Lectures on path homology theory of digraphs

Alexander Grigor'yan

Contents

Preface	vii
Preface	vii
Chapter 1. Spaces of ∂ -invariant paths	1
1.1. Paths and the boundary operator	1
1.2. Path chain complex and path homology	3
1.3. Triangles and squares	5
1.4. Digraph morphisms	6
1.5. Some examples of ∂ -invariant paths	7
1.6. Examples of spaces Ω_p and H_p	10
1.7. An example of computation of Ω_p and H_p	12
1.8. Triangulation as a closed path	13
1.9. Relations to simplicial complexes	17
Chapter 2. The spaces Ω_2 and Ω_3	19
2.1. Structure of Ω_2	19
2.2. A cluster basis in Ω_p	22
2.3. Spaces Ω_p and H_p for trapezohedron	24
2.4. Structure of Ω_3	26
2.5. Dependence on the field \mathbb{K}	35
Chapter 3. Homological dimension	37
3.1. Some examples	37
3.2. Digraphs with infinite homological dimension	37
3.3. Random digraphs	39
3.4. Homological dimension and degree	44
3.5. Homologically spherical digraphs	45
3.6. Computational issues	46
Chapter 4. Cartesian product and Künneth formula	49
4.1. Cross product of regular paths	49
4.2. Cartesian product of digraphs	55
4.3. Properties of ∂ -invariant paths on products	55
4.4. Representation of ∂ -invariant paths on products	59
4.5. Tensor product of chain complexes	64
4.6. Path chain complex on the Cartesian product	64
4.7. Examples of Cartesian products	66

