Lectures on path homology theory of digraphs

Alexander Grigor'yan

Contents

Preface vii
Preface vii
Chapter 1. Spaces of ∂-invariant paths 1
1.1. Paths and the boundary operator 1
1.2. Path chain complex and path homology 3
1.3. Triangles and squares 5
1.4. Digraph morphisms 6
1.5. Some examples of ∂-invariant paths 7
1.6. Examples of spaces Ω_{p} and H_{p} 10
1.7. An example of computation of Ω_{p} and H_{p} 12
1.8. Triangulation as a closed path 13
1.9. Relations to simplicial complexes 17
Chapter 2. The spaces Ω_{2} and Ω_{3} 19
2.1. Structure of Ω_{2} 19
2.2. A cluster basis in Ω_{p} 22
2.3. Spaces Ω_{p} and H_{p} for trapezohedron 24
2.4. Structure of Ω_{3} 26
2.5 . Dependence on the field \mathbb{K} 35
Chapter 3. Homological dimension 37
3.1. Some examples 37
3.2. Digraphs with infinite homological dimension 37
3.3. Random digraphs 39
3.4. Homological dimension and degree 44
3.5. Homologically spherical digraphs 45
3.6. Computational issues 46
Chapter 4. Cartesian product and Künneth formula 49
4.1. Cross product of regular paths 49
4.2. Cartesian product of digraphs 55
4.3. Properties of ∂-invariant paths on products 55
4.4. Representation of ∂-invariant paths on products 59
4.5. Tensor product of chain complexes 64
4.6. Path chain complex on the Cartesian product 64
4.7. Examples of Cartesian products 66
4.8. Spaces Ω_{p} on n-cube 69
4.9. Strong product 72
Chapter 5. Reduced homology and the join of digraphs 75
5.1. Augmented chain complex 75
5.2. The join of two digraphs 76
5.3. Representation of ∂-invariant paths on the joins 77
5.4. Path chain complex on the join 81
5.5. Subgraphs and Mayer-Vietoris exact sequence 83
Chapter 6. Generalized join of digraphs 93
6.1. A generalized join of digraphs 93
6.2. A monotone linear join 94
6.3. An arbitrary linear join 96
6.4. A cyclic join 98
6.5. Homology of a generalized join 100
Chapter 7. Homotopy and related notions 103
7.1. The notion of homotopy 103
7.2. An example: Johnson digraphs 106
7.3. C-homotopy of loops 112
7.4. Fundamental group π_{1} 114
7.5. An application to graph coloring 115
Chapter 8. Path cohomology 117
8.1. Exterior derivative and p-forms 117
8.2. Example: Sperner's lemma 119
8.3. Path cochain complex 121
8.4. Concatenation of forms 124
8.5. Path cohomology 127
8.6. Path cochain complex for Cartesian product 129
8.7. Path cochain complex for the join 133
8.8. Hochschild cohomology 136
Chapter 9. Combinatorial curvature of digraphs 139
9.1. Motivation 139
9.2. Curvature operator 139
9.3. The Gauss-Bonnet formula 141
9.4. Examples of computation of curvature 143
9.5. Computation of $\left[x, \Omega_{2}\right]$ and further examples 154
Chapter 10. Curvature of some classes of digraphs 163
10.1. Curvature of n-cube 163
10.2. Curvature of the join 168
10.3. Strongly regular digraphs 170
10.4. Digraphs of constant curvature 172
10.5. Cartesian product and curvature 175
10.6. Some problems 177
Chapter 11. Fixed point theorems 179
11.1. Lefschetz number and a fixed point theorem 179
11.2. Rank-nullity formulas for trace 181
11.3. A fixed point theorem in terms of homology 184
11.4. Examples 185
Chapter 12. Intersection forms 191
12.1. Signature of bilinear forms 191
12.2. Intersection form and graded symmetry 192
12.3. Intersection form on products 194
12.4. Proper homology classes on products 196
12.5. Product formula for signature 197
12.6. Example: an intersection form on a 4-torus 201
12.7. Intersection form on the join 202
12.8. Some problems 202
Chapter 13. Hodge Laplacian 205
13.1. Definition and spectral properties of Δ_{p} 205
13.2. Harmonic paths 206
13.3. Lowering index 208
13.4. Matrix of Δ_{p} 211
13.5. Examples of computation of the matrix of Δ_{1} 214
Chapter 14. Spectrum of the Hodge Laplacian 221
14.1. Trace of Δ_{1} 221
14.2. An upper bound of $\lambda_{\max }\left(\Delta_{1}\right)$ 224
14.3. Examples of computations of trace Δ_{1} and $\operatorname{spec} \Delta_{1}$ 225
14.4. Eigenvalues of Δ_{1} on trapezohedron 232
14.5. Hodge Laplacian on the join 234
14.6. Spectrum of Δ_{p} on the join 236
14.7. Spectrum of Δ_{p} on digraphs $D_{m}^{* n}$ 238
14.8. Weighted Hodge Laplacian 241
Bibliography 243

