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1 Introduction and statements

Let (M,d) be a locally compact separable metric space and µ be a Radon measure on M
with full support. Let (E ,F) be a local regular Dirichlet form in L2 (M,µ) and {Xt}t≥0 be an
associated diffusion process on M . Denote by Px and Ex respectively the probability measure
and expectation associated with this process starting at the initial point x ∈M .

Let us assume that the process {Xt} has the transition density pt (x, y) with respect to the
measure µ; that is, for all x ∈M, t > 0, and any Borel set A ⊂M

Px (Xt ∈ A) =
∫

A
pt (x, y) dµ (y) .

For simplicity, assume further that pt (x, y) is a continuous function of x, y ∈ M for all t > 0.
The function pt (x, y) is called also the heat kernel of the form (E ,F) or of the process {Xt}.

We have in mind two kind of examples of the above setting. Firstly, let M be a Riemannian
manifold. Then let d be the geodesic distance, µ be the Riemannian volume, and E be the
canonical energy form given by

E [f ] =
∫

M
|∇f |2 dµ,

and F =
o

H1 (M,µ) (that is, F is the closure of C∞
0 in W 1,2 (M,µ)). In this case, {Xt} is the

standard Brownian motion on M , and the heat kernel pt (x, y) exists and is a smooth function
in (t, x, y). There is also a vast literature devoted to upper and lower bounds of the heat kernel
in connection with the geometry of M (see, for example, [6], [8], [13], [25], [27], [28], [29]).

Secondly, let M be one of fractal spaces described, for example, in [1]. Normally, d is an
extrinsic distance, µ is a Hausdorff measure, and the energy form (E ,F) is constructed by using
graph approximations of M and a scaling limit. On large classes of fractals, it was proved that
the heat kernel exists and is a continuous function of (t, x, y). Furthermore, on such fractals the
heat kernel admit nice upper and lower bounds (see, for example, [1], [19], [21]).

Returning to the abstract setting, for any x ∈M and r > 0, set

B (x, r) := {y ∈M : d (x, y) < r}

and let V (x, r) := µ (B (x, r)) be the volume of the ball B (x, r). We will assume throughout
that 0 < V (x, r) <∞. The aim of this paper is to provide equivalent conditions for the following
upper estimate of the heat kernel, for a given parameter β > 1 called the walk dimension:

(UEβ) : There is a constant C > 0 such that, for all x, y ∈M , and for all t > 0,

pt (x, y) ≤ C

V
(
x, t1/β

) exp

(
−
(
dβ(x, y)
Ct

) 1
β−1

)
, (1.1)

The form of the estimate (UEβ) is motivated by the following two classes of examples.

1. If M is a geodesically complete Riemannian manifold with non-negative Ricci curvature
then the heat kernel satisfies (UEβ) with β = 2 (see [23], [10], [26]). If M = Rn with the
standard Euclidean structure then (UE2) holds because in Rn we have

pt (x, y) =
1

(4πt)n/2
exp

(
−d (x, y)2

4t

)

and V (x, r) = cnr
n.
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2. On a large class of fractal spaces, one has V (x, r) � rα, and the estimate (UEβ) (as well
as a matching lower bound) holds with some β > 2 (see, for example, [2], [3], [4]).

In the case of a Riemannian manifold, the necessary and sufficient condition for (UE2) in
terms of a Faber-Krahn inequality were proved in [11] (see below for more detail). In a general
setting, Kigami [22] proved the necessary and sufficient conditions for (UEβ) in terms of a local
form of a Nash inequality and a mean exit time estimate. The present paper is largely motivated
by this result of Kigami. Our purpose here is threefold. Firstly, we use a Faber-Krahn inequality
instead of a local Nash inequality to match the aforementioned result of [11]. Secondly, we
improve the argument of Kigami to get rid of some additional technical assumptions. Thirdly,
we prove a new equivalences for (UEβ).

In order to state the results, let us introduce notation and terminology. We say that the
process {Xt}t≥0 (or the heat kernel pt) is stochastically complete if

Px (Xt ∈M) =
∫

M
pt (x, y) dµ (y) ≡ 1 for all x ∈M and t > 0. (1.2)

For any open set Ω ⊂M define the exit time

τΩ := inf {t > 0 : Xt /∈ Ω} (1.3)

(here Xt /∈ Ω means that either Xt ∈ Ωc := M \ Ω or Xt is in the cemetery, in the case if {Xt}
is stochastically incomplete). We will frequently consider the mean exit time from the center of
a ball, which is ExτB(x,r).

For any open set Ω ⊂M set

F (Ω) := {f ∈ F : f = 0 in M \ Ω} (1.4)

and define the spectral gap of Ω by

λmin (Ω) := inf
f∈F(Ω)\{0}

E [f ]
‖f‖2

, (1.5)

where ‖f‖2 is the norm of f in L2 (M,µ). In fact, λmin (Ω) is the bottom of the spectrum of the
generator HΩ of the Dirichlet form (E ,F (Ω)) in L2 (Ω, µ).

Here and throughout we denote by C and c positive constants, whose values may change at
each occurrence. Our results are quantitative in the sense that the constants in the conclusions
depend only on the constants in the hypotheses. Consider the following hypotheses that in
general may be true or not, with a fixed parameter β > 1.

(V D) : The volume doubling property: for all x ∈M and r > 0, V (x, r) is finite, positive, and

V (x, 2r) ≤ CV (x, r) .

This condition is equivalent to the following: there exists α > 0 such that, for all x ∈ M
and 0 < r ≤ R,

V (x,R)
V (x, r)

≤ C

(
R

r

)α

(1.6)

(see Lemma 11.1 below).

(Eβ) : The mean exit time estimate: for all x ∈M and r > 0,

crβ ≤ ExτB(x,r) ≤ Crβ.
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For example, in Rn one has ExτB(x,r) = cr2, that is, (Eβ) holds with β = 2. The latter is
true also for any complete non-compact manifold of non-negative Ricci curvature. On all fractal
spaces mentioned above, one has (Eβ) with β ≥ 2.

(Pβ) The exit probability estimate: for all x ∈M and r > 0,

Px

(
τB(x,r) ≤ δrβ

)
≤ ε,

for some ε ∈ (0, 1) and δ > 0.

Note that (Eβ) =⇒ (Pβ) (see Theorem 9.3). Many equivalent conditions to (Pβ) are stated
in Theorem 9.1. In particular, if the process Xt is stochastically complete then (Pβ) is equivalent
to the following one: there exists 0 < ε < 1

2 and C > 0 such that, for all x ∈M and t > 0,∫
B(x,Ct1/β)

pt (x, y) dµ (y) ≥ 1 − ε.

(FKβ) : The Faber-Krahn inequality : there exists ν > 0 such that, for any ball B ⊂M of radius r
and for any non-empty open set Ω ⊂ B,

λmin (Ω) ≥ c

rβ

(
µ (B)
µ (Ω)

)ν

. (1.7)

Since µ (B) ≥ µ (Ω), the value of ν can be chosen to be arbitrarily small, for example,
ν < 1, which will be frequently assumed.

It is easy to see that (FK2) holds in Rn. Indeed, for any bounded open set Ω in Rn, a
theorem of Faber and Krahn says that

λmin (Ω) ≥ λmin (Ω∗)

where Ω∗ is a “symmetrization” of Ω, that is, a ball of the same volume as Ω. If the radius of
Ω∗ is ρ then we have

λmin (Ω∗) =
c

ρ2
=

c′

µ (Ω∗)2/n
,

which yields

λmin (Ω) ≥ c′

µ (Ω)2/n
.

We see that (1.7) holds with ν = 2/n and β = 2 because the terms µ (B)ν and r2 cancel out. It is
possible to prove that in fact (FK2) holds on any complete non-compact Riemannian manifold
with non-negative Ricci curvature (see [10]). In this generality, one cannot get rid of the term
µ (B)ν in (1.7).

(DUEβ) : A diagonal upper estimate of the heat kernel: for all x ∈M and all t > 0,

pt (x, x) ≤ C

V
(
x, t1/β

) . (1.8)

Using the semigroup property, the symmetry of the heat kernel, and the Cauchy-Schwarz
inequality, it is easy to show that (1.8) is equivalent to the estimate

pt (x, y) ≤ C√
V
(
x, t1/β

)
V
(
y, t1/β

) , (1.9)

for all x, y ∈M and t > 0. The estimate (1.9) will also be referred to as (DUEβ).
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(ΦUEβ) : An upper estimate with a function Φ: for all x, y ∈M and all t > 0,

pt (x, y) ≤ C

V
(
x, t1/β

)Φ(d (x, y)
t1/β

)
, (1.10)

where Φ (s) is a decreasing positive function on [0,+∞) such that∫ ∞
sα−1Φ (s) ds <∞, (1.11)

and α is the exponent from (1.6).

For example, (UEβ) can be stated in the form (ΦUEβ) with the function Φ (s) = exp(−cs β
β−1 ),

which obviously satisfies (1.11). Therefore, (UEβ) ⇒ (ΦUEβ) but a priori (ΦUEβ) is a weaker
condition than (UEβ). Since Φ is a bounded function, (ΦUEβ) ⇒ (DUEβ) by the symmetry of
the heat kernel.

The following theorem is the main result of this paper.

Theorem 1.1 Let (M,d) is a locally compact separable metric space, µ be a Radon measure on
M with full support, and (E ,F) be a regular Dirichlet form in L2 (M,µ). Assume in addition
that:

(a) (M,d) is connected and diam (M) = ∞.

(b) Measure µ satisfies the volume doubling property (V D).

(c) The form (E ,F) is local.

(d) The process {Xt}t≥0 is stochastically complete.

(e) The diffusion process {Xt}t≥0 associated with (E ,F) admits a continuous heat kernel
pt (x, y).

Then, for any β > 1, the following equivalences take place

(UEβ) ⇔ (ΦUEβ) (1.12)
⇔ (DUEβ) + (Pβ) ⇔ (FKβ) + (Pβ) (1.13)
⇔ (DUEβ) + (Eβ) ⇔ (FKβ) + (Eβ) . (1.14)

In fact, Theorem 1.1 is a particular case of a more general Theorem 12.1 where neither
existence nor continuity of the heat kernel is assumed. In fact, the existence of the heat kernel
follows from (FKβ) + (Pβ) or (FKβ) + (Eβ). In this generality one cannot guarantee the
continuity of the heat kernel, which makes all argument much more involved. Theorem 12.1 is
proved in Section 12 after some preparation in the preceding sections.

In the setting of Riemannian manifolds, it was proved in [11, Proposition 5.2] that, for β = 2,

(UE2) ⇔ (DUE2) ⇔ (FK2) , (1.15)

so that in this case the hypotheses (Eβ) and (Pβ) can be dropped. However, in general (DUEβ)
is not equivalent to (UEβ) so that the hypotheses (Eβ) or (Pβ) cannot be got rid of1. A weak
replacement for (1.15) is the equivalence (1.12).

1As was pointed out by the referee, a counterexample is obtained by taking a direct product of two spaces
with different values of the walk dimension β.
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Kigami proved in [22] that

(UEβ) ⇔ (DUEβ) + (Eβ) ⇔ (Nash) + (Eβ) ,

where (Nash) refers to a so called local Nash inequality, assuming in addition that

inf
x∈M

V (x, r) > 0 for some r > 0. (1.16)

The present paper is largely motivated by this result of Kigami. Our purpose here is threefold.
Firstly, we use the Faber-Krahn inequality in (1.14) instead of the local Nash inequality to match
(1.15). Secondly, we improve the argument of Kigami to get rid of the additional assumption
(1.16) and of the continuity of the heat kernel. Thirdly, we prove new equivalences (1.12) and
(1.13).

For the equivalence (1.12) it is very essential that the process {Xt} is a diffusion (which
is equivalent to the locality of (E ,F)). Indeed, let for example {Xt} be the symmetric stable
process in Rn of index β ∈ (0, 2); that is {Xt} is generated by (−∆)β/2, where ∆ is the Laplace
operator. It is known that its heat kernel satisfies the following estimate:

pt(x, y) � 1
tn/β

1(
1 + d(x,y)

t1/β

)n+β
,

that is (ΦUEβ) with Φ (s) = 1
(1+s)n+β . Although this function satisfies (1.11) (note that here

α = n) and all other hypotheses of Theorem 1.1 are satisfied, too, except for the locality, the
estimate (UEβ) is obviously not true.

Acknowledgments. The author thanks Martin Barlow, Laurent Saloff-Coste, and Andras
Telcs for useful discussions on the subject.

2 Preliminaries

Unless otherwise stated, here and in the rest of this paper let (M,d) be a locally compact
separable metric space, µ be a Radon measure on M with full support, and (E ,F) be a regular2

Dirichlet form in L2 = L2 (M,µ).
It is well known that such a form has a generator, which will be denoted by H and which is

a positive definite self-adjoint operator in L2. The domain dom(H) is a dense subspace of F ,
and for all f ∈ F and g ∈ dom(H), we have

(f,Hg) = E (f, g) .

The operator H determines a heat semigroup {Pt}t≥0 by

Pt = exp (−tH) ,

so that Pt is a bounded self-adjoint operator in L2 (and even ‖Pt‖ ≤ 1). In addition, the
semigroup {Pt}t≥0 is strongly continuous in L2 and is Markovian. The latter means that f ≥ 0
implies Ptf ≥ 0 and f ≤ 1 implies Ptf ≤ 1. and The Markovian properties of Pt allow to extend
Pt from L1 ∩ L2 to a bounded operator in L1 and then, by duality, to a bounded operator in
L∞.

2The form (E ,F) is called regular if F ∩ C0 (M) is dense both in F and in C0 (M).
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Definition. A family {pt}t>0 of µ× µ-measurable functions on M ×M is called a heat kernel
of the form (E ,F) if pt is an integral kernel of the operator Pt, that is, for any t > 0 and for any
f ∈ L2,

Ptf (x) =
∫

M
pt (x, y) f (y) dµ (y) for µ-a.a. x ∈M . (2.1)

Clearly, of a heat kernel exists then, for any t > 0, pt (·, ·) is uniquely defined on M ×M
up to a change on a set of measure 0. It is easy to see that a heat kernel satisfies the following
properties, for all t, s > 0 and for µ-a.a. x, y ∈M :

• The positivity: pt (x, y) ≥ 0 (follows from Ptf ≥ 0 for f ≥ 0).