CONTENTS

4.0.	Spaces Ω_p on <i>n</i> -cube	69
4.9.	Strong product	72
Chapte	r 5. Reduced homology and the join of digraphs	75
5.1.	Augmented chain complex	75
5.2.	The join of two digraphs	76
5.3.	Representation of ∂ -invariant paths on the joins	77
5.4.	Path chain complex on the join	81
5.5.	Subgraphs and Mayer-Vietoris exact sequence	83
Chapte	r 6. Generalized join of digraphs	93
6.1.	A generalized join of digraphs	93
6.2.	A monotone linear join	94
6.3.	An arbitrary linear join	96
6.4.	A cyclic join	98
6.5.	Homology of a generalized join	100
		100
Chapte	r 7. Homotopy and related notions	103
7.1.	The notion of homotopy	103
7.2.	An example: Johnson digraphs	106
7.3.	C-homotopy of loops	112
7.4.	Fundamental group π_1	114
7.5.	An application to graph coloring	115
Chapte	r 8. Path cohomology	117
8.1.	Exterior derivative and <i>p</i> -forms	117
0.0	Example: Sperner's lemma	119
0.4.	Path cochain complex	
8.3.		121
8.3. 8.4.	Concatenation of forms	$121 \\ 124$
8.2. 8.3. 8.4. 8.5.	Concatenation of forms Path cohomology	$121 \\ 124 \\ 127$
$8.3. \\ 8.4. \\ 8.5. \\ 8.6.$	Concatenation of forms Path cohomology Path cochain complex for Cartesian product	121 124 127 129
8.2. 8.3. 8.4. 8.5. 8.6. 8.7.	Concatenation of forms Path cohomology Path cochain complex for Cartesian product Path cochain complex for the join	121 124 127 129 133
8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8.	Concatenation of forms Path cohomology Path cochain complex for Cartesian product Path cochain complex for the join Hochschild cohomology	121 124 127 129 133 136
8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8.	Concatenation of forms Path cohomology Path cochain complex for Cartesian product Path cochain complex for the join Hochschild cohomology	121 124 127 129 133 136
8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8. Chapte	Concatenation of forms Path cohomology Path cochain complex for Cartesian product Path cochain complex for the join Hochschild cohomology r 9. Combinatorial curvature of digraphs	121 124 127 129 133 136 139
8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8. Chapte 9.1. 0.2	Concatenation of forms Path cohomology Path cochain complex for Cartesian product Path cochain complex for the join Hochschild cohomology r 9. Combinatorial curvature of digraphs Motivation	121 124 127 129 133 136 139 139
8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8. Chapte 9.1. 9.2.	Concatenation of forms Path cohomology Path cochain complex for Cartesian product Path cochain complex for the join Hochschild cohomology r 9. Combinatorial curvature of digraphs Motivation Curvature operator	$ \begin{array}{c} 121\\ 124\\ 127\\ 129\\ 133\\ 136\\ 139\\ 139\\ 139\\ 139\\ 141\\ \end{array} $
8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8. Chapte 9.1. 9.2. 9.3.	Concatenation of forms Path cohomology Path cochain complex for Cartesian product Path cochain complex for the join Hochschild cohomology r 9. Combinatorial curvature of digraphs Motivation Curvature operator The Gauss-Bonnet formula	121 124 127 129 133 136 139 139 139 139 141
8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8. Chapte 9.1. 9.2. 9.3. 9.4.	Concatenation of forms Path cohomology Path cochain complex for Cartesian product Path cochain complex for the join Hochschild cohomology r 9. Combinatorial curvature of digraphs Motivation Curvature operator The Gauss-Bonnet formula Examples of computation of curvature	$ \begin{array}{c} 121\\ 124\\ 127\\ 129\\ 133\\ 136\\ 139\\ 139\\ 139\\ 141\\ 143\\ 154\\ \end{array} $
8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8. Chapte 9.1. 9.2. 9.3. 9.4. 9.5.	Concatenation of forms Path cohomology Path cochain complex for Cartesian product Path cochain complex for the join Hochschild cohomology r 9. Combinatorial curvature of digraphs Motivation Curvature operator The Gauss-Bonnet formula Examples of computation of curvature Computation of $[x, \Omega_2]$ and further examples	$121 \\ 124 \\ 127 \\ 129 \\ 133 \\ 136 \\ 139 \\ 139 \\ 139 \\ 141 \\ 143 \\ 154 \\ 154$
8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8. Chapte 9.1. 9.2. 9.3. 9.4. 9.5. Chapte	Concatenation of forms Path cohomology Path cochain complex for Cartesian product Path cochain complex for the join Hochschild cohomology r 9. Combinatorial curvature of digraphs Motivation Curvature operator The Gauss-Bonnet formula Examples of computation of curvature Computation of $[x, \Omega_2]$ and further examples r 10. Curvature of some classes of digraphs	$ \begin{array}{c} 121\\ 124\\ 127\\ 129\\ 133\\ 136\\ 139\\ 139\\ 139\\ 141\\ 143\\ 154\\ 163\\ \end{array} $
8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8. Chapte 9.1. 9.2. 9.3. 9.4. 9.5. Chapte 10.1.	Concatenation of forms Path cohomology Path cochain complex for Cartesian product Path cochain complex for the join Hochschild cohomology r 9. Combinatorial curvature of digraphs Motivation Curvature operator The Gauss-Bonnet formula Examples of computation of curvature Computation of $[x, \Omega_2]$ and further examples r 10. Curvature of some classes of digraphs Curvature of <i>n</i> -cube	$121 \\ 124 \\ 127 \\ 129 \\ 133 \\ 136 \\ 139 \\ 139 \\ 139 \\ 139 \\ 141 \\ 143 \\ 154 \\ 163 $
8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8. Chapte 9.1. 9.2. 9.3. 9.4. 9.5. Chapte 10.1. 10.2.	Concatenation of forms Path cohomology Path cochain complex for Cartesian product Path cochain complex for the join Hochschild cohomology r 9. Combinatorial curvature of digraphs Motivation Curvature operator The Gauss-Bonnet formula Examples of computation of curvature Computation of $[x, \Omega_2]$ and further examples r 10. Curvature of some classes of digraphs Curvature of <i>n</i> -cube Curvature of the join	$121 \\ 124 \\ 127 \\ 129 \\ 133 \\ 136 \\ 139 \\ 139 \\ 139 \\ 139 \\ 141 \\ 143 \\ 154 \\ 163 \\ 163 \\ 168 \\ 168 \\ 168 \\ 124 $
8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8. Chapte 9.1. 9.2. 9.3. 9.4. 9.5. Chapte 10.1. 10.2. 10.3.	Concatenation of forms Path cohomology Path cochain complex for Cartesian product Path cochain complex for the join Hochschild cohomology r 9. Combinatorial curvature of digraphs Motivation Curvature operator The Gauss-Bonnet formula Examples of computation of curvature Computation of $[x, \Omega_2]$ and further examples r 10. Curvature of some classes of digraphs Curvature of <i>n</i> -cube Curvature of the join Strongly regular digraphs	$121 \\ 124 \\ 127 \\ 129 \\ 133 \\ 136 \\ 139 \\ 139 \\ 139 \\ 139 \\ 141 \\ 143 \\ 154 \\ 163 \\ 163 \\ 168 \\ 170 \\ 121 $
8.2. 8.3. 8.4. 8.5. 8.6. 8.7. 8.8. Chapter 9.1. 9.2. 9.3. 9.4. 9.5. Chapter 10.1. 10.2. 10.3. 10.4.	Concatenation of forms Path cohomology Path cochain complex for Cartesian product Path cochain complex for the join Hochschild cohomology r 9. Combinatorial curvature of digraphs Motivation Curvature operator The Gauss-Bonnet formula Examples of computation of curvature Computation of $[x, \Omega_2]$ and further examples r 10. Curvature of some classes of digraphs Curvature of <i>n</i> -cube Curvature of the join Strongly regular digraphs Digraphs of constant curvature	$121 \\ 124 \\ 127 \\ 129 \\ 133 \\ 136 \\ 139 \\ 139 \\ 139 \\ 139 \\ 141 \\ 143 \\ 154 \\ 163 \\ 163 \\ 168 \\ 170 \\ 172 \\ 172 \\ 121 \\ 101 $

