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1. Introduction

Let X be a Riemannian manifold (for example, an open subset of Rn) and ∆ be the
Laplace operator associated with the Riemannian structure. Alongside with the Laplace
equation on X,

∆u = 0,(1.1)

let us consider the perturbed equation

∆u− uµ = 0(1.2)

where µ is, in general, a signed Radon measure on X. In particular, µ may have a density
with respect to the Riemannian measure µ0 in which case µ in (1.2) will be identified with
its density. In general, we understand (1.2) in the sense of distributions. In particular,
a solution u should be in L1

loc(X,µ0) ∩ L1
loc(X, |µ|) so that both terms ∆u and uµ are

distributions.
The results of this note are new even if µ is a smooth function in X = Rd. In this case

(1.2) can be understood in the classical sense and is an elliptic Schrödinger equation. The
question we address here is as follows:

How to compare solutions to the Dirichlet problem for the equation (1.2)
with solutions to the Dirichlet problem for the equation (1.1)?

Let V denote a precompact open subset ofX which is regular (that is, every point of the
boundary ∂V is regular with respect to the Dirichlet problem for the Laplace equation;
in particular, this is the case when ∂V ∈ C1). Denote by GV (x, y) the Green function
of the Dirichlet problem for the Laplace equation in V . Denote also by Kµ

V the integral
operator on functions in V which acts by

Kµ
V h =

∫
V

GV (·, y)h(y)dµ(y).(1.3)

Let f be a continuous function on ∂V and consider the following two Dirichlet problems
in V : {

∆h = 0,
h|∂V = f

(1.4)

and {
∆u− uµ = 0,
u|∂V = f .

(1.5)

The main result of this note is the following lower bound for u via h. Suppose that
f ≥ 0 and f �≡ 0. Then

u

h
≥ exp

(
−K

µ
V h

h

)
in V,(1.6)
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assuming that µ is an arbitrary signed (local) Kato measure.
The latter means that, for any precompact regular open set U ⊂ X, the function

K
|µ|
U 1 =

∫
U

GU(·, y)d|µ|(y)

is finite and continuous on U . In particular, this ensures that the expression Kµ
V h in (1.6)

does make sense. Any locally bounded measurable function on X is a density of a (local)
Kato measure because the singularity of the Green kernel is summable like in Rn.

If µ ≥ 0 then inequality (1.6) is known and was proved in [5, p.558] (for such µ, we
obviously have also u ≤ h). However, the method of [5] does not work for a signed measure
µ. Here we give an entirely different proof which works for any µ and which is based on
the Feynman-Kac formula.

Let us emphasize the general nature of inequality (1.6). Although it is a pointwise
inequality, its validity does not depend on any particular property of the underlying
space X. Moreover, it holds in a much more general setting of harmonic spaces.

So Section 2 will be devoted to a short discussion of perturbations of harmonic spaces.
In particular, we shall recall that we always can find an associated Hunt process such
that perturbed solutions are given by a Feynman-Kac formula. A reader who accepts the
Feynman-Kac formula may skip that section.

The inequality (1.6) will be proved in Section 3 (Theorem 3.1) by an application of
Jensen’s inequality.

Let us finally note that we might get rid of the continuity of the potentials defining
the perturbation. This could be achieved either by studying a more general perturbation
from the very beginning (see e.g. [3, Section 2.2]) or, having established Theorem 3.1
below, by using a limit procedure to extend the validity of the inequality.

Acknowledgments. Research of the first author was supported by the EPSRC
Fellowship. The second author was partially supported by the travel grant of the TMR
network “Stochastic Analysis”.

2. Harmonic spaces and Feynman-Kac formula

Let (X,H) be a P-harmonic Bauer space and let M+(H) denote the convex cone of
all sections of continuous real potentials. For a short introduction of these notions and
related definitions and properties the reader is referred to [3, Section 7].

We denote by Uc the set of all precompact open subsets of X. By definition of a Bauer
space, for any set V ∈ Uc there is a harmonic operator HV which maps any function
f ∈ C(∂V ) to a function HV f ∈ H(V ), and if f ≥ 0 then also HV f ≥ 0. There is a rich
enough family of regular sets in Uc for which “the Dirichlet problem is solvable” that is
HV f is continuous in V and is equal to f on ∂V .

Let M(H) be the vector space generated by M+(H) (see [2, p.105]). Using the ordering
(called specific order) induced by M+(H) the space M(H) is a Riesz space. In particular,
each M ∈ M(H)) has a unique decomposition M = M+ −M− such that M+,M− ∈
M+(H) and the specific infimum of M+ and M− is 0. Then |M | = M+ + M− is the
specific supremum of M and −M .