• The total mass inequality: ∫
M
pt(x, z)dµ(z) ≤ 1 (2.2)

(follows from Ptf ≤ 1 for f ≤ 1).

• The symmetry: pt(x, y) = pt(y, x) (follows from the self-adjointness of Pt, that is (Ptf, g)L2 =
(f, Ptg)L2).

• The semigroup property:

ps+t(x, y) =
∫

M
ps(x, z)pt(z, y)dµ(z) (2.3)

(follows from Pt+s = PtPs).

By [9, Theorem 7.2.1], any regular Dirichlet form (E ,F) admits an associated Hunt process{
{Xt}t≥0 , {Px}x∈M

}
where Px is a probability measure defined on the space of paths started

at the point x ∈M . By [9, Theorem 7.2.2], if the form (E ,F) is local (which will be sometimes
assumed) then the process {Xt} is a diffusion, that is, the path t → Xt is continuous almost
surely.

The transition function Pt (x,B) of the Hunt process is defined by

Pt (x,B) = Px (Xt ∈ B) ,

where t > 0, x ∈ M , and B is a Borel subset of M . Hence, Pt (x, ·) is a probability measure
on X (possibly, with added cemetery), for any x ∈ M and t > 0. Respectively, Pt acts as a
semigroup on the space of bounded (or non-negative) Borel functions3 by

Ptf (x) =
∫

X
f (y)Pt (x, dy) = Exf (Xt) ,

for all x ∈M and t > 0, where Ex is expectation associated with Px.
The relation of the Hunt process with the Dirichlet from is given by the identity

Ptf (x) = Ptf (x) for µ-a.a. x ∈M and all t > 0, (2.4)

for all bounded Borel functions f ; in other words, we have

Ptf (x) = Exf (Xt) for µ-a.a. x ∈M and all t > 0. (2.5)
3If the process {Xt} is not stochastically complete then the value of f at the cemetery is assumed to be 0.
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Note that Ptf (x) is defined for µ-a.a. x ∈M , whereas Ptf (x) is defined for all x ∈M . Hence,
the semigroup Pt contains some extra information compared to the semigroup Pt although Pt

and Pt are identical as semigroups in L∞.
The identity (2.4) allows to extend Ptf to Borel functions f from L2. Indeed, assuming

f ≥ 0, set
Ptf = lim

n→∞Pt (f ∧ n)

and observe that the limit is monotone and is finite µ-a.a. x ∈M because so is Ptf .
For any open set Ω ⊂M , define F (Ω) by (1.4) so that (E ,F (Ω)) is a regular Dirichlet form

in L2 (Ω, µ) (see [9, Theorem 4.4.3, p.154]). Hence, all notions defined for the form (E ,F) make
sense also for the form (E ,F (Ω)), in particular, the generator HΩ and the heat semigroup PΩ

t .
If PΩ

t has a heat kernel then it is called the Dirichlet heat kernel of Ω and is denoted by pΩ
t (x, y)

(this terminology is motivated by the fact that in a classical setting pΩ
t satisfies the Dirichlet

boundary condition on ∂Ω). It is frequently convenient to extend pΩ
t (x, y) to entire M so that

pΩ
t (x, y) = 0 if x or y is outside Ω.

In the general case when the heat kernel does not necessarily exists or is not a continuous
function, we need to modify some of the conditions defined in Introduction as follows. Recall
that β > 1 is a fixed real number.

(UEβ) : A heat kernel exists and satisfies the estimate

pt (x, y) ≤ C

V
(
x, t1/β

) exp

(
−
(
dβ(x, y)
Ct

) 1
β−1

)
,

for µ-a.a. x, y ∈M \N and for all t > 0,

(DUEβ) A heat kernel exists and satisfies the estimate

pt (x, y) ≤ C√
V
(
x, t1/β

)
V
(
y, t1/β

) ,
for µ-a.a. x, y ∈M \N and for all t > 0.

(ΦUEβ) A heat kernel exists and satisfies the estimate

pt (x, y) ≤ C

V
(
x, t1/β

)Φ(d (x, y)
t1/β

)
,

for µ-a.a. x, y ∈ M \N and for all t > 0, where Φ (s) is a decreasing positive function on
[0,+∞) satisfying (1.11).

Definition. A Borel set N ⊂M is called negligible for the process Xt if µ (N) = 0 and

Px (Xt ∈ N or Xt− ∈ N for some t ≥ 0) = 0 for all x ∈M \N.

(Eβ) : There exists a negligible set N ⊂M such that, for all x ∈M \N and r > 0,

crβ ≤ ExτB(x,r) ≤ Crβ.
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(Pβ) There exists a negligible set N ⊂M such that, for all x ∈M \N and r > 0,

Px

(
τB(x,r) ≤ δrβ

)
≤ ε,

for some ε ∈ (0, 1) and δ > 0.

Finally, the conditions (V D) and (FK) remain unchanged. The statement of Theorem 1.1
is then slightly changed: the condition (e) of the existence of a heat kernel is no longer needed
as it is build into (DUEβ), (UEβ), and (ΦUEβ). This version of Theorem 1.1 is stated below
in Section 12.

3 Heat semigroups and heat kernels

Denote by ‖ · ‖p the norm in Lp = Lp (M,µ). Also, denote by esup essential supremum; in
particular, we have ‖f‖∞ = esupM |f |.

Lemma 3.1 If a heat kernel pt (x, y) exists then, for any measurable set U ⊂M , the function

t → esup
x,y∈U

pt (x, y)

is non-increasing on (0,+∞).

Proof. We have

esup
x,y∈U

pt (x, y) = sup
f,g

∫
U
pt (x, y) f (x) g (y) dµ (x) dµ (y) = sup

f,g
(Ptf, g) , (3.1)

where (·, ·) is the inner product in L2 (M,µ) and the supremum is taken over non-negative
functions f, g ∈ L1 ∩ L2 (U,µ) such that ‖f‖1 = ‖g‖1 = 1. The symmetry of Pt and the
semigroup property imply

(Ptf, g) =
(
Pt/2f, Pt/2g

) ≤ ‖Pt/2f‖2‖Pt/2g‖2 = (Ptf, f)1/2 (Ptg, g)
1/2 ,

whence
sup
f,g

(Ptf, g) ≤ sup
f

(Ptf, f) .

Since the opposite inequality is trivial, we have in fact

sup
f,g

(Ptf, g) = sup
f

(Ptf, f) .

Finally, (Ptf, f) = ‖Pt/2f‖2
2 is non-increasing in t, whence the claim follows.

Definition. We say that a semigroup Pt is Lp → Lq ultracontractive (where 1 ≤ p < q ≤ +∞)
if there exists a positive decreasing function γ (t) on (0,+∞) (called the rate function) such
that, for all t > 0,

‖Ptf‖q ≤ γ (t) ‖f‖p for all f ∈ Lp ∩ L2. (3.2)

It is easy to see that if Pt is Lp → Lq ultracontractive then Pt is also Lq∗ → Lp∗ ultracon-
tractive with the same rate function, where p∗ and q∗ are the Hölder conjugates to p and q,
respectively. Indeed, any f ∈ Lq∗ ∩ L2, we have by (3.2)

‖Ptf‖p∗ = sup
g∈Lp∩L2\{0}

(Ptf, g)
‖g‖p

= sup
g∈Lp∩L2\{0}

(f, Ptg)
‖g‖p

≤ sup
g∈Lp∩L2\{0}

‖f‖q∗
‖Ptg‖q

‖g‖p
≤ γ (t) ‖f‖q∗ ,
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whence the claim follows.
In particular, Pt is L1 → L2 ultracontractive if and only if it is L2 → L∞ ultracontractive.

In this case, we say that Pt is ultracontractive.
The next lemma relates the ultracontractivity of Pt with the existence of a heat kernel

satisfying a uniform upper bound. This fact is well known but there hardly exists a reference
with a detailed proof matching our setting (see [5], [1, Propositions 4.13, 4.14], [8, Lemma 2.1.2],
[29] for proofs in various settings). So, we give a full proof here.

Lemma 3.2 The semigroup Pt is ultracontractive with the rate function γ (t) if and only if Pt

has a heat kernel pt (x, y) satisfying for all t > 0 the estimate

esup
x,y∈M

pt (x, y) ≤ γ (t/2)2 . (3.3)

Proof. If a heat kernel exists and satisfies (3.3) then we have by (3.1) and (3.3)

(P2tf, g) ≤ esup
x,y∈M

p2t (x, y) ‖f‖1‖g‖1 ≤ γ (t)2 ‖f‖1‖g‖1,

for all f, g ∈ L2 ∩ L1. Taking f = g and noticing that (P2tf, f) = ‖Ptf‖2
2, we obtain

‖Ptf‖2 ≤ γ (t) ‖f‖1,

that is, Pt is L1 → L2 ultracontractive.
Conversely, if Pt is L1 → L2 ultracontractive then Pt is also L2 → L∞ ultracontractive, that

is, for all f ∈ L2 and t > 0,
‖Ptf‖∞ ≤ γ(t)‖f‖2. (3.4)

Fix t > 0. For any f ∈ L2, Ptf is an element of L∞ ∩ L2 and, hence, is defined for µ-almost all
x. We would like to choose a pointwise function realization of Ptf(x) while keeping the linearity
of Pt. Denote by L∞ the set of all bounded measurable functions on M defined pointwise. Then
L∞ is a Banach space with the sup-norm (in contrast to L∞ where the norm is the essential
supremum esup).

We claim that there exists a linear operator4 P̃t : L2 → L∞ such that, for any f ∈ L2,

P̃tf = Ptf µ-a.e. (3.5)

and
sup

∣∣∣P̃tf
∣∣∣ ≤ γ(t)‖f‖2. (3.6)

Observe that, for any ϕ ∈ L∞, there exists a norm preserving realization of ϕ in L∞, that is, a
function ϕ′ ∈ L∞ such that

ϕ′ = ϕ µ-a.e. and sup
∣∣ϕ′∣∣ = esup |ϕ| .

Indeed, fix any pointwise realization of ϕ and observe that the set

E (ϕ) := {x ∈M : |ϕ(x)| > esup |ϕ|}

has µ-measure 0. Then define ϕ′(x) to be equal to ϕ(x) outside E(ϕ), and to vanish on E(ϕ).
4If M is a Riemannian manifold then P̃tf can be defined as a continuous realization of Ptf , because of the

hypoellipticity of the Laplace operator. In general, one can only ensure that Ptf has a quasi-continuous realization
(see Lemma 7.1). If no point in M is polar (as happens on many fractal spaces) then any quasi-continuous function

is continuous, so that P̃tf can again be defined as a continuous realization of Ptf . However, this does not work in
general, although the estimates we obtain in this paper can help establishing the continuity of Ptf a posteriori.
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Let {vk}∞k=1 be an orthonormal basis in L2, and let V be the set of all finite linear combina-
tions of functions vk with rational coefficients. Define P̃tvk to be a norm-preserving realization
of Ptvk in L∞; then extend P̃t to the whole space V by linearity. In particular, we have, for all
f ∈ V ,

P̃tf = Ptf µ-a.e. (3.7)

The set V is countable. Since each set E(P̃tf) has measure 0, the union U of all sets E(P̃tf)
over all f ∈ V has also measure 0. Now we modify the definition of P̃tf for every f ∈ V by
setting P̃tf to be zero on U (and not changing it outside U). Clearly, the linearity and (3.7) are
preserved, but we acquire in addition that

sup
∣∣∣P̃tf

∣∣∣ = esup |Ptf | ,

which together with (3.4) implies

sup
∣∣∣P̃tf

∣∣∣ ≤ γ(t)‖f‖2 for all f ∈ V. (3.8)

Hence, P̃t is a bounded linear mapping from (V, ‖ · ‖2) to L∞. Since V is dense in L2, P̃t uniquely
extends to a bounded linear mapping from L2 to L∞, which satisfies (3.5) and (3.6).

Fix x ∈M , and consider a linear functional on L2 defined by

f → P̃tf(x).

By (3.6), this is a bounded linear functional in L2. By the Riesz representation theorem, there
exists a function pt,x ∈ L2 such that, for any f ∈ L2,

P̃tf(x) = (pt,x, f)L2 =
∫

M
pt,x(y)f(y)dµ(y). (3.9)

The function pt (x, y) := pt,x (y) will be the heat kernel if we prove that it is measurable jointly
in x, y ∈ M . To that end, we use again the orthonormal basis {vk}∞k=1 in L2. For any index k,
the function uk := P̃tvk is in L2 and hence is measurable. On the other hand, we have by (3.9),
for all x ∈M ,

uk (x) = (pt,x, vk)L2 .

The Parseval identity yields
‖pt,x‖2

2 =
∑

k

|uk (x)|2 ,

whence it follows that the function x → ‖pt,x‖2 is measurable.
It follows from (3.8) and (3.9) that

‖pt,x‖2 ≤ γ(t). (3.10)

Therefore, for any compact set K ⊂M ,∫
K

(∫
M
pt (x, y)2 dµ (y)

)
dµ (x) =

∫
K
‖pt,x‖2

2dµ (x) ≤ γ2 (t)µ (K) <∞,

and, by Fubini’s theorem, pt (x, y) ∈ L2 (K ×M). By the local compactness of M , it follows
that pt (x, y) is jointly measurable in x, y.

By the semigroup property and the symmetry of the heat kernel, we have, for µ-a.a. x, y ∈M ,

pt (x, y) =
∫

M
pt/2 (x, z) pt/2 (z, y) dµ (z) ≤ ‖pt/2,x‖2‖pt/2,y‖2 ≤ γ (t/2)2 ,

which was to be proved.
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4 The Dirichlet heat kernel

The results of this section are known in the setting of manifolds (see for example [18], [11], [13],
[7]). Here we have modified the argument to adjust to the present singular setting. Recall that
the spectral gap λmin (Ω) is defined by (1.5).

Lemma 4.1 Let U ⊂ M be an open set such that µ (U) < ∞. Assume that, for all non-empty
open sets Ω ⊂ U ,

λmin (Ω) ≥ aµ (Ω)−ν , (4.1)

where a and ν are positive constants. Then, for any non-negative function u ∈ F (U) \ {0},
E [u] ≥ cνa‖u‖2+2ν

2 ‖u‖−2ν
1 , (4.2)

where cν is a positive constant depending only on ν.

