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1 Introduction

Let M be a complete non-compact Riemannian manifold. For a compact set K ⊂ M , denote
Ω = M \K and consider the Dirichlet heat kernel pΩ(t, x, y) in Ω. By definition, pΩ as a function
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of t, x is a minimal positive solution of the following mixed problem in Ω:


∂tu = ∆u
u|∂Ω = 0
u|t=0 = δy,

where ∆ is the Laplace-Beltrami operator on M and δy is the Dirac function. The purpose of this
work is to obtain estimates of pΩ away from the boundary ∂Ω. Surprisingly enough, the answer
is non-trivial even if M = R

n, n > 1, and K is the unit ball.
Let us denote by p(t, x, y) the global heat kernel on M which is by definition the minimal

positive fundamental solution to the heat equation on M . The comparison principle easily implies
pΩ ≤ p. It is natural to ask whether pΩ is substantially smaller than p or is comparable to p,
when staying away from ∂Ω. The answer depends on the property of the manifold to be parabolic
or not. We say that a Riemannian manifold M is parabolic if the Brownian motion (Xt)t≥0 on M
is recurrent, and non-parabolic if the Brownian motion is transient (for example, R

2 is parabolic
but R

3 is not). If M is non-parabolic then there is a positive probability that (Xt)t≥0 will never
hit ∂Ω started in Ω, which suggests that p and pΩ should be comparable. If M is parabolic then
(Xt)t≥0 hits ∂Ω with probability 1. Hence, one expects that the probability of getting from x to
y without touching ∂Ω may be significantly smaller than in the absence of ∂Ω, that is pΩ � p.

One of the main achievements of this work is to prove and quantify the validity of the above
heuristic when M has non-negative Ricci curvature (and even under more general a priori as-
sumptions). Denote by d(x, y) the geodesic distance between points x, y ∈M . Let B(x, r) be the
geodesic ball of radius r centered at x, and let V (x, r) be its volume. Li and Yau [20] proved the
following heat kernel estimate for complete manifolds having non-negative Ricci curvature:

p(t, x, y) � 1
V (x,

√
t)
e−d2(x,y)/t, (1.1)

for all t > 0 and x, y ∈M . Here the sign � means the following: we write

f(t, x, y) � g(t, x, y)e−d2(x,y)/t

if, for some positive constants c1, C1, c2, C2,

c1g(t, x, y)e−C1d2(x,y)/t ≤ f(t, x, y) ≤ C2g(t, x, y)e−c2d2(x,y)/t,

for all t, x, y in the specified domains (this is a rather informal notation, but the context should
easy lead to the correct interpretation). It is easy to show that a manifold M admitting the
estimate (1.1) is parabolic if and only if∫ ∞ dt

V (x,
√
t)

= +∞. (1.2)

Our main result in the non-parabolic case is as follows.

Theorem 1.1 Let M be a complete non-compact Riemannian manifold having non-negative Ricci
curvature. Let K be a compact set with non-empty interior and Ω = M \K. Assume that M is
non-parabolic. Then

pΩ(t, x, y) � 1
V (x,

√
t)
e−d2(x,y)/t, (1.3)

for all t > 0 and all x, y which are far enough from K.
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In other words, we can write in this case

cp(Ct, x, y) ≤ pΩ(t, x, y) ≤ p(t, x, y),

for some positive constants c, C > 0.
To state our result in the parabolic case, we need the following notation. For a given compact

set K, fix a point o ∈ K and denote

|x| := d(x,K) = inf {d(x, y) : y ∈ K} ,

H(r) := 1 +
∫ r

0

se−1/s

V (o, s)
ds, (1.4)

D(t, x, y) :=
H(|x|)H(|y|)

(H(|x|) +H(
√
t))(H(|y|) +H(

√
t))
, (1.5)

where t > 0 and x, y ∈ M . It is possible to prove that if M is non-parabolic then H(r) stays
between two positive constants, and hence so does D(t, x, y). On the contrary, if M has non-
negative Ricci curvature and is parabolic then by (1.2) H(r) is unbounded which implies that
infD(t, x, y) = 0.

Given a point o ∈ M , we say that a pointed manifold (M,o) satisfies the condition (RCA) if
there exists A > 1 such that, for any r > A2 and all x, y ∈ ∂B(o, r), there exists a continuous
path in B(o,Ar) \ B(o,A−1r) connecting x to y. Here (RCA) stands for Relatively Connected
Annuli.

Theorem 1.2 Let M be a complete non-compact Riemannian manifold with non-negative Ricci
curvature. Let K be a compact set with non-empty interior and Ω = M \K. Assume that M is
parabolic and satisfies (RCA). Then

pΩ(t, x, y) � D(t, x, y)
V (x,

√
t)
e−d2(x,y)/t, (1.6)

for all t > 0 and all x, y with large enough |x|, |y|.

Alternatively, we can write in this case

c1D(t, x, y)p(C1t, x, y) ≤ pΩ(t, x, y) ≤ C2D(t, x, y)p(c2t, x, y),

for some positive constants Ci, ci. Since the heat kernel pΩ(t, x, y) is symmetric in x, y, all the
estimates (1.1), (1.3), (1.6) can be symmetrized. For example, the latter yields

pΩ(t, x, y) � D(t, x, y)√
V (x,

√
t)V (y,

√
t)
e−d2(x,y)/t. (1.7)

Let us illustrate this estimate by examining two very concrete two-dimensional cases, the plane
R

2, and the half cylinder.

Example 1 Let M = R
2, and denote by ‖ · ‖ the Euclidean norm in R

2. Set K = B(0, 1) and
Ω = R

2 \K, so that ‖x‖ = 1 + |x|. Since V (o, r) = πr2, an easy computation shows that, for all
r > 0,

H(r) ≈ 1 + log (1 + r)
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(where ≈ means that the ratio of the left- and right-hand sides remains bounded both from above
and below). Hence, for all x, y with large enough ‖x‖, ‖y‖ and all t > 0, (1.7) implies

pΩ(t, x, y) � log ‖x‖ log ‖y‖
t(log(1 +

√
t) + log ‖x‖)(log(1 +

√
t) + log ‖y‖)

e−‖x−y‖2/t. (1.8)

Let us recall for comparison the classical Gauss-Weierstrass formula for the heat kernel in R
2:

p(t, x, y) =
1

4πt
exp

(
−‖x− y‖2

4t

)
.

In the long time asymptotic regime when x and y remain fixed and t → +∞, we obtain

pΩ(t, x, y) ≈ log ‖x‖ log ‖y‖
t log2 t

. (1.9)

In the medium time asymptotic regime when ‖x‖ ≈ ‖y‖ ≈
√
t and t→ +∞, (1.8) implies

pΩ(t, x, y) ≈ t−1 ≈ p(t, x, y). (1.10)

Indeed, when the points x and y are at distance
√
t from K, the Brownian path between x and

y almost does not see the boundary before time t. On the contrary, the factor log2 t in (1.9)
quantifies the effect of the boundary in the long term.

We have not been able to find the estimate (1.8) in the literature although the question of
estimating pΩ in R

2 is very natural and should have come up long ago. Of course, it is easy to
expand pΩ in terms of Bessel functions, using separation of variables, but this expansion does not
suggest anything like (1.8). Furthermore, our method works also for all Riemannian metrics in
R

2, which are in finite ratio with the Euclidean metric and for which separation of variables is
not possible.

The result closest to ours that we are aware of is the estimate of Murata [22, Theorem 4.1] for
the heat kernel q(t, x, y) of the Schrödinger operator ∆ −Q(x) where Q ≥ 0, Q �≡ 0, is a Hölder
continuous function in R

2 with a compact support. Murata proved the following asymptotic of q
as t→ +∞:

q(t, x, y) ∼ φ(x)φ(y)
t log2 t

, (1.11)

where φ(x) ∼ 1
2π log ‖x‖

2 as x→ ∞. It is plausible that (1.11) could be extended to the hard-core
potential Q in K, that is Q = +∞ in K and Q = 0 outside K, in which case q = pΩ. Then (1.11)
would yield a sharper long time behavior for pΩ than (1.9), but not the uniform estimate (1.8).

For simplicity of notation, the next example is presented in the context of manifolds with
boundary. If manifold M has a boundary then we denote it by δM and impose the Neumann
boundary condition on δM for p and pΩ.

Example 2 Let M be the half-cylinder S
1 × [0,+∞) equipped with the product Riemannian

structure. Let K = δM = S
1 × {0} and, hence, Ω = S

1 × (0,+∞). Then V (o, r) ≈ min(r, r2),
H(r) ≈ 1 + r, and the Dirichlet heat kernel on Ω satisfies

pΩ(t, x, y) � |x||y|e−d2(x,y)/t

√
t
(√
t+ |x|

) (√
t+ |y|

) , (1.12)

for all t > 0 and x, y with large enough |x| and |y|. Here |x| = d(x, δM) is the radial coordinate
on the half-cylinder M . In particular, in the long time regime, we obtain pΩ(t, x, y) ≈ |x||y|t−3/2.

Of course, there is a well-known exact formula for pΩ in the case of the semi-axis (0,+∞),
and the behavior of pΩ in this case is essentially the same as in the case of the half-cylinder (cf.
the discussion in [4]).
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Note that in Examples 1, 2 (as well as in Theorems 1.1, 1.2) we assume that x, y stay away
from K. It is possible to show that the particular estimates (1.8) and (1.12) hold true up to the
boundary ∂K. This requires additional arguments exploiting the regularity of the boundary of
K, but we will not dwell on this in the present paper.

A simple interpretation of the above results is obtained if one considers the heat content of
Ω at time t for a unit mass of heat originally concentrated at x, that is

CΩ(t, x) :=
∫

Ω
pΩ(t, x, y)dy,

where dy stands for the Riemannian volume.

Theorem 1.3 Let M be a complete non-compact Riemannian manifold with non-negative Ricci
curvature. Let K be a compact set with non-empty interior and set Ω = M \K. The following
estimates are true for all t > 0 and x ∈M with large enough |x|:

(1) If M is non-parabolic then CΩ(t, x) ≈ 1.

