
∑

i

ki, ki ∈ Z, bi ∈ B0,

and we denote C̃∗ the augmented complex

0←− Z
ε
←−C0

∂
←−C1

∂
←− . . .

A geometric chain complex C∗ is called acyclic if all homology groups of the aug-

mented complex C̃∗ are trivial.
Let C∗ and D∗ be two geometric complexes with augmentation homomorphism ε

and ε′, respectively. A chain map φ∗ : C∗ → D∗ is called augmentation preserving if
ε′φ0(c) = ε(c) for any c ∈ C0.

Definition 4.1. Let C∗ and D∗ be two geometric chain complexes.
(i) An algebraic carrier function from C∗ to D∗ is a mapping E that assigns to

any basis element b in C∗ a subcomplex E∗ (b) := E (b) of D∗, such that b ≺ b′

implies E∗(b) ⊂ E∗(b
′).

(ii) An algebraic carrier function E is called acyclic if each complex E∗(b) is
non-empty and acyclic.

(iii) A chain map f∗ : C∗ → D∗ is carried by E if fn(b) ∈ E∗(b) for any basis
element b in Cn.

We state the Acyclic Carrier Theorem in the following form.

Theorem 4.2. [5, §3.4], [6, §1.2.1] Let C∗ and D∗ be two geometric chain complexes
and E be an acyclic carrier function from C∗ to D∗. If f∗, g∗ : C∗ → D∗ are aug-
mentation preserving chain maps that are carried by E, then f∗ and g∗ are chain
homotopic.

Before the proof of Theorem 1.1, we state and prove some technical results. We
use the notations of [1, 4]. Let G be a cubical digraph. The free abelian groups
Ωc

p = Ωc
p(G) and Ωp = Ωp(G) defined in (2.3) and (2.8) are finitely generated.
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Let I0 = {∗} be the one-vertex digraph. Any zero-dimensional singular cube
φ : I0 = {∗} → G is given by the vertex φ(∗) ∈ VG and thus we obtain the map
τ0 : Ωc

0(G)→ Ω0(G) which preserve augmentation.
For any digraph cube In (n ≥ 1) denote by P the set of all directed paths of

the length n going from the origin vertex (0, . . . , 0
︸ ︷︷ ︸

n

) of the cube to the end vertex

(1, . . . , 1
︸ ︷︷ ︸

n

). Every path p ∈ P has the following form

p = (a0 → a1 → a2 → ∙ ∙ ∙ → an), ai ∈ VIn . (4.1)

In (4.1) for 1 ≤ i ≤ n the vertex ai differs from ai−1 only by one coordinate 1 ≤
π(i) ≤ n that equals ”0” for ai−1 and ”1” for ai. Let σ(p) be a sign of the permutation

π(p) =

(
1 2 . . . n

π(1) π(2) . . . π(n)

)

.

Consider the path wn ∈ Ωn(In) given by

wn =
∑

p∈P

(−1)σ(p)p (4.2)

that is the generator of the group Ωn(In) (see [1] and [4]). For any singular n-
dimensional cube φ : In → G, which gives a basic element φ� ∈ Ωc

n(G), we have a
morphism of chain complexes defined in [1]

τ∗ : Ωc
∗(G)→ Ω∗(G), τn(φ�) := φ∗(wn) (4.3)

where φ∗ : Ω∗(I
n)→ Ω∗(G) is the induced of φ morphism of chain complexes.

For n ≥ 0 consider the set Kn of all subcubes G of dimension n that have the
form Is,t with s, t ∈ VG. By [1, 4], for every cube Is,t ∈ Kn there is an isomorphism
χs,t : In → Is,t such that the set of elements

{(χs,t)∗(wn) : Is,t ∈ Kn}

give the basis of Ωn(G). For n ≥ 1, define homomorphisms θn : Ωn(G)→ Ωc
n(G) on

basic elements by

θn((χs,t)∗(wn)) = χ�s,t, (4.4)

and then extend it by linearity. It is clear that θ0 preserves the augmentation.

Proposition 4.3. The homomorphisms θn define a morphism of chain complexes

θ∗ : Ω∗(G)→ Ωc
∗(G) (4.5)

that is a right inverse morphism to τ∗, that is

τ∗θ∗ = Id: Ω∗(G)→ Ω∗(G).

Proof. Let us first prove that τnθn = Id. For n = 0, 1 this is trivial. Let n ≥ 2
and (χs,t)∗(wn) ∈ Ωn(G) be a basic element. By (4.4) and (4.3) we have

τnθn

(
(χs,t)∗(wn)

)
= τn(χ�s,t) = χs,t∗(wn). (4.6)
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Consider the diagram

Ωn(G)
θn−→ Ωc

n(G)
τn−→ Ωn(G)

∂ ↓ ∂
c ↓ ∂ ↓

Ωn−1(G)
θn−1−→ Ωc

n−1(G)
τn−1−→ Ωn−1(G)

(4.7)

where the horizontal compositions are identity homomorphisms by (4.6), the right
square is commutative and the large square is evidently commutative. Now we prove
that the left square is commutative. It follows from [4, Lemma 4] that, for

(φs,t)∗(wn) ∈ Ωn(G),

we have

θn−1

(
∂
(
(φs,t)∗(wn)

))
= θn−1




∑

Is′,t′⊂Is,t

(−1)σ(I,I ′)(φs′,t′)∗(wn−1)