Proof. Assume first u ∈ F (U) ∩ C0 (U). By the Markov property, for any s ≥ 0 we have
(u− s)+ ∈ F (U) and

E [u] ≥ E [(u− s)+
]
. (4.3)

The set Us := {x ∈ U : u (x) > s} is open. Since (u− s)+ vanishes outside Us, we obtain that
(u− s)+ ∈ F (Us) whence by (1.5)

E [(u− s)+
] ≥ λmin (Us)

∫
Us

(u− s)2+ dµ. (4.4)

Denote for simplicity A = ‖u‖1 and B = ‖u‖2
2. Since u ≥ 0, we have

(u− s)2+ ≥ u2 − 2su,

which implies upon integration ∫
U
(u− s)2+dµ ≥ B − 2sA. (4.5)

On the other hand, we have

µ(Us) ≤ 1
s

∫
U
u dµ =

A

s
,

and the assumption (4.1) yields

λmin (Us) ≥ aµ (Us)
−ν ≥ a

( s
A

)ν
. (4.6)

Combining (4.3), (4.4), (4.5), and (4.6), we obtain

E [u] ≥ λmin (Us)
∫

Us

(u− s)2+ dµ ≥ a
( s
A

)ν
(B − 2sA) .

Taking here s = B
4A , we finish the proof.

Consider now the general case u ∈ F (U). By the regularity of (E ,F (U)), there exists a
sequence {un} ∈ F (U) ∩ C0 (U) such that

‖un − u‖2 −→ 0 and E [un − u] −→ 0. (4.7)

Since µ (U) <∞, the Cauchy-Schwarz inequality yields

‖un − u‖1 ≤
√
µ(U)‖un − u‖2 → 0. (4.8)

For each un, (4.2) holds by the previous argument. Passing to the limit as n → ∞ we obtain
(4.2) for u.

The next lemma is a modification of the Nash argument [24], which allows to obtain a heat
kernel upper bound from the Nash type inequality (4.2) (see also [5], [11, Theorem 2.1]).
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Lemma 4.2 Under the hypotheses of Lemma 4.1, a heat kernel pU
t exists and satisfies the

inequality
esup
x,y∈U

pU
t (x, y) ≤ C (at)−1/ν (4.9)

for all t > 0, where C = C (ν).

Proof. Lemma 4.1 says that, for all non-negative u ∈ F (U) \ {0},

E [u] ≥ ca‖u‖2+2ν
2 ‖u‖−2ν

1 . (4.10)

Let f ∈ L2 (U,µ) be non-negative and ‖f‖1 = 1. Set ut = PU
t f for all t > 0 and observe that

ut ∈ dom(H) ⊂ F where H = HU is the generator of the form (E ,F (U)). Moreover, we have
dut
dt = −Hut, whence

(
dut

dt
, ut) = − (Hut, ut) = −E [ut] .

On the other hand, differentiating the function J(t) := ‖ut‖2
2 we obtain

dJ

dt
=

d

dt
(ut, ut) = 2(

dut

dt
, ut) = −2E [ut] . (4.11)

It follows from (2.2) that ‖ut‖1 ≤ 1. Combining (4.10) and (4.11), we obtain the differential
inequality

dJ

dt
≤ −caJ1+ν ,

whence J (t) ≤ C (at)−1/ν . Consequently, the semigroup PU
t is L1 → L2 ultracontractive with

the estimate
‖PU

t ‖2
1→2 ≤ C (at)−1/ν ,

whence, by Lemma 3.2, PU
t has a heat kernel satisfying (4.9).

5 The transition function and local ultracontractivity

For any open set Ω ⊂M , the Hunt process
{{
XΩ

t

}
t≥0

,
{
PΩ

x

}
x∈M

}
associated with the Dirichlet

form (E ,F (Ω)) is obtained from Xt by killing the latter outside Ω. The transition function PΩ
t

of the process XΩ
t is given by

Pt (x,B) = PΩ
x (Xt ∈ A) = Px (t < τΩ and Xt ∈ B)

where τΩ is the first exit time of the process Xt from Ω defined by (1.3) (see [9, (4.1.2)]).
Consequently, we have

PΩ
t f (x) = EΩ

x (f (Xt)) = Ex

(
1{t<τΩ}f (Xt)

)
, (5.1)

for all x ∈M , t > 0, and a bounded (or non-negative) Borel function f . For the heat semigroup
PΩ

t of the form (E ,F (Ω)), we have then

PΩ
t f (x) = Ex

(
1{t<τΩ}f (Xt)

)
for µ-a.a. x ∈M. (5.2)

Clearly, the semigroup PΩ
t is dominated by Pt, that is, PΩ

t f ≤ Ptf for any non-negative function
f . In particular, if Pt is ultracontractive then PΩ

t is also ultracontractive.
Definition. A sequence {Ωn} of subsets of M is called exhausting if Ωn ⊂ Ωn+1 and ∪nΩn = M .
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Lemma 5.1 If {Ωn}∞n=1 is an exhausting sequence of open sets in M and a Dirichlet heat kernel
pΩn

t exists for any n then the sequence {pΩn
t } increases, and limn→∞ pΩn

t determines a heat kernel
pt of Pt.

Proof. Since τΩ is monotone in Ω, it is obvious from (5.2) that pΩ
t in monotone in Ω. By

(5.2) we have, for any non-negative Borel function f on M ,

Ex

(
1{t<τΩn}f (Xt)

)
=
∫

Ωn

pΩn
t (x, y) f (y) dµ (y)

for µ-a.a. x ∈M and all t > 0. Letting n→ ∞ and setting pt := limn→∞ pΩn
t , we obtain

Ex (f (Xt)) =
∫

M
pt (x, y) f (y) dµ (y) .

It follows from (2.5) that pt is a heat kernel of Pt.
Definition. We say that the semigroup Pt is locally ultracontractive if there exists an exhausting
sequence of open sets {Ωk}∞k=1 such that the semigroup PΩk

t is ultracontractive for any k =
1, 2, ....

It follows from Lemmas 3.2 and 5.1 that if Pt is locally ultracontractive then a heat kernel
exists.

Lemma 5.2 If a heat kernel pt (x, y) exists and is locally bounded (that is, belongs to L∞
loc (M ×M))

then the semigroup Pt is locally ultracontractive.

Remark. As we will see in Lemma 8.1, if the semigroup Pt is locally ultracontractive then a
heat kernel exists.

Proof. Since M is locally compact and separable, there exists an exhausting sequence
{Ωk}∞k=1 of precompact open sets. By hypothesis, we have, for any k,

γk (t) := esup
x,y∈Ωk

pt (x, y) <∞.

By Lemma 3.1, the function γk (t) is decreasing. Using the fact that PΩk
t is dominated by Pt

and the first part of the proof of Lemma 3.2, we obtain that PΩk
t is ultracontractive with the

rate function γk.

6 Mean exit time and the spectral gap

Let f be a non-negative Borel function on M and ϕ (t) be a non-negative continuous function
on [0,+∞). Multiplying (5.1) by ϕ (t) and integrating in t, we obtain, for any open set Ω ⊂M
and all x ∈M , ∫ ∞

0
ϕ (t)PΩ

t f (x) dt = Ex

∫ τΩ

0
ϕ (t) f (Xt) dt. (6.1)

In particular, for ϕ ≡ 1, we obtain∫ ∞

0
PΩ

t f (x) dt = Ex

∫ τΩ

0
f (Xt) dt, (6.2)

whence it follows, for f ≡ 1, that

ExτΩ =
∫ ∞

0
PΩ

t 1 (x) dt. (6.3)

For any open set Ω ⊂M , set
E (Ω) = esup

x∈Ω
ExτΩ. (6.4)
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Lemma 6.1 For any non-empty open set Ω ⊂M , we have

λmin (Ω) ≥ 1
E (Ω)

. (6.5)

Remark. This inequality is well known in the setting of random walks on graphs and diffusions
on manifolds. Here we give a proof in a full generality.

Proof. Let H = HΩ be the generator of the form (E ,F (Ω)) in L2 (Ω, µ). For any T > 0
and consider the following operator

GT =
∫ T

0
e−tHdt = ϕT (H) ,

where

ϕT (λ) =
∫ T

0
e−tλdt =

1 − e−Tλ

λ
.

Since the function ϕT is bounded and continuous on [0,+∞), the operator GT is a bounded self-
adjoint operator in L2. Since the function ϕT is decreasing, we obtain by the spectral mapping
theorem

ϕT (λmin (Ω)) = ϕT (inf spec (H)) = sup spec (GT ) .

Note that
sup spec (GT ) = ‖G‖2→2,

where ‖ · ‖p→p stands for the operator norm of an operator in Lp (Ω, µ). We will prove below
that, for all T > 0,

‖G‖2→2 ≤ E (Ω) , (6.6)

Assuming that much, we obtain from the above three lines

ϕT (λmin (Ω)) ≤ E (Ω) .

Letting T → ∞ and observing that ϕT (λ) → 1/λ, we obtain (6.5).
To verify (6.6), recall that the operator e−tH = PΩ

t can be considered as a bounded operator
in L∞. Therefore, the operator GT also extends to a bounded operator in L∞. Since PΩ

t and
PΩ

t coincide as operators in L∞, we see that, for any bounded Borel function f ,

GT f =
∫ T

0

(PΩ
t f
)
dt µ-a.e..

Therefore, for µ-a.a. x ∈ Ω, we obtain

|GT f (x)| ≤
∫ ∞

0
PΩ

t |f | (x) dt = Ex

∫ τΩ

0
|f | (Xt) dt ≤ (ExτΩ) sup |f | ,

that is, using (6.4),
esup

Ω
|GT f | ≤ E (Ω) sup |f | .

This implies, for any g ∈ L1 ∩ L2 (Ω, µ),

‖GT g‖1 = inf
f∈C0(Ω)\{0}

(GT g, f)
‖f‖∞ = inf

f∈C0(Ω)\{0}
(g,GT f)
‖f‖∞ ≤ E (Ω) ‖g‖1

that is,
‖GT ‖1→1 ≤ E (Ω) . (6.7)
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Since PΩ
t is a positivity preserving operator, so is also GT , that is f ≥ 0 implies GT f ≥ 0,

for any Borel function f . In particular, for any s ∈ R we have GT (f + s)2 ≥ 0, that is

GT f
2 + 2sGT f + s2GT 1 ≥ 0,

whence
(GT f)2 ≤ GT 1GT f

2 ≤ E (Ω)GT f
2.

Therefore,
‖GT f‖2

2 ≤ E (Ω) ‖GT f
2‖1 ≤ E (Ω)2 ‖f2‖1 = E (Ω)2 ‖f‖2

2,

that is
‖GT ‖2→2 ≤ E (Ω) ,

which was to be proved.

7 Negligible sets

This section is mostly based on the book by Fukushima, Oshima, Takeda [9] and complements
some statements from this book. Our main result here is Lemma 7.5.
Definition. For any set E ⊂M , the capacity cap (also called 1-capacity) is defined by

cap(E) := inf
ϕ

E1 [ϕ] (7.1)

where E1 [ϕ] := E [ϕ] + ‖ϕ‖2
2 and ϕ varies over all functions from F such that ϕ ≥ 1 in an open

neighborhood of E (see [9, p.64]).
Clearly, we have cap(E) ≥ µ (E). Also, it is obvious from the definition that cap(E) is

monotone function of E.
Definition. A function f on M is called quasi-continuous if, for any ε > 0, there exists an open
set E such that cap(E) < ε and f is continuous in M \ E (see [9, p.67]).

Lemma 7.1 ([9, Theorem 4.2.3, p.144]) For any Borel function f ∈ L2 and for any t > 0, the
function x → Ptf (x) is quasi-continuous on M .

Definition. A Borel set N ⊂M is called negligible if µ (N) = 0 and

Px (Xt ∈ N or Xt− ∈ N for some t ≥ 0) = 0 for all x ∈M \N.

Lemma 7.2 If cap(E) = 0 then there is a negligible set N ⊃ E.

Proof. Indeed, by [9, Proof of Theorem 4.2.1(ii), p.142], any set of capacity 0 is “excep-
tional”, and by [9, Theorem 4.1.1, p.137], any exceptional set is contained in a Borel “properly
exceptional” set, which, by the above definition, is negligible.

Lemma 7.3 Let S be a countable family of quasi-continuous functions on M . Then there exists
a negligible set N ⊂M such that, for any non-empty open set U ⊂M and any f ∈ S,

sup
U\N

f = esup
U

f and inf
U\N

f = einf
U
f. (7.2)
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Proof. By [9, Theorem 2.1.2, p.67], if S is a countable family of quasi-continuous functions
on M then there exists a regular nest {Fk}∞k=1 such that f |Fk

is a continuous function for any
f ∈ S. The term “a regular nest” means that {Fk} is an increasing sequence of closed sets in
M such that cap(M \ Fk) → 0 as k → ∞, and µ (Fk ∩ Ω) > 0 for any open set Ω intersecting
Fk. The set E = M \ ∪kFk has capacity 0. By Lemma 7.2, the set E of capacity 0 is contained
in a negligible set N . Let us show that, for this set N ,

sup
U\N

f = esup
U

f,

and the same will be for inf. Since µ (N) = 0, the inequality

sup
U\N

f ≥ esup
U

f

is trivial.
Fix f ∈ S, a non-empty open set U ⊂ M , and prove the opposite inequality. Since M \ N

is covered by ∪kFk, we see that
sup
U\N

f ≤ lim
k→∞

sup
U∩Fk

f.

Since µ (U) > 0 and µ (N) = 0, U \ N is non-empty and hence the intersection U ∩ Fk is
non-empty for large enough k. Fix ε > 0 and find a point x ∈ U ∩ Fk such that

sup
U∩Fk

f ≤ f (x) + ε. (7.3)

Since any f ∈ S is continuous on Fk, there exists an open set Ω such that x ∈ Ω ⊂ U and

inf
Ω∩Fk

f ≥ f (x) − ε. (7.4)

Since µ (Ω ∩ Fk) > 0, we have
inf

Ω∩Fk

f ≤ esup
Ω∩Fk

f. (7.5)

From (7.3), (7.4), (7.5), we obtain

sup
U∩Fk

f ≤ esup
Ω∩Fk

f + 2ε ≤ esup
U

f + 2ε,

whence the claim follows by letting ε→ 0 and k → ∞.
The next lemma is a modification of the argument in [1, after Remark 4.13].