(2) If M is parabolic and satisfies the condition (RCA) then

CΩ(t, x) ≈ H(|x|)
H(|x|) +H(

√
t)
.

As a consequence, we can rewrite the estimates of Theorems 1.1 and 1.2 in the following form:

pΩ(t, x, y) � CΩ(t, x)CΩ(t, y)√
V (x,

√
t)V (y,

√
t)
e−d2(x,y)/t. (1.13)

The proofs presented in this paper do not directly use the Ricci curvature assumption. In fact,
we will show that Theorems 1.1, 1.2 hold true for any manifold which is quasi-isometric (even
roughly-isometric, under any reasonable bounded local geometry assumption) to a manifold with
non-negative Ricci-curvature. In particular, the bounds of Examples 1, 2, hold true if the Laplace
operator is replaced by a uniformly elliptic operator in divergence form. Thus, the bounds stated
above are reasonably stable. The adequate hypothesis for our purpose is expressed in terms of a
parabolic Harnack inequality or, equivalently, in terms of certain Poincaré inequality and volume
growth (see below Section 2.2).

The present work originated from our desire to understand the behavior of the heat kernel
on manifolds with more than one ends. Indeed, together with good estimates of certain hitting
probabilities obtained in [14], the result presented here is one of the main building blocks in
the proof of the sharp estimates for the heat kernel on manifolds with ends that have been
announced in [11] and are proved in [12]. The following result complements Theorems 1.1, 1.2 in
this direction.

Given a Riemannian manifold with k ends, let U be a relatively compact open set in M with
smooth boundary such that M \ U has exactly k unbounded connected components E1, . . . , Ek.
Let Ki = ∂U ∩Ei, and consider Ei as a manifold with boundary δEi := Ki. Denote by pi the heat
kernel on Ei and by pΩi the Dirichlet heat kernel on Ωi = Ei \Ki (in other words, pi satisfies the
Neumann condition on Ki, whereas pΩi satisfies the Dirichlet condition on Ki). Let also Vi(x, t)
be the volume function on Ei. For each end Ei, fix a point oi ∈ Ki and define the functions Hi,
Di relative to Ei by (1.4), (1.5), using Vi instead of V .

Let us say that manifold M has asymptotically non-negative sectional curvature if there exists
a continuous decreasing non-negative function λ(r) such that

∫∞
rλ(r)dr < +∞ and a point

o ∈ M such that the sectional curvature of M at distance r from o is bounded below by −λ(r).
For example, one can take λ(r) = r−(2+ε) for any ε > 0.
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Theorem 1.4 Let M be a complete Riemannian manifold satisfying one of the following two
conditions:

1. M has non-negative Ricci curvature outside a compact set and finite topological type.

2. M has asymptotically non-negative sectional curvature.

Then M has finitely many ends. Furthermore, referring to the notation introduced above, we
have the following estimates, for each end Ei:

(i) For all t > 0 and x, y ∈ Ei,

pi(t, x, y) �
1

Vi(x,
√
t)
e−d2(x,y)/t .

(ii) For all t > 0 and x, y ∈ Ei with large enough |x| , |y|,

pΩi(t, x, y) �
Di(t, x, y)
Vi(x,

√
t)
e−d2(x,y)/t .

In Section 2, we introduce the necessary background. In Section 3, we prove the results for
non-parabolic manifolds, including Theorem 1.1 (cf. Theorem 3.1). In Section 4, we introduce
techniques based on h-transform, and prove the results for parabolic manifolds. In particular,
Theorem 1.2 is covered by a more general Theorem 4.9. In Section 5, we give examples of appli-
cations of the above results. In particular, we prove there Theorems 1.3 and 1.4 (cf. Theorems
5.1 and 5.3, respectively).

2 Preliminaries

2.1 Weighted manifolds

Let M be a Riemannian manifold of dimension N . The manifold M may have a boundary δM .
Given a smooth positive function σ on M , define a measure µ on M by

dµ = σ2dv

where dv is the Riemannian measure which is given in local coordinates x1, x2, ..., xN by dv(x) =√
g(x)dx. Here g(x) is the determinant of the Riemannian tensor (gij). Similarly, let µ′ be

the measure with density σ2 with respect to the Riemannian measure of codimension 1 on any
smooth hypersurface, in particular, on δM . The pair (M,µ) is called a weighted manifold. The
Riemannian metric induces the Riemannian distance d(x, y), x, y ∈ M . The geodesic balls and
their volume on (M,µ) are denoted by

B(x, r) = {y ∈M | d(x, y) < r} , V (x, r) := µ(B(x, r)).

We say that M is complete if the metric space (M,d) is complete. Recall that M is complete if
and only if all balls B(x, r) are precompact, in which case V (x, r) is finite.

For any smooth function f , let ∇f be the gradient of f defined by

(∇f)i =
N∑

j=1

gij ∂f

∂xj
,
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in any coordinate chart, where
(
gij
)

= (gij)
−1. The divergence divµ of the weighted manifold

(M,µ) is defined in local coordinates by

divµF :=
1

σ2√g

N∑
i=1

∂

∂xi

(
σ2√gF i

)
,

where F is a smooth vector field. If σ ≡ 1 then divµF = divF is the Riemannian divergence.
For general σ, we have

divµF = σ−2div(σ2F ).

The Laplace operator ∆ of weighted manifold (M,µ) is the second order differential operator
on functions defined by

∆f := divµ(∇f) = σ−2div(σ2∇ f).

In particular, if σ ≡ 1 then ∆ coincides with the Laplace-Beltrami operator div ◦ ∇.
Consider the Dirichlet form

E(u, v) =
∫

M
(∇u,∇v)dµ (2.1)

defined on C∞
0 (M), that is, on the set of all smooth functions on M with compact support. The

form E is closable in L2(M,µ) and is positive definite. Denote by ∆̄ its infinitesimal generator.
By integration by parts, for all u, v ∈ C∞

0 (M),

E(u, v) =
∫
M

(∇u,∇v) dµ = −
∫

M
v∆udµ−

∫
δM

v
∂u

∂n
dµ′ (2.2)

where n denotes the inward unit normal vector field on δM (note that u and v do not necessarily
vanish on δM). If u ∈ C2 ∩ Dom(∆̄) then ∂u

∂n = 0 on δM and ∆̄u = ∆u. Hence, ∆̄ can be
considered as the extension of ∆ with the Neumann boundary condition on δM . We say that u
is harmonic on M if u ∈ C2(M), ∆u = 0 in M \ δM and ∂u

∂n = 0 on δM .
The heat semigroup Pt = et∆̄ possesses a positive, smooth, symmetric kernel p(t, x, y), which

is called the heat kernel of (M,µ). Alternatively, the heat kernel can be defined as the minimal
positive solution u(t, x) = p(t, x, y) of the Cauchy problem


∂tu = ∆u on (0,∞) ×M
u(0, x) = δy(x)
∂u
∂n

∣∣
δM

= 0
(2.3)

(see [2], [5], [24]). In addition, the heat kernel satisfies the semigroup identity

p(t, x, y) =
∫

M
p(s, x, z)p(t− s, z, y)dµ(z), (2.4)

for all 0 < s < t and x, y ∈M , and the inequality∫
M
p(t, x, y)dµ(y) ≤ 1. (2.5)

The operator ∆̄ generates a diffusion process (Xt)t≥0 on M (reflected at δM). Here, implicitly,
we add to M a point at infinity to take into account the possibility of explosion in finite time
(i.e., stochastic incompleteness). Denote by Px the law of (Xt)t≥0 given X0 = x ∈M , and by Ex
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the corresponding expectation. Then the heat kernel p is exactly the transition density of (Xt)t≥0

with respect to measure µ, that is, for any Borel set U ⊂M , we have

Px (Xt ∈ A) =
∫

U
p(t, x, y)dµ(y).

The Green function is defined by

G(x, y) =
∫ ∞

0
p(t, x, y)dµ(y). (2.6)

Equivalently, G(x, y) is the infimum of all positive fundamental solutions of the operator ∆ (see
[5]). It is known that either G(x, y) ≡ ∞ or G(x, y) <∞ for all x �= y. In the latter case, G(x, y)
is the integral kernel of the operator

(
−∆̄

)−1 in L2(M,µ).

Definition 2.1 We say that the weighted manifold (M,µ) is parabolic if the process (Xt)t≥0 is
recurrent, and non-parabolic otherwise.

Each of the following two properties is equivalent to the parabolicity (see, for example, [10]):

1. There is no finite positive Green function on M , that is G(x, y) ≡ ∞.

2. Any positive superharmonic function on M is constant.

For any open set Ω ⊂M , let us denote

δΩ := δM ∩ Ω.

Then Ω can be regarded as a manifold with boundary δΩ, and all the constructions above can be
repeated on Ω. This yields the heat semigroup PΩ

t with the kernel pΩ(t, x, y) which satisfies the
Neumann boundary condition on δΩ and the (weak) Dirichlet condition in ∂Ω (see Fig. 1).

M

M

the Dirichlet boundary

the Neumann boundary

Figure 1 Set Ω and the boundaries ∂Ω and δΩ

Let K be any closed subset of M . Denote by τK the first time the process Xt enters K, that
is

τK = inf{t ≥ 0 : Xt ∈ K}.
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Since Xt has continuous paths and K is closed, τK is a stopping time (see e.g., [17, Ch. 1.]).
Denote Ω := M \K and consider the heat semigroup PΩ

t and its kernel pΩ(t, x, y) in Ω. Then,
for any Borel set U ⊂ Ω, ∫

U
pΩ(t, x, y)dµ(y) = Px (Xt ∈ U and t < τK) (2.7)

is the probability that the process Xt is in U at time t without having visited K at any earlier
time.

Another related quantity is
ψK(x) := Px(τK <∞),

which is the probability that Xt ever hits K starting from x. If (M,µ) is parabolic then ψK ≡ 1
whenever K has non-empty interior. If (M,µ) is non-parabolic then ψK(x) < 1 provided K is
compact and x /∈ K. In the latter case, the function ψK(x) can be represented as follows

ψK(x) =
∫

K
G(x, y)deK(y), (2.8)

where eK is the equilibrium measure of K, that is a measure of finite total mass eK(K) which is
equal to the capacity of K (see e.g., [3],[14]).

