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Introduction

In this paper, we are concerned with upper bounds of eigenvalues of Laplace operator
on compact Riemannian manifolds and finite graphs. While on the former the Laplace
operator is generated by the Riemannian metric, on the latter it reflects combinatorial
structure of a graph. Respectively, eigenvalues have many applications in geometry as well
as in combinatorics and in other fields of mathematics.

We develop a universal approach to upper bounds on both continuous and discrete
structures based upon certain properties of the corresponding heat kernel. This approach is
perhaps much more general than its realization here. Basically, we start with the following
entries:
1◦ an underlying space M with a finite measure µ;
2◦ a well-defined Laplace operator ∆ on functions on M so that ∆ is a self-adjoint

operator in L2(M, µ) with a discrete spectrum;
3◦ if M has a boundary, then the boundary condition should be chosen so that it does

not disrupt self-adjointness of ∆ and is of dissipative nature;
4◦ a distance function dist(x, y) on M so that |∇dist| ≤ 1 for an appropriate notion of

gradient.

Let λi, i = 0, 1, 2, · · · denote the i-th eigenvalue of −∆ so that 0 = λ0 ≤ λ1 ≤ · · · ≤ λi ≤
· · · . Then one of our results states that for any pair of disjoint subsets X, Y ⊂ M

λ1 ≤ 4
dist(X, Y )2

log
2µM√
µXµY

2

(0.1)

We want to emphasize that validity of (0.1) does not depend on any a priori assumption
on M which would restrict its geometry except compactness. A similar inequality holds in
general for the difference λi − λ0 for any i ≥ 1.

Let us note that the most non-trivial term in (0.1) is a logarithm on the right hand side.
In fact, the logarithm comes from a Gaussian exponential term which enters normally heat
kernel upper bounds. A similar inequality for λi can be proved involving distances among
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k disjoint sets by constructing cutoff functions (close to the indicators of the sets X, Y )
and by using them as trial functions in the minimax property of the eigenvalues.

Let M denote now a graph with a combinatorial Laplacian. We will prove the following
inequality. For any two vertex subsets X, Y of a graph on n vertices which is not a complete
graph, we will relate λ1 to the least distance between a vertex in X to a vertex in Y as
follows:

dist(X, Y ) ≤



log µM√
µXµY

log 1
1−λ


 (0.2)

where λ = λ1 if 1 − λ1 ≥ λn−1 − 1 and λ = 1 − (λn−1 − λ1)/2 otherwise. Note that, in
general λ ≥ λ1/2. Here, for example, µX can denote the sum of degrees of vertices of X
and dist(X, Y ) denotes the length of a shortest path joining a vertex in X and a vertex in
Y . This is best possible within a constant factor for expander graphs with degree k and
λ = O(1/

√
k). In general, we have

λ ≤ log
1

1 − λ
≤




log µM√
µXµY

dist(X, Y )




for any two subsets X, Y of the vertex set of the graph. We note the inequality (0.2)
generalizes an earlier result in [2] (also see [4] ):

diamM ≤
⌈

log(n − 1)
log 1

1−λ

⌉

Special cases of (0.2) for regular graphs were investigated by Kahale in [7] . For subsets
Xi, i = 0, 1, · · · , k, the distance among Xi is defined to be the least distance dist(Xi, Xj)
for i �= j. We will generalize (0.2) by relating λk to the distance among k + 1 subsets of
the vertex set. Namely,

min
i�=j

dist(Xi, Xj) ≤ max
i�=j




log
√

µX̄i µX̄j

µXi µXj

log 1
1−λ′

k




where λ′
k = λk if 1 − λk ≥ λn−1 − 1 and λ′

k = 1 − (λn−1 − λk)/2, otherwise.
In the next Section we prove our main results for the continuous case of manifolds. The

discrete cases for graphs will be considered in Section 2 with similar but different and
simpler proofs. A more general setting will be considered in [10] .

Eigenvalues on manifolds

Let M be a smooth connected compact Riemannian manifold and ∆ be a Laplace
operator associated with the Riemannian metric i.e. in coordinates x1, x2, ...xn

∆u =
1√
g

n∑
i,j=1

∂

∂xi

√
ggij ∂u

∂xj
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where gij are contra-variant components of the metric tensor and g = det ‖gij‖ and u is a
smooth function on M.