Lemma 7.4 Assume that the heat semigroup Pt is L2 → L∞ ultracontractive, that is, for any
f ∈ L2 and t > 0,

‖Ptf‖∞ ≤ γ (t) ‖f‖2 (7.6)

where γ (t) is a positive decreasing function on (0,+∞). Then there exists a negligible set N ⊂M
such that for all x ∈M \N , all Borel functions f ∈ L2, and all t > 0,

|Ptf (x)| ≤ γ̃ (t) ‖f‖2, (7.7)

where γ̃ (t) = lims→t− γ (s).
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Proof. Let S0 be the functional family on M that consists of all finite linear combinations
with rational coefficients of indicator functions 1B , where B runs over a countable family of
precompact open sets in M , which form a base of topology of M . Note that S0 is a countable
set, S0 is a vector space over Q, and S0 is dense in L2.

Let us show the closure S̃0 of S0 under pointwise limits coincides with the set of all Borel
functions onM . Indeed, observe first that S̃0 is a linear space over R. Next, for any open Ω ⊂M ,
the function 1Ω is in S̃0 because Ω is a union of elements from the base. Hence, also functions
1Ω1 − 1Ω2 are in S̃0 for any two open sets Ω1,Ω2. Therefore, for any continuous function f on
M , all the functions of the form 1{a≤f<b} are in S̃0, for all real a, b, and so are the functions

n−1∑
k=0

αk1{ak≤f<αk+1} (7.8)

for any sequence α0 < α1 < ... < αn of reals. Since functions of the form (7.8) tend to f pointwise
for appropriate choice of partition, we see that any continuous function is in S̃0. Hence, all Borel
functions are also in S̃0.

Let S be the family of all functions of the form Ptf where f ∈ S0 and t is a positive rational.
Then S is countable, and every function from S is quasi-continuous by Lemma 7.1. Let N be a
negligible set that exists for the family S by Lemma 7.3, so that, for all functions f ∈ S0 and
for all t ∈ Q+, we have

sup
M\N

|Ptf | = esup
M

|Ptf | = ‖Ptf‖∞. (7.9)

In particular, for any x ∈M \N , we obtain

|Ptf (x)| ≤ ‖Ptf‖∞ ≤ γ (t) ‖f‖2.

Since S0 is dense in L2, we conclude by the Riesz representation theorem that, for all x ∈M \N
and t ∈ Q+, there exists pt,x ∈ L2 such that, for all f ∈ S0,

Ptf (x) =
∫

M
pt,xf dµ. (7.10)

It is clear that
‖pt,x‖2 ≤ γ (t) .

From the positivity preserving of Pt, we conclude that pt,x ≥ 0 µ-a.e. and from Pt1 ≤ 1 we
obtain that ∫

M
pt,xdµ ≤ 1. (7.11)

Since Pt (x, ·) is a probability measure, the both sides of (7.10) will survive passage to a limit in
f provided the sequence of functions is bounded and converges pointwise. Hence, we conclude
that (7.10) holds for all bounded Borel functions f . Taking monotone increasing limits, we
obtain (7.10) for all non-negative Borel functions. Hence, for any Borel function f ∈ L2, for any
x ∈M \N , and t ∈ Q+, we have

|Ptf (x)| ≤ Pt |f | ≤ ‖pt,x‖2‖f‖2 ≤ γ (t) ‖f‖2.

To finish the proof, we need to extend this inequality to real t. Let t > 0 be real, and let s < t
be a positive rational. Then we have

Ptf (x) = Ps (Pt−sf) (x) =
∫

M
ps,x (Pt−sf) dµ,
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and it follows from (7.11) and (7.6) that

|Ptf (x)| ≤ ‖Pt−sf‖∞ ≤ γ (t− s) ‖f‖2.

Passing to the limit as s→ 0 we finish the proof.

Lemma 7.5 Assume that the semigroup Pt is locally ultracontractive (that is, there exists a
exhausting sequence of open sets {Ωk}∞k=1 in M such that the semigroup PΩk

t is ultracontractive
for any Ωk). Then there exists a negligible set N ⊂ M such that, for any non-negative Borel
function f on M , for any non-empty open set U ⊂M , and for any t > 0,

sup
U\N

Ptf = esup
U

Ptf. (7.12)

Proof. It suffices to prove that

sup
U\N

Ptf ≤ esup
U

Ptf (7.13)

because the opposite inequality trivially follows from µ (N) = 0. Note that if (7.13) holds for
some set N then it holds also for any larger set N . Let us also observe that (7.13) survives
increasing monotone limits in f ; that is, if {fk} is an increasing sequence of functions for which
(7.13) holds and if fk converges to f pointwise then (7.13) holds also for the limit function f .
Indeed, by the monotone convergence theorem, Ptfk tends to Ptf pointwise. Hence, we obtain

sup
U\N

Ptf = lim
k→∞

sup
U\N

Ptfk ≤ lim
k→∞

esup
U

Ptfk ≤ esup
U

Ptf.

Note that it suffices to prove (7.13) assuming that Pt is ultracontractive. Indeed, if we know
that then applying it to PΩk

t we obtain that there exists a negligible set Nk such that, for any
non-negative Borel function f on M , for any non-empty open set U ⊂M, and for any t > 0,

sup
Ωk∩U\Nk

PΩk
t f ≤ esup

Ωk∩U
PΩk

t f.

Taking N = ∪Nk, letting k → ∞, and noticing that the sequence
{
PΩk

t f
}

is monotone increas-
ing, we obtain (7.13).

Next, it suffices to assume that f ∈ L2 = L2 (M,µ). Indeed, an arbitrary non-negative Borel
function f can be approximated by an increasing sequence {fk} of non-negative Borel functions
fk ∈ L2, which converges to f pointwise, whence the claim follows.

Hence, we assume in the sequel that Pt is ultracontractive and f is a non-negative Borel
function from L2. Let us first fix such a function f and construct a set N = Nf so that (7.13)
holds for this particular f and for all U and t. Let S0 be the functional family that consists of
all functions of the form

n−1∑
k=0

αk1{ak≤f<αk+1},

where n is any positive integer, and 0 < α1 < α2 < ... < αn are rational. Clearly, the set S0

is countable, and there is a sequence of functions {gk} ⊂ S0 that increases and converges to f
pointwise.

Let S be the family of all functions of the form Ptg where g ∈ S0 and t is a positive
rational. Then S is countable, and every function from S is quasi-continuous by Lemma 7.1.
Let N = NLemma 7.3 be a negligible set that exists for the family S by Lemma 7.3, and let
N = NLemma 7.4 be the negligible set that exists by Lemma 7.4; let us set

N = NLemma 7.3 ∪NLemma 7.4.
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In particular, we have
sup
U\N

Ptg ≤ esup
U

Ptg (7.14)

for all non-empty open sets U , all positive rationals t, and all g ∈ S0. Let {gk} be an increasing
sequence converging to f pointwise. Applying (7.14) to g = gk and passing to the limit as
k → ∞, we obtain (7.13) for rational t > 0.

Let us now show that (7.13) holds also for all real t > 0. Before that, let us verify that

sup
M\N

|Psf − Ptf | → 0 as s→ t+ . (7.15)

Indeed, by Lemma 7.4 and f ∈ L2, we obtain

sup
M\N

|Psf − Ptf | = sup
M\N

|Pt (Ps−tf − f)| ≤ γ̃ (t) ‖Ps−tf − f‖2 → 0 as s→ t+ .

Now fix a real t > 0 and let {sk} be a decreasing sequence of rationals converging to t. We
already now that

sup
U\N

Psk
f ≤ esup

U
Psk

f.

Passing to the limit as k → ∞ and using (7.15), we obtain (7.13).
Now let us show that a set N can be chosen so that (7.13) holds simultaneously for all non-

negative Borel functions from L2. There exists a countable dense subset of L2. Replacing any
function in this subset by its positive part and taking its Borel version, we obtain a countable set
S1 of non-negative Borel functions in L2 which is dense in L2

+. Choosing as above a negligible
set N = Ng for each function g ∈ S1 and then setting N =

⋃
g∈S1

Ng, we obtain a negligible set
N that serves all functions from S1 simultaneously.

Let us show that, with this set N , (7.13) holds for any non-negative Borel function f from
L2. Let {fk} be a sequence from S1 that converges to f in L2. By the ultracontractivity of Pt,
we obtain, for any t > 0,

‖Ptfk − Ptf‖∞ ≤ γ (t) ‖fk − f‖2 → 0 as k → ∞. (7.16)

By Lemma 7.4, we have, for any x ∈M \N ,

|Ptfk (x) − Ptf (x)| ≤ γ̃ (t) ‖fk − f‖2 → 0 as k → ∞. (7.17)

For any function fk, for any open set U , for any t > 0, and for any x ∈ U \N , we have

Ptfk (x) ≤ esup
U

Ptfk.

Letting k → ∞ and using (7.16) and (7.17), we obtain

Ptf (x) ≤ esup
U

Ptf

whence (7.13) follows.

8 The transition density

Definition. A family {p̃t (x, y)}t>0 of measurable functions on M ×M is called a (symmetric)
transition density of the process {Xt} if the following properties are satisfied:
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1. There exists a negligible set N ⊂M such that for all x ∈M \N , for all t > 0, and for all
bounded Borel functions f on M ,

Ptf (x) =
∫

M
p̃t (x, y) f (y) dµ (y) . (8.1)

2. For all x, y ∈M and t > 0,
p̃t (x, y) = p̃t (y, x) . (8.2)

3. For all x, y ∈M and t, s > 0,

p̃t+s (x, y) =
∫

M
p̃t (x, y) p̃s (y, z) dµ (z) . (8.3)

Clearly, if a transition density p̃t (x, y) exists then its is also a heat kernel. However, unlike
a heat kernel, which is defined almost everywhere, a transition density is defined everywhere.

Lemma 8.1 If the semigroup Pt is locally ultracontractive then a transition density exists.

Proof. Assume first that Pt is ultracontractive with a rate function γ (t). By Lemma 7.4,
there exists a negligible set N ⊂ M such that for all x ∈ M \ N , t > 0, and Borel functions
f ∈ L2,

|Ptf (x)| ≤ γ̃ (t) ‖f‖2,

where γ̃ (t) = γ (t− 0). By the Riesz representation theorem, for any x ∈ M \ N and t > 0,
there exists pt,x ∈ L2 such that

Ptf (x) = (pt,x, f) ,

for any Borel function f ∈ L2. In fact, the function pt (x, y) = pt,x (y) is a heat kernel. For all
x, y ∈M \N , define a transition density by

p̃t (x, y) = (ps,x, pt−s,y) , (8.4)

where 0 < s < t. It was shown in [30] that the right hand side in (8.4) does not depend on s
and that p̃t (x, y) is indeed a transition density on M \ N . Extending p̃t (x, y) to all x, y ∈ M
by setting it equal to 0 if x ∈ N or y ∈ N , we conclude the proof.

Assume now that Pt is locally ultracontractive, that is, PΩk
t is ultracontractive for an ex-

haustive sequence {Ωk} of open sets. By the above argument, a transition density p̃Ωk
t exists for

all Ωk, with a negligible set Nk ⊂ Ωk. Setting N =
⋃

k Nk and p̃t = limk→∞ p̃Ωk
t , we obtain a

transition density on M .

Corollary 8.2 If a heat kernel exists and is in L∞
loc then a transition density also exists and is

in L∞
loc.

Proof. Indeed, the existence of a transition density follows from Lemmas 5.2 and 8.1. The
local boundedness follows from the fact the transition density is equal to the heat kernel µ-a.e..

Lemma 8.3 Assume that a transition density p̃t (x, y) exists and is in L∞
loc. Then there exists

a negligible set N ⊂M such that, for all non-empty open sets U, V ⊂M and t > 0,

sup
x∈V \N
y∈U\N

p̃t (x, y) = esup
x∈V
y∈U

p̃t (x, y) . (8.5)
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Proof. Since p̃t ≥ 0 µ-a.e., the identity (8.1) extends to all non-negative Borel functions f .
Set p̃t,x := p̃t (x, ·) so that (8.1) takes the form

Ptf (x) =
∫

M
p̃t,xf dµ.

Changing here t to s and setting f = p̃t−s,y, where y ∈ M and 0 < s < t, we obtain, using also
(8.2) and (8.3), that for all x ∈M \N ,

Psp̃t−s,y (x) =
∫

M
p̃s,xp̃t−s,ydµ = p̃t (x, y) .

By Lemma 5.2, the semigroup Pt is locally ultracontractive. Therefore, by 7.5, we have

sup
V \N

Psf = esup
V

Psf,

for any non-negative Borel function f (we can assume that the negligible set N from Lemma
7.5 is the same as the one from Definition 8; otherwise, just take the union of the two negligible
sets). Hence, we conclude that, for any y ∈M ,

sup
x∈V \N

p̃t (x, y) = esup
x∈V

p̃t (x, y) . (8.6)

By symmetry, we have also, for any x ∈M ,

sup
y∈U\N

p̃t (x, y) = esup
y∈U

p̃t (x, y) .

Taking in (8.6) supremum in y we obtain

sup
y∈U\N

sup
x∈V \N

p̃t (x, y) = sup
y∈U\N

esup
x∈V

p̃t (x, y)

= sup
y∈U\N

inf
E,µ(E)=0

sup
x∈V \E

p̃t (x, y)

≤ inf
E,µ(E)=0

sup
y∈U\N

sup
x∈V \E

p̃t (x, y)

= inf
E,µ(E)=0

sup
x∈V \E

sup
y∈U\N

p̃t (x, y)

= esup
x∈V

esup
y∈U

p̃t (x, y) ,

whence (8.5) follows (the opposite inequality is trivial because µ (N) = 0).