Preface

This text is based on a series of lectures that I delivered at the online joint seminar of Tsinghua University and Bielefeld University in Spring 2022. The purpose of those lectures was to introduce to young researchers a new emerging area of research - the theory of path homology on digraphs.
There exists a number of ways to define the notion of homology for graphs and digraphs, for example, clique homology ([16], [51]) or singular homology ([5], [51], [60]). However, the notion of path homology has certain advantages as it enjoys the adequate functorial properties with respect to graphtheoretical operations, such as morphisms of digraphs, Cartesian products, joins, homotopy etc.
The concept of path homology is derived from the concept of a path chain complex that is non-trivial and highly interesting by itself as it encodes a lot of information about the underlying digraph. Based on the path chain complex, we define also the notions of combinatorial curvature of digraphs (that is analogous to the Gauss curvaature), as well as Hodge Laplacians acting on the chain spaces. The study of spectra of Hodge Laplacians on digraphs is a new large area of research.
The notions of path homology and path chain complex have rich mathematical content, and I hope that they will become useful tools in various areas of pure and applied mathematics.
I have tried to keep here the presentation style of the online seminar, which, in particular, featured a wealth of examples and open problems. I give here an overview of the already published results in this field, state and prove some new results, as well as pose some open questions and conjectures.
The material on the following topics is new:

- random digraphs;
- path cochain complexes on products;
- intersection form and signature;
while the rest of the material is based on $[31],[33],[34],[35],[39],[41]$, [42], [44], [43], [45].
A complete list of the topics covered is shown in the table of contents. Most of the material of the book should be accessible for undergraduate and graduate students with a solid background in Linear Algebra and a basic knowledge of Homological Algebra.

For further reading on path homology theory, its applications, and the related topics I recommend the following literature: [1], $[\mathbf{3}],[4],[6],[7],[8]$, [9], [11], [12], [13], [14], [15], [17], [18], [19], [20], [21], [22], [26], [25], [29], [30], [32], [36], [37], [38], [40], [46], [48], [49], [50], [53], [56], [57], [59], [61], [62], [63].

Acknowledgements. The author is grateful to Chao Chen for his $C++$ program for computation of path homology groups that was extensively used in this research. Scientific Workplaceⓒ of MacKichan Software and Microsoft Excel© were used for other computational purposes. Besides, Scientific Workplaceⓒ was used for typing of this book.
The author is indebted to S.-T. Yau for initiating and leading the research on this subject as well as for his constant support and encouragement.
The author acknowledges a continued financial support of Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 317210226 - SFB 1283, as well as the hospitality and support of Tsinghua University (Beijing) and Chinese University of Hong Kong during multiple visits there.