In the case when X is a Riemannian manifold and H is the sheaf of harmonic functions
on X (and in many other cases, too), any M ∈ M(H) can be identified with a measure:
The corresponding (local) Kato measure µ is the unique signed measure µ on X such that

MV =

∫
V

GV (·, y)µ(dy)
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for all V ∈ Uc. If µ = µ+ − µ− is the decomposition of µ into its positive part µ+ and its
negative part µ−, then µ+ corresponds to M+, µ− corresponds to M−, and |µ| = µ+ +µ−

corresponds to |M |.
In the following assume that M ∈ M(H). Then we define

KM
V = KM+

V −KM−
V (V ∈ Uc)

(where KM±
V is the potential kernel associated with M±

V ) and, for every open subset U of
X,

HM(U) = {u ∈ C(U) : u+KM
V u ∈ H(V ) for every V ∈ Uc with V ⊂ U}.

From [2] we quote the

Theorem 2.1. (X,HM) is a Bauer space.

Let UM(H) denote the set of all V ∈ Uc such that the operator I + KM
V on Bb(V ) is

invertible and (I +KM
V )−1s ≥ 0 for every s ∈ S+

b (V ). If M ∈ M+(H) then UM(H) = Uc.
In the general case, we have supM−

V (X) < 1 if V is sufficiently small and then trivially

(I +KM
V )−1 =

∞∑
n=0

[
(I +KM+

V )−1KM−
V

]n
(I +KM+

V )−1(2.1)

showing that V ∈ UM(H). In fact, (2.1) holds for every V ∈ UM(H) and the boundedness
of the kernel on the right side characterizes those V ∈ Uc which are contained in UM (H)
(see [4, p.136]). For V ∈ UM (H) we define

HM
V = (I +KM

V )−1HV .(2.2)

Then for every f ∈ C(X),HM
V f is the unique function h ∈ HM

b (V ) such that limn→∞ h(xn) =
f(z) for every regular sequence (xn) in V converging to a point z ∈ ∂V . In particular,
every regular set V in X which is sufficiently small, is M-regular, i.e., regular with respect
to HM , and the corresponding harmonic kernel is HM

V (see [4, p.140]).

Remark: Using perturbation of Bauer spaces which are not necessarily P-harmonic we
may get back to the original space (X,H) by a perturbation of (X,HM) (see [2, p.109]):

(X,H) = (X, (HM)N )

where

NV = −(I +KM
V )−1MV (V ∈ UM(H)).

So in the context of harmonic spaces the relation between (X,H) and (X,HM) is com-
pletely symmetric!

Let us assume in the following that the function 1 is superharmonic. Then Feynman-
Kac integrals can be used. The key is the following result (see [2]):

Theorem 2.2. Given M ∈ M(H), there exists a Hunt process

X = (Ω,M,Mt, Xt, θt,Px)

on X having the following properties:

(i) For every V ∈ Uc, every x ∈ V and every Borel set B in X,

HV (x,B) = Px[XτV
∈ B]

where τV denotes the first exit time from V and HV (x,B) denotes the kernel of the
operator HV .
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(ii) The potential kernel W of X is proper (i.e., W1L =
∫∞

0
Pt1L dt is finite for every

compact subset L of X) and there exists a locally bounded function g ∈ B(X) such
that, for every V ∈ Uc,

MV = W (g1V ) −HVW (g1V ).

IfX is a Riemannian manifold and if µ has a locally bounded density, then the Brownian
motion on X is such a process. Let us briefly sketch how we can find such a process (even
with bounded potential kernel) in our general situation.

We already noted in [3, Section 7.2] that we have an injection

j : P(X) ∩ C(X) → M+(H)

given by

(j(p))V = p−HV p (V ∈ Uc).

Now fix M ∈ M(H) and an exhaustion (Un) of X. Then, for each n ∈ N, pn := KM+

Un+1
1Un

is a continuous real potential on Un+1 which is harmonic on Un+1 \Un. Hence there exists
a unique continuous real potential qn on X such that qn is harmonic on X \Un and pn−qn
is harmonic on Un+1. Then sup qn(X) = sup qn(Un) <∞ and it is easily seen that

j(qn) = 1UnM
+.

Similarly, there exist q′n ∈ P(X) ∩ Cb(X), n ∈ N, such that

j(q′n) = 1UnM
−.