2.2 Parabolic Harnack inequality

This paper focuses mainly on weighted manifolds satisfying a uniform parabolic Harnack inequal-
ity.

Definition 2.2 We say that a weighted manifold (M,µ) admits the (uniform) parabolic Harnack
inequality (PHI) if there exists a constant C0 such that any non-negative solution u of the heat
equation ∂tu = ∆u in any cylinder Q := (τ , τ + T ) × B(x, r) with T = r2 and τ ∈ (−∞,+∞),
satisfies

sup
Q−

{u} ≤ C0 inf
Q+

{u} , (2.9)

where

Q− := (τ + T/4, τ + T/2) ×B(x, r/2), Q+ := (τ + 3T/4, τ + T ) ×B(x, r/2)

(see Fig. 2).

τ

τ +1/4T

τ +1/2T

τ +3/4T

τ+T

Q_

Q+

B(x0, s/2)

Q

Figure 2 Cylinders Q+ and Q− in Q.
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For example, (PHI) holds for complete Riemannian manifold M of non-negative Ricci curva-
ture (see [20]). Moreover, (PHI) still holds if the weighted manifold M is quasi-isometric to a
complete manifold having non-negative Ricci curvature and σ ≈ 1 (see [9], [25]). Other examples
are described in [13], [25], [27].

The parabolic Harnack inequality (2.9) can be characterized in terms of the volume growth
and the Poincaré inequality as stated below by Theorem 2.8.

Definition 2.3 We say that (M,µ) admits the volume doubling property (VD) if there exists a
constant C such that, for all x ∈M and r > 0,

V (x, 2r) ≤ CV (x, r). (2.10)

The following lemma is a folklore fact the proof of which can be found in many places (see,
e.g., [9]).

Lemma 2.4 If (M,µ) is a complete non-compact manifold satisfying (VD) then there exist pos-
itive constants c, C, α, β such that, for all x, y ∈M and for any positive r ≤ R

c

(
R

r + d(x, y)

)β

≤ V (x,R)
V (y, r)

≤ C

(
R+ d(x, y)

r

)α

. (2.11)

The upper bound in (2.11) holds also if M is compact, whereas the lower bound requires
completeness and non-compactness.

Definition 2.5 We say that (M,µ) admits the Poincaré inequality (PI) if there exist positive
constants c and κ ≤ 1 such that, for any ball B(x, r) ⊂M and for any function f ∈ C1(B(x, r)),∫

B(x,r)
|∇f |2 dµ ≥ c

r2
inf
ξ∈R

∫
B(x,κr)

(f − ξ)2 dµ . (2.12)

If κ = 1 then (2.12) is equivalent to the fact that the first non-zero Neumann eigenvalue of ∆
in the ball B(x, r) is bounded below by cr−2.

Definition 2.6 We say that (M,µ) admits the two-sided heat kernel estimate (TSE) if, for all
x, y ∈M, t > 0,

p(t, x, y) � 1
V (x,

√
t)
e−d2(x,y)/t . (2.13)

Remark 2.7 If (VD) holds then by taking R = r =
√
t in (2.11) we obtain, for any ε > 0,

V (x,
√
t)

V (y,
√
t)

≤ Cε exp
(
ε
d2(x, y)

t

)
. (2.14)

This and the symmetry of p(t, x, y) imply that the factor 1
V (x,

√
t)

in (2.13) can be replaced by
either

1
V (y,

√
t)

or
1√

V (x,
√
t)V (y,

√
t)
,

by adjusting the constant factors in the Gaussian term.

The following theorem contains a combined result of [9] and [25] (see also [29]).
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Theorem 2.8 Let (M,µ) be a complete weighted manifold with boundary. Then the following
equivalences hold:

(VD)+(PI) ⇐⇒ (PHI) ⇐⇒ (TSE).

Let us mention some consequences of (PHI) on complete non-compact manifold (M,µ).
1. The manifold (M,µ) is stochastically complete; that is, for all x ∈M and t > 0,∫

M
p(t, x, y)dµ(y) ≡ 1. (2.15)

Indeed, (VD) implies that the volume function V (x, r) has at most polynomial growth in r, which
together with the completeness of the metric space (M,d) ensures stochastic completeness (see
[7]).

2. The Green function admits the estimate

G(x, y) ≈
∫ ∞

d2(x,y)

ds

V (x,
√
s)
, (2.16)

which follows by integrating (TSE) in t (see [20], [25]). In particular, (M,µ) is parabolic if and
only if ∫ ∞ ds

V (x,
√
s)

= +∞,

for some or all x ∈M (see [20], [27], [31]).
3. Let x, y be two points in M connected by a curve γ of length d. Assume that the function

u is a positive solution to the heat equation ∂tu = ∆u in

(0,∞) × (ρ-neighborhood of γ). (2.17)

Then, for all 0 < s < t,

u(s, x) ≤ u(t, y) exp
(
C

(
t

s
+

d2

t− s
+
t− s

ρ2

))
(2.18)

with the constant C > 0 depending only on the Harnack inequality constant in (2.9) (see [21],
[13]). Moreover, under the same hypotheses, there exists s ∈ [ t

2 , t) such that

u(s, x) ≤ u(t, y) exp
(
C

(
1 +

d2

t
+
d

ρ

))
(2.19)

Indeed, (2.19) follows from (2.18) for

s =
{
t/2, if t < 2ρd,
t− ρd, if t ≥ 2ρd.

Lemma 2.9 Let (M,µ) be a complete, non-compact, non-parabolic manifold that admits (PHI).
Then, for any compact set K, the hitting probability ψK(x) := Px (τK <∞) satisfies ψK(x) →
0 as x→ ∞.

Proof. Since (M,µ) is non–parabolic, applying (2.16) with swapped x, y we see thatG(x, y) →
0 as x → ∞ locally uniformly in y. Using the representation (2.8) for ψK , we conclude that
ψK(x) → 0 as x→ ∞.

We will need one more result concerning a stability property of (PHI) under changes of the
weight. If a point o is chosen on a manifold M then we refer to the pair (M,o) as a pointed
manifold.
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Definition 2.10 We say that a pointed Riemannian manifold (M,o) satisfies the relatively con-
nected annuli condition (RCA) if there exists A > 1 such that, for any r > A2 and all x, y with
d(o, x) = d(o, y) = r, there exists a continuous path γ : [0, 1] →M with γ(0) = x, γ(1) = y whose
image is contained in B(o,Ar) \B(o,A−1r) (see Fig. 3).

o

x

y

A-1rAr r

Figure 3 Condition (RCA): a path γ connects the points x and y staying in
B(o,Ar) \B(o,A−1r).

Theorem 2.11 Let (M,µ) be a complete, non-compact, weighted manifold satisfying (PHI). Let
o ∈ M and assume that the pointed manifold (M,o) satisfies (RCA). Let h be a positive smooth
function on M such that

sup
B(o,2r)

h ≤ C inf
M\B(o,r)

h, (2.20)

for some constant C and for all r ≥ A. Define a new measure ν on M by dν = h2dµ. Then the
weighted manifold (M,ν) also satisfies the parabolic Harnack inequality (PHI).

This theorem is proved in [13] where other related results of this sort are discussed. The
connectedness property of annuli cannot be dropped here. For instance, the conclusion is false if
M = R, o = 0 and h(x) = (1 + |x|)α, α ≥ 1, despite the fact that this function satisfies (2.20).

3 The non-parabolic case

Throughout this section, we fix a compact set K ⊂ M and denote by Kr the r-neighborhood of
K, that is

Kr = {x ∈M : d(x,K) < r}.
The main result of this section is the following theorem.

Theorem 3.1 Let (M,µ) be a complete non-parabolic weighted manifold. Assume that the
parabolic Harnack inequality (PHI) holds on (M,µ). Let K ⊂ M be a compact set and de-
note Ω := M \K. Then there exist positive constants C, c, and δ such that, for all t > 0 and all
x, y /∈ Kδ,

cp(Ct, x, y) ≤ pΩ(t, x, y) ≤ p(t, x, y) . (3.1)

Remark 3.2 This theorem contains Theorem 1.1 from Introduction because (PHI) holds on
complete Riemannian manifolds of non-negative Ricci curvature, by the result of Li and Yau [20].
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Note that the upper bound in (3.1) trivially follows from the maximum principle and is true
always. Hence, the main difficulty is to prove the lower bound for pΩ for which non-parabolicity
of (M,µ) is essential. If (M,µ) is parabolic then pΩ may be substantially smaller than p (see
Theorem 4.9 in Section 4 below). Theorem 3.1 will be derived in the end of this section (see
Corollary 3.5) from the following theorem containing a slightly weaker lower bound for pΩ.

Theorem 3.3 Under the hypotheses and notation of Theorem 3.1, there exists δ > 0 and, for
each t0 > 0, there exist positive constants C and c such that, for all t > t0 and all x, y /∈ Kδ,

pΩ(t, x, y) ≥ c

V (x,
√
t)

exp
(
−Cd

2(x, y)
t

)
. (3.2)

Recall that (PHI) implies the bound (2.13) for p(t, x, y). Thus, (3.2) is equivalent to the lower
bound of pΩ(t, x, y) in (3.1), although only for t > t0.

Corollary 3.4 Let (M,µ) be a complete non-parabolic weighted manifold satisfying (PHI). Then
M has only one end. Moreover, for any compact K ⊂ M , there exists δ > 0 such that M \Kδ

has only one connected component.

Proof. By Theorem 3.3, for any non-empty compact K and Ω = M \ K, the heat kernel
pΩ(t, x, y) is strictly positive for all x, y ∈ Ω′ := M \Kδ and t > t0. Therefore, Ω′ is connected,
which means in particular that M cannot have more than one end.

For Riemannian manifolds of non-negative Ricci curvature this result was proved in [1] (cf.
[30]). A similar but slightly different result can be found in [26]. Note that if (M,µ) is parabolic
then the conclusion of Corollary 3.4 is not true. For example, R has two ends and satisfies (PHI).
The number of ends of a manifold M satisfying (PHI) is finite since (PHI) implies (VD) but, for
parabolic manifolds, no universal bound can be given on the number of ends of M .