We admit that the manifold M has a boundary ∂M. If this is the case, we introduce a
boundary condition

αu + β
∂u

∂ν
= 0 (1.1)

where α(x), β(x) are non-negative smooth functions on M such that α(x) + β(x) > 0 for
all x ∈ ∂M.

For example, both Dirichlet and Neumann boundary conditions suit these assumptions.
We note that
1◦ the Laplace operator with the boundary condition (1.1) is self-adjoint and has a

discrete spectrum in L2(M, µ), where µ is the Riemannian measure;
2◦ the condition (1.1) implies

u
∂u

∂ν
≤ 0

where ν is the outer normal field on ∂M.

Let us introduce also a distance function dist(x, y) on M × M which may be equal to
the geodesic distance, but in general we shall not assume so. Other than being a distance
function the function, dist(x, y) must be Lipschitz and, moreover, for all x, y ∈ M

|∇dist(x, y)| ≤ 1.

Let us denote by Φi the eigenfunction corresponding to the i-th eigenvalue λi and nor-
malized in L2M, µ so that {Φi} is an orthonormal frame in L2(M, µ).

Theorem 1.1 Suppose that we have chosen k + 1 disjoint subsets X1, X2, ...Xk+1 of M
such that the distance between any pair of them is at least D > 0. Then for any k > 1

λk − λ0 ≤ 1
D2

max
i�=j

log
4∫

Xi
Φ2

0

∫
Xj

Φ2
0


2

(1.2)

We remark that, for example, if either the manifold has no boundary or the Neumann
boundary condition has been chosen the first eigenvalue is 0 and the first eigenfunction is
the constant

Φ0 =
1√
µM

An immediate consequence of Theorem 1.1 is that for any k > 1

λk ≤ 4
D2

max
i�=j

log
2µM√
µXiµXj
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Proof of Theorem 1.1: The proof is based upon two fundamental facts about the heat
kernel p(x, y, t) being by definition the unique fundamental solution to the heat equation

∂u

∂t
u(x, t) − ∆u(x, t) = 0
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with the boundary condition (1.1) if the boundary ∂M is non-empty. The first fact is the
eigenfunction expansion

p(x, y, t) =
∞∑

i=0

e−λitΦi(x)Φi(y) (1.3)

and the second is the following universal estimate:

∫
X

∫
Y

p(x, y, t)f(x)g(y)µ(dx)µ(dy) ≤
∫

X

f2

∫
Y

g2

 1
2

exp
−D2

4t
− λ0t

 (1.4)

which is true for any functions f, g ∈ L2(M, µ) and for any two disjoint Borel sets X, Y ⊂
M where D = dist(X, Y ).

An inequality of type (1.4) appeared first in the paper by B.Davies [5] and [8] (on
page 73). It was improved in [6] by introducing the term −λ0t in the exponent on the
right-hand side of (1.4) . The previous papers treated slightly different situations (for
example, without a boundary) and this is why we will show at the end of this Section how
to prove (1.4) .

Let us explain first the main idea behind the proof of the Theorem 1.1 in a particular
case k = 2. We start with integrating the eigenvalue expansion (1.3) as follows

I(f, g) ≡
∫

X

∫
Y

p(x, y, t)f(x)g(y)µ(dx)µ(dy) =
∞∑

i=0

e−λit

∫
X

fΦi

∫
Y

gΦi (1.5)

Let us denote by fi the Fourier coefficients of the function f 1X with respect to the frame
{Φi} and by gi - that of g 1Y . Then

I(f, g) = e−λ0tf0g0 +
∞∑

i=1

e−λitfigi ≥ e−λ0tf0g0 − e−λ1t‖f 1X‖2 ‖g 1Y ‖2 (1.6)

where we used the fact that∣∣∣∣∣
∞∑

i=1

e−λitfigi

∣∣∣∣∣ ≤ e−λ1t


∞∑

i=1

f2
i

∞∑
i=1

g2
i


1
2

≤ e−λ1t‖f 1X‖2‖g 1Y ‖2.

By comparing (1.6) and (1.4) we get

exp(−(λ1 − λ0))‖f 1X‖2‖g 1Y ‖2 ≥ f0g0 − ‖f 1X‖2‖g 1Y ‖2 exp
−D2

4t

 . (1.7)

Let us choose t so that the second term on the right-hand side (1.7) is equal to one half
of the first one (here we take advantage of the Gaussian exponential since it can be made
arbitrarily close to 0 by taking t small enough):

t =
D2

4 log 2‖f 1X‖2‖g 1Y ‖2
f0g0

.