Define

q =
∞∑

n=1

αnqn, q′ =
∞∑

n=1

αnq
′
n, ϕ =

∞∑
n=1

αn1Un

where

αn =
1

2n sup(qn + q′n + 1)(X)
.

Then q, q′ ∈ P(X) ∩ Cb(X), ϕ ≤ 1, inf ϕ(Un) > 0 for every n ∈ N, and

j(q) = ϕM+, j(q′) = ϕM−.

Let q0 ∈ P(X) ∩ Cb(X) be a strict potential and take

p := q0 + q + q′.

Then p is a strict potential in Cb(X), hence by [1] there exists a Hunt process X =
(Ω,M,Mt, Xt, θt,Px) on X such that (i) holds and the potential kernel W =

∫∞
0
Pt dt of

X satisfies

W1 = p.

Moreover, by [1], there exist ψ, ψ′ ∈ B+
b (X) (less than 1) such that

Wψ = q, Wψ′ = q′.

Defining

g :=
ψ − ψ′

ϕ

we then have

M = gj(p),
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i.e., (ii) holds. Moreover,

M+ = g+j(p), M− = g−j(p)

and, for every V ∈ Uc, x ∈ V , and every f ∈ Bb(X),

KM±
V f(x) = W (fg±1V )(x) −HVW (fg±1V )(x)

= Ex

(∫ τV

o

(fg±)(Xt) dt

)
,

KM
V f(x) = Ex

(∫ τV

0

(fg)(Xt) dt

)
.(2.3)

Proceeding as in [2, p.125-127] this finally leads to the following result:

Theorem 2.3. Let V ∈ Uc such that HV 1 > 0. Then the following statements are
equivalent:

(i) V ∈ UM (H).
(ii) The function x 
→ Ex(exp

(− ∫ τV

0
g(Xt) dt

)
1{τV <∞}) is locally bounded on V .

(iii) For every f ∈ C(∂V ), there exists a unique function h ∈ HM
b (V ) such that limn→∞ h(xn) =

f(z) for every regular sequence (xn) converging to a point z ∈ ∂V , and h ≥ 0 if f ≥ 0.

In this case, the function h is given by

h(x) = Ex

(
exp

(
−
∫ τV

0

g(Xt) dt

)
f(XτV

)

)
.(2.4)

For later purpose we finally note an easy consequence of (2.3):

Proposition 2.4. For every V ∈ Vc and every f ∈ C(X), the function h = HV f satisfies

KM
V h(x) = Ex

(
f(XτV

)

∫ τV

0

g(Xt) dt

)
(x ∈ V ).

Proof. Fix x ∈ V and let τ = τV . Since t+ τ ◦ θt = τ on {t < τ}, we have

Xτ ◦ θt = Xτ on {t < τ},
hence, by the (weak) Markov property,

KM
V h(x) = Ex

(∫ τ

0

g(Xt)h(Xt)dt

)

=

∫ ∞

0

Ex

(
1{t<τ}g(Xt)EXt(f ◦Xτ )

)
dt

=

∫ ∞

0

Ex

(
1{t<τ}g(Xt)f ◦Xτ ◦ θt

)
dt

=

∫ τ

0

Ex

(
1{t<τ}g(Xt)f ◦Xτ

)
dt = Ex

(
f(Xτ )

∫ τ

0

g(Xt)dt

)
,

which was to be proved.
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3. The lower estimate

We are now ready to formulate our general lower estimate of perturbed Dirichlet solu-
tions:

Theorem 3.1. Let M ∈ M(H) and V ∈ UM(H) such that HV 1 > 0. Given f ∈ C+
b (X)

let us denote h := HV f and u := HM
V f . Then

u

h
≥ exp

{
−K

M
V h

h

}
on {h > 0}.(3.1)

Remark: For the case M ∈ M+(H), this inequality was proved in [5, Proposition 1.9].
Being based on (2.4) our proof below is completely different and goes through regardless of
the sign of M . We were inspired by [6, Proposition 2.5] to use the Feynman-Kac formula
to get our estimate.

Proof. Let X be a Hunt process on X having the properties (i) and (ii) of Theorem 2.3,
and let τ be the first exit time from V . Then, by Theorem 2.3,

h(x) = Ex {f(Xτ)} , u(x) = Ex

{
exp

(
−
∫ τ

0

g(Xt)dt

)
f(Xτ )

}
.

Let us introduce random variables

ξ = f(Xτ ), η =

∫ τ

0

g(Xt)dt

so that

h(x) = Ex(ξ), u(x) = Ex

{
e−ηξ

}
.

