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Abstract. We give equivalent characterizations for off-diagonal upper bounds of the heat
kernel of a regular Dirichlet form on the metric measure space, in two settings: for the upper
bounds with the polynomial tail (typical for jump processes) and for the upper bounds with the
exponential tail (for diffusions). Our proofs are purely analytic and do not use the associated
Hunt process.
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1. Preliminaries and the main results

1.1. General setup. Let (M,d) be a locally compact, separable metric space, and let µ be a
Radon measure on M with full support. Let (E ,F) be a Dirichlet form on L2(M) := L2(M,µ).
That is, E is a closed, symmetric, non-negative definite, bilinear form on a dense subspace F of
L2 (M), which satisfies the Markov property. The closedness of the form E means that F is a
Hilbert space with respect to the E1-inner product, where

E1 (f, g) = E (f, g) + (f, g) .

Here (·, ·) stands for the inner product on L2(M). The Markov property means that if f ∈ F
then the function f̃ = max(min (f, 1) , 0) is also in F and E(f̃) ≤ E (f) (here and in the sequel
we use the abbreviation E(f) := E(f, f)).

Let ∆ be the generator of (E ,F), that is, ∆ is a non-positive definite self-adjoint operator in
L2(M) with domain dom(∆) ⊂ F , and

−(∆f, g) = E(f, g) for all f ∈ dom(∆), g ∈ F .
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The generator ∆ gives rise to the heat semigroup {Pt}t≥0, which is the family of bounded self-
adjoint operators in L2 (M), defined by

(1.1) Pt = et∆.

Obviously, the heat semigroup is contractive in L2(M), that is, ‖Ptf‖ ≤ ‖f‖ for all f ∈ L2 (M),
where ‖ · ‖ is the L2-norm, and strongly continuous, that is,

‖Ptf − f‖ → 0 as t→ 0 for all f ∈ L2 (M) .

In addition, the semigroup {Pt} is Markovian, that is, if 0 ≤ f ≤ 1 a.e., then, for all t > 0,

(1.2) 0 ≤ Ptf ≤ 1 a.e.

(see [10, Theorem 1.4.1, p. 23]). The Markovian property (1.2) allows to extend Ptf to all
f ∈ L∞ (M) so that Pt can be considered also as a contraction operator from L∞(M) to
L∞(M).

Conversely, given a strongly continuous Markovian semigroup {Pt}t≥0, one recovers the cor-
responding Dirichlet form by letting

(1.3) E (f) = lim
t→0

(
f − Ptf

t
, f

)

,

and by letting F be the set of those f ∈ L2 (M) for which E (f) <∞.
Let C0 (M) be the space of all continuous functions on M with compact support. The Dirichlet

form (E ,F) is called regular if F ∩ C0 (M) is dense both in F (in the E1-norm) and in C0 (M)
in the sup-norm. The Dirichlet form (E ,F) is called local if E(f, g) = 0 for any f, g ∈ F with
disjoint compact supports1 (cf. [10, p.6]).

The heat semigroup (or the Dirichlet form) is called conservative if Pt1 = 1 a.e. for any t > 0.

1.2. Upper bounds of the heat kernel.

Definition 1.1. A family {pt (x, y)}t>0 of measurable functions on M ×M is called the heat

kernel of (E ,F) if, for all f ∈ L2 (M), t > 0, and µ-almost all x ∈M ,

(1.4) Ptf(x) =

∫

M

pt(x, y)f(y)dµ(y).

The heat kernel does not have to exist but if it exists then it is unique (up to a set of measure
zero) and satisfies the following properties, which follow immediately from the corresponding
properties of the heat semigroup:

(i) For all t > 0 and almost all x, y ∈M , pt(x, y) ≥ 0 and

(1.5)

∫

M

pt(x, y) dµ(y) ≤ 1.

(ii) For all t, s > 0 and almost all x, y ∈M ,

(1.6) pt+s(x, y) =

∫

M

pt(x, z)ps(z, y) dµ(z).

(iii) For all t > 0 and almost all x, y ∈M ,

(1.7) pt(x, y) = pt(y, x).

If the heat semigroup is conservative then (1.3) leads to the following relation between the
heat kernel and the Dirichlet form: for all f, g ∈ F ,

E (f, g) = lim
t→0
Et (f, g) ,

1By definition, the support supp f of a function f ∈ L2 (M) is the set M \ Ω where Ω is the maximal open
subset of M such that f = 0 a.e. in Ω.
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where

(1.8) Et (f, g) =
1

2t

∫

M

∫

M

(f (x)− f (y)) (g (x)− g (y)) pt (x, y) dµ (x) dµ (y)

(see [12]).
Assuming that the heat kernel exists, we are interested in the following upper estimate:

(UE) pt(x, y) ≤ C min

{
1

V (ρ(t))
,

1

V (d(x, y))
h

(
d(x, y)

ρ(t)

)}

,

which is assumed to be true for all t > 0 and almost all x, y ∈ M , with some constant C > 0.
Here and throughout the paper, assume that

• ρ : [0,∞] → [0,∞] is a strictly increasing continuous function such that ρ(0) = 0 and
ρ(∞) =∞;
• V : [0,∞)→ [0,∞) is an increasing function such that V (0) = 0 and V (r) > 0 if r > 0;
• h : [0,∞] → [0,∞] is a strictly decreasing continuous function such that h(1) > 0 and
h(∞) = 0.

Setting r := d (x, y), one can equivalently state (UE) as follows:

(1.9) pt(x, y) ≤ C






1

V (ρ(t))
, if r ≤ ρ (t) ,

1

V (r)
h

(
r

ρ(t)

)

, if r > ρ (t) .