For this t, we have

exp(−(λ1 − λ0))‖f 1X‖2‖g 1Y ‖2 ≥ 1
2
f0g0
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which implies

λ1 − λ0 ≤ 1
t

log
2‖f 1X‖2‖g 1Y ‖2

f0g0

and after substituting the value of t, we have

λ1 − λ0 ≤ 4
D2

log
2‖f 1X‖2‖g 1Y ‖2

f0g0

2

Finally, we choose f = g = Φ0 and taking into account that

f0 =
∫

X

fΦ0 =
∫

X

Φ2
0,

and

‖f 1X‖2 =
∫

X

Φ2
0

 1
2

=
√

f0

and similar identities hold for g we obtain

λ1 − λ0 ≤ 1
D2

log
4∫

X
Φ2

0

∫
Y

Φ2
0

2

Now we turn to the general case k > 2. Let us consider a function f(x) and denote by
f j

i the i-th Fourier coefficient of the function f 1Xj
i.e.

f j
i =

∫
Xj

fΦi.

Let us put also in analogy to the case k = 2

Ilm(f, f) =
∫

Xl

∫
Xm

p(x, y, t)f(x)f(y)µ(dx)µ(dy),

then we have the upper bound for Ilm(f, f)

Ilm(f, f) ≤ ‖f 1Xl
‖2‖f 1Xm

‖2 exp
−D2

4t
− λ0t

 (1.8)

while we rewrite the lower bound (1.6) in another way:

Ilm(f, f) ≥ e−λ0tf l
0f

m
0 +

k−1∑
i=1

e−λitf l
if

m
i − e−λkt‖f 1Xl

‖2‖f 1Xm
‖2 (1.9)

Now we want to kill the middle term on the right-hand side (1.9) by choosing appropri-
ate l and m. To that end, let us consider k + 1 vectors fm = (fm

1 , fm
2 , · · · , fm

k−1), m =
1, 2, · · · , k + 1 in Rk−1 and let us supply this (k − 1)-dimensional space with a scalar
product given by

(v, w) =
k−2∑
i=0

viwie
−λi+1t.
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We suppose that we have chosen a value of t from the very beginning so t will not vary
(although the optimal value of t will be found later). Let us apply the following elementary
fact: out of any k + 1 vectors in (k − 1)-dimensional Euclidean space there are always
two vectors with non-negative scalar product (see the end of this section for the proof).
Therefore, we can find different l, m so that (f l, fm) ≥ 0 and due to that choice we are
able to cancel the second term on the right-hand side (1.9) .

Comparing (1.8) and (1.9) we get

e−(λk−λ0)t‖f 1Xl
‖2‖f 1Xm

‖2 ≤ f l
0f

m
0 − ‖f 1Xl

‖2‖f 1Xm
‖2 exp

−D2

4t

 (1.10)

Now, similar to the case k = 2 we choose t so that the right-hand side is at least 1
2f l

0f
m
0 .

Since t must be independent on l, m we put simply

t = min
l�=m

D2

4 log 2‖f 1Xl
‖2‖f 1Xm‖2

f l
0fm

0

and obtain from (1.10)

λk − λ0 ≤ 1
t

log
2‖f 1Xl

‖2‖f 1Xm
‖2

f l
0f

m
0

whence (1.2) follows by substituting t from above and by taking f = Φ0.
Now we will prove two auxiliary facts used in the course of the proof of Theorem 1.1.

Lemma 1.1 For any two Borel sets X, Y ⊂ M and for any functions f, g ∈ L2(M, µ) we
have:

∫
X

∫
Y

p(x, y, t)f(x)g(y)µ(dx)µ(dy) ≤
∫

X

f2

∫
Y

g2

 1
2

exp
−D2

4t
− λ1t


where D = dist(X, Y ).