Alexander Grigor'yan
Bielefeld, December 2022

Bibliography

[1] Asao,Y., Magnitude homology and path homology, Bull. London Math. Soc. 55 (2023) no.1, 375-398. https://doi.org/10.1112/blms. 12734
[2] Babson, E., Barcelo, H., de Longueville, M., Laubenbacher, R., Homotopy theory of graphs, J. Algebr. Comb. 24 (2006) 31-44.
[3] Barcelo, H., Capraro, V., White, J.A., Discrete homology theory for metric spaces, Bull. London Math. Soc. 46 (2014) 889-905.
[4] Barcelo, H., Greene, C., Jarrah, A.S., Welker, V., Homology groups of cubical sets with connections, Applied Categorical Structures 29 (2021) 415-429.
[5] Barcelo, H., Greene, C., Jarrah, A.S., Welker, V., Discrete cubical and path homologies of graphs, Algebr. Comb. 2 (2019) no.3, 417-437.
[6] Barcelo, H., Kramer, X., Laubenbacher, R., Weaver, Ch., Foundations of a connectivity theory for simplicial complexes, Advances in Appl. Mathematics 26 (2001) 97-128.
[7] Bauer F., Jost J., Liu S., Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator, Math. Res. Lett. 19 (2012) no.6, 1185-1205.
[8] Bauer F., Chung F.R.K., Lin Y., Liu Y., Curvature aspects of graphs, Proc. Amer. Math. Soc. 145 (2017) no.5, 2033-2042.
[9] Bi Wanying, Li Jingyan, Wu Jie, The magnitude homology of a hypergraph, preprint
[10] Bollobás, B., "Random graphs", Cambridge Studies in Advanced Mathematics 73, Cambridge University Press, 2001.
[11] Bollobás, B., Erdös, P., Cliques in random graphs, Math. Proc. Camb. Phil. Soc. 80 (1976) 419-427.
[12] Caputi L., Collari C., Di Trani S., Combinatorial and topological aspects of path posets, and multipath cohomology, J. Algebr. Comb. 57 (2023) 617-658. https://doi.org/10.1007/s10801-022-01180-9
[13] Carranza, D., Doherty, B., Kapulkin, C., Opie, M., Sarazola, M., Wong, L. Z., Cofibration category of digraphs for path homology, arXiv:2212.12568 (2022)
[14] Chaplin, T., First Betti number of the path homology of random directed graphs, J. Applied and Computational Topology (2022) https://doi.org/10.1007/s41468-022-00108-3
[15] Chaplin, T., Harrington, H. A., Tillmann, U., Grounded persistent path homology: a stable, topological descriptor for weighted digraphs, arXiv:2210.11274 (2022)
[16] Chen Beifang, Yau Shing-Tung, Yeh Yeong-Nan, Graph homotopy and Graham homotopy, Discrete Math. 241 (2001) 153-170.
[17] Chen Dong, Liu Jian, Wu Jie, Wei Guo-Wei, Pan Feng, Persistent hyperdigraph homology and persistent hyperdigraph Laplacians, Foundations of Data Science (2023) 31 pages. https://doi.org/doi:10.3934/fods. 2023010
[18] Chen Dong, Liu Jian, Wu Jie, Wei Guo-Wei, Pan Feng, Yau Shing-Tung, Path topology in molecular and materials sciences, J. Phys. Chem. Lett. 14 (2023) no.4, 954-964. https://doi.org/10.1021/acs.jpclett.2c03706
[19] Chowdhury, S., Gebhart, T., Huntsman, S., Yutin, M., Path homologies of deep feedforward networks, in: "18th IEEE International Conference on Machine Learning and Applications (ICMLA)", IEEE, (2019) 1077-1082.
[20] Chowdhury, S., Huntsman, S., Yutin, M., Path homologies of motifs and temporal network representations, Applied Network Science (2022) 1-23.