Indeed, the implication (UE)⇒(1.9) is obvious. Now assume that (1.9) holds and we will deduce
(UE). If r ≤ ρ (t) then, using the monotonicity of V and h, we obtain

1

V (ρ(t))
≤

1

V (r)
≤
h (1)−1

V (r)
h

(
r

ρ(t)

)

so that the first line in (1.9) implies (UE). If r > ρ (t) then similarly

1

V (r)
h

(
r

ρ(t)

)

≤ h (1)
1

V (ρ (t))

so that the second line in (1.9) implies (UE).
It is obvious that (UE) implies the on-diagonal upper estimate of pt(x, y):

(DUE) pt(x, y) ≤
C

V (ρ(t))
,

for all t > 0 and almost all x, y ∈M .
Let us state two well-known particular cases of the estimate (UE). In the both cases, we

assume that

(1.10) V (r) = rα and ρ (t) = t1/β ,

for some positive exponents α, β.

Example 1.2 (Non-local Dirichlet form). Let

(1.11) h (s) = s−β .

We claim that (UE) is equivalent to

(1.12) pt(x, y) ≤ Ct−α/β
(

1 +
d(x, y)

t1/β

)−(α+β)

for all t > 0 and almost all x, y ∈M . Indeed, (UE) is equivalent to

pt(x, y) ≤
C

V (ρ (t)) + V (r)
h(r/ρ(t))

,
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which for the selected functions V, ρ, h becomes2

pt(x, y) ≤
C

tα/β + rα
(
r/t1/β

)β

'
C

tα/β + rα+β/t

'
C

tα/β(1 + r/t1/β)α+β
.

The estimate (1.12) holds with α = n and with 0 < β < 2 for the heat kernel of the operator

(−∆)β/2 in Rn (where ∆ is the classical Laplace operator), which at the same time is the
transition density of the symmetric β-stable process in Rn.

The estimate (1.12) was shown in [7] to be true in the following setting: the metric space
(M,d) is a subspace of some Rn, the measure µ of a metric ball B (x, r) (see (1.15)) satisfies the
estimate

µ (B (x, r)) ' rα,
for all x ∈M and r > 0, and the Dirichlet form is defined by

E (f, g) =

∫

M

∫

M

(f (x)− f (y)) (g (x)− g (y)) J (x, y) dµ (x) dµ (y)

where

J (x, y) '
1

d (x, y)α+β
.

Here α, β are arbitrary constants in the range α > 0 and β ∈ (0, 2).

Example 1.3 (Local Dirichlet form). Assume that β > 1 and set

h (s) = exp
(
−c0s

β/(β−1)
)
,

for some c0 > 0. We claim that (UE) is equivalent to

(1.13) pt(x, y) ≤ Ct−α/β exp

(

−c

(
d(x, y)

t1/β

)β/(β−1)
)

.

Indeed, if r := d (x, y) ≤ t1/β then (1.13) is equivalent to

pt(x, y) ≤ Ct−α/β ,

which is exactly the first case of (1.9). Assume now r > t1/β . Then (1.9) becomes

(1.14) pt(x, y) ≤ Cr−α exp

(

−c
( r

t1/β

)β/(β−1)
)

,

which clearly implies (1.13). The converse implication (1.13)⇒(1.14) follows from the inequality

t−α/β ≤ Cεr
−α exp

(

ε
( r

t1/β

)β/(β−1)
)

,

which is true for any ε > 0, with a big enough constant Cε.

The purpose of this paper is to give some new equivalent characterizations of (UE). We
emphasize that the argument in this paper is purely analytical, without recourse to the theory
of Markov process. Our main results show how one can obtain the estimate (UE) from the
diagonal upper bound (DUE) and some additional conditions. All known so far results have
used some probabilistic conditions such as the first exit time from a ball, etc. – cf. [2, 13, 16].
For strongly recurrent graphs, the reader may refer to [3]. See [15] for an analytical approach
on effective-resistance metric spaces.

2The relation f ' g means that C−1f ≤ g ≤ Cf for some positive constant C, for the specified range of the
arguments of functions f, g.
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As for the diagonal upper bound, there are plenty of various equivalent characterization of
(DUE) in terms of the Nash-type inequality [6], [8], [18], the Faber-Krahn inequality [11], the
Sobolev inequality [19], the log-Sobolev inequality [9], etc.

To explain the results, let us introduce some notation and terminology. Let

(1.15) B(x, r) := {y ∈M : d(y, x) < r}

denote a metric ball in (M,d). Consider the following conditions:

• For all r ≥ 0 and x ∈M ,

(V ) µ (B(x, r)) ≤ CV (r).

• For all t, r > 0 and almost all x ∈M ,

(T )

∫

B(x,r)c
pt(x, z) dµ(z) ≤ Ch

(
r

ρ(t)

)

.

• For all t, r, R > 0, y ∈M and almost all x ∈M ,

(T ′)

∫

B(x,r)c∩B(y,R)
pt(x, z) dµ(z) ≤ C

V (R)

V (r)
h

(
r

ρ(t)

)

.

In all conditions, C is a positive constant that is independent on the variables in question and
that can take different values on difference occurrences.

The integral in (T ) should be understood as follows:
∫

B(x,r)c
pt(x, z) dµ(z) :=

∫

M

pt (x, z) 1B(x,r)c (z) dµ (z) .

Indeed, the function F (x, z) = pt (x, z) 1B(x,r)c (z) is obviously measurable jointly in x, z so that

by Fubini’s theorem the integral
∫
M F (x, z) dµ (z) is well-defined as a measurable function of x.

