Fundamental groupoids of digraphs and graphs

Alexander Grigor'yan
Department of Mathematics
University of Bielefeld
33501 Bielefeld, Germany

Rolando Jimenez
Instituto de Matematicas
UNAM, Unidad Oaxaca
68000 Oaxaca, Mexico

Yuri Muranov
Faculty of Mathematics and Computer Science
University of Warmia and Mazury
10-710 Olsztyn, Poland
December, 2016

Abstract

In this paper we introduce the notion of fundamental groupoid of a digraph and prove its basic properties. In particular, we obtain a product theorem and an analog of the Van Kampen theorem. Considering the category of (undirected) graphs as the full subcategory of digraphs we transfer the results to the category of graphs. As a corollary we obtain the corresponding results for the fundamental groups of digraphs and graphs. We give an application to graph coloring.

Keywords: digarph, fundamental group, fundamental groupoid, product of graphs.
Mathematics Subject Classification 2010: 05C25, 05C38, 05C76, 20L05, 57M15.

Contents

1 Introduction

2 Category of digraphs and homotopy theory 2
3 Fundamental groupoids of digraphs9

4 Geometric realization and Van Kampen theorem 15
5 Fundamental groupoids of graphs 20
6 An application to coloring

1 Introduction

In this paper we develop further the homotopy theory for digraphs (=directed graphs) initiated in [9], [8], and [10]. In the category of digraphs, the homology and the homotopy theories were introduced in [8] in such a way that the homology groups are homotopy invariant and the first homology group of a connected digraph is isomorphic to the abelization of its fundamental group. By a natural way we can consider the category of nondirected graphs as a full subcategory of digraphs. Thus, the homology and homotopy theories of digraph can
be transferred to the category of nondirected graphs, thus leading to similar results for the latter category.

In the case of undirected graphs the fundamental group was first introduced in the papers [3] and [4], were they described the relation of the fundamental group of graph to the Atkin homotopy theory [1], [2]. Note that for undirected graphs the notions of fundamental groups of $[8]$ and $[3,4]$ coincide.

In the present paper we introduce the notion of the fundamental groupoid of a digraph that is a natural generalization of the notion of fundamental group of digraph from [8]. Our definition of groupoid has essentially the origin in the discrete nature of graphs and is not related to the notion of fundamental groupoid of a graph as a topological space from [5] and [13].

We prove basic properties of the fundamental groupoid of digraphs, in particular, a product formula for the fundamental groupoids for various notions of product of digraphs as well as an analogous of the Van Kampen theorem for groupoids Considering the category of nondirected graphs as a full subcategory of the category of digraphs we transfer these results to the category of nondirected graphs. Note, the Van Kampen theorem for the fundamental group of graphs was obtained also in [3] and [4].

The paper is organized as follows. In Section 2, we give a preliminary material, necessary definitions, and some useful constructions in the category of digraphs based on [8], [9], and [12].

In Section 3, we define the fundamental groupoid of a digraph and describe its basic properties. In fact, we define a functor from the category of digraphs to the category of groupoids. We prove the results concerning fundamental groupoids for various products of digraphs. We also give application to the first homology group of the products.

In Section 4, we construct a functor Δ (geometrical realization) from the category of digraphs to the category of 2-dimensional CW-complexes, that provides a natural equivalence of the corresponding fundamental groupoids on the vertices of digraphs. As a consequence of the geometric realization we obtain an analog of the Van Kampen theorem for groupoids of digraphs.

In Section 5, we transfer the aforementioned results to the category of nondirected graphs and compare our results with that of [3], [4].

In Section 6, we give an application to coloring of graphs.

Acknowledgements

The first and the third authors were partially supported by SFB 701 of German Research Council, the second and the third authors were partially supported by the CONACyT Grant 151338.

2 Category of digraphs and homotopy theory

In this Section we give necessary definitions and preliminary material (see [9] and [8]) which we need in the following sections. We prove also several technical results.

Definition 2.1 A directed graph (digraph) G is a couple $\left(V_{G}, E_{G}\right)$ consisting of a set V_{G} of vertices and of a subset $E_{G} \subset\left\{V_{G} \times V_{G} \backslash \operatorname{diag}\right\}$ of ordered pairs. The elements of E_{G} are called arrows, which are denoted by $(v \rightarrow w)$, where the vertex $v=\operatorname{orig}(v \rightarrow w)$ is the origin of the arrow and the vertex $w=\operatorname{end}(v \rightarrow w)$ is the end of the arrow.

A based digraph $G^{*}=(G, *)$ is a digraph G together with a based vertex $v=* \in V_{G}$.

If there is an arrow from v to w, then we write $v \rightarrow w$. For two vertices $v, w \in V_{G}$, we write $v \equiv w$ if either $v=w$ or $v \rightarrow w$.

Definition 2.2 A digraph H is called a subdigraph of G is $V_{H} \subset V_{G}$ and $E_{H} \subset E_{G}$.
Definition 2.3 A digraph map (or simply map) from a digraph G to a digraph H is a map $f: V_{G} \rightarrow V_{H}$ such that $v \rightarrow w$ on G implies $f(v) \equiv f(w)$ on H.

A digraph map f is non-degenerate if $v \rightarrow w$ on G implies $f(v) \rightarrow f(w)$ on H.
A digraph map of based digraphs $f:(G, v) \rightarrow(H, w)$ has additional property that $f(v)=$ w.

The set of all digraphs with digraph maps form a category of digraphs that will be denoted by \mathcal{D}. The set of all based digraphs with based digraph maps form a category of based digraphs that will be denoted by \mathcal{D}^{*}.

For two digraphs G and H we denote by $\operatorname{Hom}(G, H)$ the set of all digraph maps from G to H. For two based digraphs G^{*} and H^{*} we denote by $\operatorname{Hom}\left(G^{*}, H^{*}\right)$ the set of all based digraph maps from G^{*} to H^{*}.

Definition 2.4 For digraphs G, H define two notions of their product.
i) Define a \square-product $\Pi=G \square H$ as a digraph with a set of vertices $V_{\Pi}=V_{G} \times V_{H}$ and a set of arrows E_{Π} given by the rule

$$
(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right) \text { if } x=x^{\prime} \text { and } y \rightarrow y^{\prime} \text {, or } x \rightarrow x^{\prime} \text { and } y=y^{\prime},
$$

where $x, x^{\prime} \in V_{G}$ and $y, y^{\prime} \in V_{H}$. The \square-product is also referred to as the Cartesian product.
ii) Define a \rtimes-product $P=G \rtimes H$ as a digraph with a set of vertices $V_{P}=V_{G} \times V_{H}$ and a set of arrows E_{P} given by the rule

$$
(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right) \text { if } x=x^{\prime} \text { and } y \rightarrow y^{\prime}, \text { or } x \rightarrow x^{\prime} \text { and } y=y^{\prime}, \text { or } x \rightarrow x^{\prime} \text { and } y \rightarrow y^{\prime} .
$$

Let G and H be digraphs. For any vertex $v \in V_{H}$ there are natural inclusions $i_{v}: G \rightarrow$ P and $j_{v}: G \rightarrow \Pi$ given on the set of vertices by the rules

$$
i_{v}(x)=(x, v) \in V_{P}, \quad j_{v}(x)=(x, v) \in V_{\Pi} \text { for } x \in V_{G} .
$$

Similarly, there are natural inclusions $i_{w}: H \rightarrow P$ and $j_{w}: H \rightarrow \Pi$ for any $w \in V_{G}$.
Also we have natural projections $p: P \rightarrow G, q: P \rightarrow H$ given on the set of vertices by the rule

$$
p(x, y)=x \in V_{G}, \quad q(x, y)=y \in V_{H} \text { for } x \in V_{G}, y \in V_{H} .
$$

Similarly, there are projections $\Pi \rightarrow G$ and $\Pi \rightarrow H$.
In what follows we use the sign $\dot{\cup}$ to denote a disjoint union.
Definition 2.5 i) Let $f: G \rightarrow H$ be a digraph map of digraphs G, H. Define a digraph $\mathrm{C}_{f}=\left(V_{\mathrm{C}}, E_{\mathrm{C}}\right)$ as follows

$$
V_{\mathrm{C}}=V_{G} \dot{\cup} V_{H}, \quad E_{\mathrm{C}}=E_{G} \dot{\cup} E_{H} \dot{\cup} E_{I}, \text { where } E_{I}=\left\{(v \rightarrow f(v)) \mid v \in V_{G}\right\} .
$$

The digraph C_{f} is called the direct cylinder of the map f. The inverse cylinder C_{f}^{-}of the map f has the same set of vertices V_{C} as C_{f} and the set of arrows

$$
E_{\mathrm{C}^{-}}=E_{G} \dot{\cup} E_{H} \dot{\cup} E_{I^{-}}, \text {where } E_{I^{-}}=\left\{(f(v) \rightarrow v) \mid v \in V_{G}\right\} .
$$

Let us recall now the basic notions of the homotopy theory of [8]. Let $I_{n}, n \geq 0$, denote a digraph with the set of vertices $V_{n}=\{0,1, \ldots, n\}$ and the set of arrows $E_{I_{n}}$ that contains exactly of one of the arrows $(i \rightarrow(i+1))$ or $((i+1) \rightarrow i)$ for any $i=0,1, \ldots, n-1$, and no other arrow. The digraph I_{n} is called a line digraph. There are only two line digraphs with two vertices, which will be denoted by $I=(0 \rightarrow 1)$ and $I^{-}=(1 \rightarrow 0)$.

Denote by I_{n}^{*} the based digraph $\left(I_{n}, 0\right)$. Let $\mathcal{I}_{n}\left(\right.$ or $\left.\mathcal{I}_{n}^{*}\right)$ be the set of all line digraphs (or based line digraphs) with the vertex set V_{n} and set

$$
\mathcal{I}=\bigcup_{n \geq 0} \mathcal{I}_{n}, \quad \mathcal{I}^{*}=\bigcup_{n \geq 0} \mathcal{I}_{n}^{*}
$$

Definition 2.6 Let G, H be digraphs.
i) Two digraph maps $f_{i}: G \rightarrow H, \quad i=0,1$, are called homotopic if there exists a line digraph $I_{n} \in \mathcal{I}$ and a digraph map $F: G \square I_{n} \rightarrow H$ such that

$$
\left.F\right|_{G \square\{0\}}=f_{0}: G \square\{0\} \rightarrow H,\left.\quad F\right|_{G \square\{n\}}=f_{1}: G \square\{n\} \rightarrow H .
$$

In this case we shall write $f_{0} \simeq f_{1}$. If $I_{n}=I_{1}$ then we shall refer to F as an one-step homotopy from f_{0} to f_{1} and to the maps f_{i} as one-step homotopic.
ii) Two digraphs G and H are homotopy equivalent if there exist digraph maps

$$
f: G \rightarrow H, \quad g: H \rightarrow G
$$

such that

$$
f \circ g \simeq \operatorname{Id}_{H}, \quad g \circ f \simeq \operatorname{Id}_{G} .
$$

In this case, we write $H \simeq G$, and the maps f and g are called homotopy inverses to each other.
iii) A digraph G is contractible if it is homotopy equivalent to the one-vertex digraph.

Thus we obtain a well defined category \mathcal{D}^{\prime} of digraphs with the classes of homotopic maps as digraph maps in \mathcal{D}^{\prime}.

A homotopy between two based digraph maps $f, g: G^{*} \rightarrow H^{*}$ is defined as in Definition 2.6 with additional requirement that $\left.F\right|_{\{*\} \square I_{n}}=*$. Then we obtain a homotopy category $\mathcal{D}^{* \prime}$ of based digraphs.