iv

10.6.	Some problems	177
Chapter	11. Fixed point theorems	179
11.1.	Lefschetz number and a fixed point theorem	179
11.2.	Rank-nullity formulas for trace	181
11.3.	A fixed point theorem in terms of homology	184
11.4.	Examples	185
Chapter	12. Intersection forms	191
12.1.	Signature of bilinear forms	191
12.2.	Intersection form and graded symmetry	192
12.3.	Intersection form on products	194
12.4.	Proper homology classes on products	196
12.5.	Product formula for signature	197
12.6.	Example: an intersection form on a 4-torus	201
12.7.	Intersection form on the join	202
12.8.	Some problems	202
Chapter 13. Hodge Laplacian		205
13.1.	Definition and spectral properties of Δ_p	205
13.2.	Harmonic paths	206
13.3.	Lowering index	208
13.4.	Matrix of Δ_p	211
13.5.	Examples of computation of the matrix of Δ_1	214
Chapter	14. Spectrum of the Hodge Laplacian	221
14.1.	Trace of Δ_1	221
14.2.	An upper bound of $\lambda_{\max}(\Delta_1)$	224
14.3.	Examples of computations of trace Δ_1 and spec Δ_1	225
14.4.	Eigenvalues of Δ_1 on trapezohedron	232
14.5.	Hodge Laplacian on the join	234
14.6.	Spectrum of Δ_p on the join	236
14.7.	Spectrum of Δ_p on digraphs D_m^{*n}	238
14.8.	Weighted Hodge Laplacian	241
Bibliogr	aphy	243

v

Preface

This text is based on a series of lectures that I delivered at the online joint seminar of Tsinghua University and Bielefeld University in Spring 2022. The purpose of those lectures was to introduce to young researchers a new emerging area of research – the theory of *path homology* on digraphs.

There exists a number of ways to define the notion of homology for graphs and digraphs, for example, clique homology ([16], [51]) or singular homology ([5], [51], [60]). However, the notion of path homology has certain advantages as it enjoys the adequate functorial properties with respect to graphtheoretical operations, such as morphisms of digraphs, Cartesian products, joins, homotopy etc.

The concept of path homology is derived from the concept of a *path chain complex* that is non-trivial and highly interesting by itself as it encodes a lot of information about the underlying digraph. Based on the path chain complex, we define also the notions of *combinatorial curvature* of digraphs (that is analogous to the Gauss curvature), as well as *Hodge Laplacians* acting on the chain spaces. The study of spectra of Hodge Laplacians on digraphs is a new large area of research.

The notions of path homology and path chain complex have rich mathematical content, and I hope that they will become useful tools in various areas of pure and applied mathematics.

I have tried to keep here the presentation style of the online seminar, which, in particular, featured a wealth of examples and open problems. I give here an overview of the already published results in this field, state and prove some new results, as well as pose some open questions and conjectures.

The material on the following topics is new:

- random digraphs;

- path cochain complexes on products;

- intersection form and signature;

while the rest of the material is based on [**31**], [**33**], [**34**], [**35**], [**39**], [**41**], [**42**], [**44**], [**43**], [**45**].