On the contrary, the integral in (T ) cannot be understood as the value on the diagonal {x = y}
of the function

G (x, y) :=

∫

B(y,r)c
pt (x, z) dµ (z) ,

because a measurable function cannot be restricted to a set of measure zero.
It is easy to show that (T ) can be equivalently stated as follows: for all t, r > 0 and all

x0 ∈M ,

(1.16) essup
x∈B(x0,r/2)

∫

B(x0,r)c
pt(x, z) dµ(z) ≤ Ch

(
r

ρ(t)

)

(cf. Remark 3.3 for the proof). The estimate (1.16) can be interpreted as an upper bound for
the function u (t, x) = Pt1B(x0,r)

c , which is illustrated on Fig. 1.

The estimate (T ′) can be reformulated similarly and is illustrated on Fig. 2.
Our first main result – Theorem 2.1, says that, if the function ρ satisfies the doubling prop-

erty3, functions V and h are polynomial-like (see (2.1)-(2.5)), and the measure of the balls
satisfies (V ), then

(UE)⇔ (DUE) + (T ) + (T ′).

For example, the setting of the Example 1.2 matches the hypotheses of Theorem 2.1. A similar
equivalence for (UE) (under the assumptions (1.10) and (1.11)) was proved in [4] although
instead of the conditions (T ) and (T ′), two alternative hypotheses were used, which were stated
in terms of the exit time of the associated jump process.

3A function f : [0,∞)→ [0,∞) is said to satisfy the doubling property if there is a constant c > 0 such that

(1.17) f(2r) ≤ cf(r) for all r ≥ 0.
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B(x0, r)

M

u(0,x)=0 u(0,x)=1

B(x0, 1/2r)t

x0

u(t,x) Ch
r
(t)

Figure 1. Function u(t, ·) = Pt1B(x0,r)
c

B(x0, r)

M

u(0,x)= 1

u(0,x)=0

B(x0, 1/2r)
t

u(t,x) C        h

B(y,R)

V(R)
V(r)

r
(t)

Figure 2. Function u(t, ·) = Pt 1B(x0,r)c∩B(y,R)

Our second main result – Theorem 3.10, treats the case when the Dirichlet form is local. In
this case, one expects the upper bound of sub-Gaussian type as in Example 1.3. Consider the
following modification of the condition (UE):

(UEexp) pt(x, y) ≤
C

V (ρ(t))
exp

(

−tΦ

(
c d(x, y)

t

))

,

where

Φ (s) = sup
λ>0

{
s

ρ (1/λ)
− λ

}

.

For example, under the conditions (1.10) with β > 1, we obtain Φ (s) = cs
β
β−1 , and (UEexp)

becomes (1.13).
Let us introduce the following weak version of the condition (T ): for any ε > 0 there exists

K > 0 such that, for all r and t such that r ≥ Kρ (t) and for almost all x ∈M ,

(Tweak)

∫

B(x,r)c
pt(x, z) dµ(z) ≤ ε.

Equivalently, (Tweak) means that (T ) holds with some (unspecified) function h such that h (s)→
0 as s→∞. Theorem 3.10 says that if (E ,F) is a regular, conservative, local Dirichlet form in
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L2 (M), if all metric balls in M are precompact and satisfy (V ), and if the functions ρ and V
are doubling, then

(UEexp)⇔ (DUE) + (Tweak)

(in this result, we do not use the condition (T ′)). For the case ρ (t) = t1/β , this equivalence was
proved in [13], using the probabilistic approach.

The main ingredients in the proof of Theorem 3.10 are Theorems 3.1, 3.4 that are of indepen-
dent interest. The main point of those theorems is that the locality of the Dirichlet form allows
to self-improve the condition (Tweak) thus leading to the following inequality

∫

B(x,r)c
pt(x, z) dµ(z) ≤ C exp

(
−tΦ

(
c
r

t

))
,

which is true for all t, r > 0 and for almost all x ∈ M . The proof of Theorems 3.1, 3.4 use
the maximum principles for the resolvent equation (Proposition 4.6) and for the heat equation
(Proposition 4.11), through their consequences – Corollary 4.15 and Lemma 4.18. To make the
account self-contained, we present in Appendix the analytic proofs of the maximum principles,
which may be of their own interest.

Notation. Letters c, C,K > 0 and ε ∈ (0, 1) denote the constants whose values may change
at each occurrence.

If A is a subset of M then Ac is its complement, that is, Ac = M \A.
If B = B (x, r) is a ball in (M,d) then αB := B (x, αr).

Acknowledgements. The authors are grateful to Takashi Kumagai for valuable discussions,
which have led to improvements of Theorem 3.4.

2. Upper bound with a polynomial tail

In this section, we show that (UE) is equivalent to (DUE)+(T )+(T ′) under some additional
mild assumptions on V, h and ρ. Consider the following conditions:

V (r2)

V (r1)
≤ C

(
r2

r1

)α1

,(2.1)

V (r2)

V (r1)
≥ c

(
r2

r1

)α2

,(2.2)

h(r2)

h(r1)
≤ C

(
r2

r1

)−β1

,(2.3)

h(r2)

h(r1)
≥ c

(
r2

r1

)−β2

,(2.4)

where each inequality is assumed to be true for all 0 < r1 < r2 < ∞ and for some positive
constants c, C, α1, α2, β1, β2. Clearly, if (2.1) and (2.2) hold simultaneously then α2 ≤ α1, and
if (2.3) and (2.4) hold simultaneously then β1 ≤ β2.

Theorem 2.1. Let (E ,F) be a Dirichlet form in L2 (M) with the heat kernel pt(x, y). Assume
that the function ρ is doubling, and that V and h satisfy (2.1)-(2.2) and (2.3)-(2.4), respectively,
with the additional condition that

(2.5)
α1

β1

<

[
α2

β2

]

+ 1.

Assume also that the volume of the metric balls in M satisfies (V ). Then

(DUE) + (T ) + (T ′)⇔ (UE).