For any $I_{n} \in \mathcal{I}_{n}$ define the line digraph $\hat{I}_{n} \in \mathcal{I}_{n}$ as follows:

$$
i \rightarrow j \text { in } \hat{I}_{n} \Leftrightarrow(n-i) \rightarrow(n-j) \text { in } I_{n} .
$$

For any two line digraphs I_{n} and I_{m}, define the line digraph $I_{n+m}=I_{n} \vee I_{m} \in \mathcal{I}_{n+m}$ by identification of the vertices $n \in I_{n}$ and $0 \in I_{m}$ and keeping the arrows in I_{n}, I_{m}.

Definition 2.7 i) A path-map in a digraph G is any digraph map $\phi: I_{n} \rightarrow G$, where $I_{n} \in \mathcal{I}_{n}$. A based path-map on a based digraph G^{*} is a based digraph map $\phi: I_{n}^{*} \rightarrow G^{*}$. A loop on a based digraph G^{*} is a based path-map $\phi: I_{n}^{*} \rightarrow G^{*}$ such that $\phi(n)=*$.
ii) For a path-map $\phi: I_{n} \rightarrow G$ define the inverse path-map $\hat{\phi}: \hat{I}_{n} \rightarrow G$ by $\hat{\phi}(i)=\phi(n-i)$.
iii) For two path-maps $\phi: I_{n} \rightarrow G$ and $\psi: I_{m} \rightarrow G$ with $\phi(n)=\psi(0)$ define the concatenation path-map $\phi \vee \psi: I_{n+m} \rightarrow G$ by

$$
\phi \vee \psi(i)= \begin{cases}\phi(i), & 0 \leq i \leq n \\ \psi(i-n), & n \leq i \leq n+m .\end{cases}
$$

Definition 2.8 A digraph map $h: I_{n} \rightarrow I_{m}$ is called a shrinking map if $h(0)=0, h(n)=m$, and $h(i) \leq h(j)$ whenever $i \leq j$.

Definition 2.9 Consider two path-maps

$$
\begin{equation*}
\phi: I_{n} \rightarrow G, \psi: I_{m} \rightarrow G \text { such that } \phi(0)=\psi(0), \quad \phi(n)=\psi(m) \tag{2.1}
\end{equation*}
$$

A one-step direct C_{∂}-homotopy from ϕ to ψ is a pair (h, F), where $h: I_{n} \rightarrow I_{m}$ is a shrinking map and $F: \mathrm{C}_{h} \rightarrow G$ is a digraph map such that

$$
\begin{equation*}
\left.F\right|_{I_{n}}=\phi \quad \text { and }\left.\quad F\right|_{I_{m}}=\psi \tag{2.2}
\end{equation*}
$$

If the same is true with C_{h} replaced everywhere by C_{h}^{-}then we refer to an one-step inverse C_{∂}-homotopy.

Now we define an equivalence relation on the set of path-maps of a digraph G.
Definition 2.10 Let ϕ, ψ be path-maps as in (2.1). We call these path-maps C_{∂}-homotopic and write $\phi \stackrel{C_{\overparen{O}}}{\simeq} \psi$ if there exists a finite sequence $\left\{\phi_{k}\right\}_{k=0}^{m}$ of path-maps such that $\phi_{0}=\phi$,
 one-step C_{∂}-homotopic to ϕ_{k}.

As follows from Definition 2.10, the relation $\phi \stackrel{C_{\partial}}{\simeq} \psi$ is an equivalence relation. Note, that for the based loops in a based digraph G^{*}, our notion of C_{∂}-homotopy from Definition 2.10 coincides with the notion of C-homotopy of [8, Definition 4.10].

Theorem 2.11 [8] Let $\pi_{1}\left(G^{*}\right)$ be the set of equivalence classes under C_{∂}-homotopy of based loops of a digraph G^{*}. The C_{∂}-homotopy class of a based loop ϕ will be denoted by $[\phi]$. Then $\pi_{1}\left(G^{*}\right)$ is a group with the neutral element $[e]$, where $e: I_{0}^{*} \rightarrow G^{*}$ is the trivial loop, the inverse element of $[\phi]$ is $[\hat{\phi}]$, and the product is given by concatenation of the loops $[\phi][\psi]=[\phi \vee \psi]$.

Now we discuss properties of the \rtimes-product of digraphs.
Proposition 2.12 For any line digraph I_{n} and any digraph G

$$
G \rtimes I_{n} \simeq G .
$$

Proof. Consider the case $n=1$ and the digraph $G \rtimes I$. We have a natural inclusion

$$
j: G \rightarrow G \rtimes I, \quad j(v)=v \rtimes\{0\}, v \in V_{G}
$$

and a natural projection $p: G \rtimes I \rightarrow G$ such that the composition $p \circ j: G \rightarrow G$ is the identity map. Now we prove that the composition $j \circ p$ is homotopic to the identity map $\operatorname{Id}_{G \rtimes I}$. Define a homotopy

$$
H:(G \rtimes I) \square I^{-} \rightarrow G \rtimes I
$$

as follows:

$$
H_{0}=\operatorname{Id}_{G \rtimes I}:(G \rtimes I) \square\{0\} \rightarrow G \rtimes I, \quad H_{0}(v, t, 0)=(v, t, 0), v \in V_{G}, t \in V_{I}
$$

on the bottom, and the composition

$$
j \circ p:(G \rtimes I) \square\{1\} \rightarrow G \rtimes\{0\}, \quad H_{1}(v, t, 1)=(v, 0), v \in V_{G}, t \in V_{I}, 1 \in V_{I^{-}}
$$

on the top. The map H is a well defined digraph map of digraphs.
The case of $G \rtimes I^{-}$is similar, which settles the claim for $n=1$. The claim for general n is proved by induction in n.

Let D, G, H be arbitrary digraphs. For a given a digraph map

$$
f: D \rightarrow G \rtimes H
$$

consider the digraph maps

$$
f_{1}=p \circ f: D \rightarrow G, \quad f_{2}=q \circ f: D \rightarrow H
$$

where $p: G \rtimes H \rightarrow G, q: G \rtimes H \rightarrow H$ are natural projections.
Proposition 2.13 There exists a one to one correspondence between the sets $\operatorname{Hom}(D, G \rtimes H)$ and $\operatorname{Hom}(D, G) \times \operatorname{Hom}(D, H)$, given by the rule

$$
f \leftrightarrow\left(f_{1}, f_{2}\right)
$$

Proof. Let r be the map of sets

$$
\begin{equation*}
\operatorname{Hom}(D, G \rtimes H) \rightarrow \operatorname{Hom}(D, G) \times \operatorname{Hom}(D, H), \quad r(f)=\left(f_{1}, f_{2}\right) \tag{2.3}
\end{equation*}
$$

Let $f \neq g \in \operatorname{Hom}(D, G \rtimes H)$. Since the digraph maps f and g are defined on the set of vertices, there exists a vertex $v \in V_{D}$, such that

$$
f(v)=\left(v_{1}, v_{2}\right) \neq g(v)=\left(w_{1}, w_{2}\right) \text { where }\left(v_{1}, v_{2}\right),\left(w_{1}, w_{2}\right) \in V_{G \rtimes H}
$$

Hence, at least one inequality $v_{1} \neq w_{1}, v_{2} \neq w_{2}$ is true. Hence $\left(f_{1}, f_{2}\right)(v) \neq\left(g_{1}, g_{2}\right)(v)$, since $f_{i}(v)=v_{i}, g_{i}(v)=w_{i}$. Thus the map r is a one-to-one inclusion. The map r is a surjection, since any two maps $f_{1} \in \operatorname{Hom}(D, G), f_{2} \in \operatorname{Hom}(D, H)$ are defined by the maps of vertices

$$
f_{1}: V_{D} \rightarrow V_{G}, \quad f_{2}: V_{D} \rightarrow V_{H}
$$

which define a map of vertices

$$
f=\left(f_{1}, f_{2}\right): V_{D} \rightarrow V_{G \rtimes H}=V_{G} \times V_{H}
$$

that is a well defined digraph map of digraphs $f: D \rightarrow G \rtimes H$, for which $r(f)=\left(f_{1}, f_{2}\right)$.
Lemma 2.14 Consider a path map $\phi: I_{s} \rightarrow I_{n} \rtimes I_{n}$ such that $\phi(0)=(0,0)$ and $\phi(k)=$
 (i, i).

Proof. Using [8, Prop. 3.6] it is easy to construct a deformation retraction r from $I_{n} \rtimes I_{n}$ onto its diagonal diag, which leads to a homotopy

$$
F:\left(I_{n} \rtimes I_{n}\right) \square I_{k} \rightarrow I_{n} \rtimes I_{n}
$$

such that $\left.F\right|_{\left(I_{n} \rtimes I_{n}\right) \square\{0\}}=\mathrm{id},\left.\quad F\right|_{\left(I_{n} \rtimes I_{n}\right) \square\{k\}}=r$ and additionally

$$
\begin{equation*}
\left.F\right|_{\text {diag } \square\{i\}}=\operatorname{id}_{\text {diag }} \tag{2.4}
\end{equation*}
$$

for any $i \in I_{k}$. For any path-map $\phi: I_{s} \rightarrow I_{n} \rtimes I_{n}$ define a digraph map

$$
\phi \square \mathrm{id}_{I_{k}}: I_{s} \square I_{k} \rightarrow\left(I_{n} \rtimes I_{n}\right) \square I_{k}
$$

Then the composition

$$
\Phi:=F \circ\left(\phi \square \mathrm{id}_{I_{k}}\right): I_{s} \square I_{k} \rightarrow I_{n} \rtimes I_{n}
$$

has the following properties: $\left.\Phi\right|_{I_{s} \square\{0\}}=\phi$ and $\left.\Phi\right|_{I_{s} \square\{k\}}$ is the digraph map onto diag such that $\Phi(0, k)=(0,0), \Phi(s, k)=(n, n)$. Now by $\left.(2.4) \Phi\right|_{I_{s} \square\{0\}}=\phi$ and $\left.\Phi\right|_{I_{s} \square\{k\}}$ are homotopic and, hence, C_{∂}-homotopic. It remains to observe that the path-maps

$$
\left.\Phi\right|_{I_{s} \square\{k\}}: I_{s} \rightarrow \operatorname{diag}
$$

and $\Delta: I_{n} \rightarrow$ diag are C_{∂}-homotopic (for example, using [8, Thm. 4.13]).

Definition 2.15 Let $\phi: I_{m} \rightarrow G$ be a path-map. An extension ϕ^{E} of ϕ is any path-map

$$
\phi^{E}: I_{n} \rightarrow G, \quad I_{n} \in \mathcal{I}
$$

that is given by the composition $\phi \circ h$, where $h: I_{n} \rightarrow I_{m}$ is a shrinking map.
Note that any extension ϕ^{E} of ϕ by means of shrinking map $h: I_{n} \rightarrow I_{m}$ satisfies the conditions

$$
\phi^{E}(0)=\phi(0), \quad \phi^{E}(n)=\phi(m)
$$

The following technical result will be used in Section 3 to describe the fundamental groupoid of the product of digraphs.