Proof of Lemma 1.1: Let us put

u(x, t) =
∫

Y

p(x, y, t)g(y)µ(dy)

then u(x, t) is a solution to the heat equation ut = ∆u with the initial data u(x, 0) = g 1Y

and with the boundary condition (1.1) . As was shown in [6] , for any Lipschitz function
ξ(x, t) such that for all x ∈ M, t > 0

ξt +
1
2
|∇|ξ ≤ 0

the integral

e2λ0t

∫
M

u2eξ(x,t)µ(dx)
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is a decreasing function of t. Actually, this was proved for the Dirichlet boundary value
problem but the proof used only that

u
∂u

∂ν
≤ 0

that is true in our setting.
Let us put

ξ(x, t) =
d2(x)

2(t + ε)

where d(x) ≡ dist(x, Y ) and ε > 0. Then

e2λ0t

∫
X

u2(x, t)eξ(x,t)µ(dx) ≤
∫

M

u2(x, 0)eξ(x,0)µ(dx)

or, taking into account that u(x, 0) = g 1Y , ξ|Y = 0, and ξ|X ≥ D2

2(t+ε) and letting ε → 0
we get ∫

X

u2(x, t)µ(dx) ≤ exp
−D2

2t
− 2λ0t

∫
Y

g2(x)µ(dx).

Finally, we obtain upon an application of the Cauchy-Schwarz inequality∫
X

∫
Y

p(x, y, t)f(x)g(y)µ(dx)µ(dy) =
∫

X

u(x, t)f(x)µ(dx)

≤
∫

X

f2

 1
2
∫

X

u2(x, t)
 1

2

≤
∫

X

f2

 1
2
∫

Y

g2

 1
2

exp
−D2

4t
− λ0t


what was to be proved.

Now let us prove the next geometric lemma.

Lemma 1.2 Let E be an n-dimensional Euclidean space and v1, v2, · · · , vn+2 be n + 2
arbitrary vectors in E. Then there are two of them, say, vi, vj (where i �= j ) such that
(vi, vj) ≥ 0 where (·, ·) denotes the scalar product in E.

Proof of Lemma 1.2: For n = 1 this is obvious. Let us prove the inductive step from n− 1
to n. Suppose that for each pair of the given vectors their scalar product is negative. Let E′

be a hyperplane orthogonal to vn+2 and let vi
′ be a projection of vi on E′, i = 1, 2, ...n+1.

We claim that (vi
′, vj

′) < 0 provided i �= j. Indeed, since (vi, vn+2) < 0 (where we assume
i ≤ n + 1 ) all vectors vi lie on the same half-space with respect to E′ which implies that
each of them is represented in the form

vi = vi
′ + aie

where ai > 0 and e is a unit vector orthogonal to E′ and directed to the same half-space
as all vi. Hence, we have

0 > (vi, vj) = (vi
′ − aie, vj

′ − aje) = (vi
′, vj

′) + aiaj

whence (vi
′, vj

′) < 0 follows. On the other hand, by the induction hypothesis out of n + 1
vectors vi

′, i = 1, 2, ...n+1 in the (n− 1) -dimensional space E′ there are two vectors with
non-negative scalar product. This contradiction proves the lemma.
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Eigenvalues on graphs

Let G denote a graph on vertex set V (G) and edge set E(G). For a vertex v, the degree
of v is denoted by dv and for a subset X of V (G), we define the volume of X to be

µX =
∑
x∈X

dx

The Laplacian of the graph is defined to be

L(x, y) =




1 if x = y;
− 1√

dxdy

if x ∼ y

0 otherwise

Suppose L has eigenvalues λ0 = 0 ≤ λ1 ≤ · · · ≤ λn−1 where n = |V (G)|. Then

λ1 = inf
f

∑
x∼y

[f(x) − f(y)]2

∑
x f2(x)dx

where f ranges over functions satisfying

∑
x

f(x)dx = 0.

Let T be an n×n function with the (x, x)-entry of value dx. Then T 1/21 is the eigenfunction
associated with eigenvalue 0 where 1 denotes the function with all entries 1. It is not
difficult to see that λ1 ≤ 1 for any graph which is not a complete graph and 1 < λn−1 ≤ 2.
More discussions on the eigenvalues λi can be found in [3] . Let X̄ denote the complement
of X in V (G).

Theorem 2.1 Suppose G is not a complete graph. For X, Y ⊂ V (G), we have

dist(X, Y ) ≤



log
√

µX̄µȲ
µX µY

log 1
1−λ


 (2.1)

where λ = λ1 if 1 − λ1 ≥ λn−1 − 1 and λ = 1 − (λn−1 − λ1)/2 otherwise.

Proof: For X ⊂ V (G), we define

fX(x) =
{

1 if x ∈ X
0 otherwise

If we can show that for some integer t and a polynomial pt(z) of degree t,

〈T 1/2fY , pt(L)(T 1/2fX)〉 > 0

then there is a path of length at most t joining a vertex in X to a vertex in Y . Therefore
we have dist(X, Y ) ≤ t.