=
∑

(−1)σ(I,I ′)φ�s′,t′ (4.8)

where the sum is taken over all (n − 1)-cubes I ′ = Is′,t′ ⊂ Is,t = I. By (2.7) and
(4.4) we have. for

(φs,t)∗(wn) ∈ Ωn(G),

that

∂c
(
θ((φs,t)∗(wn))

)
= ∂c

(
φ�s,t
)

=
n∑

p=1

(−1)p
(
(φ�s,t)p,0 − (φ�s,t)p,1

)
(4.9)

where the sum consists of all singular (n − 1)-subcubes of the cube In with coeffi-
cients. Since bottom row in (4.7) is the identity homomorphism we conclude from
(4.3), (4.8) and (4.9) that the left square in (4.7) is commutative, which finishes the
proof.

Proposition 4.4. There is a chain homotopy between θ∗τ∗ : Ωc
∗(G) → Ωc

∗(G) and
the identity map Id : Ωc

∗(G)→ Ωc
∗(G).

Proof. The chain complex Ωc
∗(G) is geometric and the chain maps θ∗τ∗ and

Id evidently preserve augmentation. For a singular cube φ : In → G consider the
subgraph Gφ ⊂ G that is image of φ. This is a contractible cubical digraph by
Theorem 3.6. Thus we assign to every basic element φ� ∈ Ωc

∗(G) the subcomplex

E∗

(
φ�
) def

= Ωc
∗(Gφ) ⊂ Ωc

∗(G) (4.10)

which is acyclic since Gφ is contractible.
Now we check that E is an algebraic carrier function, that is condition (i) of

Definition 4.1 is satisfied. Let φ� ∈ Ωc
∗(G) be a basic element given by a singular

cube φ : In → G with n ≥ 0. By (2.6) and (2.7), the element ∂(φ�) is given

by the sum of the basic elements (φ ◦ Vpε)
� with coefficients (±1) where the maps

Vpε : In−1 → In are the inclusions. Hence the digraph Gφ◦Vpε is a subgraph of Gφ

and, hence, the chain complex

E∗

(
(φ ◦ Vpε)

�
)

= Ωc
∗

(
Gφ◦Vpε

)
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is a subcomplex of E∗(φ
�). Thus for the basic singular cube b ∈ Ωc

n−1(G) and b ≺ φ�

we obtain that b = (φ ◦ Vpε)
� ,

E∗(b) = E∗

(
(φ ◦ Vpε)

�
)
≺ E∗(φ

�).

Hence we have the algebraic acyclic carrier function E from Ωc
∗(G) to itself.

Now we prove, that the chain maps θ∗τ∗ and Id from Ωc
∗(G) to itself are carried

by the function E. Consider a basic element φ� ∈ Ωc
n(G). Then

Id
(
φ�
)

= φ� ∈ Ωc
∗(Gφ) = E∗(φ

�) (4.11)

since image of φ is the digraph Gφ. Hence the chain map

Id: Ωc
n(G)→ Ωc

n(G)

is carried by the algebraic carrier function E.
By (4.3) and (4.4), we have

θnτn

(
φ�
)

= θn (φ∗(wn)) , φ : In → G. (4.12)

We have only two different possibilities for the φ∗(wn). In the first case, φ is an
isomorphism on its image Gφ = Is,t

∼= In with

s = φ(0, . . . , 0), t = φ(1, . . . , 1),

where (0, . . . , 0) ∈ VIn is the origin vertex, and (1, . . . , 1) ∈ VIn is the end vertex of
the cube In. Note that for any isomorphism ψ : In → In we have ψ∗(wn) = ±wn.
Hence in this case subgraph Gφ ⊂ G coincides with the subgraph cube Gχs,t ⊂ G
and by (4.4) we have

θnτn(φ�) = θn (φ∗(wn)) = θn

(
±(χs,t)∗(wn)

)
= ±χ�s,t (4.13)

where
χs,t : In → Ds,t = Gφ.

That is,
θnτn

(
φ�
)
∈ Ωc

n

(
Gχs,t

)
= Ωc

n(Gφ) = En

(
φ�
)
.

In the second case, the image of φ does not contain any cube of dimension n and,
hence φ∗(wn) = 0. Consequently, we have

θnφ∗(wn) = 0 ∈ E∗(φ
�).

Then the claim follows from the Acyclic Carriers Theorem 4.2.

Theorem 4.5. For any finite cubical digraph G, the chain maps τ∗ and θ∗ are
homotopy inverses and, hence, induce isomorphisms of homology groups

Hc
∗(G) ∼= H∗(G).

Proof. Indeed, It follows from Propositions 4.3 and 4.4 that the chain maps τ∗
and θ∗ are homotopy inverses.

Corollary 4.6. Let Δ be a finite simplicial complex. Consider a digraph GΔ (see
[4]) with the set of vertices given by the set of all simplexes from Δ, and

s→ t (t, s ∈ Δ) iff s ⊃ t and dim s = dim t + 1.

Then the graph GΔ is a cubical digraph and

Hc
∗(GΔ) ∼= H∗(Δ)
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where H∗(Δ) are the simplicial homology groups of Δ.

Proof. Indeed, it is proved in [4] that path homology groups H∗(GΔ) are isomor-
phic to simplicial homology groups H∗(Δ).
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