Corollary 8.4 Assume that there exists a heat kernel pt (x, y) such that pt ∈ L∞
loc for all t > 0

and
pt (x, y) ≤ Ft (x, y) , (8.7)

for all t > 0 and for µ-a.a. x ∈ V , y ∈ U where V,U are non-empty open subsets of M and
Ft (x, y) is a continuous function on V ×U for any t > 0. Then there exists a transition density
p̃t (x, y) and a negligible set N ⊂M such that

p̃t (x, y) ≤ Ft (x, y) , (8.8)

for all t > 0 and x ∈ V \N , y ∈ U \N .
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Proof. By Corollary 8.2, a transition density p̃t (x, y) also exists and, hence, satisfies (8.8)
for all t > 0 and for µ-a.a. x ∈ V , y ∈ U . Let N be a negligible set from Lemma 8.3, and let us
prove that (8.8) holds for all t > 0 and x ∈ V \N , y ∈ U \N . Fix x0 ∈ V \N , y0 ∈ U \N , and
choose open sets V0 ⊂ V and U0 ⊂ U containing x0 and y0, respectively. Then, by Lemma 8.3,

p̃t (x0, y0) ≤ sup
x∈V0\N
y∈U0\N

p̃t (x, y) = esup
x∈V0
y∈U0

p̃t (x, y) ≤ esup
x∈V0
y∈U0

Ft (x, y) = sup
x∈V0
y∈U0

Ft (x, y) .

Shrinking V0 and U0 to the points x0 and y0, respectively, and noticing that

sup
x∈V0
y∈U0

Ft (x, y) → F (x0, y0) ,

we conclude the proof.

9 The exit time

In this section, we assume that (M,d) is a locally compact separable metric space, µ is a Radon
measure on M with full support, (E ,F) is a local regular Dirichlet form in L2 (M,µ), and{
{Xt}t≥0 , {Px}x∈M

}
is the associated diffusion process. The main point of the next statement

is to provide criteria for the estimate (9.3) of the exit time probability, which will be used later
in Theorem 9.3.

Theorem 9.1 Assume that {Xt} is a diffusion and {Xt} is stochastically complete. Then, for
any β > 1 and for any negligible set N ⊂M , the following are equivalent:

(i) There exists 0 < ε < 1
2 and δ > 0 such that, for all 0 < t ≤ δrβ and x ∈M \N ,

Px (Xt ∈ B (x, r)c) ≤ ε.

(ii) There exist 0 < ε < 1 and δ > 0 such that, for all 0 < t ≤ δrβ and x ∈M \N ,

Px

(
τB(x,r) ≤ t

) ≤ ε.

(iii) There exist ε > 0 such that, for all r > 0 and x ∈M \N ,

Ex

(
τB(x,r) ∧ rβ

)
≥ εrβ.

(iv) There exist 0 < ε < 1 and δ > 0 such that, for all r > 0, λ ≥ (δrβ
)−1 and x ∈M \N ,

Ex exp
(−λτB(x,r)

) ≤ ε. (9.1)

(v) There exist c, C > 0 such that, for all r, λ > 0 and x ∈M \N ,

Ex exp
(−λτB(x,r)

) ≤ C exp
(
−cλ1/βr

)
. (9.2)

(vi) There exist c, C > 0 such that, for all r, t > 0 and x ∈M \N ,

Px

(
τB(x,r) ≤ t

) ≤ C exp

(
−c
(
rβ

t

) 1
β−1

)
(9.3)
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Remark. The hypothesis of stochastic completeness is only used in the proof of the implication
(i) =⇒ (ii). As one can see from the proof, without stochastic completeness all the conditions
(ii) − (vi) are still equivalent and imply (i).

Proof. (i) =⇒ (ii) . Let us set

mt (r) := sup
0<s≤t

sup
z∈M\N

Pz (Xt ∈ B (z, r)c) .

Fix x ∈M \N and set A = B (x, r), U = B (x, 2r). By the stochastic completeness of {Xt}, we
have

Px (Xt ∈ A) = 1 − Px (Xt ∈ Ac) ≥ 1 −mt (r) , (9.4)

whereas by Lemma 10.1

Px (Xt ∈ A) − PU
x (Xt ∈ A) ≤ sup

0≤s≤t
sup

z∈∂U\N
Pz (Xs ∈ A) . (9.5)

U

Figure 1: The ball U = B (x, 2r) and a point z ∈ ∂U .

For any 0 ≤ s ≤ t and z ∈ ∂U \N we have d (z,A) ≥ r and hence

Pz (Xs ∈ A) ≤ Pz (Xs ∈ B (z, r)c) ≤ mt (r)

(see Fig. 1). Subtracting (9.5) from (9.4), we obtain

PU
x (Xt ∈ A) ≥ 1 − 2mt (r) ,

whence it follows by (5.2) that

Px (τU > t) = PU
x (Xt ∈ U) ≥ 1 − 2mt (r) .

Therefore,
Px (τU ≤ t) ≤ 2mt (r) , (9.6)

which, by hypothesis, is bounded by 2ε provided t ≤ δrβ. Noticing that 2ε < 1 and renaming
2ε by ε, we finish the proof.

Note that the inequality (9.6) can also be extracted from [1, Lemma 3.9].
(ii) =⇒ (iii) . Denoting τ = τB(x,r), we have

Ex

(
τ ∧ rβ

)
≥ Ex

(
1{τ>δrβ}τ ∧ rβ

)
≥ Px

(
τ > δrβ

)
(δ ∧ 1) rβ ≥ (1 − ε) (δ ∧ 1) rβ,

whence the claim follows.
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(iii) =⇒ (iv) . For all non-negative reals λ, τ , t, we have the elementary inequality

e−λτ ≤ 1 − λe−λt (τ ∧ t) ,
which is trivially verified by considering two cases τ ≥ t and τ < t. Therefore, for τ = τB(x,r)

and t = rβ, we obtain

Exe
−λτ ≤ 1 − λe−λrβ

Ex

(
τ ∧ rβ

)
≤ 1 − εrβλe−λrβ

.

Setting λ = r−β, we obtain
Exe

−λτ ≤ 1 − εe−1.

The same inequality holds also for all λ ≥ r−β and, hence, the condition (iv) is satisfied with
δ = 1 (in fact, it is satisfied with any δ > 0).

(iv) =⇒ (v) . For a positive number n, set ρ = r/n, and consider the sequence of balls
Bk = B (x, kρ), k = 1, 2, ..., n. Set τ k = τBk

and observe that, for any x ∈M \N ,

Exe
−λτk+1 = Ex

(
e−λτke−λ(τk+1−τk)

)
= Ex

(
e−λτkEXτk

e−λτk+1

)
. (9.7)

Since Xτk
∈ ∂Bk \ N with Px-probability 1 and, for any y ∈ ∂Bk, we have τk+1 ≥ τB(y,ρ) and

hence
Eye

−λτk+1 ≤ Eye
−λτB(y,ρ) ,

we obtain from (9.7), for any x ∈M \N ,

Exe
−λτk+1 ≤ Exe

−λτk sup
y∈∂Bk\N

Eye
−λτB(y,ρ) (9.8)

(see Fig. 2).

ρ

τ

τ

τ

Figure 2: The stopping times τk and τk+1

Now choose n so that

λ ≥ nβ

δrβ
=

1
δρβ

(9.9)

(if no positive integer n satisfies (9.9) then (9.2) is trivially true for large enough C). Applying
the hypothesis (9.1) in the ball B (y, ρ), we obtain, for any y ∈M \N ,

Eye
−λτB(y,ρ) ≤ ε
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whence by (9.8)
Exe

−λτk+1 ≤ εExe
−λτk .

Iterating this inequality and noticing that τB(x,r) = τn we conclude that for n satisfying (9.9),

Exe
−λτB(x,r) ≤ εn = e−an,

where a = log 1
ε > 0. Taking the largest n satisfying the inequality (9.9) and noticing that, for

this n,
n ≥ (δλ)1/β r − 1,

we obtain
Exe

−λτB(x,r) ≤ exp
(
−aδ1/βλ1/βr + a

)
,

which was to be proved.
(v) =⇒ (vi) . We have, for τ = τB(x,r) and λ > 0,

Px (τ ≤ t) = Px

(
e−λτ ≥ e−λt

)
≤ eλtExe

−λτ ≤ C exp
(
λt− cλ1/βr

)
.

Choosing λ =
(

cr
2t

) β
β−1 , we obtain the claim.

(vi) =⇒ (ii) . We have

Px

(
τB(x,r) ≤ t

) ≤ C exp

(
−c
(
rβ

t

) 1
β−1

)
.

If t ≤ δrβ and δ is small enough then the right hand side can be made arbitrarily small, whence
the claim follows.

(ii) =⇒ (i) This is trivial because

Px (Xt ∈ B (x, r)c) ≤ Px

(
τB(x,r) ≤ t

)
.

Lemma 9.2 If f is a bounded non-negative Borel function on M and

u :=
∫ ∞

0
Ptf dt <∞

then, for any λ ≥ 0,

u =
∫ ∞

0
e−λtPt (f + λu) dt. (9.10)

Remark. If M is a precompact open set on a Riemannian manifold and Pt is the transition
function associated with the Dirichlet Laplacian on M then the function u solves the equation
∆u = −f with the vanishing Dirichlet boundary condition. Subtracting λu from the both sides,
we obtain

∆u− λu = − (f + λu) ,

whence (9.10) follows. The proof below is an abstract version of this argument.
Proof. If λ = 0 then (9.10) is trivial, so we can assume λ > 0. For any s > 0, we have

u =
∫ s

0
Ptf dt+

∫ ∞

s
PsPt−sf dt =

∫ s

0
Ptf dt+ Ps

∫ ∞

s
Pt−sf dt =

∫ s

0
Ptf dt+ Psu.
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Multiplying this identity by λe−λs and integrating in s from 0 to ∞, we obtain

u =
∫ ∞

0
λe−λs

(∫ s

0
Ptf dt

)
ds+

∫ ∞

0
λe−λsPsu ds

=
∫ ∞

0

(∫ ∞

t
λe−λsds

)
Ptf dt+

∫ ∞

0
λe−λsPsu ds

=
∫ ∞

0
e−λtPtf dt+

∫ ∞

0
e−λsPs (λu) ds,

whence (9.10) follows.

Theorem 9.3 If {Xt} is a diffusion process and (Eβ) holds then there exist positive constant c
and C (depending on the constants in the condition (Eβ)) such that

Px

(
τB(x,r) ≤ t

) ≤ C exp

(
−c
(
rβ

t

) 1
β−1

)
, (9.11)

for all r, t > 0 and for all x ∈M \N , where N is the negligible set from the condition (Eβ).

Remark. The fact that (Eβ) implies (9.11) is basically due to M.Barlow and can be extracted
from [1, Theorem 3.11]. Here we give a new proof of that. See also [17] for an alternative proof
of Theorem 9.3, and [15, Proposition 7.1], [16, Lemma 6.3] for similar estimates for random
walks on graphs.

Proof. Fix a point x ∈M \N and r > 0, and set U = B (x, r). Consider a function u in U
defined by

u := E·τU =
∫ ∞

0
PU

t 1dt.

The upper bound in the condition (Eβ) implies

sup
U\N

u ≤ C ′rβ. (9.12)

Indeed, for any y ∈ U \N we have U ⊂ B (y, 2r) and, hence,

EyτU ≤ EyτB(y,2r) ≤ C (2r)β .

Set
λ =

1
supU\N u

, (9.13)

and notice that λu ≤ 1 in U \N ; since the set N is negligible, this implies that everywhere

PU
t (λu) ≤ PU

t 1.

By Lemma 9.2 we obtain

u =
∫ ∞

0
e−λtPU

t (1 + λu) dt ≤ 2
∫ ∞

0
e−λtPU

t 1 dt.

On the other hand, for any λ > 0, we have the identity

Eye
−λτU = 1 − λ

∫ ∞

0
e−λtPU

t 1 (y) dt, (9.14)
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which follows from (6.1) with ϕ (t) = λe−λt. Comparing the above two lines, we obtain, for λ
as in (9.13) and for all y ∈M ,

Eye
−λτU ≤ 1 − λ

2
u (y) . (9.15)

Using the lower bound in (Eβ) and (9.12), we obtain

u (x) ≥ crβ ≥ c′ sup
U\N

u =
c′

λ
,

which together with (9.15) yields

Exe
−λτU ≤ 1 − c′

2
.

Clearly, the last inequality remains true also for λ ≥ 1
supU\N u and, in particular, for λ ≥ 1

crβ .
The proof is concluded by application of the part (iv) ⇒ (vi) of Theorem 9.1.

10 Estimating heat kernel using exit probabilities

In this section, we assume that the form (E ,F) is a local, and hence
{
{Xt}t≥0 , {Px}x∈M

}
is a

diffusion process. As before, we denote by τU the first exit time from a set U (see (1.3)). For
any open set U ⊂M , define the exit probability function ψU (x, t) as follows:

ψU (x, t) = Px (τU ≤ t) .

In words, ψU (x, t) is the Px-probability that Xt exits U before time t. Our main result in this
section is Theorem 10.4 that provides a certain upper bound of the heat kernel of Xt using the
exit probabilities.

The next lemma will not be directly used in the proof of Theorem 10.4, but it introduces
the argument in a simpler setting. Besides, a weaker version of this lemma will be used in the
proof of Theorem 1.1. Recall that Pt is the transition function defined in Section 5.

Lemma 10.1 Let N ⊂M be a negligible set for the diffusion {Xt}. Let U be a non-empty open
subset of M , and f be a non-negative Borel function on M such that f ≡ 0 in M \ U . Then,
for all x ∈ U \N and all t > 0,

Ptf(x) ≤ PU
t f (x) + ψU (x, t) sup

0<s≤t
sup

z∈∂U\N
Psf (z) . (10.1)

Remark. One can always take here N = ∅, which is a perfectly good choice in the case when the
function z → Psf (z) is continuous. Otherwise, the supremum of Psf (z) over the full boundary
∂U may be not under control, so one has to reduce it by removing some singularities of this
function.