Proof of Theorem 3.3. It will be convenient to split the proof into eight steps.
STEP 1. Fix a constant A ≥ 1 to be chosen later. Let us show that, for all t > 0, x ∈ M

and y ∈ B(x, 2A
√
t), ∫

B(x,
√

t)
p(t, y, z)dµ(z) ≥ ε , (3.3)

with some positive constant ε = ε(A). Fix x ∈M , r > 0 and consider the function

u(t, y) = ur,x(t, y) :=
∫

B(x,r)
p(t, y, z)dµ(z) = Pt1B(x,r) (y).

Let us extend u(t, y) to negative t by setting u(t, y) = 1B(x,r)(y) if t < 0. Then u(t, y) is a smooth
non-negative solution to the heat equation ut = ∆u in (−∞,∞)×B(x, r). Applying the Harnack
inequality (2.9) to u in the cylinder (− r2

2 ,
r2

2 ) ×B(x, r), we obtain

1 = u(0, x) ≤ Cu(r2/4, x)

or
u(r2/4, x) ≥ η (3.4)

where η := C−1 > 0 (see Fig. 4).
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u<1

u=1

(r2/4,x)

(-r2/2,x)

(r2/2,x)

M

t

(0,x)

Figure 4 Function u in the cylinder (− r2

2 ,
r2

2 ) ×B(x, r)

Since u(t, y) is a positive solution of the heat equation in (0,∞) ×M , it satisfies (2.18) for all
0 < s < t and with an arbitrarily large ρ. Given t > 0, choose r =

√
t and s = t/4. Then (3.4)

and (2.18) yields

u(t, y) ≥ η exp
(
−Cd

2(x, y)
t

)
. (3.5)

For y ∈ B(x, 2A
√
t), the right hand side of (3.5) is bounded below by a constant ε = ε(A) > 0

whence (3.3) follows.
As a consequence of (3.3) and (2.5), we see that, for any y ∈ B(x, 2A

√
t),∫

M\B(x,
√

t)

p(t, y, z)dµ(z) ≤ 1 − ε. (3.6)

STEP 2. Let ε = ε(A) be given by Step 1. We claim that there exists δ = δ(A) < +∞ such
that, for any t > 0 and y /∈ Kδ, ∫

Ω
pΩ(t, y, z)dµ(z) ≥ 1 − ε/2 (3.7)

The stochastic completeness (2.15) of (M,µ) implies∫
Ω
pΩ(t, y, z)dµ(z) ≥ 1 − ψK(y).

Indeed, by (2.7) we have

1 −
∫

Ω
pΩ(t, y, z)dµ(z) = Py (τK ≤ t) ≤ Py (τK <∞) = ψK(y). (3.8)

By the non-parabolicity of M and Lemma 2.9, we have ψK(y) → 0 as y → ∞. Thus, there exists
δ > 0 such that ψK(y) ≤ ε/2 outside Kδ, whence (3.7) follows.

STEP 3. We claim that, for all x ∈M , t > 0 and y ∈ B(x, 2A
√
t) \Kδ,∫

B(x,
√

t)

pΩ(t, y, z)dµ(z) ≥ ε/2 (3.9)

(see Fig. 5). Here we follow the convention that pΩ vanishes outside Ω, that is, on K.
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x

2A t

Kδ
z

y

_
t

_

Figure 5 Illustration to Step 3.

The claim is trivially true if B(x, 2A
√
t) \Kδ is empty. Otherwise, (3.6) and (3.7) imply∫

B(x,
√

t)

pΩ(t, y, z)dµ(z) =
∫
Ω

pΩ(t, y, z)dµ(z) −
∫

Ω\B(x,
√

t)

pΩ(t, y, z)dµ(z)

≥
∫
Ω

pΩ(t, y, z)dµ(z) −
∫

M\B(x,
√

t)

p(t, y, z)dµ(z)

≥ (1 − ε/2) − (1 − ε) = ε/2 ,

which proves (3.9).
As a consequence we obtain, that for all x /∈ Kδ and t > 0

pΩ(t, x, x) ≥ c

V (x,
√
t)
. (3.10)

Indeed, we have

pΩ(2t, x, x) ≥
∫

B(x,
√

t)

p2
Ω(t, x, z)dµ(z)

≥ 1
V (x,

√
t)


 ∫
B(x,

√
t)

pΩ(t, x, z)dµ(z)




2

≥ ε2

4V (x,
√
t)
,

where we have applied the semigroup identity (2.4), the Cauchy-Schwarz inequality, and (3.9) for
y = x. Replacing 2t by t and using the doubling volume property (VD), we obtain (3.10).

STEP 4. For the rest of this section, we use the notation |x| := d(x,K). Let us prove (3.2)
assuming t > 0, x, y /∈ Kδ, and

d(x, y) ≤ 1
2

max (|x| , |y|) . (3.11)

Assume first that R := |x| ≥ |y|. Then the geodesic from x to y stays at distance at least 1
2R

from K (see Fig. 6).
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y

K

x
R/2

d(x,y) R/2

|y| R

|x|=R

Figure 6 Illustration to Step 4: d(x, y) ≤ 1
2 max (|x| , |y|)

By (2.19), for some s ∈ [t/2, t], we obtain

pΩ(t, x, y) ≥ pΩ(s, x, x) exp
(
−C

(
1 +

d2(x, y)
t

))
(3.12)

and, by (3.10),
pΩ(s, x, x) ≥ c

V (x,
√
s)

≥ c

V (x,
√
t)

whence (3.2) follows.
If instead |x| < |y|, then we obtain as above

pΩ(t, x, y) ≥ c

V (y,
√
t)

exp
(
−C d

2(x, y)
t

)
. (3.13)

Hence, (3.2) follows from (3.13) and (2.14) by adjusting the constant C in the Gaussian expo-
nential.

STEP 5. Here we show that for all t > 0, x /∈ K2
√

t, y ∈ B(x,A
√
t) \Kδ, and z ∈ B(x,

√
t),

pΩ(t, y, z) ≥ c

V (x,
√
t)

(3.14)

with a positive constant c = c(A) (see Fig. 7).

x _
A t

_
t

δK

K2 t
_

y

Figure 7 Illustration to Step 5.

Indeed, estimate (3.9) (with t replaced by t/4) implies that, for some z′ ∈ B(x, 1
2

√
t),

pΩ(t/4, y, z′) ≥ ε

2V (x, 1
2

√
t)
.
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Since the points z and z′ can be connected through x by a curve of the length ≤ 2
√
t whose√

t-neighborhood does not intersect K, it follows by (2.18) that

pΩ(t/4, y, z′) ≤ CpΩ(t, y, z).

Thus
pΩ(t, y, z) ≥ ε

2CV (x, 1
2

√
t)

≥ c

V (x,
√
t)
.

Of course, we can set z = x in (3.14) and obtain (3.2) for the case x /∈ K2
√

t, y ∈ B(x,A
√
t) \

Kδ. In the next steps, the range of the variables x, y for which (3.2) is true, will be extended by
using various “chaining” arguments as well as (2.18), (2.19).

STEP 6. We can assume without loss of generality that δ found in Step 2, is large enough
so that

r0 := diamK < δ.

Let us show that if t > δ2 and
x, y ∈ Kδ+

√
t \Kδ , (3.15)

(see Fig. 8) then

pΩ(t, x, y) ≥ c′

V (x,
√
t)
. (3.16)

δK
2 t

_

ξ

x
y

Kδ+ t
_

B( , t/2)
__

Figure 8 Illustration to Step 6: x, y ∈ Kδ+
√

t \Kδ and t > δ2

Inequalities t > δ2 > r20 and (3.15) obviously imply

d(x, y) ≤ r0 + 2(δ +
√
t) < 5

√
t.

Let z be any point at distance 2
√
t from K. Clearly, we have

d(x, z) < 5
√
t and d(y, z) < 5

√
t.

Since x ∈ B(z, 5
√
t) \Kδ, we can apply (3.9) to t/2, z, x (instead of t, x, y) with, say, A = 5. This

yields ∫
B(z,

√
t/2)

pΩ(t/2, x, ξ)dµ(ξ) ≥ ε/2. (3.17)

Observe that z /∈ K
2
√

t/2
and y ∈ B(z, 5

√
t) \Kδ. Thus, for any point ξ ∈ B(z,

√
t/2), we can

apply (3.14) to t/2, z, y, ξ (instead of t, x, y, z) with A = 10, to obtain

pΩ(t/2, y, ξ) ≥ c

V (z,
√
t/2)

. (3.18)
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Thus, for the given x, y and t > δ2, (2.4), (3.17), (3.18) and (2.11) imply

pΩ(t, x, y) =
∫
Ω

pΩ(t/2, x, ξ)pΩ(t/2, ξ, y)dµ(ξ)

≥
∫

B(z,
√

t/2)

pΩ(t/2, x, ξ)pΩ(t/2, y, ξ)dµ(ξ)

≥ cε

2V (z,
√
t/2)

≥ c′

V (x,
√
t)
,

whence (3.16) follows.
As a consequence, we see that M \Kδ is a connected set. Indeed, for any x, y ∈M \Kδ, find

t large enough so that (3.15) holds. Then (3.16) implies pΩ(t, x, y) > 0. Hence, x and y are at
the same component of Ω whence the connectedness of M \Kδ follows. In particular, we deduce

pΩ(t, x, y) > 0, ∀t > 0, ∀x, y ∈M \Kδ (3.19)

which follows for instance from a local version of (2.18).
STEP 7. Let us prove (3.16) provided t0 ≤ t ≤ δ2 and still (3.15) is satisfied. Here t0 > 0 is

given by the statement of Theorem 3.3. Indeed, in this case (3.15) implies x ∈ K2δ whence

V (x,
√
t) ≥ inf

x∈K2δ

V (x,
√
t0) = const > 0.

Hence, it suffices to show that, for all x, y ∈ K2δ \Kδ and t ∈ [t0, δ2],

pΩ(t, x, y) ≥ c. (3.20)

This lower bound follows from the compactness of [t0, δ2] ×K2δ \Kδ and from the continuity of
the function (t, x, y) �→ pΩ(t, x, y) on (0,∞) ×M ×M , which, by (3.19), is strictly positive when
x, y ∈M \Kδ.