[21] Chowdhury, S., Mémoli, F., Persistent path homology of directed networks, in: "Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms", Society for Industrial and Applied Mathematics, (2018) 1152-1169.
[22] Cushing, D., Kamtue, S., Liu Shiping, Peyerimhoff, N., Bakry-Emery curvature on graphs as an eigenvalue problem, Calc. Var 61:62 (2022) https://doi.org/10.1007/s00526-021-02179-z
[23] Dimakis, A., Müller-Hoissen, F., Differential calculus and gauge theory on finite sets, J. Phys. A, Math. Gen. 27 (1994) no.9, 3159-3178.
[24] Dimakis, A., Müller-Hoissen, F., Discrete differential calculus: graphs, topologies, and gauge theory, J. Math. Phys. 35 (1994) no.12, 6703-6735.
[25] Dimakis, A., Müller-Hoissen, F., Discrete Riemannian geometry, J. Math. Phys. 40 (1999) no.3, 1518-1548.
[26] Di Shaobo, Ivanov S. O., Mukoseev L., Zhang Mengmeng, On the path homology of Cayley digraphs and covering digraphs, arXiv:2305.15683v1 (2023)
[27] Dlotko, P., Hess, K., Levi, R., Nolte, M., Muller, E., Reimann, M., Scolamiero, M., Turner, K., Markram, H., Topological analysis of the connectome of digital reconstructions of neural microcircuits, arXiv:1601.01580v1 (2016)
[28] Gerstenhaber, M., Schack, S.D., Simplicial cohomology is Hochschild cohomology, J. Pure Appl. Algebra 30 (1983) 143-156.
[29] Grigor'yan, A., Jimenez, R., Muranov, Yu., Fundamental groupoids of digraphs and graphs, Czech Math J. 68 (2018) 35-65.
[30] Grigor'yan, A., Jimenez, R., Muranov, Yu., Homology of digraphs, Math. Notes 109 (2021) no.5, 712-726.
[31] Grigor'yan, A., Jimenez, R., Muranov, Yu., Yau, S.-T., On the path homology theory and Eilenberg-Steenrod axioms, Homology, Homotopy and Appl. 20 (2018) 179-205.
[32] Grigor'yan, A., Jimenez, R., Muranov, Yu., Yau, S.-T., Homology of path complexes and hypergraphs, Topology and its Applications 267 (2019) art. 106877.
[33] Grigor'yan, A., Lin Yong, Muranov, Yu., Yau, S.-T., Homologies of path complexes and digraphs, arXiv:1207.2834v4 (2013)
[34] Grigor'yan, A., Lin Yong, Muranov, Yu., Yau, S.-T., Homotopy theory for digraphs, Pure Appl. Math. Quaterly 10 (2014) no.4, 619-674.
[35] Grigor'yan, A., Lin Yong, Muranov, Yu., Yau, S.-T., Path complexes and their homologies, J. Math. Sciences 248 (2020) no.5, 564-599.
[36] Grigor'yan, A., Lin Yong., Yau S.-T., Analytic and Reidemeister torsions of digraphs and path complexes, preprint (2020)
[37] Grigor'yan, A., Muranov, Yu., On homology theories of cubical digraphs, Pacific J. Math 322 (2023) no.1, 39-58.
[38] Grigor'yan, A., Muranov, Yu., Vershinin, V., Yau, S.-T., Path homology theory of multigraphs and quivers, Forum Math. 30 (2018) no.5, 1319-1337.
[39] Grigor'yan, A., Muranov, Yu., Yau, S.-T., Graphs associated with simplicial complexes, Homology, Homotopy and Appl. 16 (2014) no.1, 295-311.
[40] Grigor'yan, A., Muranov, Yu., Yau, S.-T., Cohomology of digraphs and (undirected) graphs, Asian J. Math. 19 (2015) 887-932.
[41] Grigor'yan, A., Muranov, Yu., Yau, S.-T., On a cohomology of digraphs and Hochschild cohomology, J. Homotopy Relat. Struct. 11 (2016) no.2, 209-230.
[42] Grigor'yan, A., Muranov, Yu., Yau, S.-T., Homologies of digraphs and Künneth formulas, Comm. Anal. Geom. 25 (2017) no.5, 969-1018.