We will use (10.1) for f = 1B , where B is a Borel subset of U , in which case we obtain

Px (Xt ∈ B) ≤ PU
x (Xt ∈ B) + ψU (x, t) sup

0<s≤t
sup

z∈∂U\N
Pz (Xs ∈ B) . (10.2)

Proof. Without loss of generality, we can assume that the function f is bounded and its
support is compact (otherwise, approximate f by an increasing sequence of bounded functions
with compact supports). Writing τ = τU , we obtain by the strong Markov property

Ptf (x) = Exf (Xt)
= Ex

(
1{τ>t}f (Xt)

)
+ Ex

(
1{τ≤t}f (Xt)

)
= EU

x f (Xt) + Ex

(
1{τ≤t}EXτf (Xt−τ )

)
= PU

t f (x) + Ex

(
1{τ≤t}Pt−τf (Xτ )

)
. (10.3)
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For any x ∈ U, we have Xτ ∈ ∂U with Px-probability 1. If x ∈ U \ N then Px (Xτ ∈ N) = 0
and hence Xτ ∈ ∂U \N with Px-probability 1. Therefore, we obtain, for any x ∈ U \N ,

Pt−τf (Xτ ) ≤ sup
0≤s≤t

sup
z∈∂U\N

Psf (z) Px-a.s.,

whence
Ex

(
1{τ≤t}Pt−τf (Xτ )

) ≤ Px (τ ≤ t) sup
0≤s≤t

sup
z∈∂U\N

Psf (z) . (10.4)

In fact, the range 0 ≤ s ≤ t for the variable s can be replaced by 0 < s ≤ t for the following
reason: if τ = t (which corresponds to s = 0) then Pt−τf (Xτ ) = f (Xτ ) = 0 because f = 0 on
∂U . Hence, (10.1) follows from (10.3) and (10.4) with the above improvement.

Let At be the σ-algebra of events in the space of all continuous paths ω : [0,+∞) → M ,
which is generated by all events {ω : ω (s) ∈ B} where 0 ≤ s ≤ t and B is a Borel set in M . For
any At-measurable random variable ξ, define a random variable ξt by

ξt (ω) = ξ
(
ωt
)
,

where ωt := ω (t− ·) . Although the path ωt is defined only on [0, t], the value ξ
(
ωt
)

still makes
sense because ξ is At-measurable.

Lemma 10.2 If ξ is a non-negative At-measurable random variable then, for all non-negative
Borel functions f, g on M ,∫

M
Ex (ξf (Xt)) g (x) dµ (x) =

∫
M

Ey

(
ξtg (Xt)

)
f (y) dµ (y) . (10.5)

Proof. It suffices to verify (10.5) for cylindrical random variables ξ, that is, for ξ in the
form

ξ = h1 (Xt1)h2 (Xt2) ...hn (Xtn)

where 0 < t1 < t2 < ... < tn < t and hk are non-negative Borel functions. For such ξ, (10.5)
amounts to the identity∫

M
Ex (f(Xt)hn(Xtn)...h1(Xt1)g(X0)) dµ(x) =

∫
M

Ey (g(Xt)h1(Xt−t1)...hn(Xt−tn)f(X0)) dµ(y),

which was proved in [9, Lemma 4.1.2, p.135].
The next statement is crucial for Theorem 10.4, and is a refinement of Lemma 10.1.

Lemma 10.3 Let N ⊂ M be a negligible set for the diffusion {Xt}, and let U and V be two
non-empty open subsets of M such that either U ⊂ V or U ∩ V = ∅. Let f, g be non-negative
Borel functions on M , and let f |M\U ≡ 0. Then, for all a, b, t > 0 such that a+ b = t, we have∫

V
(Ptf) g dµ ≤

∫
V

(PV
t f)g dµ (10.6)

+ sup
b≤s≤t

sup
v∈∂V \N

Psf (v)
∫

V
ψV (x, a) g (x) dµ (x) (10.7)

+ sup
a≤s≤t

sup
u∈∂U\N

Psg (u)
∫

U
ψU (y, b) f (y) dµ (y) . (10.8)
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Remark. If in addition g|M\V = 0 then integration in all terms in (10.6)-(10.8) can be extended
to entire space M . In this case, the left hand side of (10.6) is symmetric in f, g (while the right
hand side of (10.6) is always symmetric in f, g). Observe also, that if U and V are disjoint then
the term

∫
V

(PV
t f
)
g dµ in (10.6) vanishes because f = 0 in V and hence PV

t f = 0.
Proof. Without loss of generality, we can assume that both functions f and g are bounded

and with compact support, so that all the terms in (10.6)-(10.8) are finite (in general, approxi-
mate each of the functions f and g by an increasing sequence of bounded functions with compact
supports). Using Ptf (x) = Exf (Xt) and

PV
t f (x) = Ex

(
1{τV >t}f (Xt)

)
,

we obtain
Ptf (x) ≤ PV

t f (x) + Ex

(
1{τV ≤a}f (Xt)

)
+ Ex

(
1{a≤τV ≤t}f (Xt)

)
. (10.9)

Assuming x ∈ V \N , let us estimate the middle term in (10.9) similarly to (10.4), that is

Ex

(
1{τV ≤a}f (Xt)

)
= Ex

(
1{τV ≤a}EXτV

f (Xt−τV
)
)

≤ Px (τV ≤ a) sup
b≤s≤t

sup
v∈∂V \N

Psf (v) ,

which implies∫
V

Ex

(
1{τV ≤a}f (Xt)

)
g (x) dµ(x) ≤ sup

b≤s≤t
sup

v∈∂V \N
Psf (v)

∫
V

Px (τV ≤ a) g(x)dµ(x). (10.10)

To estimate the last term in (10.9), consider the random variable ξ = 1{a≤τV ≤t}. For any
continuous path ω that intersects ∂V between times 0 and t, we have

τU (ω) ≤ t− τV

(
ωt
)
,

because by hypothesis ∂V is outside U (see Fig. 3 and 4).

τ (ω)

τ (ω)

ω(0)

ω(t)

Figure 3: Case U ⊂ V .

Therefore, a ≤ τV (ωt) ≤ t implies τU (ω) ≤ t−a = b, which means that ξ
(
ωt
) ≤ 1{τU≤b} (ω)

and hence ξt ≤ 1{τU≤b}. Using (10.5) and f |M\U = 0, we obtain∫
M

Ex

(
1{a≤τV ≤t}f (Xt)

)
g (x) dµ (x) =

∫
M

Ey

(
ξtg (Xt)

)
f (y) dµ (y)

≤
∫

U
Ey

(
1{τU≤b}g (Xt)

)
f (y) dµ (y) .
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τ (ω)

ω(0) ω(t)

τ (ω)

Figure 4: Case of disjoint U and V .

Similarly to (10.10), we obtain, for any y ∈ U \N ,

Ey

(
1{τU≤b}g (Xt)

) ≤ Py (τU ≤ b) sup
a≤s≤t

sup
u∈∂U\N

Psg (u) ,

whence it follows that∫
V

Ex

(
1{a≤τV ≤t}f (Xt)

)
g(x)dµ(x) ≤ sup

a≤s≤t
sup

u∈∂U\N
Psg(u)

∫
U

Py (τU ≤ b) f(y)dµ(y). (10.11)

Finally, integrating (10.9) over V against measure g (x) dµ(x) and using (10.10) and (10.11), we
finish the proof.

Theorem 10.4 Assume that the diffusion {Xt} has a heat kernel pt (x, y) which, for any t > 0,
is a L∞

loc-function on M ×M . Let U and V be arbitrary non-empty open subsets of M such that
either U ⊂ V or U ∩ V = ∅, and U ′ and V ′ be open sets containing ∂U and ∂V , respectively.
Then, for µ-a.a. x ∈ V , y ∈ U and for all t > 0, we have

pt (x, y) ≤ pV
t (x, y) + ψV

(
x, t

2

)
sup

t/2≤s≤t
esup
v∈V ′

ps (v, y) + ψU
(
y, t

2

)
sup

t/2≤s≤t
esup
u∈U ′

ps (u, x) . (10.12)

Remark. If V and U are disjoint then pV
t (x, y) = 0 so that we have

pt (x, y) ≤ ψV
(
x, t

2

)
sup

t/2≤s≤t
esup
v∈V ′

ps (v, y) + ψU
(
y, t

2

)
sup

t/2≤s≤t
esup
u∈U ′

ps (u, x) . (10.13)

Another important particular case, which will be used in the proof of Theorem 1.1, is when
U = V.

Remark. If the heat kernel is continuous then (10.12) holds for all x ∈ V , y ∈ U , and the sets
V ′, U ′ can be replaced by ∂V and ∂U , respectively.

The estimates (10.12) and (10.13) were proved in [14] for diffusions on Riemannian manifolds,
where the heat kernel is a smooth function. A particular case of (10.12) for x = y was proved
in [22, Lemma 4.5] in an abstract setting but still assuming that the heat kernel is continuous.
Without continuity of the heat kernel, a major difficulty is to ensure the use of the essential
supremum of the heat kernel rather than the supremum. The hypothesis that the heat kernel
is locally bounded seems to be technical, but it is satisfied in all cases of interest when one may
hope to use (10.12). Indeed, without local boundedness of the heat kernel, the terms in (10.12)
containing the essential supremum of ps, may be equal to +∞.
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Proof. By Lemma 5.2, the semigroup Pt is locally ultracontractive. By Lemma 7.5, there
exists a negligible set N ⊂M such that

sup
W\N

Psh = esup
W

Psh

for any non-negative Borel function h, any non-empty open set W ⊂M, and for any s > 0.
Assuming that f and g are non-negative Borel functions supported in U and V , respectively,

we have
sup

∂V \N
Psf ≤ sup

V ′\N
Psf = esup

V ′
Psf,

and, similarly,
sup

∂U\N
Psg ≤ esup

U ′
Psg.

Substituting these inequalities into the estimate of Lemma 10.3, we obtain∫
V

(Ptf) g dµ ≤
∫

V

(PV
t f
)
g dµ

+ sup
b≤s≤t

esup
v∈V ′

Psf (v)
∫

V
ψV (x, a) g (x) dµ (x)

+ sup
a≤s≤t

esup
u∈U ′

Psg (u)
∫

U
ψU (y, b) f (y) dµ (y) . (10.14)

Since
Psf (v) =

∫
U
ps (v, y) f (y) dµ (y) µ-a.a. v ∈M,

we obtain
esup
v∈V ′

Psf (v) ≤
∫

U
esup
v∈V ′

ps (v, y) f (y) dµ (y) .

Estimating similarly Psg (u) , we obtain from (10.14)∫∫
V ×U

pt(x, y)g(x)f(y)dµ(x)dµ(y) ≤
∫∫

V ×U

pV
t (x, y) g(x)f(y)dµ(x)dµ(y)

+
∫∫

V ×U

sup
b≤s≤t

esup
v∈V ′

ps (v, y) ψV (x, a) g(x)f(y)dµ(x)dµ(y)

+
∫∫

V ×U

sup
a≤s≤t

esup
u∈U ′

ps (u, x) ψU (y, b) g(x)f(y)dµ(x)dµ(y).

Setting a = b = t/2 and noticing that the functions of the form g(x)f (y) span all L1 (V × U,µ× µ),
we finish the proof.

Example 10.5 Here is a typical example of application of Theorem 10.4. Assume for simplicity
that the heat kernel pt (x, y) is continuous in x, y for any t > 0, and that we are given the following
two conditions:

• For some ν > 0 and all t > 0,

sup
x,y∈M

pt (x, y) ≤ Ct−ν. (10.15)
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• For any ε > 0 there exists δ > 0 such that for all x ∈M and 0 < t ≤ δrβ,

Px

(
τB(x,r) ≤ t

) ≤ ε.

Then by Theorem 9.1(ii) =⇒ (vi) we have, for all positive t, r, that

ψB(x,r) (x, t) ≤ C exp

(
−c
(
rβ

t

) 1
β−1

)
. (10.16)

Fix two distinct points x, y ∈M , set r = 1
2d (x, y) and observe that, by Theorem 10.4

pt (x, y) ≤ ψB(x,r)
(
x, t

2

)
sup

t/2≤s≤t
v∈∂B(x,r)

ps (v, y) + ψB(y,r)
(
y, t

2

)
sup

t/2≤s≤t
u∈∂B(y,r)

ps (u, x) . (10.17)

Substituting (10.15) and (10.16) into (10.17), we obtain

pt (x, y) ≤ Ct−ν exp

(
−c
(
rβ

t

) 1
β−1

)
.

11 Volume doubling

In this section, we assume that (M,d) is a metric space and µ is a Borel measure on M . The
following lemmas are well-known in the setting of complete manifolds (see for example [18], [10],
[26]).

Lemma 11.1 If (V D) holds on M then there exists a positive constant α such that for all
x, y ∈M and 0 < r ≤ R

V (x,R)
V (y, r)

≤ C

(
R+ d (x, y)

r

)α

. (11.1)

Proof. If x = y then R ≤ 2nr where

n = �log2
R

r
� ≤ log2

R

r
+ 1,

whence
V (x,R)
V (x, r)

≤ Cn = 2n log2 C ≤ C

(
R

r

)log2 C

. (11.2)

If x �= y then B (x,R) ⊂ B (y,R+ d) where d = d (x, y), and by

V (x,R)
V (y, r)

≤ V (y,R+ d)
V (y, r)

≤ C

(
R+ d

r

)log2 C

.

Lemma 11.2 If (M,d) is connected and satisfies (V D) then there exist positive constants α′, c
such that for all x ∈M and 0 < r ≤ R

V (x,R)
V (x, r)

≥ c

(
R

r

)α′

, (11.3)

provided B (x,R)c is non-empty.
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Remark. If in addition diamM = ∞ then B (x,R)c is always non-empty and, hence, (11.3)
holds for all x ∈M and 0 < r ≤ R.

Proof. The condition B (x,R)c �= ∅ implies that B (x, ρ′) \ B (x, ρ) �= ∅ for all 0 < ρ < R
and ρ′ > ρ. Indeed, if B (x, ρ′) \B (x, ρ) = ∅ then M splits into disjoint union of two open sets:
B (x, ρ) and B (x, ρ)

c
. Since M is connected, the set B (x, ρ)

c
must be empty, which contradicts

the assumption that B (x,R)c is non-empty.
If 0 < ρ ≤ R/2 then by the above the annulus B

(
x, 5

3ρ
) \B (x, 4

3ρ
)

is non-empty. Let y be
a point in this annulus. Then by (11.1) V (x, ρ) ≤ CV (y, ρ/3) whence

V (x, 2ρ) ≥ V (x, ρ) + V (y, ρ/3) ≥ (1 + ε)V (x, ρ) , (11.4)

where ε = C−1.
For any 0 < r ≤ R, we have 2nr ≤ R where

n = �log2

R

r
� ≥ log2

R

r
− 1.

For any 0 ≤ k ≤ n− 1 we have 2kr ≤ R/2 whence by (11.4)

V
(
x, 2k+1r

)
≥ (1 + ε)V

(
x, 2kr

)
.

Iterating this inequality, we obtain

V (x,R)
V (x, r)

≥ V (x, 2nr)
V (x, r)

≥ (1 + ε)n = 2n log2(1+ε) ≥ (1 + ε)−1

(
R

r

)log2(1+ε)

,

which was to be proved.