Proposition 2.16 Let $\psi=\left(\psi_{1}, \psi_{2}\right): I_{m} \rightarrow G \rtimes H$ be a path-map and $h_{1}, h_{2}: I_{n} \rightarrow I_{m}$ be shrinking maps that induce extensions $\psi_{1}^{E}: I_{n} \rightarrow G$ and $\psi_{2}^{E}: I_{n} \rightarrow H$. Consider the digraph map

$$
\psi^{\prime}:=\left(\psi_{1}^{E}, \psi_{2}^{E}\right): I_{n} \rightarrow G \rtimes H
$$

Then $\psi \stackrel{C_{\partial}}{\simeq} \psi^{\prime}$.
Proof. Consider the commutative diagram
in which Δ_{i} denotes the natural diagonal inclusions, and $\delta=\left(h_{1} \rtimes h_{2}\right) \circ \Delta_{n}$. By Lemma 2.14 the path-maps $\delta: I_{n} \rightarrow I_{m} \rtimes I_{n}$ and $\Delta_{m}: I_{m} \rightarrow I_{m} \rtimes I_{m}$ are $C_{\partial \text {-homotopic. From }}$ commutativity of the diagram, it follows that $\psi \stackrel{C_{\mathcal{D}}}{\simeq} \psi^{\prime}$.

For two digraphs G, H define a digraph $\operatorname{Dhom}(G, H)$ with set of vertices

$$
V_{\operatorname{Dhom}(G, H)}=\operatorname{Hom}(G, H)
$$

and $f \rightarrow g$ in $\operatorname{Dhom}(G, H)$ if there is an one-step homotopy as follows:

$$
\begin{equation*}
F: G \square I \rightarrow H,\left.\quad F\right|_{G \square\{0\}}=f,\left.\quad F\right|_{G \square\{1\}}=g \tag{2.5}
\end{equation*}
$$

Theorem 2.17 For digraphs D, G, H, there is a natural isomorphism of digraphs

$$
\operatorname{Dhom}(D, G \rtimes H) \cong \operatorname{Dhom}(D, G) \rtimes \operatorname{Dhom}(D, H)
$$

Proof. By the proof of Proposition 2.13, the map r from (2.3) defines a bijective map of vertices

$$
V_{\operatorname{Dhom}(D, G \rtimes H)} \rightarrow V_{\operatorname{Dhom}(D, G)} \times V_{\operatorname{Dhom}(D, H)}
$$

Let F be the homotopy of (2.5) that gives an arrow $f \rightarrow g$ in $\operatorname{Dhom}(G, H)$. Then

$$
p \circ F: D \square I \rightarrow G
$$

provides a homotopy between $p \circ f$ and $p \circ g$, and

$$
q \circ F: D \square I \rightarrow H
$$

provides a homotopy between $q \circ f$ and $q \circ g$. Hence, the map r maps arrows to arrows, and it is an injective map on arrows.

Now we prove that it is surjective. Consider a part of the digraph $\operatorname{Dhom}(D, G) \rtimes$ Dhom (D, H)

$$
\begin{array}{cccc}
& f_{1} & \rightarrow & g_{1} \\
& & & \tag{2.6}\\
g_{2} & \left(f_{1}, g_{2}\right) & \xrightarrow{a_{0}} & \left(g_{1}, g_{2}\right) \\
\uparrow & \uparrow a_{1} & \nearrow_{a_{2}} & \uparrow a_{3} \\
f_{2} & \left(f_{1}, f_{2}\right) & \xrightarrow[a_{4}]{\longrightarrow} & \left(g_{1}, f_{2}\right)
\end{array}
$$

which is obtained by the \rtimes-product of the arrows $f_{1} \rightarrow g_{1}$ and $f_{2} \rightarrow g_{2}$. Let us show that a_{i} belongs to the image of the map r on arrow, for any $i=0, \ldots, 4$.

Consider, at first, the case $i=0$. By definition of the $\operatorname{digraphs} \operatorname{Dhom}(D, G)$ and $\operatorname{Dhom}(D, H)$ it follows from (2.6), that there is a homotopy $F_{1}: D \square I \rightarrow G$ between f_{1} and g_{1}, and there is a homotopy $F_{2}: D \square I \rightarrow H$ between f_{2} and g_{2}. Let $d: D \square I \rightarrow D$ be the natural projection. The map

$$
\left(F_{1}, g_{2} \circ d\right): D \square I \rightarrow G \rtimes H
$$

gives a homotopy between the map $\left(f_{1}, g_{2}\right): D \rightarrow G \rtimes H$ and the map $\left(g_{1}, g_{2}\right): D \rightarrow G \rtimes H$. The homotopy $\left(F, g_{2} \circ d\right)$ represents an arrow in $\operatorname{Dhom}(D, G \rtimes H)$ that maps by means r to the arrow a_{0} in (2.6).

The cases $i=1,3,4$ are similar. Consider the case $i=2$. Let Ψ denote the composition

$$
D \square I \xrightarrow{F_{1} \square F_{2}} G \square H \rightarrow G \rtimes H
$$

where the second map is the natural inclusion. This map gives a homotopy between the map $\left(f_{1}, f_{2}\right): D \rightarrow G \rtimes H$ and the map $\left(g_{1}, g_{2}\right): D \rightarrow G \rtimes H$, and hence represents an arrow in $\operatorname{Dhom}(D, G \rtimes H)$ that maps by means r to the arrow a_{2} in (2.6). The theorem is proved.

For two based digraphs G^{*}, H^{*} define a based digraph $\operatorname{Dhom}\left(G^{*}, H^{*}\right)$ with the set of vertices

$$
V_{\operatorname{Dhom}\left(G^{*}, H^{*}\right)}=\operatorname{Hom}\left(G^{*}, H^{*}\right)
$$

consisting of based maps and the base point is given by the trivial map $*: G \rightarrow * \in H$. There is an arrow $f \rightarrow g$ in $\operatorname{Dhom}\left(G^{*}, H^{*}\right)$ if there is a one-step homotopy

$$
\begin{equation*}
F: G^{*} \square I^{*} \rightarrow H^{*}, *=0 \in I,\left.\quad F\right|_{G \square\{0\}}=f,\left.F\right|_{G \square\{1\}}=g . \tag{2.7}
\end{equation*}
$$

The products \square and \rtimes of digraphs are defined naturally in the category \mathcal{D}^{*} of based digraphs, where $*=* \square * \in G \square H$ is a based vertex and, similarly, $*=* \rtimes * \in G \rtimes H$.

Corollary 2.18 For based digraphs D^{*}, G^{*}, H^{*}, there is a natural isomorphism of based digraphs

$$
\operatorname{Dhom}\left(D^{*}, G^{*} \rtimes H^{*}\right) \cong \operatorname{Dhom}\left(D^{*}, G^{*}\right) \rtimes \operatorname{Dhom}\left(D^{*}, H^{*}\right) .
$$

Proof. The result follows from Theorem 2.17 since the correspondence $f \leftrightarrow\left(f_{1}, f_{2}\right)$ given in Proposition 2.13 preserves the based maps.

3 Fundamental groupoids of digraphs

In this section we define a notion of the fundamental groupoid of a digraph and describe its basic properties. We prove the theorem about fundamental groupoid of the products of digraphs. As a corollary we obtain the corresponding results for the fundamental groups of digraphs. Our definition is motivated by the classical definition of groupoid from [13, $1 \S 7$ and $3 \S \S 6,7,8]$.

A groupoid is a small category in which every morphism is an equivalence.
Definition 3.1 i) An edge of a digraph $G=(V, E)$ is an ordered pair (v, w) of vertices such that either $v=w$ or there is at least one of the arrows $v \rightarrow w$ or $v \leftarrow w$.
ii) An edge-path ξ of a digraph G is a finite nonempty sequence

$$
\begin{equation*}
\left(v_{0}, v_{1}\right)\left(v_{1}, v_{2}\right) \ldots\left(v_{n-2}, v_{n-1}\right)\left(v_{n-1}, v_{n}\right) \tag{3.1}
\end{equation*}
$$

of edges of the digraph G, where n is any natural number. The vertex v_{0} is called the tail of the edge-path ξ and v_{n} the head of ξ. We shall write $v_{0}=t(\xi)$ and $v_{n}=h(\xi)$.
iii) A closed edge-path at the vertex $v_{0} \in V_{G}$ is an edge-path ξ such that $t(\xi)=h(\xi)=v_{0}$.
iv) If ξ_{1} and ξ_{2} are two edge paths with $h\left(\xi_{1}\right)=t\left(\xi_{2}\right)$, then we define the product edge-path $\xi_{1} \xi_{2}$ consisting of the sequence of edges ξ_{1} followed by the edges of ξ_{2}.
v) For any edge-path ξ from (3.1) define the inverse edge-path ξ^{-1} by

$$
\xi^{-1}:=\left(v_{n}, v_{n-1}\right)\left(v_{n-1}, v_{n-2}\right) \ldots\left(v_{1}, v_{0}\right)
$$

We collect some obvious properties of edge-paths in the next statement.
Lemma 3.2 The edge-paths of a digraph G satisfy the following properties:
$\left(\xi_{1} \xi_{2}\right) \xi_{3}=\xi_{1}\left(\xi_{2} \xi_{3}\right)$,
$\left(\xi^{-1}\right)^{-1}=\xi$,
$t\left(\xi_{1} \xi_{2}\right)=t\left(\xi_{1}\right), h\left(\xi_{1} \xi_{2}\right)=h\left(\xi_{2}\right)$,
$t(\xi)=h\left(\xi^{-1}\right), h(\xi)=t\left(\xi^{-1}\right)$,
where we assume that all the products are well-defined.
Definition 3.3 i) We shall say that the sequence of three vertices $\left(v_{0}, v_{1}, v_{2}\right)$ of a digraph G forms a triangle if there is a permutation π of $\left(v_{0}, v_{1}, v_{2}\right)$ such that the map $i \mapsto \pi\left(v_{i}\right)$, $i=0,1,2$, provides the isomorphism from the following triangle

to the subdigraph of G with the vertices $\pi\left(v_{0}\right), \pi\left(v_{1}\right), \pi\left(v_{2}\right)$.
ii) We shall say that the sequence of four vertices $\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$ of a digraph G forms a square if there is a cyclic permutation π of $\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$ such that the map $i \mapsto \pi\left(v_{i}\right)$, $i=0,1,2,3$, provides the isomorphism of the following square

$$
\begin{array}{lll}
1 & \rightarrow & 3 \\
\uparrow & & \uparrow \\
0 & \rightarrow & 2
\end{array}
$$

to the subdigraph of G with the vertices $\pi\left(v_{0}\right), \pi\left(v_{1}\right), \pi\left(v_{2}\right), \pi\left(v_{3}\right)$.
Now we introduce the edge-path groupoid of a digraph.

Definition 3.4 Two edge-paths ξ_{1} and ξ_{2} are called equivalent (and we write $\xi_{1} \sim \xi_{2}$) if ξ_{1} can be obtained from ξ_{2} by a finite sequence of the local transformations of the following types or their inverses (where the dots "..." denote the unchanged parts of the edge-paths):
i) $\ldots\left(v_{0}, v_{1}\right)\left(v_{1}, v_{2}\right) \ldots \mapsto \ldots\left(v_{0}, v_{2}\right) \ldots$, provided $\left(v_{0}, v_{1}, v_{2}\right)$ forms a triangle in G.
ii) $\ldots\left(v_{0}, v_{1}\right)\left(v_{1}, v_{3}\right) \ldots \mapsto \ldots\left(v_{0}, v_{2}\right)\left(v_{2}, v_{3}\right) \ldots$ provided $\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$ forms a square in G.
iii) $\ldots\left(v_{0}, v_{1}\right)\left(v_{1}, v_{3}\right)\left(v_{3}, v_{2}\right) \ldots \mapsto \ldots\left(v_{0}, v_{2}\right) \ldots$ provided $\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$ forms a square in G.
iv) $\ldots\left(v_{0}, v_{1}\right)\left(v_{1}, v_{0}\right) \ldots \rightarrow \ldots\left(v_{0}, v_{0}\right) \ldots$ provided $v_{0} \rightarrow v_{1}$ or $v_{1} \rightarrow v_{0}$, or $v_{0}=v_{1}$.
v) $\ldots\left(v_{0}, v_{0}\right)\left(v_{0}, v_{1}\right) \ldots \mapsto \ldots\left(v_{0}, v_{1}\right) \ldots$

Using transformation iv) and v , we obtain also that
vi) $\ldots\left(v_{0}, v_{1}\right)\left(v_{1}, v_{1}\right) \ldots \mapsto \ldots\left(v_{0}, v_{1}\right) \ldots$

It follows directly from definition that the relation \sim has the following properties.
Proposition 3.5 The relation "~" is an equivalence relation on the set of edge-paths of the digraph G. It has the following properties:
i) If $\xi_{1} \sim \xi_{2}$ then $t\left(\xi_{1}\right)=t\left(\xi_{2}\right), \quad h\left(\xi_{1}\right)=h\left(\xi_{2}\right)$.
ii) If $\xi_{1} \sim \xi_{1}^{\prime}, \xi_{2} \sim \xi_{2}^{\prime}$ and $t\left(\xi_{2}\right)=h\left(\xi_{1}\right)$, then $\xi_{1} \xi_{2} \sim \xi_{1}^{\prime} \xi_{2}^{\prime}$.
iii) Let $t(\xi)=v_{0}, h(\xi)=v_{1}$, then $\left(v_{0}, v_{0}\right) \xi \sim \xi \sim \xi\left(v_{1}, v_{1}\right)$.
iv) If $\xi_{1} \sim \xi_{2}$ then $\xi_{1}^{-1} \sim \xi_{2}^{-1}$.