Here [s] denotes by the integer part of the number s. The proof of Theorem 2.1 will be split
into a series of Lemmas.
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Lemma 2.2. Let (E ,F) be a Dirichlet form with the heat kernel pt(x, y). Assume that the volume
of the metric balls in M satisfies (V ). Let function V be doubling and h satisfy (2.3)-(2.4). Then

(UE)⇒ (T ) + (T ′) + (DUE).

Proof. The implication (UE)⇒(DUE) is trivial. Let us show that (UE)⇒(T ). Fix t > 0 and
r > 0. If ρ(t) ≥ r then the monotonicity of h implies, for almost all x ∈M ,

∫

B(x,r)c
pt(x, y) dµ(y) ≤ 1 ≤ Ch

(
r

ρ(t)

)

,

where C = 1
h(1) , which obviously matches (T ). Assume now that ρ(t) < r. It follows from (UE)

and the monotonicity of V and h that, for almost all x, z ∈M such that d (z, x) ≥ s,

(2.6) pt(x, z) ≤
C

V (s)
h

(
s

ρ (t)

)

.

Using (2.6), (V ), the doubling property of V , and (2.3)-(2.4), we obtain, for almost all x ∈M ,
∫

B(x,r)c
pt(x, z)dµ (z) ≤

∞∑

k=0

∫

B(x,2k+1r)\B(x,2kr)
pt(x, z) dµ(z)

≤
∞∑

k=0

C

V (2kr)
h

(
2kr

ρ(t)

)

µ
(
B(x, 2k+1r)\B(x, 2kr)

)

≤
∞∑

k=0

C
V (2k+1r)

V (2kr)
h

(
2kr

ρ(t)

)

≤
∞∑

k=0

C
(

2k
)−β1

h

(
r

ρ(t)

)

≤ Ch

(
r

ρ(t)

)

.

Condition (T ′) is deduced from (2.6) and (V ) as follows:
∫

B(x,r)c∩B(y,R)
pt(x, z) dµ(z) ≤

C

V (r)
h

(
r

ρ(t)

)

µ (B(y,R) ∩B(x, r)c)

≤
C

V (r)
h

(
r

ρ(t)

)

V (R).

This finishes the proof. �

For any q ≥ 0, consider the following condition

(Hq) pt(x, y) ≤
Cq

V (ρ(t))
hq
(
d(x, y)

ρ(t)

)

,

which should be true for some Cq > 0, all t > 0, and almost all x, y ∈ M . Clearly (DUE) is
equivalent to (H0), and

(2.7) (H0) + (Hq2)⇒ (Hq1)

provided 0 ≤ q1 < q2 <∞.

Lemma 2.3. Assume that (T ) and (T ′) hold where ρ is doubling, V satisfies (2.1)-(2.2), and h
satisfies (2.4) If pt(x, y) satisfies (Hq) where

(2.8) 0 ≤ q <
α2

β2

,

then it also satisfies (Hq+1).
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Proof. We need to prove that, for any t > 0 and almost all x, y ∈M ,

(2.9) p2t(x, y) ≤
C

V (ρ(t))
hq+1

(
r

ρ(t)

)

,

where r = 1
2d (x, y), which implies (Hq+1) due to the doubling properties of functions V, ρ and

(2.4). If r ≤ ρ (t) then (2.9) follows from (Hq) so that we can assume r > ρ (t).
By the semigroup property, we have, for all x, y ∈M ,

p2t(x, y) =

∫

M

pt(x, z)pt(z, y) dµ(z)

≤
∫

B(x,r)c
pt(x, z)pt(z, y) dµ(z) +

∫

B(y,r)c
pt(x, z)pt(z, y) dµ(z).(2.10)

On order to estimate the first term on the right-hand side of (2.10) (the second term can be
treated similarly), split it into a “good” and a “bad” part:

(2.11)

∫

B(x,r)c
pt(x, z)pt(z, y) dµ(z) = g(t, x, y) + b(t, x, y),

where

(2.12) g(t, x, y) :=

∫

B(x,r)c\B(y,r)
pt(x, z)pt(z, y) dµ(z)

and

(2.13) b(t, x, y) :=

∫

B(y,r)
pt(x, z)pt(z, y) dµ(z).

Let us first estimate the “good” part. It follows from (Hq) that, for almost all y ∈ M and
z /∈ B(y, r),

(2.14) pt(z, y) ≤
C

V (ρ(t))
hq
(

r

ρ(t)

)

.

Substituting this into (2.12) and using (T ) we obtain, for almost all x, y ∈M ,

g(t, x, y) ≤
C

V (ρ(t))
hq
(

r

ρ(t)

)∫

B(x,r)c
pt(x, z) dµ(z)

≤
C

V (ρ(t))
hq+1

(
r

ρ(t)

)

.(2.15)

In order to estimate the “bad” part, represent it in the form

(2.16) b(t, x, y) =
∞∑

k=0

∫

B(y,2−kr)\B(y,2−(k+1)r)
pt(x, z)pt(z, y) dµ(z)

(see Fig. 3).
By condition (Hq) and (2.4), we see that, for almost all y ∈ M and z ∈ B(y, 2−kr) \

B(y, 2−(k+1)r),

(2.17) pt(z, y) ≤
C

V (ρ(t))
hq

(
2−(k+1)r

ρ(t)

)

≤ C
2kβ2q

V (ρ(t))
hq
(

r

ρ(t)

)

.
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y

B(x,r)

x

B(y,r)

B(y,2-kr) B(y,2-(k+1)r)

Figure 3. Estimating the “bad” part

Using (2.17), (T ′), and (2.2), we obtain
∫

B(y,2−kr)\B(y,2−(k+1)r)
pt(x, z)pt(z, y) dµ(z)