Corollary 11.3 If (M,d) is connected and satisfies (V D) then µ (M) = ∞ if and only if
diam (M) = ∞.

Proof. If diam (M) < ∞ then M is a ball of a finite radius, and µ (M) < ∞ by (V D). If
diam (M) = ∞ then Bc (x,R) is non-empty for any ball B (x,R). In this case, (11.3) implies
that V (x,R) → ∞ as R→ ∞, that is µ (M) = ∞.

12 The main result

Here we state and prove our main result, which is more general than Theorem 1.1 from In-
troduction. In addition to conditions introduced in Section 2, consider one more condition as
follows.

(Eβ) : There are positive constants C and ν such that, for any ball B in M of radius r and for
any non-empty open set Ω ⊂ B,

E (Ω) := esup
x∈Ω

ExτΩ ≤ Crβ

(
µ (Ω)
µ (B)

)ν

. (12.1)

12.1 Statement and the flowchart of the proof

Theorem 12.1 Let (M,d) is a locally compact separable metric space, µ be a Radon measure
on M with full support, and (E ,F) be a regular Dirichlet form in L2 (M,µ). Assume in addition
that:
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(a) (M,d) is connected and diam (M) = ∞.

(b) Measure µ satisfies the volume doubling property (V D).

(c) The form (E ,F) is local.

(d) The process {Xt}t≥0 is stochastically complete.

Then, for any β > 1, we have the following equivalences:

(UEβ) ⇔ (ΦUEβ)
⇔ (DUEβ) + (Pβ) ⇔ (

Eβ

)
+ (Pβ) ⇔ (FKβ) + (Pβ)

⇔ (DUEβ) + (Eβ) ⇔ (
Eβ

)
+ (Eβ) ⇔ (FKβ) + (Eβ) .

The proof is covered by the chains of implications as on the following diagram:

(DUEβ)
(Eβ)

T.9.3=⇒ (DUEβ)
(Pβ)

?=⇒ (UEβ) trivial=⇒ (ΦUEβ) ?=⇒

(DUEβ)
(Pβ)

?=⇒
(
Eβ

)
(Pβ)

T.9.1=⇒
(
Eβ

)
(Eβ)

L.6.1=⇒ (FKβ)
(Eβ)

T.9.3=⇒

(FKβ)
(Pβ)

?=⇒ (DUEβ)
(Pβ)

from previous line
=⇒ (DUEβ)

(Eβ)
.

The implications marked by ‘?’ are yet to be proved. The other implications follow from
already known results as it is indicated on the diagram. Indeed, Theorem 9.3 obviously yields
(Eβ) =⇒ (Pβ), which is used twice on the diagram, and Lemma 6.1 yields

(
Eβ

)
=⇒ (FK). Let

us explain the implication (
Eβ

)
+ (Pβ) T.9.1=⇒ (

Eβ

)
+ (Eβ) .

Indeed, by Theorem 9.1(ii) ⇒ (iii), the condition (Pβ) implies that there exist ε > 0 such that,
for all x ∈M \N (where N is a negligible set),

Ex

(
τB(x,r) ∧ rβ

)
≥ εrβ,

whence it follows that ExτB(x,r) ≥ εrβ, which is the lower bound in the condition (Eβ). The
upper bound in (Eβ) follows trivially from

(
Eβ

)
by taking Ω = B in (12.1).

Note also that the last implication

(DUEβ) + (Pβ) =⇒ (DUEβ) + (Eβ)

holds because, by virtue of the previous implications on the diagram, we have

(DUEβ) + (Pβ) =⇒ (Eβ) .

The rest of the diagram amounts to the following implications that will be proved below:

• (FKβ) + (Pβ) =⇒ (DUEβ)

• (DUEβ) + (Pβ) =⇒ (UEβ)

• (DUEβ) =⇒ (
Eβ

)
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• (ΦUEβ) =⇒ (Pβ) (the fact that (ΦUEβ) =⇒ (DUEβ) is trivial).

Let us explain how Theorem 12.1 implies Theorem 1.1 from Introduction. Apart from
having additional equivalence in Theorem 12.1, the main distinction is that in Theorem 1.1 one
assumes a priori that a transition density exists and is a continuous function, whereas in Theorem
12.1 the existence of a heat kernel has to be proved and the conditions used are supposed to
holds almost everywhere or outside a negligible set. In the case of Theorem 1.1, a heat kernel
admits a continuous version, which greatly simplifies the arguments in the preceding sections.
In particular, all essential supremums can be replaced by supremums and all negligible sets in
all the hypotheses and statements can be set to be empty (hence, there is no need in the results
of Section 7 whatsoever). Following the same line of argument yields Theorem 1.1.

The condition (a) is used only in the proof of the implication (DUEβ) =⇒ (
Eβ

)
via Lemma

11.2 and Corollary 11.3. The condition (c) (the locality of the form (E ,F)) is explicitly used in
Theorem 9.1, in all the statements of Section 10, and hence in all the results that use them. In
particular, the condition (c) is essential for obtaining (UEβ) but the implication (FK)+(Pβ) =⇒
(DUEβ) goes without it. The condition (d) of stochastic completeness is used only in the proof
of the implication (ΦUEβ) =⇒ (Pβ) via Theorem 9.1(i) =⇒ (ii).

12.2 Proof of (FK) + (P ) ⇒ (DUE)

The following lemma is a modification of the iteration argument of Kigami [22, proof of Theorem
2.9]. This argument is enhanced, simplified, and generalized here to get rid of the hypothesis
(1.16) and of the continuity of the heat kernel, which were used in [22].

Lemma 12.2 Let the form (E ,F) be local and let the following two conditions are satisfied.

• For any ball B = B (x0, r) on M , a heat kernel pB
t exists and satisfies the estimate

esup
x,y∈B

pB
t (x, y) ≤ Ψt (x0, r) , (12.2)

for all x0 ∈M and r, t > 0, where Ψt (x0, r) is a positive function that satisfies the following
doubling condition:

Ψt′
(
x0, r

′) ≤ KΨt (x0, r) (12.3)

for all r ≤ r′ ≤ 2r and t/2 ≤ t′ ≤ t and some constant K.

• There exists a positive, strictly monotone increasing function ϕ (t) on (0,+∞) such that∫
0
ϕ (s)

ds

s
<∞ (12.4)

and, for a negligible set N ⊂M and for all x ∈M \N , t > 0, and r ≥ ϕ (t),

Px

(
τB(x,r) ≤ t

) ≤ 1
4K

. (12.5)

Then a heat kernel pt exists and satisfies the following estimate, for all x0 ∈M and t > 0,

esup
x,y∈B(x0,ϕ(t))

pt (x, y) ≤ 2KΨt (x0, ϕ (t)) .
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Proof. Let W ⊂ U ⊂ U ′ ⊂ Ω be open subsets of M , and U ⊂ U ′. If Ω is a ball then, by
(12.2), the heat kernel pΩ

t is bounded. Applying the inequality (10.12) of Theorem 10.4 in Ω
(instead of M) we obtain

pΩ
t (x, y) ≤ pU

t (x, y) + ψU
(
x, t

2

)
sup

s/2≤s≤t
esup
u∈U ′

pΩ
s (u, y) + ψU

(
y, t

2

)
sup

t/2≤s≤t
esup
u∈U ′

pΩ
s (u, x) ,

for all t > 0 and µ-a.a. x, y ∈ U , whence it follows that

esup
x,y∈W

pΩ
t (x, y) ≤ esup

x,y∈U
pU

t (x, y) + 2 esup
x∈W

ψU
(
x, t

2

)
sup

t/2≤s≤t
esup
x,y∈U ′

pΩ
s (x, y) . (12.6)

Fix x0 ∈ M , 0 < r < ρ′ < ρ < R, and set W = B (x0, r), U = B (x0, ρ
′), U ′ = B (x0, ρ),

Ω = B (x0, R). By (12.2) we have

esup
x,y∈U

pU
t (x, y) ≤ esup

x,y∈U ′
pU ′

t (x, y) ≤ Ψt (x0, ρ) . (12.7)

By (12.5) we have, for all x ∈W \N ,

ψU
(
x, t

2

) ≤ ψB(x,ρ′−r)
(
x, t

2

) ≤ 1
4K

, (12.8)

provided ρ′ − r ≥ ϕ
(

t
2

)
. This will be the case if

ρ− r ≥ ϕ (t) (12.9)

and if ρ′ is sufficiently close to ρ. Assuming that and writing for simplicity

esup
V

pΩ
t := esup

x,y∈V
pΩ

t (x, y) ,

we obtain from above, for ε := 1
2K ,

esup
B(x0,r)

pΩ
t ≤ Ψt (x0, ρ) + ε sup

t/2≤s≤t
esup

B(x0,ρ)
pΩ

s

≤ Ψt (x0, ρ) + ε esup
B(x0,ρ)

pΩ
t/2, (12.10)

where we have used also the fact that, by Lemma 3.1, the function s → esupV p
Ω
s is non-

increasing.
For a fix t > 0, set tn = t/2n, n ≥ 0, and

rn = ϕ (t0) + ϕ (t1) + ...+ ϕ (tn−1) , n ≥ 1. (12.11)

It follows from (12.11) that

rn ≤ 2
∫ 2t

0
ϕ (s)

ds

s
=: I (t) <∞.

Assume that R ≥ I (t) so that all the balls Bn = B (x0, rn) are in Ω (see Fig. 5).
Using rn+1 − rn = ϕ (tn) and observing that this condition matches (12.9), we obtain from

(12.10)
esup
Bn

pΩ
tn ≤ Ψtn (x0, rn+1) + ε esup

Bn+1

pΩ
tn+1

.

Since ϕ (t) is increasing in t, (12.11) implies

rn+1 = rn + ϕ (tn) ≤ rn + ϕ (tn−1) ≤ 2rn,
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Ω

Figure 5: The sequences of times {tn}∞n=0 and balls {Bn}∞n=0.

which, by the doubling property of Ψ, yields

Ψtn (x0, rn+1) ≤ KΨtn−1 (x0, rn)

and hence
Ψtn (x0, rn+1) ≤ KnΨt0 (x0, r1) ≤ Kn+1Ψt0 (x0, r0) .

Therefore, we obtain
esup
Bn

pΩ
tn ≤ Kn+1Ψt (x0, r0) + ε esup

Bn+1

pΩ
tn+1

,

whence it follows by iteration that

esup
B0

pΩ
t ≤ KΨt (x0, r0)

(
1 +Kε+ (Kε)2 + ...

)
+ εn esup

Bn

pΩ
tn . (12.12)

Since ε = 1
2K , the above geometric series converges. Applying (12.2) for the ball Ω = B (x0, R),

we obtain
esup
Bn

pΩ
tn ≤ esup

Ω
pΩ

tn ≤ Ψtn (x0, R) ≤ KnΨt (x0, R)

and hence
lim

n→∞ εn esup
Bn

pΩ
tn = 0.

Letting n→ ∞ in (12.12) we obtain

esup
B0

pΩ
t ≤ 2KΨt (x0, r0) . (12.13)

Finally, letting R→ ∞ and noticing that, by Lemma 5.1, pΩ
t → pt, we obtain that a heat kernel

pt (x, y) exists and satisfies the same estimate, which was to be proved.
Now let prove that (FKβ) + (Pβ) =⇒ (DUEβ) . Let B be a ball of radius r > 0 on M . Let

us restate (FKβ) as follows: for any non-empty open set Ω ⊂ B,

λmin (Ω) ≥ aµ (Ω)−ν
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where
a =

c

rβ
µ (B)ν .

Therefore, by Lemma 4.2, a heat kernel pB
t exists and satisfies the upper bound

pB
t (x, y) ≤ C (at)−1/ν ,

that is

pB
t (x, y) ≤ C

µ (B)

(
rβ

t

)1/ν

, (12.14)

for µ-a.a. x, y ∈ B and all t > 0. Hence, the first condition of Lemma 12.2 is satisfied with the
function

Ψt (x, r) =
C

V (x, r)

(
rβ

t

)1/ν

.

By hypothesis (Pβ), the second condition of Lemma 12.2 is satisfied with the function ϕ (t) =
Ct1/β. Hence, Lemma 12.2 yields

esup
x,y∈B(x0,ϕ(t))

pt (x, y) ≤ C

V
(
x0, t1/β

) ,
whence (DUEβ) follows.

12.3 Proof of (DUE) + (P ) ⇒ (UE)

Here, we assume that (DUEβ) and (Pβ) hold with some β > 1 and prove that, for µ-a.a. x, y ∈M
and t > 0,

pt (x, y) ≤ C

V
(
x, t1/β

) exp

(
−
(
dβ(x, y)
Ct

) 1
β−1

)
. (UEβ)

The method of obtaining the off-diagonal upper bound of the heat kernel from the on-diagonal
one using an estimate of exit probabilities, goes back to Barlow [1, Theorem 3.11], where the case
V (x, r) � rα was covered5. For a general volume function V (x, r) satisfying (V D) the proof is
more complicated – different versions can be found in [16, Theorem 6.2] and [22, Theorem 2.9].
The new proof that we present here seems to be simpler than the previous ones, although at
expense of using Theorem 10.4.

Fix two distinct points x0, y0 ∈M and set r = 1
2d (x0, y0). By (DUEβ), pt is locally bounded;

applying inequality (10.13) of Theorem 10.4 with V = B (x0, r) and U = B (y0, r) we obtain,
for µ-a.a. x ∈ B (x0, r) and y ∈ B (y0, r),

pt (x, y) ≤ ψB(x0,r)
(
x, t

2

)
sup

t/2≤s≤t
esup

v∈B(x0,2r)
ps (v, y) (12.15)

+ψB(y0,r)
(
y, t

2

)
sup

t/2≤s≤t
esup

u∈B(y0,2r)
ps (u, x) (12.16)

(see Fig. 6).
For any x ∈ B (x0, r/2) \N we have by (Pβ) and Theorem 9.1(ii) =⇒ (vi),

ψB(x0,r)
(
x, t

2

) ≤ ψB(x,r/2)
(
x, t

2

) ≤ C exp

(
−
(
rβ

Ct

) 1
β−1

)
, (12.17)

5It is interesting to mention that in the case when M is a Riemannian manifold then (DUE2) ⇔ (UE2) (see
[11, Proposition 5.2] or [12, Theorem 3.1]).
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...