For a path-map $\phi: I_{n} \rightarrow G$ with $v_{i}=\phi(i) \in V$, we have, for any $i=0, \ldots, n-1$, at least one of the following relations:

$$
v_{i}=v_{i+1}, \quad v_{i} \rightarrow v_{i+1}, \quad v_{i+1} \rightarrow v_{i}
$$

Hence, the path-map ϕ determines the following edge-path in G :

$$
\xi_{\phi}=(\phi(0), \phi(0))(\phi(0), \phi(1)) \ldots(\phi(n-1), \phi(n)) .
$$

Theorem 3.6 Two path-maps $\phi: I_{n} \rightarrow G$ and $\psi: I_{m} \rightarrow G$ with $\phi(0)=\psi(0), \phi(n)=\psi(m)$ are C_{∂}-homotopic if and only if $\xi_{\psi} \sim \xi_{\phi}$.

Proof. The proof is similar to [8, Theorem 4.13] where the case of loops was treated.
Proposition 3.7 The following identities are true for path-maps ϕ and ψ on G

$$
\left(\xi_{\phi}\right)^{-1} \sim \xi_{\hat{\phi}}, \quad \xi_{\phi \vee \psi} \sim \xi_{\phi} \xi_{\psi}
$$

where $\hat{\phi}$ is the inverse path-map and $\phi \vee \psi$ is the concatenation of ϕ and ψ assuming that it is well-defined.

The proof is trivial.
Denote by $[\xi]$ the equivalence class of the edge-path ξ under the relation " \sim ". As follows from Proposition 3.5 the following notations make sense:

$$
t([\xi]):=t(\xi), \quad h([\xi]):=h(\xi)
$$

and

$$
[\xi]^{-1}:=\left[\xi^{-1}\right], \quad\left[\xi_{1}\right] \circ\left[\xi_{2}\right]:=\left[\xi_{1} \xi_{2}\right]
$$

provided $\xi_{1} \xi_{2}$ is well-defined. The following statement follows from Lemma 3.2 and Proposition 3.5.

Theorem 3.8 For any digraph G, the vertex set of G as the set of objects and the set of the equivalence classes of edge-paths ξ as morphisms from $t(\xi)$ to $h(\xi)$, form a category $\mathcal{E}(G)$ that is a groupoid. The composition of two morphisms $\left[\xi_{1}\right]$ and $\left[\xi_{2}\right]$ is given by $\left[\xi_{1}\right] \circ\left[\xi_{2}\right]$, and the inverse morphism of $[\xi]$ is $[\xi]^{-1}$.

The groupoid $\mathcal{E}(G)$ is called the fundamental groupoid of the digraph G. We shall denote by $\operatorname{Hom}_{\mathcal{E}(G)}(v, w)$ the set of morphisms from $v \in V$ to $w \in V$ in the category $\mathcal{E}(G)$, or simply $\operatorname{Hom}(v, w)$ if the digraph G is clear from the context.

Let $v \in V_{G}$ be a vertex in a digraph G. Consider the edge-paths ξ in G with $t(\xi)=h(\xi)=$ v. These edges-paths form a group with the neutral element (v, v) and with the product of edge-paths. Denote this group by $\mathrm{E}(G, v)$.

Proposition 3.9 We have an isomorphism

$$
\mathrm{E}(G, v) \cong \pi_{1}\left(G^{v}\right)
$$

Proof. For any path-map $\phi: I_{n} \rightarrow G$ with $\phi(0)=\phi(n)=v$ we already define an edge-path ξ_{ϕ} with $t\left(\xi_{\phi}\right)=h\left(\xi_{\phi}\right)=v$. By Theorem 3.6, the map

$$
\begin{aligned}
\Theta: \pi_{1}(G, v) & \rightarrow \mathrm{E}(G, v) \\
\Theta([\phi]) & =\left[\xi_{\phi}\right]
\end{aligned}
$$

is well-defined and preserves the group operations by Proposition 3.7. The map Θ is an epimorphism and a monomorphism as follows from Theorem 3.6.

Let \mathcal{G} and \mathcal{H} be groupoids. We shall consider a functor $\mathcal{F}: \mathcal{G} \rightarrow \mathcal{H}$ as a morphism of groupoids. Thus we obtain the category $\mathcal{G} r p d$ of groupoids and morphisms of groupoids.
Proposition 3.10 The fundamental groupoid is a functor

$$
\mathcal{E}: \mathcal{D} \rightarrow \mathcal{G} r p d
$$

Proof. Let $f: G \rightarrow H$ be a digraph map. For any edge-path

$$
\xi=\left(v_{0}, v_{1}\right) \ldots\left(v_{n-1}, v_{n}\right)
$$

of the digraph G define an edge-path $f_{*}(\xi)$ of the digraph H by the rule

$$
f_{*}(\xi)=\left(f\left(v_{0}\right), f\left(v_{1}\right)\right) \ldots\left(f\left(v_{n-1}\right), f\left(v_{n}\right)\right) .
$$

By Definitions 2.3 and 3.1 the edge-path $f_{*}(\xi)$ is well defined. Using Definition 3.4 it is an easy exercise to check that $\xi_{1} \sim \xi_{2}$ implies $f_{*}\left(\xi_{1}\right) \sim f_{*}\left(\xi_{2}\right)$. Thus we obtain a well defined function $f_{\sharp}: \mathcal{E}(G) \rightarrow \mathcal{E}(H)$ that satisfies the relations $f_{\sharp}\left(1_{v}\right)=1_{f(v)}\left(v \in V_{G}\right)$ and $f_{\sharp}\left(\xi_{1} \circ \xi_{2}\right)=f_{\sharp}\left(\xi_{1}\right) \circ f_{\sharp}\left(\xi_{2}\right)$.

Now we recall the definition of product of groupoids [5, §6.4]. The product $\mathcal{C}_{1} \times \mathcal{C}_{2}$ of two groupoids \mathcal{C}_{1} and \mathcal{C}_{2} is a groupoid with the set of objects $\operatorname{Ob}\left(\mathcal{C}_{1} \times \mathcal{C}_{2}\right)$ consisting of all ordered pairs $\left(A_{1}, A_{2}\right)$ where $A_{1} \in \operatorname{Ob}\left(\mathcal{C}_{1}\right), A_{2} \in \operatorname{Ob}\left(\mathcal{C}_{2}\right)$. The set $\operatorname{Mor}\left(\left(A_{1}, A_{2}\right),\left(B_{1}, B_{2}\right)\right)$ consists of ordered pairs of morphisms $\left(f_{1}, f_{2}\right)$ where $f_{1}: A_{1} \rightarrow B_{1}, f_{2}: A_{2} \rightarrow B_{2}$ are the morphisms of the categories \mathcal{C}_{1} and \mathcal{C}_{2}, respectively. The composition of morphisms and the inverse morphism in $\mathcal{C}_{1} \times \mathcal{C}_{2}$ are defined by a natural way

$$
\left(g_{1}, g_{2}\right) \circ\left(f_{1}, f_{2}\right)=\left(g_{1} f_{1}, g_{2} f_{2}\right), \quad\left(f_{1}, f_{2}\right)^{-1}=\left(f_{1}^{-1}, f_{2}^{-1}\right)
$$

We have the natural projection functors

$$
\pi_{1}: \mathcal{C}_{1} \times \mathcal{C}_{2} \rightarrow \mathcal{C}_{1}, \quad \pi_{2}: \mathcal{C}_{1} \times \mathcal{C}_{2} \rightarrow \mathcal{C}_{2}
$$

such that for any functors $f_{1}: \mathcal{B} \rightarrow \mathcal{C}_{1}, f_{2}: \mathcal{B} \rightarrow \mathcal{C}_{2}$ there is a unique functor $f: \mathcal{B} \rightarrow \mathcal{C}_{1} \times \mathcal{C}_{2}$ such that $\pi_{1} f=f_{1}, \pi_{2} f=f_{2}$.

Theorem 3.11 Let G, H be digraphs. Then the groupoid $\mathcal{E}(G \rtimes H)$ is isomorphic to $\mathcal{E}(G) \times$ $\mathcal{E}(H)$.

Proof. The natural projections of digraphs $p: G \rtimes H \rightarrow G, q: G \rtimes H \rightarrow H$ induce morphisms of groupoids

$$
\mathcal{E}(p): \mathcal{E}(G \rtimes H) \rightarrow \mathcal{E}(G), \quad \mathcal{E}(q): \mathcal{E}(G \rtimes H) \rightarrow \mathcal{E}(H)
$$

which determines a morphism of groupoids

$$
f: \mathcal{E}(G \rtimes H) \rightarrow \mathcal{E}(G) \times \mathcal{E}(H)
$$

Recall that $\operatorname{Ob}(\mathcal{E}(G \rtimes H))=O b(\mathcal{E}(G) \times \mathcal{E}(H))=V_{G} \times V_{H}$. The morphism f is the identity map on the set of objects $V_{G} \times V_{H}$, and for any morphism in $\mathcal{E}(G \rtimes H)$ that is given by a class $[\xi]$ of an edge-path ξ we have

$$
f([\xi])=\left(\left[p_{\sharp}(\xi)\right],\left[q_{\sharp}(\xi)\right]\right) .
$$

We prove, at first, that the map f is surjective. For an edge-path $\xi_{1}=\left(v_{0}, v_{1}\right) \ldots\left(v_{n-1}, v_{n}\right)$ in G and an edge-path $\xi_{2}=\left(w_{0}, w_{1}\right) \ldots\left(w_{m-1}, w_{m}\right)$ in H, we define an edge-path ξ in $G \rtimes H$ such that

$$
\begin{equation*}
f([\xi])=\left(\left[p_{\sharp}(\xi)\right],\left[q_{\sharp}(\xi)\right]\right)=\left(\left[\xi_{1}\right],\left[\xi_{2}\right]\right) . \tag{3.2}
\end{equation*}
$$

Without restriction of generality we can suppose that $n \geq m$. By Definition 3.4, we have

$$
\xi_{2} \sim \xi_{2}^{\prime}:=\left(w_{0}, w_{1}\right) \ldots\left(w_{m-1}, w_{m}\right) \underbrace{\left(w_{m}, w_{m}\right), \ldots\left(w_{m}, w_{m}\right)}_{n-m \text { times }}
$$

Define an edge-path ξ in $G \rtimes H$ as

$$
\xi=\left(\left(v_{0}, w_{0}\right),\left(v_{1}, w_{1}\right)\right) \ldots\left(\left(v_{m-1}, w_{m-1}\right),\left(v_{m}, w_{m}\right)\right) \ldots\left(\left(v_{n-1}, w_{m}\right),\left(v_{n}, w_{m}\right)\right)
$$

By definition of \rtimes-product this is, indeed, an edge-path and the condition (3.2) is satisfied. Hence the map f is surjective.