[43] Grigor'yan, A., Tang Xinxing, Yau S.-T, Linear join of digraphs and path homology, in preparation
[44] Grigor'yan, A., Tang Xinxing, Yau S.-T., Generalized join of digraphs and path homology, in preparation
[45] Grigor'yan, A., Advances in path homology theory of digraphs, Notices of the ICCM 10 (2022) no.2, 61-124.
[46] Happel D., Hochschild cohomology of finite dimensional algebras, in: "Lecture Notes in Math. Springer-Verlag, 1404", 1989. 108-126.
[47] Hochschild, G., On the homology groups of an associative algebra, Annals of Math. 46 (1945) 58-67.
[48] Huang, An, Yau, S. T., On cohomology theory of (di)graphs, Homology, Homotopy and Applications 17 (2015) 383-398.
[49] Huntsman, S., Path homology as a stronger analogue of cyclomatic complexity, arXiv:2003.00944v2 (2020)
[50] Ivanov, S. O., Pavutnitskiy, F., Simplicial approach to path homology of quivers, subsets of groups and submodules of algebras, arXiv:2211.06202 (2022)
[51] Ivashchenko, A. V., Contractible transformations do not change the homology groups of graphs, Discrete Math. 126 (1994) 159-170.
[52] Lippner, G., Horn, P., An example of a digraph with infinite homological dimension, private communication, 2012.
[53] Li Fang, Yu Bin, Künneth formulas for path homology, Pure and Applied Mathematics Quarterly 19 (2023) no.2, 697-712.
[54] MacLane S., "Homology", Die Grundlagen der mathematischen Wissenschaften 114, Springer, 1963.
[55] Melnikova, D., private communication, 2023.
[56] Muranov Yu., Szczepkowska A., Path homology theory of edge-colored graphs, Open Mathematics 19 (2021) no.1, 706-723. https://doi.org/10.1515/math-2021-0049
[57] Qiu Yuchi, Wei Guo-Wei, Artificial intelligence-aided protein engineering: from topological data analysis to deep protein language models, Briefings in Bioinformatics, Oxford (2023) 1-13. https://doi.org/10.1093/bib/bbad289
[58] Reimann, M.W., Nolte1, M., Scolamiero, M., Turner, K., Perin, R., Chindemi, G., Dlotko, P., Levi, R., Hess, K., Markram, H., Cliques of neurons bound into cavities provide a missing link between structure and function, Frontiers in Computational Neuroscience 11 (2017) article 49. https://doi.org/10.3389/fncom.2017.00048
[59] Tahbaz-Salehi, A., Jadbabaie, A., Distributed coverage verification in sensor networks without location information, IEEE Transactions on Automatic Control 55 (2010) 1837-1849.
[60] Talbi, M. E., Benayat, D., Homology theory of graphs, Mediterranean J. of Math 11 (2014) 813-828.
[61] Tang Xinxing, Yau Shing-Tung, Minimal path and acyclic models, arXiv:2208.14063 (2022)
[62] Wei, Ronald Koh Joon, Wee, Junjie, Laurent, V. E. Xia, Kelin, Hodge theory-based biomolecular data analysis, Scientific Reports 12 (2022) art. 9699. https://doi.org/10.1038/s41598-022-12877-z
[63] Wu Shuang, Liu Xiang, Dong Ang, Gragnoli C., Griffin Ch., Wu Jie, Yau ShingTung, Wu Rongling, The metabolomic physics of complex diseases, Proceedings of the National Academy of Sciences, Biophysics and Computational Biology 120 (2023) no.14, e2308496120. https://doi.org/10.1073/pnas. 2308496120