Using Jensen’s inequality (see the following Lemma 3.2) we obtain that

u(x)

h(x)
≥ exp

(
−Ex (ξη)

h(x)

)
.(3.2)

It remains to observe that, by Proposition 2.4,

Ex (ξη) = Ex

(
f(Xτ )

∫ τ

0

g(Xt)dt

)
= KM

V h(x).

Finally, let us show how to obtain (3.2).

Lemma 3.2. For every x ∈ V and for all real random variables ξ, η such that ξ ≥ 0,
Ex(ξ) > 0, we have

Ex

(
e−ηξ

) ≥ Ex (ξ) exp

(
−Ex (ξη)

Ex (ξ)

)
(3.3)

Proof. Consider the probability measure

Q =
ξ

Ex(ξ)
Px

on (Ω,M). By Jensen’s inequality, we have

Ex (e−ηξ)

Ex (ξ)
=

∫
e−ηdQ≥ exp

(
−
∫
ηdQ

)
= exp

(
−
∫
ηξdPx

Ex(ξ)

)
= exp

(
−Ex (ξη)

Ex (ξ)

)
,

which was to be proved.
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Let us consider some particular cases of Theorem 3.1.

Corollary 3.3. Let X be a Riemannian manifold and µ be a signed (local) Kato measure
on X. Let V be a precompact open regular subset of X such that V �= X. Assume that
u ∈ C(V ) solves in V the equation

∆u− uµ = 0,(3.4)

and h ∈ C(V ) is a positive harmonic function in V such that h|∂V = u|∂V . Then, for any
x ∈ V ,

u(x)

h(x)
≥ exp

(
−
∫

V
GV (x, y)h(y)dµ(y)

h(x)

)
.(3.5)

Proof. Let H be the sheaf of harmonic functions on X. If the manifold X is non-parabolic,
i.e., admits a global Green function G(x, y) then (X,H) is a P-harmonic space. If X is
parabolic then we will use the hypothesis V �= X which excludes the situation when X is
compact and V is dense in X. It is possible to prove that the Dirichlet Laplace operator
in a non-dense precompact open subset U of X has a positive bottom of the spectrum,
which implies the finiteness of the Green function GU . Since V is not dense in X, there is
a precompact open neighborhood U of V which is not dense in X either. Let us rename
U by X so that X is now non-parabolic.

For any precompact open set V ⊂ X, we define the potential MV on V by

MV =

∫
V

GV (·, y)dµ(y).

The perturbation M is the family of all potentials {MV }V ∈Uc
. Then HM is the sheaf of

M-harmonic functions, i.e., the functions satisfying the Schrödinger equation (3.4), and
the potential kernel KM

V is defined by (1.3). Hence, (3.5) follows by Theorem 3.1.

Let U be a bounded region in Rn, which lies in the half-space {x ∈ Rn : x1 > 0} and has
a part of the boundary on the hyperplane {x ∈ Rn : x1 = 0}. Denote Γ0 = ∂U ∩{x1 = 0}
and Γ+ = ∂U ∩ {x1 > 0} and consider the following mixed boundary value problem in U


∆u = 0 in U ,
u = f on Γ+ ,
∂u
∂x1

− qu = 0 on Γ0 ,
(3.6)

where q is a function on Γ0. Denote by U∗ the domain obtained from U by reflection at
{x1 = 0} and let V be the set of all interior points of U ∪ U∗. Also, extend evenly the
boundary function f to ∂V . Then we have the following lower bound for u(x).

Corollary 3.4. If V is regular and if f ∈ C+(∂V ) and q ∈ C(Γ0) then, for any x ∈ U ,

u(x)

h(x)
≥ exp

(
−2
∫

Γ0
GV (x, y)q(y)h(y)dσΓ0(y)

h(x)

)
,(3.7)

where h solves the Dirichlet problem in V{
∆h = 0,
h|∂V = f,

and σΓ0 is the (n− 1)-dimensional Lebesgue measure supported by Γ0.
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Proof. Extend evenly the function u to V . It is possible to prove that u solves the following
boundary value problem in V (cf. [3, Section 6.6]){

∆u− u µ = 0
u|∂V = f ,

(3.8)

where

µ := 2qσΓ0 .

Since q is continuous on Γ0 and σΓ0 is a Kato measure, we see that µ is also a Kato
measure. Hence, (3.7) follows by Corollary 3.3.

Observe that the estimate (3.7) gives a non-trivial result even if f ≡ 1, in which case
h ≡ 1 and

u(x) ≥ exp

(
−2

∫
Γ0

GV (x, y)q(y)dσΓ0(y)

)
.(3.9)
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