Now we prove that the map f is injective. Let ξ_{1} and ξ_{2} be two edge-paths in $G \rtimes H$ such that

$$
t\left(\xi_{1}\right)=t\left(\xi_{2}\right)=\left(v_{0}, w_{0}\right), \quad h\left(\xi_{1}\right)=h\left(\xi_{2}\right)=\left(v_{n}, w_{n}\right)
$$

and

$$
\begin{equation*}
p_{\sharp}\left(\xi_{1}\right) \sim p_{\sharp}\left(\xi_{2}\right), \quad q_{\sharp}\left(\xi_{1}\right) \sim q_{\sharp}\left(\xi_{2}\right) . \tag{3.3}
\end{equation*}
$$

Define path-maps $\phi: I_{n} \rightarrow G \rtimes H$ and $\psi: I_{m} \rightarrow G \rtimes H$ in such a way that $\xi_{1}=\xi_{\phi}, \xi_{2}=\xi_{\psi}$. Note, that these path-maps can be not unique. From definition of the projections p and q and Theorem 3.6 we obtain

$$
p_{\sharp}\left(\xi_{1}\right)=\xi_{p \phi}, \quad p_{\sharp}\left(\xi_{2}\right)=\xi_{p \psi}, \quad q_{\sharp}\left(\xi_{1}\right)=\xi_{q \phi}, \quad q_{\sharp}\left(\xi_{2}\right)=\xi_{q \psi}
$$

and

$$
\begin{align*}
p \phi & \stackrel{C_{\partial}}{\cong} p \psi \text { in } G \tag{3.4}\\
q \phi & \stackrel{C_{\partial}}{\cong} q \psi \text { in } H . \tag{3.5}
\end{align*}
$$

We would like to conclude from (3.4)-(3.5) that $\phi \stackrel{C_{\partial}}{\cong} \psi$. Then, by Theorem 3.6, $\xi_{1}=\xi_{\phi} \sim$ $\xi_{\psi}=\xi_{2}$, and hence the map f in (3.2) is injective. It is sufficient to prove $\phi \stackrel{C_{\partial}}{\cong} \psi$ in the following cases:

1) in (3.4) we have an one-step direct C_{∂}-homotopy and in (3.5) equality;
2) in (3.4) we have an one-step inverse C_{∂}-homotopy and in (3.5) equality;

3) in (3.4) and in (3.5) we have an one-step direct C_{∂}-homotopy;
4) in (3.4) and in (3.5) we have an one-step inverse C_{∂}-homotopy;
5) in (3.4) we have an one-step direct C_{∂}-homotopy and in (3.5) an one-step inverse C_{∂}-homotopy.
From these cases the general case follows. Note that the cases 1 and 2 follows directly from the cases 3 and 4 . We consider only the case 5 . In other cases the argument is similar and simpler.

Let $\left(h_{1}, F_{1}\right)$ be a one-step direct C_{∂}-homotopy from $p \phi$ to $p \psi$ that is given by a shrinking map $h_{1}: I_{n} \rightarrow I_{m}$ and the commutative diagram

$$
\begin{align*}
& I_{n} \rightarrow \mathrm{C}_{h_{1}} \leftarrow I_{m} \\
& \downarrow^{p \phi} \tag{3.6}\\
& \\
& G=\underset{F_{1}}{ }=\underset{\downarrow^{p \psi}}{ }=G=G .
\end{align*}
$$

This diagram extends to the commutative diagram

$$
\begin{array}{ccccc}
I_{n} & \xrightarrow{\bar{l}} & I_{n} & \xrightarrow{p \phi} & G \tag{3.7}\\
\downarrow & & \downarrow & & \| \\
I_{n} \square I^{-} & \xrightarrow{S_{1}} & \mathrm{C}_{h_{1}} & \xrightarrow{F_{1}} & G \\
\uparrow & & \uparrow & & \| \\
I_{n} & \xrightarrow{h_{1}} & I_{m} & \xrightarrow{p \psi} & G .
\end{array}
$$

It follows from (3.7) that

$$
\begin{equation*}
p \phi \simeq p \psi h_{1} \text { in } G, \tag{3.8}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\left(p \phi, q \psi h_{2}\right) \simeq\left(p \psi h_{1}, q \psi h_{2}\right) \text { in } G \rtimes H . \tag{3.9}
\end{equation*}
$$

Let $\left(h_{2}, F_{2}\right)$ be a one-step inverse C_{γ}-homotopy from $q \phi$ to $q \psi$ that is given by a shrinking map $h_{2}: I_{n} \rightarrow I_{m}$ and the commutative diagram

$$
\begin{align*}
I_{n} & \rightarrow \mathrm{C}_{h_{2}}^{-} \tag{3.10}
\end{align*} I_{m} I_{m}
$$

This diagram extends to the commutative diagram

It follows that

$$
q \phi \simeq q \psi h_{2} \text { in } H
$$

and, hence,

$$
(p \phi, q \phi) \simeq\left(p \phi, q \psi h_{2}\right) \text { in } G \rtimes H .
$$

Together with (3.9) this yields

$$
(p \phi, q \phi) \simeq\left(p \psi h_{1}, q \psi h_{2}\right) \text { in } G \rtimes H
$$

By Proposition 2.16 we have

$$
\left(p \psi h_{1}, q \psi h_{2}\right) \stackrel{C_{\partial}}{\simeq}(p \psi, q \psi) \text { in } G \rtimes H
$$

which implies

$$
\phi=(p \phi, q \phi) \stackrel{C_{\partial}}{\simeq}(p \psi, q \psi)=\psi \text { in } G \rtimes H
$$

which was to be proved.
Corollary 3.12 For based digraphs G^{*} and H^{*} there is a natural isomorphism

$$
\pi_{1}\left(G^{*} \rtimes H^{*}\right) \cong \pi_{1}\left(G^{*}\right) \times \pi_{1}\left(H^{*}\right)
$$

where $\pi_{1}\left(G^{*}\right) \times \pi_{1}\left(H^{*}\right)$ is the direct product of fundamental groups.
Proof. Follows from Proposition 3.9 and Theorem 3.11.
Theorem 3.13 For digraphs G and H, the natural inclusion $\sigma: G \square H \rightarrow G \rtimes H$ induces an isomorphism of fundamental groupoids

$$
\mathcal{E}(G \square H) \cong \mathcal{E}(G \rtimes H)
$$

In particular, for the based digraphs, this map induces an isomorphism

$$
\pi_{1}\left(G^{*} \square H^{*}\right) \cong \pi_{1}\left(G^{*} \rtimes H^{*}\right) \cong \pi_{1}\left(G^{*}\right) \times \pi_{1}\left(H^{*}\right)
$$

of fundamental groups.
Proof. The inclusion σ induces a morphism $\sigma_{\sharp}: \mathcal{E}(G \square H) \rightarrow \mathcal{E}(G \rtimes H)$ of groupoids. We will prove that it is surjective and injective.

For any edge-path ξ in $G \rtimes H$, define an edge -path ξ^{\square} in $G \square H$, such that $\xi \sim \xi^{\square}$ in $G \rtimes H$. To that end we transform any diagonal edge $\left(\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right)\right)$ of ξ in $G \rtimes H$ to the edge path

$$
\begin{equation*}
\left(\left(v_{1}, w_{1}\right),\left(v_{1}, w_{2}\right)\right)\left(\left(v_{1}, w_{2}\right),\left(v_{2}, w_{2}\right)\right) \tag{3.12}
\end{equation*}
$$

that lies in $G \square H$, using transformation (i) of Definition 3.4 in $G \rtimes H$. Doing that to all diagonal edges of ξ, we obtain an edge-path ξ^{\square} as was claimed above. This implies immediately, that σ_{\sharp} is surjective, since $\sigma_{\sharp}\left(\left[\xi^{\square}\right]\right)=[\xi]$.

Now let us prove the following claim: if ξ, η are edge-paths in $G \rtimes H$ which are equivalent in $G \rtimes H$, then $\xi^{\square} \sim \eta^{\square}$ in $G \square H$. If this is already known, then, for any two edge-paths ξ and η in $G \square H$, such that $\xi \sim \eta$ in $G \rtimes H$, we have $\xi^{\square}=\xi$, $\eta^{\square}=\eta$, and, hence, $\xi \sim \eta$ in $G \square H$, which implies the injectivity of σ_{\sharp}.

To prove the above claim, it suffices to assume, that η is obtained from ξ by one elementary transformation in $G \rtimes H$. By Definition 3.4 any elementary transformation is done along an embedded digraph $S \subset G \rtimes H$, where S is isomorphic to one of the following digraphs: a single vertex digraph, $0 \rightarrow 1,0 \leftrightarrows 1$, the triangle, the square. Let P be projection of S onto G and Q be projection of S onto H. Then $P \square Q$ is a subgraph of $G \square H$. By inspecting all the above cases of S, one sees that $P \square Q$ is always contractible. By the assumption that η is obtained from ξ by one elementary transformation, we have

$$
\xi=\gamma_{1} \alpha \gamma_{2}, \quad \eta=\gamma_{1} \beta \gamma_{2}
$$

where γ_{1}, γ_{2} are edge-paths in $G \rtimes H, \alpha, \beta$ are edge-paths in $P \rtimes Q$, and $t(\alpha)=t(\beta), h(\alpha)=$ $h(\beta)$, where α is transformed to β along S. By definition of the operation $\xi \rightarrow \xi^{\square}$, we obtain

$$
\xi^{\square}=\gamma_{1}^{\square} \alpha^{\square} \gamma_{2}^{\square}, \quad \eta^{\square}=\gamma_{1}^{\square} \beta^{\square} \gamma_{2}^{\square},
$$

where

$$
t\left(\alpha^{\square}\right)=t\left(\beta^{\square}\right), \quad h\left(\alpha^{\square}\right)=h\left(\beta^{\square}\right) .
$$

By the contractibility of $P \square Q$, the edge-paths $\alpha^{\square}, \beta^{\square}$ are equivalent in $P \square Q$. Hence $\xi^{\square} \sim \eta^{\square}$ in $G \square H$, which finishes the proof.

The notion of homology groups $H_{p}(G, \mathbb{Z})$ of digraphs was introduced in [10] (see also [6], [7], [9]). The physical applications of homology (cohomology) theory of digraphs requires development of effective methods of computing of these groups.

Using isomorphism between the first homology group and the abelization of the fundamental group for digraphs [8, Thm. 4.23] and applying Theorem 3.13, we obtain the following result.