A complete list of the topics covered is shown in the table of contents. Most of the material of the book should be accessible for undergraduate and graduate students with a solid background in Linear Algebra and a basic knowledge of Homological Algebra.

PREFACE

For further reading on path homology theory, its applications, and the related topics I recommend the following literature: [1], [3], [4], [6], [7], [8], [9], [11], [12], [13], [14], [15], [17], [18], [19], [20], [21], [22], [26], [25], [29], [30], [32], [36], [37], [38], [40], [46], [48], [49], [50], [53], [56], [57], [59], [61], [62], [63].

ACKNOWLEDGEMENTS. The author is grateful to Chao Chen for his C++ program for computation of path homology groups that was extensively used in this research. Scientific Workplace© of MacKichan Software and Microsoft Excel© were used for other computational purposes. Besides, Scientific Workplace© was used for typing of this book.

The author is indebted to S.-T. Yau for initiating and leading the research on this subject as well as for his constant support and encouragement.

The author acknowledges a continued financial support of Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 317210226 - SFB 1283, as well as the hospitality and support of Tsinghua University (Beijing) and Chinese University of Hong Kong during multiple visits there.

Alexander Grigor'yan Bielefeld, December 2022

Bibliography

- Asao,Y., Magnitude homology and path homology, Bull. London Math. Soc. 55 (2023) no.1, 375–398. https://doi.org/10.1112/blms.12734
- [2] Babson, E., Barcelo, H., de Longueville, M., Laubenbacher, R., Homotopy theory of graphs, J. Algebr. Comb. 24 (2006) 31–44.
- [3] Barcelo, H., Capraro, V., White, J.A., Discrete homology theory for metric spaces, Bull. London Math. Soc. 46 (2014) 889–905.
- [4] Barcelo, H., Greene, C., Jarrah, A.S., Welker, V., Homology groups of cubical sets with connections, Applied Categorical Structures 29 (2021) 415–429.
- [5] Barcelo, H., Greene, C., Jarrah, A.S., Welker, V., Discrete cubical and path homologies of graphs, Algebr. Comb. 2 (2019) no.3, 417–437.
- [6] Barcelo, H., Kramer, X., Laubenbacher, R., Weaver, Ch., Foundations of a connectivity theory for simplicial complexes, Advances in Appl. Mathematics 26 (2001) 97-128.
- [7] Bauer F., Jost J., Liu S., Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator, Math. Res. Lett. 19 (2012) no.6, 1185–1205.
- [8] Bauer F., Chung F.R.K., Lin Y., Liu Y., Curvature aspects of graphs, Proc. Amer. Math. Soc. 145 (2017) no.5, 2033–2042.
- [9] Bi Wanying, Li Jingyan, Wu Jie, The magnitude homology of a hypergraph, preprint
- [10] Bollobás, B., "Random graphs", Cambridge Studies in Advanced Mathematics 73, Cambridge University Press, 2001.
- Bollobás, B., Erdös, P., Cliques in random graphs, Math. Proc. Camb. Phil. Soc.
 80 (1976) 419–427.
- [12] Caputi L., Collari C., Di Trani S., Combinatorial and topological aspects of path posets, and multipath cohomology, J. Algebr. Comb. 57 (2023) 617–658. https://doi.org/10.1007/s10801-022-01180-9
- [13] Carranza, D., Doherty, B., Kapulkin, C., Opie, M., Sarazola, M., Wong, L. Z., Cofibration category of digraphs for path homology, arXiv:2212.12568 (2022)
- [14] Chaplin, T., First Betti number of the path homology of random directed graphs, J. Applied and Computational Topology (2022) https://doi.org/10.1007/s41468-022-00108-3
- [15] Chaplin, T., Harrington, H. A., Tillmann, U., Grounded persistent path homology: a stable, topological descriptor for weighted digraphs, arXiv:2210.11274 (2022)
- [16] Chen Beifang, Yau Shing-Tung, Yeh Yeong-Nan, Graph homotopy and Graham homotopy, Discrete Math. 241 (2001) 153-170.
- [17] Chen Dong, Liu Jian, Wu Jie, Wei Guo-Wei, Pan Feng, Persistent hyperdigraph homology and persistent hyperdigraph Laplacians, *Foundations of Data Science* (2023) 31 pages. https://doi.org/doi:10.3934/fods.2023010
- [18] Chen Dong, Liu Jian, Wu Jie, Wei Guo-Wei, Pan Feng, Yau Shing-Tung, Path topology in molecular and materials sciences, J. Phys. Chem. Lett. 14 (2023) no.4, 954–964. https://doi.org/10.1021/acs.jpclett.2c03706