≤ C
2kβ2q

V (ρ(t))
hq
(

r

ρ(t)

)∫

B(x,r)c∩B(y,2−kr)
pt(x, z) dµ(z)

≤ C
2kβ2q

V (ρ(t))
hq
(

r

ρ(t)

)
V (2−kr)

V (r)
h

(
r

ρ(t)

)

≤ C
2kβ2q2−kα2

V (ρ(t))
hq+1

(
r

ρ(t)

)

(2.18)

(here we have used the obvious fact that the balls B (x, r) and B(y, 2−kr) are disjoint).
It follows from (2.16), (2.18), and (2.8) that

(2.19) b(t, x, y) ≤
C

V (ρ(t))
hq+1

(
r

ρ(t)

) ∞∑

k=1

2k(β2q−α2) ≤
C

V (ρ(t))
hq+1

(
r

ρ(t)

)

.

Combining (2.11), (2.15) and (2.19) we obtain (2.9), which finishes the proof. �

Corollary 2.4. Under the hypotheses of Lemma 2.3, we have

(DUE)⇒ (Hq)

for any 0 ≤ q <
[
α2
β2

]
+ 1.

Proof. Recall that (DUE) is equivalent to (H0). Repeatedly applying Lemma 2.3, we obtain
the conclusion. �

Lemma 2.5. Assume that (T ′) holds where ρ is doubling, V satisfies (2.1)-(2.2), and h satisfies
(2.3)-(2.4). Then (DUE) and (Hq) with some q > α1

β1
imply that

(2.20) pt(x, y) ≤
C

V (d (x, y))
h

(
d(x, y)

ρ(t)

)

for all t > 0 and almost all x, y ∈M .

Proof. The argument is similar to that of Lemma 2.3. Let us prove that, for all t > 0 and almost
all x, y ∈M ,

(2.21) p2t(x, y) ≤
C

V (r)
h

(
r

ρ(t)

)

,
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where r = 1
2d (x, y), which will imply (2.20). If r ≤ ρ(t) then (2.21) immediately follows from

(DUE). Assume in the sequel that r > ρ (t). As in the proof of Lemma 2.3, it suffices to show
that ∫

B(x,r)c
pt(x, z)pt(z, y)dµ(z) ≤

C

V (r)
h

(
r

ρ(t)

)

.

Writing for simplicity ρ instead of ρ (t), we have
∫

B(x,r)c
pt(x, z)pt(z, y)dµ(z) ≤

∫

B(y,ρ)
pt(x, z)pt(z, y)dµ(z)

+
∞∑

k=0

∫

B(x,r)c∩(B(y,2k+1ρ)\B(y,2kρ))
pt(x, z)pt(z, y) dµ(z)(2.22)

(see Fig. 4).

B(x,r)c B(y,2k+1ρ) B(y,2kρ)

y

B(y,ρ)
B(x,r)

x

Figure 4. Illustration to the estimate (2.22)

It follows from pt(z, y) ≤ C
V (ρ) a.e. and (T ′) that

∫

B(y,ρ)
pt(x, z)pt(z, y)dµ(z) ≤

C

V (ρ)

∫

B(y,ρ)
pt(x, z)dµ(z)

=
C

V (ρ)

∫

B(x,r)c∩B(y,ρ)
pt(x, z)dµ(z)

≤
C

V (ρ)

V (ρ)

V (r)
h

(
r

ρ

)

=
C

V (r)
h

(
r

ρ

)

(2.23)

(we have used here the fact that the balls B (x, r) and B(y, ρ) are disjoint).
On the other hand, (Hq) and (2.3) imply that, for almost all y ∈ M and z ∈ B(y, 2k+1ρ) \

B(y, 2kρ),

(2.24) pt(z, y) ≤
C

V (ρ)
hq
(

2kρ

ρ

)

≤
C 2−kqβ1

V (ρ)
.

Next, by (T ′) and (2.1),
∫

B(x,r)c∩B(y,2k+1ρ)
pt(x, z) dµ(z) ≤ C

V (2k+1ρ)

V (r)
h

(
r

ρ

)

≤ C2kα1
V (ρ)

V (r)
h

(
r

ρ

)

.(2.25)
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Therefore, we obtain from (2.24) and (2.25) that, for almost all x, y ∈M ,

∞∑

k=0

∫

B(x,r)c∩(B(y,2k+1ρ)\B(y,2kρ))
pt(x, z)pt(z, y) dµ(z)

≤
∞∑

k=0

C2−kqβ1

V (ρ)

∫

B(x,r)c∩B(y,2k+1ρ)
pt(x, z) dµ(z)

≤
∞∑

k=0

C2−kqβ1

V (ρ)

(

2kα1
V (ρ)

V (r)
h

(
r

ρ

))

≤
C

V (r)
h

(
r

ρ

)

,(2.26)

where the series converges due to qβ1 > α1. Combining (2.22), (2.23) and (2.26), we finish the
proof. �

Proof of Theorem 2.1. The implication

(UE)⇒ (DUE) + (T ) + (T ′)

was obtained in Lemma 2.2. Let us prove the converse, that is,

(DUE) + (T ) + (T ′)⇒ (UE).

By Corollary 2.4, we have

(DUE) + (T ) + (T ′)⇒ (Hq),

for any 0 < q <
[
α2
β2

]
+ 1. Since α1

β1
<
[
α2
β2

]
+ 1, we obtain that (Hq) holds for some q > α1

β1
.

Hence, by Lemma 2.5, we obtain (2.20). Combining (2.20) with (DUE) we obtain (UE). �

3. Upper bound with an exponential tail

The main purpose of this section is to prove the upper bound for pt(x, y) with the exponential
tail provided the Dirichlet form (E ,F) is regular, conservative, and local.