Theorem 3.14 For any two connected digraphs G, H we have

$$
H_{1}(G \square H, \mathbb{Z}) \cong H_{1}(G \rtimes H, \mathbb{Z}) \cong H_{1}(G, \mathbb{Z}) \oplus H_{1}(H, \mathbb{Z})
$$

4 Geometric realization and Van Kampen theorem

In this section for any finite digraph $G=(V, E)$ we construct a 2-dimensional finite CWcomplex $K=\Delta(G)$ (with topological space $|K|$) for which the set of 0-dimensional cells coincides with the set of vertices V. We prove the functoriality of Δ and obtain an isomorphism

$$
\operatorname{Hom}_{\mathcal{E}(G)}(v, w) \cong \operatorname{Hom}_{\mathcal{P}(|K|)}(v, w), \quad v, w \in V
$$

where $\operatorname{Hom}_{\mathcal{E}(G)}(v, w)$ is the set of morphisms from v to w of the groupoid $\mathcal{E}(G)$ and $\operatorname{Hom}_{\mathcal{P}(|K|)}(v, w)$ is the set of morphisms from v to w of the fundamental groupoid $\mathcal{P}(|K|)$ of the topological space $|K|[13$, Chapter $1, \S 7]$. This implies, in particular, that for any vertex $v \in V$

$$
\pi_{1}(G, v) \cong \pi_{1}(|K|, v)
$$

Then we obtain a Van Kampen theorem for the fundamental groupoids of digraphs and provide several examples which illustrate this theorem.

At first we need several technical definitions and lemmas.
Definition 4.1 Let $\left\{G_{i}\right\}_{i \in A}$ be a family of subdigraphs of one digraph, where A is any index set.
i) The union $G=\bigcup_{i \in A} G_{i}$ of digraphs G_{i} is a digraph G such that

$$
V_{G}=\bigcup_{i \in A} V_{G_{i}}, \quad E_{G}=\bigcup_{i \in A} E_{G_{i}}
$$

ii) The intersection $G=\bigcap_{i \in A} G_{i}$ is a digraph G such that

$$
V_{G}=\bigcap_{i \in A} V_{G_{i}}, \quad E_{G}=\bigcap_{i \in A} E_{G_{i}} .
$$

Now, for any finite digraph $G=(V, E)$, we construct functorialy a 2-dimensional cell complex $K=\Delta(G)$.

The 0-dimensional skeleton K^{0} of K consists of the set of vertices V. Let $D^{1}=[0,1]$ denote the standard closed unit interval which is a closed 1-cell with the boundary $\partial D^{1}=$ $\{0,1\}$.

Let P be the set of all ordered pairs (v, w), where $v, w \in V$, such that $v \rightarrow w$; if also $w \rightarrow v$ then we choose in P only one of the pairs $(v, w),(w, v)$. For any pair $(v, w) \in P$, we attach a one-dimensional cell D^{1} to K^{0}, using attaching map

$$
\phi_{v, w}: \partial D^{1} \rightarrow K^{0}, \quad \phi_{v, w}(0)=v, \quad \phi_{v, w}(1)=w
$$

Now, we define 1-dimensional skeleton K^{1} of K by attaching to $K^{0} 1$-dimensional cells D^{1} according to the maps $\phi_{v, w}$ for all $(v, w) \in P$.

Let T be the set of subdigraphs of G that are isomorphic to the triangle from Definition 3.3 i). For any subdigraph

$$
\tau=\begin{array}{ccc}
v_{0} & \rightarrow & v_{1} \tag{4.1}\\
& \searrow & \downarrow \\
& & v_{2}
\end{array}
$$

from T, we attach to K^{1} a standard triangle $D^{2} \subset \mathbb{R}^{2}$ with the vertices $\left\{a_{0}, a_{1}, a_{2}\right\}$ and with boundary $\partial D^{2}=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right] \cup\left[a_{0}, a_{2}\right]$ using attaching map

$$
\phi_{\tau}: \partial D^{2} \rightarrow K^{1}, \quad \phi_{\tau}\left(\left[a_{i}, a_{j}\right]\right)=\left[v_{i}, v_{j}\right]
$$

Let S be the set of all subdigraphs of G that are isomorphic to the square. For any subdigraph

$$
\sigma=\begin{array}{ccc}
v_{0} & \rightarrow & v_{1} \tag{4.2}\\
\downarrow & & \downarrow \\
v_{2} & \rightarrow & v_{3}
\end{array}
$$

from S, we attach to K^{1} a standard square $D^{2} \subset \mathbb{R}^{2}$ with the vertices $\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\}$ with boundary $\partial D^{2}=\left[a_{0}, a_{1}\right] \cup\left[a_{0}, a_{2}\right] \cup\left[a_{1}, a_{3}\right] \cup\left[a_{2}, a_{3}\right]$ using attaching map

$$
\begin{equation*}
\phi_{\sigma}: \partial D^{2} \rightarrow K^{1}, \quad \phi_{\sigma}\left(\left[a_{i}, a_{j}\right]\right)=\left[v_{i}, v_{j}\right] \tag{4.3}
\end{equation*}
$$

Now we define $\Delta(G)=K=K^{2}$ as the cell complex that is obtained from K^{1} by attaching all the triangles and squares as above.

Proposition 4.2 For any digraph $\operatorname{map} f: G \rightarrow H$ we can define a cellular map

$$
\Delta_{f}: \Delta(G) \rightarrow \Delta(H)
$$

which coincides with f on the set of 0-dimensional cells (that is, with V_{G}) in such a way that we obtain a functor Δ from the category of digraphs \mathcal{D} to the category of $C W$-complexes (with cellular maps).

Proof. By definition of a digraph map, f can map triangles to triangles or edges or vertices, and squares to squares or triangles, or edges, or vertices. Now, it follows that the $\operatorname{map} \Delta_{f}$, that is firstly defined on vertices as f, extends uniquely to a cellular map $\Delta(G) \rightarrow \Delta(H)$.

For a digraph $G=(V, E)$, let $\mathcal{P}(|K|)$ denote the fundamental groupoid of the topological space $|K|$, where $K=\Delta(G)$. The class of the path $\phi:[0,1] \rightarrow|K|$ in $\mathcal{P}(|K|)$ we denote by $[\phi]$. For the points $v, w \in|K|$ we denote $\operatorname{bom}_{\mathcal{P}(|K|)}(v, w)$ the set of morphisms from v to
w in $\mathcal{P}(|K|)$. Any vertex $v \in V$ determines a 0 -dimensional cell in K and a point in $|K|$, which we continue to denote by v.

Let J_{n} be the CW-complex that is the subdivision of the closed unit interval $[0,1]$ in n equal parts (1-cells) by 0 -cells $i_{0}=0, \ldots, i_{n}=1$. For any edge-path $\xi=\left(v_{0}, v_{1}\right) \ldots\left(v_{n-1}, v_{n}\right)$ in the digraph G, define a cellular map $\phi_{\xi}: J_{n} \rightarrow K$ by $\phi_{\xi}\left(i_{k}\right)=v_{k}$ on the set of 0 -cells, and

$$
\phi_{\xi}\left[i_{k}, i_{k+1}\right]=\left[v_{k}, v_{k+1}\right]
$$

on the 1 -cels. This map defines a path in $|K|$ by

$$
\left|\phi_{\xi}\right|:[0,1] \rightarrow|K|, \quad\left|\phi_{\xi}\right|(0)=v_{0}=t(\xi),\left|\phi_{\xi}\right|(1)=v_{n}=h(\xi) .
$$

Lemma 4.3 i) Let $\xi_{1} \sim \xi_{2}$ be edge-paths in a digraph G. Then the maps $\left|\phi_{\xi_{1}}\right|$ and $\left|\phi_{\xi_{2}}\right|$ are homotopic relative to the boundary.
ii) If $h\left(\xi_{1}\right)=t\left(\xi_{2}\right)$, then $\left|\phi_{\xi_{1} \xi_{2}}\right|$ is homotopic to the path $\left|\phi_{\xi_{1}}\right| *\left|\phi_{\xi_{2}}\right|$ relative to the boundary

Proof. Follows from Definition 3.4 and the construction of $\Delta(G)$ (this result is a cellular analog of the simplicial case [13, Chpt. 3, §6, 9-11]).

It follows from Lemma 4.3 that for any two vertices $v, w \in V$ the map

$$
\begin{equation*}
\rho: \operatorname{Hom}_{\mathcal{E}(G)}(v, w) \rightarrow \operatorname{Hom}_{\mathcal{P}(K)}(v, w), \quad \rho([\xi])=\left[\left|\phi_{\xi}\right|\right] \tag{4.4}
\end{equation*}
$$

is well-defined.
Proposition 4.4 For any two vertices $v, w \in V$ the map ρ in (4.4) is a bijection.
Proof. This is a cellular version of the simplicial theorem [13, Chapter 3, $\S 6$, Theorem 16]. The proof is standard using cellular approximation theorem [11, Chpt. 4.1, Th. 4.8].

Corollary 4.5 For any digraph $G=(V, E)$ and $v \in V$ we have isomorphisms

$$
\pi_{1}(G, v) \cong E(G, v) \cong \pi_{1}(|\Delta(G)|, v) .
$$

Now we recall several notions from the category theory (see, for example, [5, 6.6]). Let \mathcal{C} be a category. A commutative square \mathbf{C}

$$
\begin{array}{lll}
C_{0} & \xrightarrow{i_{1}} & C_{1} \tag{4.5}\\
\downarrow i_{2} & & \downarrow u_{1} \\
C_{2} & \xrightarrow{u_{2}} & C
\end{array}
$$

in the category \mathcal{C} is called a pushout, if for any commutative diagram

in the category \mathcal{C} there is a unique morphism $c: C \rightarrow C^{\prime}$ such that $c u_{i}=u_{i}^{\prime}(i=1,2)$.
Now let X be a CW-complex with CW-subcomplexes X_{1}, X_{2}, such that $X=X_{1} \cup X_{2}$, and set $X_{0}=X_{1} \cap X_{2}$. Then we obtain a pushout \mathbf{X} of natural inclusions

$$
\begin{array}{ccc}
\left|X_{0}\right| & \xrightarrow{i_{1}} & \left|X_{1}\right| \\
\downarrow i_{2} & \downarrow u_{1} \tag{4.6}\\
\left|X_{2}\right| & \xrightarrow{u_{2}} & |X|
\end{array}
$$

in the category of topological spaces [5, Chpt. 4 and 6].
Let $A \subset X$ be a subset of a topological space X. Then we can define a full subgroupoid $\mathcal{P}_{A}(X)$ of the fundamental groupoid $\mathcal{P}(X)$ by the following way [5, Chpt. 6.3]. The elements of $\mathcal{P}_{A}(X)$ are all classes of homotopy paths relative to the boundary in the space X, joining points of A. Thus, for example, $\mathcal{P}_{*}(X)=\pi_{1}(X, *)$ where $*$ is a base point. Any inclusion of topological spaces $j: Y \rightarrow X$ induces a morphism of groupoids $j_{*}: \mathcal{P}_{A}(Y) \rightarrow \mathcal{P}_{A}(X)$. A set A is called representative in X if A meets each path-component of the space X. We need the following result.

Theorem 4.6 (Van Kampen Theorem [5, Chpt. 6.7.2]) Let X be a path-connected space and let \mathbf{X} be the pushout (4.6). If the set $A \subset X$ is representative in X_{0}, X_{1}, X_{2} then the square

$$
\begin{array}{ccc}
\mathcal{P}_{A}\left(X_{0}\right) & \xrightarrow{i_{1 *}} & \mathcal{P}_{A}\left(X_{1}\right) \\
\downarrow i_{2 *} & \downarrow u_{1 *} \tag{4.7}\\
\mathcal{P}_{A}\left(X_{2}\right) & \xrightarrow{u_{2 *}} & \mathcal{P}_{A}(X)
\end{array}
$$

is a pushout square in the category of groupoids.
Definition 4.7 We shall call by a cell of a digraph G any of the following subdigraphs:
i) any subdigraph that consists of two adjacent vertices of G with all arrows between them;
ii) any subdigraph that is a triangle;
iii) any subdigraphs that is a square (see Definition 3.3).