Let ai denote the Fourier coefficient of T 1/2fX , i.e.,
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T 1/2fX =
n−1∑
i=0

aiϕi

where ϕi’s are eigenfunctions of L. In particular, we have

a0 =
〈T 1/2fX , T 1/21〉
〈T 1/21, T 1/21〉

=
µX

µV
T 1/21

Similarly, we write

T 1/2fY =
n−1∑
i=0

biϕi

We choose

pt(z) =
{

(1 − z)t if 1 − λ1 ≥ λn−1 − 1 ;
( (λ1+λn−1)

2
− z)t otherwise

Since G is not a complete graph, λ1 �= λn−1 and

|pt(λi)| ≤ (1 − λ)t

for all i = 1, · · · , n − 1. Therefore we have

〈T 1/2fY , pt(L)T 1/2fX〉 = a0b0 +
∑
i>0

pt(λi)aibi

> a0b0 − (1 − λ)t

√∑
i>0

a2
i

∑
i>0

b2
i

=
µX µY

µV
− (1 − λ)t

√
µX µX̄ µY µȲ

µV

Note that ∑
i>0

a2
i = ‖T 1/2fX‖2 − (µX)2

µV

=
µX µX̄

µV

If we choose

t ≥
log

√
µ X̄ µȲ
µX µY

log 1
1−λ

we have
〈T 1/2fY , pt(L)T 1/2fX〉 > 0

Therefore we have
dist(X, Y ) ≤ t.
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To improve the inequality in some cases, we use the same approach as in [4] by consid-
ering the Chebychev polynomials of the first kind.

T0(z) = 1,

T1(z) = z,

Tt+1(z) = 2zTt(z) − Tt−1(z), for integer t > 1.

Or, equivalently,
Tt(z) = cosh(t cosh−1(z)).

In the place of pt(L), we will use St(L) where

St(x) =
Tt(

λ1+λn−1−2x
λn−1−λ1

)

Tt(
λn−1+λ1
λn−1−λ1

)

Then we have
max

x∈[λ1,λn−1]
≥ St(λ1) ≥ 1

Tt(
λn−1+λ1
λn−1−λ1

)

Suppose we take

t ≥
cosh−1

√
µ X̄ µȲ
µX µY

cosh−1 λn−1+λ1
λn−1−λ1

Then we have
〈T 1/2fY , St(L)T 1/2fX〉 > 0

Theorem 2.2 Suppose G is not a complete graph. For X, Y ⊂ V (G), we have

dist(X, Y ) ≤



cosh−1
√

µX̄µȲ
µX µY

cosh−1 λn−1+λ1
λn−1−λ1




We can easily derive isoperimetric inequalities by using (2.1) . These isoperimetric
inequalities are generalizations of the inqualities concerning vertex or edge “expansion” in
Tanner [9] and in Alon and Miller [1] for regular graphs.

For a subset X ⊂ V , we define the s-neighborhood of X by

Ns(X) = {y : dist(x, y) ≤ s, for some x ∈ X}

Suppose we choose Y = V − Ns(X) in (2.1) . Theorem 2.1 implies the following result
which gives a lower bound for the expansion of the neighborhood.

µNt(X) ≥ µX
µX
µV

+ (1 − µX
µV

)(1 − λ)2(t−1)

Theorem 2.1 can be generalized for the case of relating the distance of k + 1 disjoint
subsets of vertices and the eigenvalues λk. The line of proof is quite similar to that in
Section 2.
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Theorem 2.3 Suppose G is not a complete graph. For Xi ⊂ V (G), i = 0, 1, · · · , k, we
have

min
i�=j

dist(Xi, Xj) ≤ max
i�=j




log
√

µX̄i µX̄j

µXi µXj

log 1
1−λ′

k




where λ′
k = λk if 1 − λk ≥ λn−1 − 1 and λ′

k = 1 − (λn−1 − λk)/2 otherwise.

Proof:
There exist two distinct subsets in Xi’s, denoted by X and Y , satisfying

〈T 1/2fY , pt(L)T 1/2fX〉 ≥ a0b0 +
k−1∑
i=1

pt(λi)aibi +
∑
i≥k

pt(λi)aibi

>
µX µY

µV
− (1 − λ′

k)t

√
µX µX̄ µY µȲ

µV

by using Lemma 1.2 and by associating to each X a vector (pt(λ1)1/2a1, · · · , pt(λk−1)1/2ak−1)
where fX =

∑
aiϕi.
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