3.1. The tail of the heat semigroup. Here we do not assume the existence of the heat kernel
and work with the function Pt1Bc , where B = B (x0, r). We use αB as a shorthand for B (x0, αr)
as stated before. The reader may refer to the definition of PBt in Section 4.

Theorem 3.1. Assume that (E ,F) is a regular conservative Dirichlet form in L2(M) and let all
metric balls in M be precompact. Let ρ : [0,∞) → [0,∞) be any continuous strictly increasing
function with ρ(0) = 0, ρ(∞) = ∞, and let ρ satisfy the doubling property. Then the following
conditions are equivalent.

(i) For any ε ∈ (0, 1) there exists K > 0 such that, for any t > 0 and any ball B = B(x0, r)
with r ≥ Kρ (t),

(3.1) Pt1Bc ≤ ε a.e. in
1

4
B.

(ii) For any ε ∈ (0, 1) there exists K > 0 such that, for any t > 0 and any ball B = B(x0, r)
with r ≥ Kρ (t),

(3.2) PBt 1B ≥ 1− ε a.e. in
1

4
B.

(iii) For any ε ∈ (0, 1) there exists K > 0 such that, for any λ > 0 and any ball B = B(x0, r)
with r ≥ Kρ

(
1
λ

)
,

(3.3) λRBλ 1B ≥ 1− ε a.e. in
1

4
B.
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Remark 3.2. As one can see below, the doubling property of ρ is mildly used only in the
proof of the implication (ii) ⇒ (iii). In fact, the doubling property can be dropped from the
hypotheses, but then conditions r ≥ Kρ (t) and r ≥ Kρ

(
1
λ

)
should be replaced respectively by

r ≥ Kρ (ct) and r ≥ Kρ
(
c
λ

)
, for a positive constant c > 0.

Remark 3.3. If the heat semigroup Pt possesses the heat kernel pt (x, y) then condition (i) can
be equivalently stated as follows: for any ε ∈ (0, 1) there exists K > 0 such that, for all t > 0,
r ≥ Kρ (t), and almost all x ∈M ,

(3.4)

∫

B(x,r)c
pt (x, y) dµ (y) ≤ ε.

Indeed, for any ball B (x0, r) and for almost all x ∈ B (x0, r/4) (or even x ∈ B (x0, r/2)), we
have

Pt1B(x0,r)
c (x) =

∫

B(x0,r)
c
pt (x, y) dµ (y) ≤

∫

B(x,r/2)c
pt (x, y) dµ (y) ,

so that (3.4) implies (3.1) (with K being replaced by 2K). Similarly, for almost all x ∈
B (x0, r/2),

∫

B(x,r)c
pt (x, y) dµ (y) ≤

∫

B(x0,r/2)c
pt (x, y) dµ (y) = Pt1B(x0,r/2)c (x) ,

so that (3.1) implies (3.4), for almost all x ∈ B (x0, r/8). Covering M by a countable family of
balls of radius r/8, we obtain that (3.4) holds for almost all x ∈M .

Proof of Theorem 3.1. (i)⇒ (ii). Applying estimate (4.29) of Lemma 4.18 to function f = 1 1
2
B ,

we obtain that

(3.5) PBt 1 1
2
B(x) ≥ Pt1 1

2
B(x)− sup

s∈[0,t]
essup
( 3

4
B)

c
Ps1 1

2
B,

for t > 0 and a.e. x ∈ M . For any x ∈ 1
4B, we have that B(x, r/4) ⊂ 1

2B (see Fig. 5). Using

(3.1) and the identity Pt1 = 1 a.e., we obtain, for any x ∈ 1
4B,

Pt1 1
2
B = 1− Pt1( 1

2
B)

c ≥ 1− Pt1B(x,r/4)c .

Applying hypothesis (i) for the ball B (x, r/4), we obtain that

Pt1B(x,r/4)c ≤ ε a.e. in B (x, r/16) ,

provided

(3.6)
r

4
≥ Kρ (t)

with sufficiently large K. It follows that, for any x ∈ 1
4B,

Pt1 1
2
B ≥ 1− ε a.e. in B (x, r/16) ,

whence

(3.7) Pt1 1
2
B ≥ 1− ε a.e. in

1

4
B.

On the other hand, for any y ∈
(

3
4B
)c

, we have 1
2B ⊂ B (y, r/4)c (see Fig. 5), whence

Ps1 1
2
B ≤ Ps1B(y,r/4)c .

Applying hypothesis (i) for the ball B (y, r/4) at time s, we obtain that if (3.6) holds for
sufficiently large K then, for all 0 < s ≤ t,

Ps1B(y,r/4)c ≤ ε a.e. in B (y, r/16) .

It follows that, for any y ∈
(

3
4B
)c

,

Ps1 1
2
B ≤ ε a.e. in B (y, r/16) ,
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x0

y

1/4 B

B=B(x0,r)

1/2 B

x

3/4 B

B(y, 1/4 r)

B(x, 1/4 r)

B(y,1/16 r)

B(x,1/16 r)

Figure 5. Illustration to the proof of (i)⇒ (ii)

whence

(3.8) Ps1 1
2
B ≤ ε a.e. in

(
3

4
B

)c
.