Theorem 4.8 (Van Kampen Theorem for digraphs) Let a connected digraph G be the union of two subdigraphs $G=G_{1} \cup G_{2}$ such that any cell of the digraph G lies at least in one of the subdigraphs $G_{i}(i=1,2)$, and let $G_{0}=G_{1} \cap G_{2}$. Then the square

$$
\begin{array}{clc}
\mathcal{E}\left(G_{0}\right) & \rightarrow & \mathcal{E}\left(G_{1}\right) \tag{4.8}\\
\downarrow & & \downarrow \\
\mathcal{E}\left(G_{2}\right) & \rightarrow & \mathcal{E}(G),
\end{array}
$$

in which all morphisms are induced by natural inclusions, is a pushout in the category of groupoids.

Proof. The inclusions of digraphs induce the inclusion of topological spaces of their CW-complexes

$$
\begin{array}{rll}
\left|\Delta\left(G_{0}\right)\right| & \rightarrow\left|\Delta\left(G_{1}\right)\right| \tag{4.9}\\
\downarrow & \downarrow & \downarrow \\
\left|\Delta\left(G_{2}\right)\right| & \rightarrow|\Delta(G)| .
\end{array}
$$

Now the result follows from Theorem 4.6 and Proposition 4.4, since the set of vertices V is representative in $\left|\Delta\left(G_{0}\right)\right|,\left|\Delta\left(G_{1}\right)\right|$, and $\left|\Delta\left(G_{2}\right)\right|$.

Corollary 4.9 Let G^{*} be a based connected digraph with connected based subdigraphs G_{i}^{*} ($i=$ $1,2)$, such that $G=G_{1} \cup G_{2}$ and $G_{0}=G_{1} \cap G_{2}$ is connected. Under the assumptions of Theorem 4.8

$$
\begin{equation*}
\pi_{1}\left(G^{*}\right)=\pi_{1}\left(G_{1}^{*}\right) * \pi_{1}\left(G_{2}^{*}\right) / N \tag{4.10}
\end{equation*}
$$

where N is the normal subgroup of the free product generated by all the elements of the form $[x] *[x]^{-1}$ where x is a based loop in G_{0}.

In the following examples we show, that the conditions of Theorem 4.8 cannot be relaxed.

Example 4.10 i) Consider the following based digraph G^{*}

and let G_{1} be the subdigraph that is obtained from G by removing the vertex 4 with adjacent arrows, and let G_{2} - by similarly removing the vertex 1. Clearly, $G=G_{1} \cup G_{2}$ and the intersection $G_{0}=G_{1} \cap G_{2}$ is the following line digraph

$$
2 \rightarrow * \rightarrow 3
$$

There are deformation retractions of G_{1}^{*}, G_{2}^{*}, and G^{*} to the following cyclic subdigraphs respectively

(see [8, Example 3.14]). Hence, by [8]

$$
\begin{equation*}
\pi_{1}\left(G_{1}^{*}\right) \cong \pi_{1}\left(G_{2}^{*}\right) \cong \pi_{1}\left(G^{*}\right) \cong \mathbb{Z}, \quad \pi_{1}\left(G_{0}^{*}\right)=\{e\} \tag{4.12}
\end{equation*}
$$

which implies that (4.10) is not satisfied. In this case Corollary 4.9 does not apply since the cell given by the square $\{1,2,3,4\}$ lies neither in G_{1} nor in G_{2}.
ii) For the based digraph G^{*}

$$
\begin{array}{lll}
3 & \longrightarrow & 2 \\
\downarrow & \nwarrow & \downarrow \\
1 & \rightleftarrows & *
\end{array}
$$

there is a deformation retraction of G^{*} onto $(* \rightleftarrows 1)$. Hence, by [8], $\pi_{1}\left(G^{*}\right)=\{e\}$. The digraph G is the union of two digraphs

Then $G_{0}=G_{1} \cap G_{2}=(3 \rightarrow 2 \rightarrow *)$, and

$$
\pi_{1}\left(G^{*}\right)=\pi_{1}\left(G_{1}^{*}\right)=\pi_{1}\left(G^{*}\right)=\{e\}, \quad \pi_{1}\left(G_{2}^{*}\right) \cong \mathbb{Z}
$$

so that (4.10) fails. In this case the cell

$$
\begin{array}{lll}
3 & & \\
\downarrow & \nwarrow & \\
1 & \leftarrow & *
\end{array}
$$

does not lie in G_{1} or in G_{2} and Corollary 4.9 is not applicable.
iii) Consider a digraph G^{*}

$$
\begin{array}{rllll}
& & 1 \tag{4.14}\\
& \nearrow & \downarrow \uparrow & \searrow & \\
2 & \rightarrow & * & \leftarrow & 3
\end{array}
$$

There is an evident deformation retraction of G^{*} onto $(* \rightleftarrows 1)$, hence $\pi_{1}\left(G^{*}\right)=0$. We can present G^{*} as the union of two digraphs

Then $G_{0}=G_{1} \cap G_{2}=(1 \leftarrow 2 \rightarrow *)$, and

$$
\pi_{1}\left(G^{*}\right)=\pi_{1}\left(G_{1}^{*}\right)=\pi_{1}\left(G_{0}^{*}\right)=\{e\}, \quad \pi_{1}\left(G_{2}^{*}\right)=\mathbb{Z} .
$$

In this case the cell $(* \rightleftarrows 1)$ does not lie in G_{1} or in G_{2}, Corollary 4.9 is not applicable, and (4.10) fails.

5 Fundamental groupoids of graphs

The deep connections between Atkin homotopy theory and a homotopy theory for graphs was exhibited in [3] and [4]. In particular, the new notion of the fundamental group for undirected graphs was introduced there. In [8] the notion of the fundamental group for digraphs was introduced, and it was transferred to the category of graphs, using isomorphism between the category of graphs and the full subcategory of symmetric digraphs. The so obtained fundamental group is isomorphic to the fundamental group from [3].

In this section we transfer the results about fundamental groupoids of digraphs to that of undirected graphs, similarly to [8].

We recall shortly notation from $[8, \S 6]$, that we shall use in this section with minimal changes. To denote graphs and the graph maps, we shall use a bold font, for example, $\mathbf{G}=\left(\mathbf{V}_{\mathbf{G}}, \mathbf{E}_{\mathbf{G}}\right), \mathbf{f}: \mathbf{G} \rightarrow \mathbf{H}$.

Definition 5.1 A graph $\mathbf{G}=\left(\mathbf{V}_{\mathbf{G}}, \mathbf{E}_{\mathbf{G}}\right)$ is a couple of a set $\mathbf{V}_{\mathbf{G}}$ of vertices and a subset $\mathbf{E}_{\mathbf{G}} \subset\left\{\mathbf{V}_{\mathbf{G}} \times \mathbf{V}_{\mathbf{G}} \backslash\right.$ diag $\}$ of non-ordered pairs of vertices that are called edges. We shall write $v \sim w$ for $(v, w) \in \mathbf{E}_{\mathbf{G}}$.

A graph map from a graph $\mathbf{G}=\left(\mathbf{V}_{\mathbf{G}}, \mathbf{E}_{\mathbf{G}}\right)$ to a graph $\mathbf{H}=\left(\mathbf{V}_{\mathbf{H}}, \mathbf{E}_{\mathbf{H}}\right)$ is a map

$$
\mathbf{f}: \mathbf{V}_{\mathbf{G}} \rightarrow \mathbf{V}_{\mathbf{H}}
$$

such that for any edge $v \sim w$ on \mathbf{G} we have either $\mathbf{f}(v)=\mathbf{f}(w)$ or $\mathbf{f}(v) \sim \mathbf{f}(w)$.
As usually, a based graph \mathbf{G}^{*} is the graph \mathbf{G} with the fixed vertex * and a based graph map preserves base vertexes.

The set of all graphs with graph maps forms a category \mathcal{G}. Let us associate to each graph $\mathbf{G}=\left(\mathbf{V}_{\mathbf{G}}, \mathbf{E}_{\mathbf{G}}\right)$ a symmetric digraph $\mathcal{O}(\mathbf{G})=G=\left(V_{G}, E_{G}\right)$ where $V_{G}=\mathbf{V}_{\mathbf{G}}$ and E_{G} is defined by the condition $v \rightarrow w \Leftrightarrow v \sim w$. Thus, we obtain a functor \mathcal{O} that provides an isomorphism of the category \mathcal{G} and the full subcategory of symmetric digraphs of the category D.

The functor \mathcal{O} allows us to transfer the notions and results obtained in category \mathcal{D} to the category \mathcal{G}. In particular, we obtain in this way the definition of the fundamental groupoid of a graph as below.

Definition 5.2 i) A formal edge of a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ is an ordered pair (v, w) of vertices such that $v \sim w$ or $v=w$.
ii) An edge-path ξ of a graph \mathbf{G} is a finite nonempty sequence

$$
\begin{equation*}
\left(v_{0} v_{1}\right)\left(v_{1}, v_{2}\right) \ldots\left(v_{n-1}, v_{n}\right) \tag{5.1}
\end{equation*}
$$

of formal edges of the graph \mathbf{G}. The vertex v_{0} is called by the tail of the edge-path ξ and v_{n} the head of the edge-path ξ. We write $v_{0}=t(\xi), v_{n}=h(\xi)$.
iii) A closed edge-path at the vertex $v_{0} \in \mathbf{V}$ is an edge-path ξ such that $t(\xi)=h(\xi)=v_{0}$.
iv) For two edge paths ξ_{1} and ξ_{2} with $h\left(\xi_{1}\right)=t\left(\xi_{2}\right)$, we define a product edge-path $\xi_{1} \xi_{2}$ consisting of the sequence of formal edges ξ_{1} followed by the formal edges of ξ_{2}.
v) For any edge-path ξ from (5.1) define the inverse edge-path ξ^{-1} by

$$
\xi^{-1}:=\left(v_{n}, v_{n-1}\right)\left(v_{n-1}, v_{n-2}\right) \ldots\left(v_{1}, v_{0}\right)
$$

It follows directly from the Definition 5.2 that the edge-paths of a graph G satisfy the following properties:
$t\left(\xi_{1} \xi_{2}\right)=t\left(\xi_{1}\right), h\left(\xi_{1} \xi_{2}\right)=h\left(\xi_{2}\right)$,
$t(\xi)=h\left(\xi^{-1}\right), h(\xi)=t\left(\xi^{-1}\right)$,
$\left(\xi_{1} \xi_{2}\right) \xi_{3}=\xi_{1}\left(\xi_{2} \xi_{3}\right)$,
$\left(\xi^{-1}\right)^{-1}=\xi$,
were we suppose that all products are defined.
Define an edge-path groupoid of a graph similarly to Section 3.
Definition 5.3 Two edge-paths ξ_{1} and ξ_{2} in $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ are called equivalent (and we write $\xi_{1} \sim \xi_{2}$) if ξ_{1} can be obtained from ξ_{2} by a finite sequence of the following local transformations or their inverses (where the dots "..." denote the unchanged parts of the edge-paths):
i) $\ldots\left(v_{0}, v_{1}\right)\left(v_{1}, v_{2}\right) \ldots \mapsto \ldots\left(v_{0}, v_{2}\right) \ldots$ where $v_{0} \sim v_{2}$ or $v_{0}=v_{2}$.
ii) $\ldots\left(v_{0}, v_{1}\right)\left(v_{1}, v_{2}\right) \ldots \mapsto \ldots\left(v_{0}, v_{3}\right)\left(v_{3}, v_{2}\right) \ldots$ where the vertices $v_{0}, v_{1}, v_{2}, v_{3}$ are different and $v_{0} \sim v_{3}$ and $v_{3} \sim v_{2}$.
iii) $\ldots\left(v_{0}, v_{1}\right)\left(v_{1}, v_{2}\right)\left(v_{2}, v_{3}\right) \ldots \mapsto \ldots\left(v_{0}, v_{3}\right) \ldots$ where the vertices $v_{0}, v_{1}, v_{2}, v_{3}$ are different and $v_{0} \sim v_{3}$.