STEP 8. Assume t ≥ t0 and x, y /∈ Kδ as required by the statement of Theorem 3.3. So far
we have verified the lower bound (3.2) either if d(x, y) ≤ 1

2 max (|x| , |y|) (Step 4) or if x, y ∈ Kδ+
√

t

(Steps 6,7). Let us finally treat the remaining case when one of the points x, y does not belong
to Kδ+

√
t and

d(x, y) >
1
2

max (|x| , |y|) . (3.21)

It suffices to consider the case |x| ≥ |y| (the symmetric case |x| ≤ |y| is handled by (2.14)), so
that x /∈ Kδ+

√
t. Let x′ be the point at distance δ+

√
t from K lying on the shortest geodesic from

x to K (see Fig. 9). As the
√
t-neighborhood of the shortest geodesic from x to x′ is contained

in Ω, we can apply (2.19), which yields, for some t′ ∈ [ t
2 , t),

pΩ(t, x, y) ≥ pΩ(t′, x′, y) exp
{
−C

(
1 +

d2(x, x′)
t

+
d(x, x′)√

t

)}

≥ pΩ(t′, x′, y) exp

(
−C ′ |x|

2

t

)
.

If y ∈ Kδ+
√

t then, by Steps 6-7,

pΩ(t′, x′, y) ≥ c

V (x′,
√
t′)
.

18



x

x

y
y

K

r0+ tK _

Figure 9 Illustration to Step 8: d(x, y) > 1
2 max (|x| , |y|) and x, y are outside Kδ+

√
t

If y /∈ Kδ+
√

t then consider the point y′ at distance δ +
√
t from K lying on the shortest

geodesic from y to K (see Fig. 9). Then, for some t′′ ∈ [ t
′
2 , t

′) ⊂ [ t
4 , t),

pΩ(t′, x′, y) ≥ pΩ(t′′, x′, y′) exp

(
−C ′ |y|

2

t

)
≥ c

V (x′,
√
t′′)

exp

(
−C ′ |y|

2

t

)
.

In both case, we have

pΩ(t, x, y) ≥ c

V (x′,
√
t)

exp

{
−C ′

(
|x|2

t
+

|y|2

t

)}

≥ c′

V (x,
√
t)

exp
{
−C ′′d

2(x, y)
t

}
,

where we have used the hypothesis (3.21) and the inequality (2.14).
This finishes the proof of Theorem 3.3.
The following corollary extends the estimate (3.2) of Theorem 3.3 to all t > 0, which concludes

the proof of Theorem 3.1.

Corollary 3.5 Assume that the hypotheses of Theorem 3.1 are satisfied, and let a > 0 be such
that M \Ka has no compact components. Then the lower bound (3.2) holds for all x, y /∈ Ka and
t > 0 with constants c, C > 0 depending on a but not on x, y, t.

Proof. First observe that the doubling volume property (VD) shows that M \Ka has only
finitely many components, for any fixed a > 0. Let δ be given by Theorem 3.3. Without loss of
generality, we can assume that δ > a.

Since M \Ka has only finitely many connected components and no compact component, any
point x ∈ Kδ \Ka can be connected to a point x′ /∈ Kδ by a curve in M \Ka of length uniformly
bounded by R1(a). For the same reason, any two points in Kδ \Ka can be joined by a curve in
M \Ka of length uniformly bounded by R2(a).

Assume that x, y ∈ M \Ka and t > a2. Then one can apply (2.18) with s = t− a2/4, ρ = a
and d = R1(a) to reduce (3.2) to the case where x, y /∈ Kδ, t > a2/2 which is covered by Theorem
3.3.

Assume now that x, y ∈M \Ka and t ≤ a2. Observe that (PHI) easily yields in this case

pΩ(t, x, x) ≥ c

V (x,
√
t)
. (3.22)

Let γ be a geodesic in M joining x to y. Consider two cases depending on whether or not
γ ⊂M \Ka/2.
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If γ ⊂M \Ka/2, we can apply (2.19) with ρ = a/2 and d = d(x, y) to obtain

pΩ(t, x, y) ≥ pΩ(s, x, x) exp
(
−C

(
1 +

d2

t
+

2d
a

))

≥ pΩ(t, x, x) exp
(
−Ca

(
1 +

d2

t

))
.

Here, s ∈ [t/2, t) and we have used the fact that t �→ pΩ(t, x, x) is non-increasing and that t ≤ a2.
The desired inequality (3.2) now follows from (3.22).

If γ intersects M \Ka/2 then d(x, y) ≥ a because x, y ∈ M \Ka. Moreover, there is a curve
in M \Ka of length at most d(x, y) +R2(a) joining x to y. Applying (2.19) to x, y and the curve
γ with ρ = a and d = d(x, y) +R2(a), we obtain as above

pΩ(t, x, y) ≥ pΩ(t, x, x) exp
(
−C ′

a(1 +
d2

t
)
)
,

for some constant C ′
a > 0. Again, the desired lower bound (3.2) follows from (3.22).

4 The parabolic case

4.1 Generalities on h-transform

Any positive smooth function h on the weighted manifold (M,µ) induces a new weighted manifold
(M,ν) with measure ν defined by

dν = h2dµ.

The Laplace operator ∆h of (M,ν) is then given by

∆hf = h−2divµ(h2∇f) = (hσ)−2div((hσ)2∇f). (4.1)

Denote by ph the heat kernel on (M,ν). The well-known Doob’s h-transform technique is based
on the observation that if h is harmonic on (M,µ) then there is a tight connection between the
objects relative to (M,µ) and those relative to (M,ν), for example ph(t, x, y) = h(x)h(y)p(t, x, y).
In the present work, we will consider the case where h is harmonic only in a subset of the manifold
M .

Lemma 4.1 Assume that U is an open set in which ∆h = 0. Then, for any function smooth
function f in U ,

∆hf = h−1∆(hf).

Proof. We have
∆hf = h−2divµ(h2∇f) = ∆f + 2h−1 (∇h,∇f)

and
h−1∆(hf) = ∆f + h−1f∆h+ 2h−1 (∇h,∇f) .

As ∆h = 0 in U , the claim follows.

Proposition 4.2 If h is harmonic in an open set U ⊂M then the Dirichlet heat kernels pU and
ph

U in U associated with ∆ and ∆h are related by

pU (t, x, y) = h(x)h(y)ph
U (t, x, y), (4.2)

for all t > 0, x, y ∈ U .
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Proof. Denote

EU (u, v) =
∫

U
(∇u,∇v) dµ, Eh

U (u, v) =
∫

U
(∇u,∇v) dν.

The transform Tf := hf is obviously an isometry from L2(U, ν) to L2(U,µ). By (2.2), we have,
for all u, v ∈ C∞

0 (U),

EU (Tu, Tv) =
∫

M
(∇(hu),∇(hv)) dµ

= −
∫

M
u[h−1∆(hv)]h2dµ −

∫
δM

∂(hv)
∂n

uhdµ′

= −
∫

M
u[∆νv]h2dµ−

∫
δM

∂v

∂n
uh2 dµ′

= −
∫

M
u[∆νv]dν −

∫
δM

∂v

∂n
u dν ′ =

∫
M

(∇u,∇v) dν = Eh
U (u, v).

Of course, the equality EU (u, v) = Eh
U (u, v) extends to the domains of these Dirichlet forms. It

follows that the associated semigroups PU
t , PU,h

t satisfy TPU,h
t T−1 = PU

t . By definition of the
heat kernels, we have

PU
t f(x) =

∫
U
pU (t, x, ·)fdµ.

Therefore,

TPU,h
t T−1f(x) = h(x)

∫
U
ph

U (t, x, ·)
(
h−1f

)
h2dµ =

∫
U
h(x)ph

U (t, x, y)h(y)f(y)dµ(y),

whence (4.2) follows.
We now briefly explain how we will use h-transform to estimate the Dirichlet heat kernel pΩ

in the complement Ω of a compact K in a parabolic manifold. It turns out that, for any parabolic
weighted manifold (M,µ) and for a “nice” compact set K ⊂ M , there always exists a harmonic
function h in Ω such that (M,ν) is non-parabolic. Our strategy is then to obtain estimates of
the Dirichlet kernel pΩ using estimates of ph

Ω and (4.2). This however will require additional
hypotheses on (M,µ) so that we can apply Theorem 3.1 on (M,ν). This program is realized in
Section 4.4, whereas in the next Sections 4.2, 4.3 we introduce the necessary tools for that.

4.2 Capacities

Given a precompact set K ⊂ M and an open set U containing K, define the capacity of the
capacitor (K,U) by

cap(K,U) = inf
φ∈T (K,U)

∫
U
|∇φ|2 dµ,

where T (K,U) is the set of test functions defined by

T (K,U) = {φ ∈ C∞
0 (U) : φ|K = 1} .

If U is precompact then we define the equilibrium potential ϕ of (K,U) as the weak solution to
the following boundary value problem in U \K



∆ϕ = 0
ϕ|∂K = 1
ϕ|∂U = 0
∂ϕ
∂n

∣∣∣
δ(U\K)

= 0.
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The following identities are always fulfilled, even so ϕ may be not in T (K,U) :

cap(K,U) =
∫

U\K
|∇ϕ|2 dµ = −flux (ϕ) . (4.3)

Here, for any function u which is harmonic outside K, flux (u) is defined by

flux(u) :=
∫

∂W

∂u

∂n
dµ′,

where W is any open region in the domain of u, with a smooth precompact boundary, such that
K ⊂ W , and n is the outward normal unit vector field on ∂W . By the Green formula (2.2) and
the harmonicity of u, flux(u) does not depend on the choice of W .

Fix a point o ∈M and, for simplicity, set

Br = B(o, r) and V (r) = V (o, r). (4.4)

If M is complete then the following universal estimate of capacity is true, for all 0 < r < R:

cap(Br, BR)−1 ≥ 1
2

∫ R

r

s ds

V (s)
(4.5)

(see [23], [28] as well as [10, p.174]). The purpose of this section is to prove an opposite estimate,
under certain additional assumptions on (M,µ), as stated in the following lemma.