- [19] Chowdhury, S., Gebhart, T., Huntsman, S., Yutin, M., Path homologies of deep feedforward networks, *in:* "18th IEEE International Conference on Machine Learning and Applications (ICMLA)", IEEE, (2019) 1077–1082.
- [20] Chowdhury, S., Huntsman, S., Yutin, M., Path homologies of motifs and temporal network representations, *Applied Network Science* (2022) 1–23.
- [21] Chowdhury, S., Mémoli, F., Persistent path homology of directed networks, in: "Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms", Society for Industrial and Applied Mathematics, (2018) 1152–1169.
- [22] Cushing, D., Kamtue, S., Liu Shiping, Peyerimhoff, N., Bakry-Emery curvature on graphs as an eigenvalue problem, *Calc. Var* **61:62** (2022) https://doi.org/10.1007/s00526-021-02179-z
- [23] Dimakis, A., Müller-Hoissen, F., Differential calculus and gauge theory on finite sets, J. Phys. A, Math. Gen. 27 (1994) no.9, 3159-3178.
- [24] Dimakis, A., Müller-Hoissen, F., Discrete differential calculus: graphs, topologies, and gauge theory, J. Math. Phys. 35 (1994) no.12, 6703-6735.
- [25] Dimakis, A., Müller-Hoissen, F., Discrete Riemannian geometry, J. Math. Phys. 40 (1999) no.3, 1518-1548.
- [26] Di Shaobo, Ivanov S. O., Mukoseev L., Zhang Mengmeng, On the path homology of Cayley digraphs and covering digraphs, arXiv:2305.15683v1 (2023)
- [27] Dlotko, P., Hess, K., Levi, R., Nolte, M., Muller, E., Reimann, M., Scolamiero, M., Turner, K., Markram, H., Topological analysis of the connectome of digital reconstructions of neural microcircuits, arXiv:1601.01580v1 (2016)
- [28] Gerstenhaber, M., Schack, S.D., Simplicial cohomology is Hochschild cohomology, J. Pure Appl. Algebra 30 (1983) 143-156.
- [29] Grigor'yan, A., Jimenez, R., Muranov, Yu., Fundamental groupoids of digraphs and graphs, Czech Math J. 68 (2018) 35-65.
- [30] Grigor'yan, A., Jimenez, R., Muranov, Yu., Homology of digraphs, Math. Notes 109 (2021) no.5, 712–726.
- [31] Grigor'yan, A., Jimenez, R., Muranov, Yu., Yau, S.-T., On the path homology theory and Eilenberg-Steenrod axioms, *Homology, Homotopy and Appl.* 20 (2018) 179–205.
- [32] Grigor'yan, A., Jimenez, R., Muranov, Yu., Yau, S.-T., Homology of path complexes and hypergraphs, *Topology and its Applications* **267** (2019) art. 106877.
- [33] Grigor'yan, A., Lin Yong, Muranov, Yu., Yau, S.-T., Homologies of path complexes and digraphs, arXiv:1207.2834v4 (2013)
- [34] Grigor'yan, A., Lin Yong, Muranov, Yu., Yau, S.-T., Homotopy theory for digraphs, Pure Appl. Math. Quaterly 10 (2014) no.4, 619-674.
- [35] Grigor'yan, A., Lin Yong, Muranov, Yu., Yau, S.-T., Path complexes and their homologies, J. Math. Sciences 248 (2020) no.5, 564–599.
- [36] Grigor'yan, A., Lin Yong., Yau S.-T., Analytic and Reidemeister torsions of digraphs and path complexes, preprint (2020)
- [37] Grigor'yan, A., Muranov, Yu., On homology theories of cubical digraphs, Pacific J. Math 322 (2023) no.1, 39–58.
- [38] Grigor'yan, A., Muranov, Yu., Vershinin, V., Yau, S.-T., Path homology theory of multigraphs and quivers, *Forum Math.* **30** (2018) no.5, 1319–1337.
- [39] Grigor'yan, A., Muranov, Yu., Yau, S.-T., Graphs associated with simplicial complexes, *Homology, Homotopy and Appl.* 16 (2014) no.1, 295–311.
- [40] Grigor'yan, A., Muranov, Yu., Yau, S.-T., Cohomology of digraphs and (undirected) graphs, Asian J. Math. 19 (2015) 887-932.
- [41] Grigor'yan, A., Muranov, Yu., Yau, S.-T., On a cohomology of digraphs and Hochschild cohomology, J. Homotopy Relat. Struct. 11 (2016) no.2, 209–230.
- [42] Grigor'yan, A., Muranov, Yu., Yau, S.-T., Homologies of digraphs and Künneth formulas, Comm. Anal. Geom. 25 (2017) no.5, 969–1018.