Note, the list of local transformations in Definition 5.3 follows from Definition 3.4 using inverse functor \mathcal{O}^{-1} on the subcategory of symmetric digraphs, which allows to simplify this list.

The relation " \sim " on the set of edge paths of a graph \mathbf{G} is an equivalence relation. We shall denote by $[\xi]$ the equivalence class of the edge-path ξ. For equivalence classes the following notations and operations are well defined

$$
t([\xi]):=t(\xi), \quad h([\xi]):=h(\xi), \text { for } t\left(\xi_{1}\right)=h\left(\xi_{1}\right) \quad\left[\xi_{1}\right] \circ\left[\xi_{2}\right]:=\left[\xi_{1} \xi_{2}\right],[\xi]^{-1}=\left[\xi^{-1}\right]
$$

Theorem 5.4 For any graph \mathbf{G}, the vertex set of \mathbf{G} as the set of objects and the set of the equivalence classes of edge-paths ξ as morphisms from $t(\xi)$ to $h(\xi)$, form a category $\mathcal{E}(\mathbf{G})$ that is a groupoid. The composition of two morphisms $\left[\xi_{1}\right]$ and $\left[\xi_{2}\right]$ is given by $\left[\xi_{1}\right] \circ\left[\xi_{2}\right]$, and the inverse morphism of $[\xi]$ is $[\xi]^{-1}$.

The groupoid $\mathcal{E}(\mathbf{G})$ is called the fundamental groupoid of the graph \mathbf{G}.
We denote by $\operatorname{Hom}_{\mathcal{E}(\mathbf{G})}(v, w)$ the set of morphisms from $v \in \mathbf{V}$ to $w \in \mathbf{V}$ in the category $\mathcal{E}(\mathbf{G})$, or simply $\operatorname{Hom}(v, w)$ if the graph \mathbf{G} follows from the context.

Let $v \in \mathbf{V}$ be a vertex in a graph \mathbf{G}. Consider the set of equivalence classes [ξ] of edgepaths ξ of \mathbf{G} such that $t(\xi)=h(\xi)=v$. This set is a group with the neutral element $[(v, v)]$ and with the groupoid product of $\mathcal{E}(\mathbf{G})$. Denote this group by $\mathrm{E}(\mathbf{G}, v)$. Note, that the fundamental group $\pi_{1}\left(\mathbf{G}^{*}\right)$ of a based graph \mathbf{G}^{*} was introduced in [3], [4, Proposition 5.6]. It follows from [8] that

$$
\mathrm{E}(\mathbf{G}, v) \cong \pi_{1}\left(\mathbf{G}^{v}\right)
$$

Definition 5.5 Let $\mathbf{G}=\left(\mathbf{V}_{\mathbf{G}}, \mathbf{E}_{\mathbf{G}}\right)$ and $\mathbf{H}=\left(\mathbf{V}_{\mathbf{H}}, \mathbf{E}_{\mathbf{H}}\right)$ be two graphs.
i) Define the Cartesian product $\boldsymbol{\Pi}=\mathbf{G} \square \mathbf{H}$ as a graph with the set of vertices $\mathbf{V}_{\boldsymbol{\Pi}}=$ $\mathbf{V}_{\mathbf{G}} \times \mathbf{V}_{\mathbf{H}}$ and with the set of edges $\mathbf{E}_{\boldsymbol{\Pi}}$ such that $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if and only if

$$
\text { either } x^{\prime}=x \text { and } y \sim y^{\prime}, \text { or } x \sim x^{\prime} \text { and } y=y^{\prime}
$$

ii) Define a \rtimes-product $\mathbf{P}=\mathbf{G} \rtimes \mathbf{H}$ as a graph with the set of vertices $\mathbf{V}_{\mathbf{P}}=\mathbf{V}_{\mathbf{G}} \times \mathbf{V}_{\mathbf{H}}$ and there is an edge

$$
(x, y) \sim\left(x^{\prime}, y^{\prime}\right) \text { for } x, x^{\prime} \in \mathbf{V}_{\mathbf{G}} ; y, y^{\prime} \in \mathbf{V}_{\mathbf{H}}
$$

if one of the conditions is satisfied

$$
x^{\prime}=x, y \sim y^{\prime} ; \quad \text { or } \quad y^{\prime}=y, x \sim x^{\prime} ; \quad \text { or } \quad x \sim x^{\prime}, y \sim y^{\prime}
$$

Theorem 5.6 We have an isomorphism of groupoids

$$
\mathcal{E}(\mathbf{G} \square \mathbf{H}) \cong \mathcal{E}(\mathbf{G} \rtimes \mathbf{H}) \cong \mathcal{E}(\mathbf{G}) \times \mathcal{E}(\mathbf{H})
$$

In particular, for based graphs we have an isomorphism of fundamental groups

$$
\pi_{1}\left(\mathbf{G}^{*} \square \mathbf{H}^{*}\right) \cong \pi_{1}\left(\mathbf{G}^{*} \rtimes \mathbf{H}^{*}\right) \cong \pi_{1}\left(\mathbf{G}^{*}\right) \times \pi_{1}\left(\mathbf{H}^{*}\right)
$$

This property of fundamental groups of graphs is new. We think, that the direct proof of this result, using the definition of π_{1} from [3] and [4], can be very nontrivial.

Now we state the Van Kampen Theorem for the fundamental groupoids of graphs. For the fundamental group of graph it was proved in [4].

The union and intersection of subgraphs is defined in the same way as those for digraphs in Definition 4.1.

Definition 5.7 We shall call by a cell of a graph G any of the following subgraphs:
i) a full subgraph consisting of three vertices (triangle);
ii) a subgraph consisting of four vertices forming with the edges a square.

Theorem 5.8 (Van Kampen Theorem for graphs) Let $\mathbf{G}=\mathbf{G}_{1} \cup \mathbf{G}_{2}$ be a connected graph, such that any cell of \mathbf{G} lies in one of the subgraphs $\mathbf{G}_{1}, \mathbf{G}_{2}$. Set $\mathbf{G}_{0}=\mathbf{G}_{1} \cap \mathbf{G}_{2}$. Then the square

$$
\begin{array}{clc}
\mathcal{E}\left(\mathbf{G}_{0}\right) & \rightarrow & \mathcal{E}\left(\mathbf{G}_{1}\right) \tag{5.2}\\
\downarrow & & \downarrow \\
\mathcal{E}\left(\mathbf{G}_{2}\right) & \rightarrow & \mathcal{E}(\mathbf{G})
\end{array}
$$

in which all morphisms are induced by natural inclusions, is a pushout in the category of groupoids.

Corollary 5.9 [4]Let \mathbf{G}^{*} be a based connected graph with connected based subdigraphs \mathbf{G}_{i}^{*} ($i=$ 1,2), such that $\mathbf{G}=\mathbf{G}_{1} \cup \mathbf{G}_{2}$ and $\mathbf{G}_{0}=\mathbf{G}_{1} \cap \mathbf{G}_{2}$ is connected. Under the assumptions of Theorem 5.8 we have

$$
\pi_{1}\left(\mathbf{G}^{*}\right)=\pi_{1}\left(\mathbf{G}_{1}^{*}\right) * \pi_{1}\left(\mathbf{G}_{2}^{*}\right) / N
$$

where N is the normal subgroup of the free product generated by all the elements of the form $[x] *[x]^{-1}$ where x is a based loop in \mathbf{G}_{0}.

6 An application to coloring

Now we formulate and prove a natural generalization of the classical Sperner Lemma, using the results of Section 3.

Let $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ be a planar (nondirected) finite connected graph which provides a simplicial triangulation of a simply-connected closed domain $D \subset \mathbb{R}^{2}$. Let \mathbf{H} be the subdigraph of \mathbf{G} that lies on the boundary ∂D. Let any vertex of \mathbf{G} be colored by one of three colors, say $\{0,1,2\}$. Define a digraph $G=(V, E)$ by putting $V=\mathbf{V}$ and defining the set E of arrows according to the colors of vertices as follows:

$$
0 \rightarrow 1,1 \rightarrow 2,2 \rightarrow 0,0 \leftrightarrows 0,1 \leftrightarrows 1,2 \leftrightarrows 2
$$

In particular, we obtain a subdigraph $H=\left(V_{H}, E_{H}\right)$ of G, that lies on ∂D. Let us fix a vertex $* \in V_{H}$ and set $n=\left|V_{H}\right|$. Going along ∂D clockwise, starting and ending at $*$, we obtain a loop $\phi: I_{n}^{*} \rightarrow H^{*} \subset G^{*}$.

Theorem 6.1 i) If $[\phi] \neq[e]$ in $\pi_{1}\left(G^{*}\right)$ then there is at least one 3-color triangle in the triangulation of D.
ii) If $\operatorname{rank} \pi_{1}\left(G^{*}\right)=r$ then there are at least r 3-color triangles in the triangulation of D.

Proof. Follows from the description of local transformations in Section 3 and the method of [8, Theorem 4.20].

Corollary 6.2 The number of 3-color triangles in the triangulation of D is at least rank $H_{1}(G, \mathbb{Z})$.

References

[1] R. Atkin, An algebra for patterns on a complex, i, Internat. J. Man-Machine Stud. 6 (1974), 285-307.
[2] \qquad , An algebra for patterns on a complex, ii, Internat. J. Man-Machine Stud. 8 (1976), 483-448.
[3] Eric Babson, Helene Barcelo, Mark de Longueville, and Reinhard Laubenbacher, Homotopy theory of graphs, Journal Algebr. Comb. 24 (2006), 31-44.
[4] Helene Barcelo, Xenia Kramer, Reinhard Laubenbacher, and Christopher Weaver, Foundations of a connectivity theory for simplicial complexes, Advances in Appl. Mathematics 26 (2001), 97-128.
[5] Ronald Brown, Topology and groupoids, Deganwy, United Kingdom, 2006.
[6] Aristophanes Dimakis and Folkert Müller-Hoissen, Differential calculus and gauge theory on finite sets, J. Phys. A, Math. Gen. 27 (1994), no. 9, 3159-3178.
[7] , Discrete differential calculus: Graphs, topologies, and gauge theory, J. Math. Phys. 35 (1994), no. 12, 6703-6735.
[8] Alexander Grigor'yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau, Homotopy theory for digraphs, Pure and Applied Mathematics Quarterly 10 (2014), 619-674.
[9] \qquad , Cohomology of digraphs and (undirected) graphs, Asian Journal of Mathematics 19 (2015), 887-932.
[10] Alexander Grigor'yan, Yuri Muranov, and Shing-Tung Yau, Graphs associated with simplicial complexes, Homology, Homotopy, and Applications 16 (2014), 295-311.
[11] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002.
[12] Pvol Hell and Jaroslav Nesetril, Graphs and homomorphisms, Oxford Lecture Series in Mathematics and its Applications 28, 2004.
[13] Edwin H. Spanier, Algebraic topology, MeGraw-Hill, New York, 1966.
A. Grigor'yan: Mathematics Department, University of Bielefeld, Postfach 100131, D33501 Bielefeld, Germany
e-mail: grigor@math.uni-bielefeld.de
Rolando Jimenez: Instituto de Matematicas, UNAM Unidad Oaxaca, 68000 Oaxaca, Mexico
e-mail: rolando@matcuer.unam.mx
Yu.V. Muranov: Faculty of Mathematics and Computer Science, University of Warmia and Mazury, Sloneczna 54 Street, 10-710 Olsztyn, Poland
e-mail: muranov@matman.uwm.edu.pl