Ω

Figure 6: Illustration to the proof

and, similarly, for any y ∈ B (y0, r/2) \N ,

ψB(y0,t)
(
y, t

2

) ≤ C exp

(
−
(
rβ

Ct

) 1
β−1

)
. (12.18)

By (DUEβ) we have, for µ-a.a. v, y ∈M ,

ps (v, y) ≤ C√
V
(
v, s1/β

)
V
(
y, s1/β

) . (12.19)

Using (11.1) we obtain, for all x, z ∈ B(x0, Cr) and any ε > 0,

V
(
x, s1/β

)
V
(
z, s1/β

) ≤ C
(
1 +

r

s1/β

)α ≤ Cε exp

(
ε

(
rβ

s

) 1
β−1

)
. (12.20)

Applying (12.20) for z = v and for z = y, and substituting into (12.19), we obtain, for µ-a.a.
x, y, v ∈ B (x0, Cr),

ps (v, y) ≤ Cε

V
(
x, s1/β

) exp

(
ε

(
rβ

s

) 1
β−1

)
. (12.21)

Taking here supremum in s ∈ ( t
2 , t
)

amounts to replacing s by t and to changing constants.
Finally, substituting (12.17), (12.18), (12.21), and a similar upper bound for ps (u, x) into

(12.15)-(12.16), we obtain, for µ-a.a. x ∈ B (x0, r/2) and y ∈ B (y0, r/2),

pt (x, y) ≤ Cε

V
(
x, t1/β

) exp

(
ε

(
rβ

t

) 1
β−1

−
(
rβ

Ct

) 1
β−1

)
.

Choosing ε small enough and noticing that d (x, y) ≤ 3r, we obtain (UEβ).

12.4 Proof of (DUE) ⇒ (E)

Let us first prove that (DUEβ) implies the following estimate: for any ball B = B (x0, r) on M ,
for µ-a.a. x, y ∈ B, and for all t > 0,

pB
t (x, y) ≤ C

µ (B)

( r

t1/β

)α
, (12.22)
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where α is the exponent from (11.1). Write for simplicity

esup pB
t := esup

x,y∈B
pB

t (x, y) ,

and observe the following property of the function t → esup pB
t : if the inequality

esup pB
t ≤ K

µ (B)

( r

t1/β

)α
(12.23)

holds for t = s then (12.23) holds also for t = 2s provided

s ≥ T := 2Kβ/αrβ (12.24)

(here K > 1 is a constant to be specified below). Indeed, by the semigroup property, we have
for µ-a.a. x, y ∈ B

pB
2s (x, y) =

∫
B
pB

s (x, z) pB
s (z, y) dµ (z) ≤ (esup pB

s

)2
µ (B) ,

whence by (12.23) and (12.24)

esup pB
2s ≤

K2

µ (B)

( r

s1/β

)2α ≤ K2

µ (B)

(
r

(T/2)1/β

)α(
r

(2s)1/β

)α

=
K

µ (B)

(
r

(2s)1/β

)α

,

which was claimed.
Assume for a moment that we have proved (12.23) for t = T . Then by induction the above

property of the function t → esup pB
t yields that (12.23) holds for all t = 2nT, where n is a

non-negative integer. Since by Lemma 3.1 the function t → esup pB
t is non-increasing, we obtain

for 2nT ≤ t < 2n+1T that

esup pB
t ≤ esup pB

2nT ≤ K

µ (B)

(
r

(2nT )1/β

)α

≤ K2α/β

µ (B)

( r

t1/β

)α
.

Therefore, if we prove that there exists K such that (12.23) holds for 0 < t ≤ T then we can
conclude that (12.22) holds for all t > 0.

Consider first the case 0 < t ≤ rβ. By (DUEβ) we have, for µ-a.a. x, y ∈M and t > 0,

pt (x, y) ≤ C0√
V
(
x, t1/β

)
V
(
y, t1/β

) (12.25)

(the argument below is sensitive to constant factors, so we use individual notation for different
constants as C0). Observe that, by (V D) and (11.1), for any x ∈ B and 0 < t ≤ rβ,

V (x0, r)
V
(
x, t1/β

) ≤ C1

( r

t1/β

)α
. (12.26)

Since pB
t ≤ pt, (12.25) and (12.26) imply that, for µ-a.a. x, y ∈ B and 0 < t ≤ rβ,

pB
t (x, y) ≤ C0C1

V (x0, r)

( r

t1/β

)α
, (12.27)

that is, (12.23) holds for 0 < t ≤ rβ provided K ≥ C0C1.
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Consider now the remaining case rβ < t ≤ T. We have, for any x ∈ B,

1
V
(
x, t1/β

) =
V
(
x0, T

1/β
)

V
(
x, t1/β

) V (x0, r)
V
(
x0, T 1/β

) 1
V (x0, r)

.

Since t ≤ T , we obtain using (V D), (11.1), and (12.24), that

V
(
x0, T

1/β
)

V
(
x, t1/β

) ≤ C1

(
T

t

)α/β

= C12a/βK
( r

t1/β

)α
.

Since r < T 1/β , Lemma 11.2 yields

V (x0, r)
V
(
x0, T 1/β

) ≤ C2

( r

T 1/β

)α′
≤ C2K

−α′/α

Hence, (12.25) implies, for µ-a.a. x, y ∈ B,

pB
t (x, y) ≤ C0C1C22α/βK−α′/α K

V (x0, r)

( r

t1/β

)α
,

whence (12.23) follows, provided K is chosen large enough to satisfy

C0C1C22α/βK−α′/α ≤ 1.

Let us now show that (12.22) implies
(
Eβ

)
. Select a countable dense sequence {xn} ⊂ M

and call a ball B (x, r) selected if x = xn for some n and if its radius r is rational. Hence, the
family of selected balls is countable. Recall that

(
E
)

means that for any ball B = B (x, r) and
for any open set Ω ⊂ B (x, r)

ExτΩ ≤ C

(
µ (Ω)
µ (B)

)β/α

rβ, (12.28)

for all x ∈ Ω \ N , where N is a negligible set. Clearly, it suffices to prove (12.28) for selected
balls B.

By (12.22) the heat kernel pB
t is bounded. Hence, by Corollary 8.2, a transition density

p̃t (x, y) exists and satisfies the same upper bound (12.22). By Lemma 8.3, for any ball B there
exists a negligible set NB ⊂M such that

sup
x∈B\NB

sup
y∈B\NB

p̃t (x, y) = esup
B

p̃B
t (x, y) .

Let N be the union of all sets NB where B is a selected balls, so that N is also a negligible set.
Hence, for any selected ball B of radius r, we have

sup
x∈B\N

sup
y∈B\N

p̃B
t (x, y) ≤ C

µ (B)

( r

t1/β

)α
.

By (6.3), we obtain, for any non-empty open set Ω ⊂ B and for all x ∈ Ω \N , T > 0,

ExτΩ ≤
∫ T

0
PΩ

t 1 (x) dµ +
∫ ∞

T
PB

t 1 (x) dµ

≤ T +
∫ ∞

T

∫
Ω
p̃B

t (x, y) dµ (y) dt

≤ T +
∫ ∞

T

Cµ (Ω)
µ (B)

( r

t1/β

)α
dt

≤ T +
Cµ (Ω)
µ (B)

rαT 1−α/β
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(note that α is the exponent from (V D), which can be taken arbitrarily large; we have assumed
here that α > β). Finally, choosing

T =
(
µ (Ω)
µ (B)

)β/α

rβ,

we obtain (12.28).

12.5 Proof of (ΦUE) ⇒ (P )

Since the heat kernel pt is locally bounded, by Corollary 8.2 a transition density p̃t exists and also
satisfies (ΦUEβ). By Corollary 8.4, there exists a negligible set N such that for all x, y ∈M \N
and t > 0,

p̃t (x, y) ≤ C

V
(
x, t1/β

)Φ(d (x, y)
t1/β

)
.

Let us show that, for any ε > 0 there exists δ > 0 such that if 0 < t ≤ δrβ then, for all x ∈M \N,

Px (Xt ∈ B (x, r)c) ≤ ε. (12.29)

Indeed, assuming x ∈M \N and setting rk = 2kr we obtain

Px (Xt ∈ B (x, r)c) =
∫

B(x,r)c
p̃t (x, y) dµ (y) =

∞∑
k=0

∫
B(x,rk+1)\B(x,rk)

p̃t (x, y) dµ (y)

≤
∞∑

k=0

V (x, rk+1)
C

V
(
x, t1/β

)Φ( rk
t1/β

)
≤

∞∑
k=0

C
( rk
t1/β

)α
Φ
( rk
t1/β

)
≤ C

∫ ∞

1
2
r/t1/β

sα−1Φ (s) ds. (12.30)

By the hypothesis (1.11), the right hand side of (12.30) can be made smaller than ε provided
r/t1/β is sufficiently large, which was claimed. By the part (i) ⇒ (ii) of Theorem 9.1, (12.29)
with ε < 1/2 implies (Pβ).

Hence, we have finished the proof of Theorems 1.1 and 12.1. Note that the hypothesis
of stochastic completeness was used only once in the proof, namely in the proof of Theorem
9.1(i) =⇒ (ii) (see eq. (9.4)). The latter is exactly the part of Theorem 9.1, which was used in
the above argument.

The proof of the implication (UEβ) ⇒ (Eβ) by Kigami [22] also uses the stochastic com-
pleteness although not explicitly stated. Let us present an example, showing that without the
stochastic completeness the implication (UEβ) ⇒ (Eβ) is not true.

Example 12.3 Consider in R the process {Xt} generated by the operator H = − d2

dx2 + Q (x)
where Q ∈ C∞ (R) is a positive function. To be precise, we consider R with the Euclidean
distance d, the Lebesgue measure µ, and the Dirichlet form

E (f, g) =
∫

R

(
f ′g′ +Qfg

)
dµ
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in the domain F =
o

H1 (R). All the hypotheses (a)-(d) of Theorem 1.1 are satisfied. On the
other hand, the associated diffusion process {Xt} is not stochastically complete because of the
killing term Q. Since Q > 0, the heat kernel of this process admits the upper bound

pt (x, y) ≤ 1√
4πt

exp

(
−|x− y|2

4t

)
,

that is (UE2) holds.
Let us verify that the lower bound in (E2) fails in general. For example, take Q (x) = x2.

Then the heat kernel of {Xt} is given by the explicit expression

pt(x, y) =
1

(2π sinh 2t)1/2
exp

(
−(x− y)2

2 sinh 2t
− 1

2
x2 tanh t− 1

2
y2 tanh t

)
.

In particular, noticing that 1
sinh 2t + tanh t ≥ 1, we obtain

pt (0, x) ≤ 1

(2π sinh 2t)1/2
exp

(
−1

2
x2

)
whence ∫ ∞

0

∫
R

pt (0, x) dx dt <∞.

By (6.3), the function r → E0τB(0,r) is bounded, which makes the lower bound E0τB(0,r) ≥ cr2

impossible.

13 Appendix: Resistance metric and (FK)

Here we show an example of derivation of a Faber-Krahn inequality (FK) directly from the
volume properties of the balls in a resistance metric. Define the resistance R (x, y) between
points x, y ∈M by

R (x, y) := sup
f∈F∩C0(M)

|f (x) − f (y)|2
E [f ]

.

Of course, it may well happen that R (x, y) = ∞ but for many examples of fractal spaces, it is
known that R (x, y) <∞. It is easy to see that in this case

√R (x, y) is a metric on M . Define
the corresponding balls

B (x, r) := {y ∈M : R (x, y) < r}
and set V (x, r) := µ (B (x, r)) .

Theorem 13.1 Let M be a locally compact connected topological space, µ be a Radon measure
with full support on M , and (E ,F) be a regular Dirichlet form in L2 (M,µ). Assume that√R (x, y) is a metric on M compatible with the topology of M , and diamM = ∞. Assume also
that the volume function V (x, r) satisfies (V D), that is

V (x, 2r) ≤ CV (x, r) ,

for all x ∈M and r > 0. Then, for any ball B (x, r) and any non-empty open set Ω ⊂ B (x, r),

λmin (Ω) ≥ c

rV (x, r)

(V (x, r)
µ (Ω)

)ν

, (13.1)

for some positive constants ν and c.
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Proof. The following argument is close to [20, Lemma 4.2]. Recall that, by the variational
property,

λmin (Ω) = inf
f∈F∩C0(Ω)

E [f ]
‖f‖2

2

.

Clearly, one can restrict here to those f for which sup |f | = 1. Take any function f ∈ F ∩C0 (Ω)
with sup |f | = 1 and let x0 ∈ Ω be a point such that |f (x0)| = 1. Let ρ be the largest radius
such that B (x0, ρ) ⊂ Ω. The fact that the support suppf is a compact subset of Ω implies that
the ball B (x0, ρ) is not covered by supp f ; let y0 ∈ B (x0, ρ) \ suppf (see Fig. 7).

Ω
supp

,

Figure 7: Points x0 and y0.

Then we have

ρ > R (x0, y0) ≥ |f (x0) − f (y0)|2
E [f ]

=
1

E [f ]
,

whence E [f ] ≥ ρ−1. Since ‖f‖2
2 ≤ µ (Ω), we obtain

E [f ]∫
Ω f

2dµ
≥ 1
ρµ (Ω)

and hence
λmin (Ω) ≥ 1

ρµ (Ω)
.

On the other hand, we have
V (x0, ρ) ≤ µ (Ω)

and, by the doubling property and Lemma 11.1,

V (x, r)
V (x0, ρ)

≤ C

(
r

ρ

)α

,

whence
1
ρ
≥ c

r

(V (x, r)
µ (Ω)

)1/α

and

λmin (Ω) ≥ c

rµ (Ω)

(V (x, r)
µ (Ω)

)1/α

=
c

rV (x, r)

(V (x, r)
µ (Ω)

)1+1/α

.

Corollary 13.2 Under the hypotheses of Theorem 13.1, if in addition V (x, r) ≤ CrN for all
x ∈M and r > 0 then M satisfies (FKβ) with β = 1 +N .
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Proof. Indeed, the inequality (13.1) of Theorem 13.1 implies

λmin (Ω) ≥ c

r1+N

(V (x, r)
µ (Ω)

)ν

,

which was to be proved.
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