Lemma 4.3 Let (M,µ) be a complete non-compact weighted manifold. Fix a point o ∈ M and
assume that the following hypotheses are satisfied:

(i) The heat kernel upper bound

p(t, o, x) ≤ C

V (
√
t)

exp
(
−d

2(o, x)
Ct

)
, (4.6)

for all x ∈M and t > 0.

(ii) The central doubling volume property: V (2r) ≤ CV (r), for all r > 0.

Then, for all r and R such that 0 < r ≤ 1
2R,

cap(Br, BR)−1 ≤ C1

∫ R

r

s ds

V (s)
, (4.7)

where the constant C1 in (4.7) depends only on the constants C in (i) and (ii).

Remark 4.4 This lemma solves positively Problem 21 from [10, p.240].

Proof. Let GR(x, y) be the Dirichlet Green kernel in the ball BR. We will use the following
general inequality

cap(Br, BR)−1 ≤ max
x∈∂Br

GR(o, x) (4.8)

which was proved in [6] (see also [10, p. 154]). Hence, it suffices to show that

max
x∈∂Br

GR(o, x) ≤ C1

∫ R

r

s ds

V (s)
(4.9)
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provided r ≤ R/2. To prove (4.9), recall that

GR(o, x) =
∫ ∞

0
pR(t, o, x)dt, (4.10)

where pR := pBR
is the Dirichlet heat kernel in BR. Since pR ≤ p, the upper bound (4.6) applies

also for pR. However, this upper bound alone is not good enough for us. We will use it together
with another estimate for pR, which follows from the hypotheses (i) and (ii)

pR(t, o, x) ≤ C

V (R)
exp

(
− t

CR2

)
, ∀t ≥ R2 (4.11)

(see [15] for the proof). Putting together (4.10), (4.6), (4.11) and using elementary estimates of
the integrals, we obtain, for any x ∈ ∂Br,

GR(o, x) ≤
∫ R2

0
p(t, o, x)dt +

∫ ∞

R2

pR(t, o, x)dt

≤
∫ R2

0

C

V (
√
t)

exp
(
− r2

Ct

)
dt +

∫ ∞

R2

C

V (R)
exp

(
− t

CR2

)
dt

≤ C

∫ R2

r2

dt

V (
√
t)

+
CR2

V (R)

≤ C

∫ R

r

s ds

V (s)
,

which was to be proved.

4.3 Unbounded harmonic functions

In this section, we prove the existence of a positive harmonic function with certain properties
which can be used for h-transforms on parabolic manifolds. We say that a precompact set K has
locally positive capacity if, for some precompact open set U containing K, cap(K,U) > 0. It is
not difficult to show that if cap(K,U) > 0 for some U then it is true for all U containing K.

The following Lemma plays a central role (we keep using notation (4.4)).

Lemma 4.5 Assume that (M,µ) is a complete non-compact parabolic weighted manifold. Fix a
point o ∈M and assume that the following hypotheses are satisfied:

(i) The heat kernel upper bound

p(t, o, x) ≤ C

V (
√
t)

exp
(
−d

2(o, x)
Ct

)
, (4.12)

for all x ∈M and t > 0.

(ii) The central doubling volume property: V (2r) ≤ CV (r), for all r > 0.

(iii) The elliptic Harnack inequality in annuli: for some A > 1, R0 > 0 and for any positive
harmonic function u in BAR \BA−1R with R ≥ R0,

sup
∂BR

u ≤ C inf
∂BR

u . (4.13)
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Let K be a compact set of locally positive capacity, which is contained in some ball Br0 . Then
there exists a non-negative harmonic function v in Ω := M \K such that, for all r large enough
and all x ∈ ∂Br,

v(x) ≈
∫ r

r0

s ds

V (s)
. (4.14)

Moreover, the constants which bound the ratio of the right- and left-hand sides of (4.14) depend
only on the constant C in conditions (i)-(iii).

Remark 4.6 If (M,µ) is non-parabolic then the statement is trivially true. Indeed, take v ≡ 1
then (4.14) is satisfied because the non-parabolicity implies∫ ∞ s ds

V (s)
<∞.

On the contrary, in the parabolic case, under the hypothesis (4.12), the right hand side of (4.14)
is unbounded as r → +∞ which means that the function v(x) is also unbounded.

Note also that (4.14) can be rewritten as

v(x) ≈
∫ r

1

s ds

V (s)
. (4.15)

Proof of Lemma 4.5. For each R > r0, let ϕR be the equilibrium potential of the capacitor
(K,BR). By (4.3), we have

cap(K,BR) = −flux (ϕR) .

By the hypothesis, we have cap(K,BR) > 0. Consider the following function

vR =
1 − ϕR

cap(K,BR)
,

for which flux(vR) = 1. This, together with the fact that vR vanishes at the regular points of
∂Ω = ∂K, allows us to prove, by compactness argument, that a subsequence of vR converges as
R→ ∞ to a non-negative harmonic function v in Ω, also satisfying

flux(v) = 1. (4.16)

See [8], [18], [30] for the details of this construction. The parabolicity of (M,µ) implies that v
is unbounded. Indeed, let us extend v to K by 0 so that v becomes subharmonic on M . By
(4.16), v is non-constant. However, a non-constant bounded subharmonic function can exist only
on non-parabolic manifolds. Note that so far we have not used any of the hypotheses (i)-(iii). As
was proved in [8, Lemma 2], in the presence of condition(iii), a non-negative harmonic function
v in Ω is uniquely determined by the facts that v vanishes on ∂Ω and has flux 1.

Let us show that the function v satisfies (4.14). By the condition (iii), we have

max
∂Br

v ≤ Cmin
∂Br

v, (4.17)

provided r ≥ max(R0, Ar0). Together with the maximum principle and the fact that v is un-
bounded, this implies v(x) → +∞ as x → ∞. On the other hand, we claim that the following
estimate holds, for all r > r0:

min
∂Br

v ≤ cap(K,Br)−1 ≤ max
∂Br

v. (4.18)

Indeed, denote mr = min∂Br v. By the minimum principle, the set Ur := {x ∈M : v(x) < mr} is
inside Br and contains K (see Fig. 10; recall that v = 0 on K).
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Figure 10 Set Ur.

The function 1 − v
mr

is the equilibrium potential for the capacitor (K,Ur) whence

cap(K,Br) ≤ cap(K,Ur) = flux
(
v

mr

)
=

1
mr

,

which yields the left hand side inequality of (4.18). The right hand side inequality is proved in
the same way, considering max∂Br v.

Together, (4.17) and (4.18) imply

v(x) ≈ cap(K,Br)−1,

for all x ∈ ∂Br and r large enough. Therefore, we are left to verify the following capacity estimate

cap(K,Br)−1 ≈
∫ r

r0

s ds

V (s)
. (4.19)

The lower bound in (4.19) follows from (4.5) and K ⊂ Br0 because

cap(K,Br)−1 ≥ cap(Br0 , Br)−1 ≥ 1
2

∫ r

r0

s ds

V (s)
.

Let us prove the upper bound

cap(K,Br)−1 ≤ C

∫ r

r0

s ds

V (s)
, (4.20)

for r large enough. By the hypotheses (i), (ii) and by Lemma 4.3, we have

cap(Br0 , Br)−1 ≤ C

∫ r

r0

s ds

V (s)
.

Hence, it suffices to verify that, for r large enough,

cap(Br0 , Br) ≤ Ccap(K,Br). (4.21)

Indeed, if r → ∞ then the equilibrium potential ϕr of the capacitor (K,Br) increases and tends to
1, due to the parabolicity of (M,µ). Therefore, for large r, ϕr ≥ 1

2 on Br0. Let ϕ̃r be equilibrium
potential of (Br0, Br). Then, by the maximum principle, we obtain ϕ̃r ≤ 2ϕr in Br \Br0 (see Fig.
11).
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Figure 11 The equilibrium potentials satisfy the inequality ϕ̃r ≤ 2ϕr in Br \Br0

Since both ϕr and ϕ̃r vanish on ∂Br, we see that on ∂Br

∂ϕ̃r

∂n−
≤ 2

∂ϕr

∂n−
,

where n− is the normal vector field on ∂Br inward with respect to Br. This implies

cap(Br0 , Br) = flux (−ϕ̃r) ≤ 2 flux (−ϕr) = 2cap(K,Br),

which was to be proved.

4.4 h-transforms on parabolic manifolds and the Dirichlet heat kernel

We say that a subset K ⊂ M is admissible if K is a non-empty compact set, and one of the
following two conditions holds:

(1) Either K ⊂M \ δM and K is the closure of a non-empty open set in M , or

(2) K = δM (in which case δM is compact).

Clearly, if K is admissible then K has locally positive capacity.
Fix a point o ∈ M and denote as above Br = B(o, r) and V (r) = V (o, r). Consider the

following function

H(r) = 1 +
∫ r

0

se−1/s

V (s)
ds. (4.22)

Observe that H(r) ≥ 1 for all r, and

H(r) ≈ 1 +
(∫ r

1

s ds

V (s)

)
+

= 1 +
1
2

(∫ r2

1

dt

V (
√
t)

)
+

. (4.23)

Denote also
D(t, x, y) =

H(|x|)H(|y|)
(H(|x|) +H(

√
t))(H(|y|) +H(

√
t))

(4.24)

where |x| = d(x,K). Recall that, if limr→∞H(r) = +∞, then (M,µ) is parabolic. Thus, if
(M,µ) is non-parabolic, then H(r) ≈ 1 and D(t, x, y) ≈ 1.

The following lemma will be crucial for us. It was proved in [16, Proposition 2.19 and Theorem
2.24], using certain ideas from [19]. Here we give an independent proof based on Lemma 4.5.
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Lemma 4.7 Assume that (M,µ) is a complete non-compact parabolic weighted manifold satis-
fying (PHI). Assume also that the pointed manifold (M,o) satisfies the condition (RCA), and
K ⊂ M is an admissible set. Then there exists a positive smooth function h on M which is
harmonic in Ω := M \K and admits the estimate

h(x) ≈ H(|x|), (4.25)

for all x ∈M . Moreover, this function h satisfies the hypotheses (2.20) of Theorem 2.11.