- [43] Grigor'yan, A., Tang Xinxing, Yau S.-T, Linear join of digraphs and path homology, in preparation
- [44] Grigor'yan, A., Tang Xinxing, Yau S.-T., Generalized join of digraphs and path homology, in preparation
- [45] Grigor'yan, A., Advances in path homology theory of digraphs, Notices of the ICCM 10 (2022) no.2, 61–124.
- [46] Happel D., Hochschild cohomology of finite dimensional algebras, in: "Lecture Notes in Math. Springer-Verlag, 1404", 1989. 108–126.
- [47] Hochschild, G., On the homology groups of an associative algebra, Annals of Math.46 (1945) 58–67.
- [48] Huang, An, Yau, S. T., On cohomology theory of (di)graphs, Homology, Homotopy and Applications 17 (2015) 383–398.
- [49] Huntsman, S., Path homology as a stronger analogue of cyclomatic complexity, arXiv:2003.00944v2 (2020)
- [50] Ivanov, S. O., Pavutnitskiy, F., Simplicial approach to path homology of quivers, subsets of groups and submodules of algebras, arXiv:2211.06202 (2022)
- [51] Ivashchenko, A. V., Contractible transformations do not change the homology groups of graphs, Discrete Math. 126 (1994) 159-170.
- [52] Lippner, G., Horn, P., An example of a digraph with infinite homological dimension, private communication, 2012.
- [53] Li Fang, Yu Bin, Künneth formulas for path homology, Pure and Applied Mathematics Quarterly 19 (2023) no.2, 697–712.
- [54] MacLane S., "Homology", Die Grundlagen der mathematischen Wissenschaften 114, Springer, 1963.
- [55] Melnikova, D., private communication, 2023.
- [56] Muranov Yu., Szczepkowska A., Path homology theory of edge-colored graphs, Open Mathematics 19 (2021) no.1, 706–723. https://doi.org/10.1515/math-2021-0049
- [57] Qiu Yuchi, Wei Guo-Wei, Artificial intelligence-aided protein engineering: from topological data analysis to deep protein language models, Briefings in Bioinformatics, Oxford (2023) 1-13. https://doi.org/10.1093/bib/bbad289
- [58] Reimann, M.W., Nolte1, M., Scolamiero, M., Turner, K., Perin, R., Chindemi, G., Dlotko, P., Levi, R., Hess, K., Markram, H., Cliques of neurons bound into cavities provide a missing link between structure and function, *Frontiers in Computational Neuroscience* **11** (2017) article 49. https://doi.org/10.3389/fncom.2017.00048
- [59] Tahbaz-Salehi, A., Jadbabaie, A., Distributed coverage verification in sensor networks without location information, *IEEE Transactions on Automatic Control* 55 (2010) 1837-1849.
- [60] Talbi, M. E., Benayat, D., Homology theory of graphs, Mediterranean J. of Math 11 (2014) 813-828.
- [61] Tang Xinxing, Yau Shing-Tung, Minimal path and acyclic models, arXiv:2208.14063 (2022)
- [62] Wei, Ronald Koh Joon, Wee, Junjie, Laurent, V. E. Xia, Kelin, Hodge theory-based biomolecular data analysis, *Scientific Reports* 12 (2022) art. 9699. https://doi.org/10.1038/s41598-022-12877-z
- [63] Wu Shuang, Liu Xiang, Dong Ang, Gragnoli C., Griffin Ch., Wu Jie, Yau Shing-Tung, Wu Rongling, The metabolomic physics of complex diseases, Proceedings of the National Academy of Sciences, Biophysics and Computational Biology 120 (2023) no.14, e2308496120. https://doi.org/10.1073/pnas.2308496120