Combining (3.5), (3.7) and (3.8), we obtain that, under condition (3.6),

(3.9) PBt 1B ≥ P
B
t 1 1

2
B ≥ 1− 2ε a.e. in

1

4
B,

which is equivalent to (3.2).
(ii)⇒ (iii). By (ii), we have (3.2) provided t ≤ ρ−1 (t/K), whence

λRBλ 1B = λ

∫ ∞

0
e−λt PBt 1Bdt ≥ λ

∫ ρ−1( r
K

)

0
e−λt PBt 1Bdt ≥ (1− ε)

(
1− e−λρ

−1( r
K

)
)
,

which holds almost everywhere in 1
4B. If

(3.10) λρ−1(
r

K
) ≥ log

1

ε

then we obtain

λRBλ 1B ≥ (1− ε)2 a.e. in
1

4
B,

which is equivalent to (3.3). Condition (3.10) is equivalent to

(3.11) r ≥ Kρ

(
log 1

ε

λ

)

,

which, by the doubling property of ρ, is a consequence of r ≥ K1ρ
(

1
λ

)
for sufficiently large K1.

(iii)⇒ (i). Let us first show that, for all t, λ > 0,

(3.12) PBt 1B ≥ 1− eλt
(
1− λRBλ 1B

)
.

Indeed, using the facts that PBs 1B ≤ 1B and

PBs+t1B = PBt
(
PBs 1B

)
≤ PBt 1B,
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we obtain that

λRBλ 1B = λ

∫ ∞

0
e−λsPBs 1B ds

= λ

∫ t

0
e−λsPBs 1B ds+ λ

∫ ∞

t

e−λsPBs 1B ds

≤
(

1− e−λt
)

+ λ

∫ ∞

0
e−λ(s+t)PBs+t1B ds

≤ 1− e−λt + e−λtPBt 1B,

thus giving (3.12).
Given ε ∈ (0, 1), t > 0 and r ≥ Kρ (t) (where K is defined by hypothesis (iii)), choose λ from

condition r = Kρ
(

1
λ

)
. Then it follows from (3.3) and (3.12) that

Pt1B ≥ P
B
t 1B ≥ 1− εeλt a.e. in

1

4
B.

Using the identity Pt1 = 1 and observing that

λt ≤ λρ−1
( r
K

)
= 1,

we obtain

Pt1Bc = 1− Pt1B ≤ εe
λt ≤ εe a.e. in

1

4
B,

which is equivalent to (3.1). �

The following statement is an extension of Theorem 3.1 in the case of a local Dirichlet form.

Theorem 3.4. Assume that all the hypotheses of Theorem 3.1 hold, and in addition that the
Dirichlet form (E ,F) is local. Then each of conditions (i), (ii), (iii) of Theorem 3.1 is equivalent
to the following:

(iv) There are c, C > 0 such that, for any t > 0 and any ball B = B(x0, r),

(3.13) essup
1
2
B

Pt1Bc ≤ C exp
(
−tΦ

(
c
r

t

))
,

where

(3.14) Φ (s) := sup
λ>0

{
s

ρ (1/λ)
− λ

}

.

Remark 3.5. Obviously, estimate (3.13) with function Φ defined by (3.14) is equivalent to the
following: for all λ > 0,

(3.15) essup
1
2
B

Pt1Bc ≤ C exp

(

λt−
cr

ρ (1/λ)

)

.

Remark 3.6. If the heat semigroup Pt possesses the heat kernel pt (x, y) then condition (iv)
can be equivalently stated as follows: for all t, r > 0 and for almost all x ∈M ,

(3.16)

∫

B(x,r)c
pt (x, y) dµ (y) ≤ C exp

(
−tΦ

(
c
r

t

))
,

which is proved by the argument of Remark 3.3. Estimate (3.15) can be reformulated similarly.

Example 3.7. If ρ (t) = t1/β for some β > 1 then

Φ (s) = sup
λ>0

{
sλ1/β − λ

}
= Cβs

β
β−1

so that (3.13) becomes

essup
1
2
B

Pt1Bc ≤ C exp

(

−c

(
rβ

t

) 1
β−1

)

.



16 GRIGOR’YAN AND HU

Proof of Theorem 3.4. Observe first that the function Φ is non-negative on [0,+∞) (just let
λ → 0 in (3.14)), monotone increasing, and satisfies the following inequality: for all s ≥ 0 and
A ≥ 1,

(3.17) Φ (As) ≥ AΦ (s) ,

which is proved as follows:

Φ (As) = sup
λ>0

{
As

ρ (1/λ)
− λ

}

≥ A sup
λ>0

{
s

ρ (1/λ)
− λ

}

= AΦ (s) .

Let us prove that (iv) ⇒ (i). Assuming that r ≥ 2c−1Kρ (t) (where K > 1 is to be specified
below) and using (3.17), (3.14), we obtain

Φ
(
c
r

t

)
≥ Φ

(

2K
ρ (t)

t

)

≥ KΦ

(
2ρ (t)

t

)

= K sup
λ>0

{
2ρ (t)

tρ (1/λ)
− λ

}

≥
K

t
,

where the last inequality follows by setting λ = 1/t. Hence, (3.13) implies that

Pt1Bc ≤ C exp (−K) a.e. in
1

2
B.

Choosing K big enough, we obtain (3.1).
Now we prove the main implication (iii) ⇒ (iv). This proof is rather long and will be split

into five steps.
Step 1. We claim that, for any ε > 0, there exists K > 0 such that if a function w ∈

F ∩ L∞ (M) is such that 0 ≤ w ≤ 1 in a ball B = B (x0, r) and w satisfies weakly in B the
equation

−∆w + λw = 0,

where λ > 0 and r are related by

r ≥ Kρ

(
1

λ

)

,

then

w ≤ ε a.e. in
1

4
B.

Indeed, since the Dirichlet form is local and the ball is precompact, we have by Corollary 4.15
(see Appendix) that

w ≤ 1− λRBλ 1B a.e. in B.