Proof. Let us verify that all conditions (i)-(iii) of Lemma 4.5 hold under the hypotheses of
Lemma 4.7. Indeed, by Theorem 2.8, (PHI) implies (i) and (ii). The annuli Harnack inequality
(iii) is implied by (PHI) and (RCA) as follows. Connect any two points x, y ∈ ∂BR by a path as
is guaranteed by (RCA). Then the doubling property (VD) implies that this path can be covered
by a fixed number of ball of the radius comparable to R. Applying the elliptic Harnack inequality
in each ball, we obtain (4.13).

If K has non-empty interior then let K0 be a closed ball contained in the interior of K. By
Lemma 4.5, we construct outside K0 the harmonic function v. By changing v inside K, we can
extend it in K so that v becomes a positive smooth function on M and still harmonic in Ω. In
the case K = δM , the function v obtained by Lemma 4.5, is already smooth on M .

By Lemma 4.5 and (4.23), the function h(x) = 1 + v(x) satisfies the estimate h(x) ≈ H(|x|)
for large |x| since |x| ∼ d(x, o). The condition (2.20) follows from the properties of H. Indeed, H
is increasing and, for r > 1,

H(2r) = 1 +
∫ 2r

0

se−1/s

V (s)
ds = 1 + 2

∫ r

0

2ηe−1/(2η)

V (2η)
dη

≤ C

(
1 +

∫ r

1

η dη

V (η)

)
≈ H(r).

For small |x|, we have h(x) ≈ H(|x|) just because both functions restricted to small |x| are
bounded and separated from 0.

Lemma 4.8 Referring to the setting and notation of Lemma 4.7, the weighted manifold (M,ν)
with dν = h2dµ satisfies (PHI) and is non-parabolic. Moreover, V h(x, r) := ν(B(x, r)) satisfies
the estimate

V h(x, r) ≈ V (x, r)(H(|x|) +H(r))2, (4.26)

for all x ∈M and r > 0.

Proof. Lemma 4.7 and Theorem 2.11 immediately yield that (M,ν) satisfies (PHI). The
non-parabolicity of (M,ν) follows from the fact that h is unbounded. Indeed, outside K we have,
by Lemma 4.1,

∆h(
1
h

) =
1
h

∆1 = 0.

Hence, the function w(x) = 1
h(x) is ∆h-harmonic outside a compact set and goes to 0 as x→ ∞.

For any r > 0, denote
mr = min

x∈∂Br

w(x).

As mr → 0, the minimum principle implies w(x) ≥ mr in Br, for r large enough. Fix such r.
Then the function x �→ min(w(x),mr) is ∆h-superharmonic on the whole of M , positive and
non-constant, which implies that (M,ν) is non-parabolic.
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Finally, let us prove the volume estimate (4.26). Consider first the case x ∈ K. By (4.25), we
obtain the upper bound for V h(x, r):

V h(x, r) =
∫

B(x,r)
h2dµ ≤ V (x, r) sup

B(x,r)
h2 ≈ V (x, r)H2(r).

For the lower bound, we first observe that, by (2.11), there exists ε > 0 such that

V (x, εr) ≤ 1
2
V (x, r),

for all x ∈M and r > 0. Hence,

V h(x, r) ≥
∫

B(x,r)\B(x,εr)
h2dµ ≥ (V (x, r) − V (x, εr)) inf

M\B(x,εr)
h2 ≈ V (x, r)H2(r),

and (4.26) follows.
Assume now that |x| ≤ 2r. Let x′ ∈ K be the nearest point to x so that d(x, x′) = |x|. Then

we apply (2.11) to V and V h (observe that V h is doubling by Theorem 2.11) and obtain

V (x, r) ≈ V (x′, r) and V h(x, r) ≈ V h(x′, r).

By by the previous case, we know (4.26) for x′ whence we obtain the same for x.
In the remaining case |x| > 2r, all points of the ball B(x, r) lie at distance ≈ |x| from K,

whence
V h(x, r) =

∫
B(x,r)

h2dµ ≈ V (x, r)H2(|x|),

which was to be proved.
We can now state and prove the main result of this section.

Theorem 4.9 Assume that (M,µ) is a complete non-compact parabolic weighted manifold sat-
isfying (PHI). Assume also that the pointed manifold (M,o) satisfies the condition (RCA), and
K ⊂ M is an admissible set. Then there exist positive numbers δ and ci, Ci, i = 1, 2, such that,
for all x, y ∈M \Kδ and all t > 0,

c1D(t, x, y)p(C1t, x, y) ≤ pΩ(t, x, y) ≤ C2D(t, x, y)p(c2t, x, y). (4.27)

Remark 4.10 This theorem obviously contains Theorem 1.2 from Introduction.

Proof. Since (M,µ) satisfies (PHI), Theorem 2.8 yields the following estimate

p(t, x, y) � 1√
V (x,

√
t)V (y,

√
t)
e−d2(x,y)/t,

which is the symmetric form of (TSE) (cf. Remark 2.7). In the view of that, it suffices to prove
that

pΩ(t, x, y) � D(t, x, y)√
V (x,

√
t)V (y,

√
t)
e−d2(x,y)/t. (4.28)

Let h(x) be the function on M obtained by Lemma 4.7. Define measure ν by dν = h2dµ. By
Lemma 4.8, the manifold (M,ν) satisfies (PHI) and is non-parabolic. Applying Theorem 2.8 to
(M,ν), we obtain the following estimate for ph:

ph(t, x, y) � 1√
V h(x, r)V h(y, r)

e−d2(x,y)/t,
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for all t > 0 and x, y ∈M . Since (M,ν) is non-parabolic, Theorem 3.1 implies a similar estimate
for ph

Ω :

ph
Ω(t, x, y) � 1√

V h(x, r)V h(y, r)
e−d2(x,y)/t, (4.29)

for some δ > 0 and all t > 0, x, y ∈M \Kδ. By Proposition 4.2, we have

pΩ(t, x, y) = h(x)h(y)ph
Ω(t, x, y),

for all t > 0 and all x, y ∈ Ω. Substituting here (4.29), using the estimate (4.26) for V h, (4.25)
for h and the definition (4.24) of function D, we obtain (4.28).

5 Examples and applications

5.1 The heat content

Keeping the same notation as above, consider as in the introduction the heat content of a set
Ω ⊂M at time t for a unit mass of heat originally concentrated at x, that is

CΩ(t, x) =
∫

Ω
pΩ(t, x, y)dµ(y).

The following statement contains Theorem 1.3 from the Introduction.

Theorem 5.1 Let (M,µ) be a complete non-compact weighted manifold satisfying (PHI). Let K
be an admissible set, and set Ω = M \K. Then there exists δ > 0 such that the following is true:

(i) If M is non-parabolic then, for all x with |x| ≥ δ,

CΩ(t, x) ≈ 1. (5.1)

(ii) If M is parabolic and in addition satisfies (RCA) then

CΩ(t, x) ≈ H(|x|)
H(|x|) +H(

√
t)
, (5.2)

for all x with |x| ≥ δ, where H is given by (4.22).

Remark 5.2 Comparing (5.1), (5.2) with the definition (4.24) of the function D and with the
estimates of Theorem 3.1 and 4.9, we see that those estimates can be written in the following
way:

pΩ(t, x, y) � CΩ(t, x)CΩ(t, y)√
V (x,

√
t)V (y,

√
t)
e−d2(x,y)/t. (5.3)

Proof. In the non-parabolic case, the estimate (3.7) together with (2.5) yields (5.1). Let
(M,µ) be parabolic. By the upper bound of Theorem 4.9 and (2.5), we obtain

CΩ(t, x) ≤ C

∫
Ω
D(t, x, y)p(ct, x, y)dµ(y) ≤ C sup

y∈Ω
D(t, x, y) ≈ H(|x|)

H(|x|) +H(
√
t)
.
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The lower bound in (5.2) can be derived by direct integration of the estimate (4.27). Here we
give a shorter proof using a fragment from the proof of Theorem 3.3. Following the notation
introduced of the proof of Theorem 4.9, we have

CΩ(t, x) =
∫

Ω
ph
Ω(t, x, y)h(x)h(y)dµ(y) =

∫
Ω
ph
Ω(t, x, y)

h(x)
h(y)

dν(y)

≥ h(x)
supB(x,

√
t) h(y)

∫
B(x,

√
t)
ph
Ω(t, x, y)dν(y). (5.4)

Since the manifold (M,ν) is non-parabolic and satisfies (PHI), we can apply to ph
Ω the estimate

(3.9) from the proof of Theorem 3.3. Assuming that |x| > δ with δ from that proof, we obtain∫
B(x,

√
t)
ph
Ω(t, x, y)dν(y) ≈ 1.

Finally, substituting into (5.4) the estimates h(x) ≈ H(|x|) and

h(y) ≈ H(|y|) ≤ H(|x| +
√
t) ≤ C

(
H(|x|) +H(

√
t)
)
,

we obtain the lower bound in (5.2).
The non-parabolic case in Theorem 5.1 admits the following alternative proof, without using

the Dirichlet heat kernel estimates. Denote by ψK(t, x) the probability that the Brownian motion
in (M,µ) started at the point x, first hits K before time t, that is

ψK(t, x) = Px(τK ≤ t).

As (M,µ) is stochastically complete, we have by (2.7) CΩ(t, x) = 1− ψK(t, x). This implies that
CΩ(t, x) is decreasing in t, and

lim
t→+∞

CΩ(t, x) = 1 − ψK(x). (5.5)

In the parabolic case, ψK(x) ≡ 1, and (5.5) is not useful. In the non-parabolic case, Lemma 2.9
says that ψK(x) → 0 as x → ∞ which immediately implies that CΩ(t, x) ≈ 1 as long as x stays
away from K.

5.2 Surfaces of revolution

Consider the polar coordinates x = (r, θ) around the origin in R
2 and the following Riemannian

metric
dr2 + f2(r)dθ2

where f(r) is a smooth positive function on (0,+∞). Let M = R
2 \B(0, 1) be the manifold with

boundary, equipped with this metric, and µ be the Riemannian measure on M . In this section,
we will show how to obtain heat kernel estimates on such manifolds.

Obviously, (M,o) satisfies (RCA), for any point o ∈ M . The main difficulty lies in proving
(PHI), so we have to restrict ourselves to those f for which (PHI) is known. It is proved in [13]
that the parabolic Harnack inequality (PHI) holds on M for the following two classes of f :

(1) f(r) = rα with α ∈ (−1, 1]

(2) f(r) = r(1 + log r)−β with β > 0.
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We assume in the sequel that f is one of the functions in (1) and (2). Note that r ≥ 1 on M
and f(1) = 1. It is easy to verify that the volume function on M admits the following estimate,
for all x = (r, θ) ∈M and τ > 0,

V (x, τ ) ≈




τ2, if τ ≤ f(r),
τf(r), if f(r) ≤ τ ≤ r,
τf(τ), if τ ≥ r,

which can be expressed in a more compact form as follows

V (x, τ ) ≈ τ min [τ , f (max(τ , r))] ≈ τ2

1 + τ
f(τ+r)

.

Since V (x, τ ) ≤ Cτ2 for all τ , we conclude that (M,µ) is parabolic. Since (M,µ) satisfies (PHI),
we obtain by Theorem 2.8 the following estimate of the global heat kernel on (M,µ):

p(t, x, y) � 1
t

(
1 +

√
t

f(|x| +
√
t)

) 1
2
(

1 +
√
t

f(|y| +
√
t)

) 1
2

e−d2(x,y)/t,

where we set |x| := r for x = (r, θ).
Let K = δM = {(r, θ) : r = 1} and Ω = M \K. For any point o ∈ K and s ≥ 1, we have

V (o, s) ≈ sf(s) so that we obtain by (4.23)

H(τ) ≈ 1 +
(∫ τ

1

ds

f(s)

)
+

.

Hence, computing the integral, we obtain

H(τ ) ≈




1 + τ1−α, if f(r) = rα and α ∈ (−1, 1),
1 + log+ τ , if f(r) = r,
(1 + log+ τ)1+β , if f(r) = r(1 + log r)−β and β > 0.

Here we use the following notation: log+ τ = log τ if τ > 1, and log+ τ = 0 if τ ≤ 1.
By (5.2), the heat content admits the following estimates corresponding to the above cases,

for all t > 0 and large enough |x|:

CΩ(t, x) ≈




(
|x|

|x|+
√

t

)1−α
if α ∈ (−1, 1),

log |x|
log |x|+log+ t if α = 1,(

log |x|
log |x|+log+ t

)1+β
if β > 0.

Combining the bounds for CΩ(t, x) and V (x,
√
t), we obtain by (5.3) the estimate of the Dirichlet

heat kernel pΩ . For example, in the case α ∈ (−1, 1), it has the form

pΩ(t, x, y) � 1
t

(|x| |y|)1−α
[
1 +

√
t

(|x|+
√

t)α

]1/2 [
1 +

√
t

(|y|+
√

t)α

]1/2

(
(|x| +

√
t)(|y| +

√
t)
)1−α e−d2(x,y)/t.

The estimate in the case α = 1 is the same as in the Example 1.
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5.3 Bodies of revolution

Let (r, u, v) be Cartesian coordinates in R
3. Given a smooth positive function f(r) on (0,+∞),

consider the following domain of revolution in R
3 (see Fig. 12):

M = {(r, u, v) ∈ R
3 : r ≥ 0,

√
u2 + v2 ≤ f(r)}.

M

r

u

f(r)

Figure 12 The domain of revolution.

If f possesses certain regularity at r = 0 (in particular, f(0) = 0) then M can be regarded as
a manifold with boundary. Let us endow M with the Euclidean metric and the Lebesgue measure
µ. Assume in the sequel that f is concave, that is f ′′ ≤ 0. Then M is convex as a subset of R

3,
and the result of [20] and [9] implies that M satisfies (PHI). Clearly, (M,o) satisfies (RCA) for
any o ∈M . Computing the volume function on M yields, for any x = (r, u, v) and τ > 0,

V (x, τ) ≈




τ3, if τ ≤ f(r),
τf2(r), if f(r) ≤ τ ≤ r,
τf2(τ), if τ ≥ r,

that is

V (x, τ ) ≈ τ (min [τ , f (max(τ , r))])2 ≈ τ3

1 + τ2

f2(r+τ)

.

By Theorem 2.8, we obtain, for all t > 0 and x, y ∈M ,

p(t, x, y) � 1
t3/2

(
1 +

t

f2(|x| +
√
t)

)1/2(
1 +

t

f2(|y| +
√
t)

)1/2

e−d2(x,y)/t,

where |x| = r if x = (r, u, v). In particular, this implies that M is parabolic if and only if∫ ∞ ds

f2(s)
= ∞.

Let us now specify the function f(r) for r ≥ 1 as follows: f(r) =
√
r(1 + log r)α. Then M is

parabolic if and only if α ≤ 1 which will be assumed in the sequel. SetK = {(r, u, v) ∈M : r ≤ 1},
Ω = M \K and fix a point o ∈ ∂K. Then, for any s > 1, we have V (o, s) ≈ s2 (1 + log s)α, so
that (4.23) yields

H(τ) ≈ 1 +
(∫ τ

1

ds

s(1 + log s)α

)
+

≈
{

(1 + log+ τ)1−α, if α < 1
1 + log+ log+ τ , if α = 1.
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The estimate (5.2) of the heat content reads, for all t > 0 and large enough |x|,

CΩ(t, x) ≈



(

log |x|
log |x|+log+ t

)1−α
α < 1,

log+ log+|x|
log+ log+ |x|+log+ log+ t α = 1.

The estimate of pΩ follows by (5.3).

5.4 Manifolds with ends

Theorem 3.1 and Corollary 3.4 show that non-parabolic manifolds satisfying (PHI) must have only
one end. In general, manifolds satisfying (PHI) must have only finitely many ends. Obviously,
the connectedness hypothesis (RCA) implies that M has only one end. In view of Theorem 4.9,
it is then natural to ask what happens if M satisfies (PHI), is parabolic, but has more than one
end. This is a rather subtle question and we will only give a partial answer.

Given a weighted Riemannian manifold (M,µ) with k ends, let U be a relatively compact
open set in M with smooth boundary such that M \ U has n unbounded connected components
E1, . . . , En, n ≤ k which we call the ends of M relative to U (see Fig. 13). We assume that either
U does not intersect δM or U contains δM .

U

E1

E2

M

Figure 13 Manifold with ends (k = 3, n = 2).

We can regard each (Ei, µ) = (Ei, µ|Ei
) as a weighted manifold with boundary. Note that,

if (M,µ) is complete and non-compact then each Ei is complete and non-compact. It is also
well-known (see [10]) that (M,µ) is parabolic if and only if all (Ei, µ) are parabolic.

Let Ki = ∂U ∩ Ei and Ωi = Ei \ Ki. Denote by pi the heat kernel on Ei and by pΩi the
Dirichlet heat kernel in Ωi. For each Ei, fix a point oi ∈ Ki and define the function Hi, Di relative
to (Ei, µ) and Ki ⊂ Ei by (1.4) and (1.5). Let also Vi(x, t) be the volume function on Ei. The
following theorem is combination of the results of this paper and [13].

Theorem 5.3 Assume that (M,µ) is a complete non-compact weighted manifold satisfying (PHI).
Assume that (M,µ) is parabolic. Referring to the notation introduced above, let Ei be one of the
ends relative to U and assume that (Ei, oi) satisfies the connectedness condition (RCA). Then
(Ei, µ) satisfies (PHI). In particular, the heat kernel pi of (Ei, µ) satisfies

pi(t, x, y) �
1

Vi(x,
√
t)
e−d2(x,y)/t,
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for all t > 0 and x, y ∈ Ei, and the Dirichlet heat kernel on Ωi satisfies

pΩi �
Di(t, x, y)
Vi(x,

√
t)
e−d2(x,y)/t, (5.6)

for all t > 0 and all x, y ∈ Ωi with large enough |x| , |y|.

Proof. The fact that the weighted manifold (Ei, µ) satisfies (PHI) is proved in [13]. Then
the estimate (5.6) holds true by Theorem 4.9 applied to the manifold (Ei, µ).

We caution the reader that the above result cannot be extended to the case where Ei does
not satisfies (RCA). For instance, consider the infinite cylinder M = R

1 × S
1. Let U be a small

ball around (0, 0) ∈ R
1×S

1 so that M \U is connected. Then it is shown in [12] that pΩi satisfies
a different estimate which is not compatible with (5.6).

We end this section by the proof of Theorem 1.4. It resembles the one of Theorem 5.3 and also
relies on results of [13]. However, under the hypotheses of Theorem 1.4, the Riemannian manifold
M with the Riemannian measure µ does not necessarily satisfy (PHI), and is not necessarily
parabolic. Using the notation above, we assume as in Theorem 1.4 that M as exactly k ends
E1, . . . , Ek, that is n = k. Then it follows from [13] that each (Ei, µ) satisfies (PHI) and (RCA).
Thus, Theorem 1.4 follows from Theorems 3.1 and 4.9. The curvature assumptions of conditions
1 and 2 in Theorem 1.4 are used in [13] in three crucial different ways:

(1) They provide some parabolic Harnack inequalities for balls that are far away from Ki in
each Ei,

(2) they imply that each Ei satisfies condition (RCA), and

(3) they provide a certain control of the volume growth of each end Ei.

One of the main results of [13] says that these three ingredients imply the parabolic Harnack
inequality (PHI) on Ei.
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Added in proof. Michiel van den Berg has informed us that the paper by Collett P.,
Mart́ınez S., San Mart́ın J. “Asymptotic behaviour of a Brownian motion on exterior domains”,
Prob. Theor. Rel. Fields 116, (2000), no.3, 303-316 contains the precise large time asymptotic
of pΩ in R

2 similar to Murata’s estimate (1.11). He also has pointed out than the term “heat
content” is usually reserved for the double integral of the heat kernel, that is for

∫
ΩCΩ(t, x)dµ(x)

rather that for CΩ(t, x).
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