By (iii), we have

λRBλ 1B ≥ 1− ε a.e. in
1

4
B,

provided r ≥ Kρ
(

1
λ

)
, where K is now defined by condition (iii). Combining the above two

lines, we finish the proof of the claim.
Step 2. Let us show that there exists c > 0 such that, for any ball B = B (x0, r) and any

λ > 0,

(3.18) essup
B(x0,δ)

(λRλ1Bc) ≤ exp

(

−
cr

ρ (1/λ)
+ 1

)

,

where δ = δ (λ) > 0. Choose some R > 4r and consider the functions

φ = 1B(x0,R)\B(x0,r)
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and

(3.19) u = λRλφ.

It suffices to prove that

(3.20) essup
B(x0,δ)

u ≤ exp

(

−
cr

ρ (1/λ)
+ 1

)

,

and then let R→∞. Since 0 ≤ φ ≤ 1 and φ ∈ L2 (M), we have 0 ≤ u ≤ 1 on M , u ∈ dom(∆) ⊂
F , and u satisfies in M the equation

(3.21) −∆u+ λu = λφ.

It suffices to assume that

(3.22) cr ≥ ρ

(
1

λ

)

,

(where c > 0 is to be specified later) because otherwise (3.20) is trivially satisfied due to u ≤ 1.
Let n ≥ 2 be an integer to be determined later on. For any 1 ≤ i ≤ n, set ri = ir

n ,

bi = essup
B(x0,ri)

u,

and, for 1 ≤ i < n,

wi(x) =
u(x)

bi+1
.

Clearly, wi ∈ F ∩ L∞ (M). Since φ = 0 in B (x0, r), it follows from (3.21) that

−∆wi + λwi = 0 in B (x0, r) .

By definition of bi+1, we have 0 ≤ wi ≤ 1 in B (x0, ri+1). In particular, the same inequality
holds in any ball B (x, r1) for any x ∈ B (x0, ri) (see Fig. 6). Therefore, by Step 1 with ε = e−1,

B(x0,r)

B(x, r1)

B(x,1/4r1)B(x0,r1)

B(x0,ri)

B(x0,ri+1)

x

Figure 6. Balls B (x0, ri) and B (x0, ri+1)

we have that

wi ≤ e
−1 a.e. in B

(

x,
1

4
r1

)

,

provided

(3.23) r1 ≥ Kρ

(
1

λ

)

,
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for an appropriate constant K. It follows that

essup
B(x0,ri)

wi ≤ e
−1,

that is,

(3.24) bi ≤ e
−1bi+1.

Before we proceed further, let us make sure that condition (3.23) is satisfied. Since r1 = r/n, it
is equivalent to

n ≤
r

Kρ
(

1
λ

) ,

so that we can choose

n =

[
r

Kρ
(

1
λ

)

]

.

Choosing in (3.22) c = 1
2K , we obtain that n ≥ 2. Note also that

n ≥
2cr

ρ
(

1
λ

) − 1.

Now, iterating (3.24) and using the fact that bn ≤ 1, we obtain

b1 ≤ e
−(n−1)bn ≤ e

−n/2 ≤ exp

(

−
cr

ρ
(

1
λ

) + 1

)

.

Clearly, this implies (3.20), where δ can be anything ≤ r1 = r
n ; for example, set δ = Kρ

(
1
λ

)
.

Let us note that the iteration argument in this part of the proof is motivated by that in [14]
for the setting of infinite graphs.

Step 3. Let us show that there is K ≥ 1 such that for any ball B = B (x0, r) with

(3.25) r ≥ Kρ

(
1

λ

)

,

we have

(3.26) essinf
(2B)c

(λRλ1Bc) ≥
1

2
.

Indeed, for any x ∈ (2B)c, we have B(x, r) ⊂ Bc, whence by condition (iii),

λRλ1Bc ≥ λRλ1B(x,r) ≥
1

2
a.e. in B

(

x,
1

4
r

)

.

provided (3.25) is satisfied with an appropriate K. Hence, (3.26) follows.
Step 4. Let us show that, for any non-negative function f ∈ L∞ (M), the function u = λRλf

satisfies the inequality

(3.27) Ptu ≤ e
λtu in M.

for arbitrary t, λ > 0. Indeed, we have

Ptu = λ

∫ ∞

0
e−λsPt+sf ds

= λ

∫ ∞

t

e−λ(s−t)Psf ds

= eλtλ

∫ ∞

t

e−λsPsf ds ≤ e
λtu.
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Step 5. Finally, let us prove (3.13). Let c be the same as in (3.18) (Step 2), so that for any
λ > 0 and for u = λRλ1Bc ,

(3.28) essup
B(x0,δ)

u ≤ exp

(

−
cr

ρ (1/λ)
+ 1

)

.

Let λ > 0 be such that (3.25) is satisfied. Then it follows from (3.26) that

u ≥
1

2
1(2B)c in M.

Applying Pt to the both sides of this inequality and using (3.27), we obtain

(3.29)
1

2
Pt1(2B)c ≤ Ptu ≤ e

λtu,

which together with (3.28) yields

(3.30) essup
B(x0,δ)

Pt1(2B)c ≤ C exp

(

λt−
cr

ρ (1/λ)

)

,

where C = 2e.
If λ is such that (3.25) fails, that is, r < Kρ (1/λ) then (3.30) holds trivially with C = ecK .

Hence, (3.30) holds for all λ > 0, which is equivalent to (3.15). �

In applications it is frequently convenient to replace function Φ in (3.13) by a more explicit
function as in the following statement.

Lemma 3.8. Define a function Ψ(λ) on [0,+∞) by

(3.31) Ψ (λ) =

{
λρ
(

1
λ

)
, λ > 0,

0, λ = 0

and assume that Ψ (λ) is a continuous, monotone increasing bijection from [0,+∞) onto [0,+∞),
so that the inverse function Ψ−1 is defined on [0,∞). Then

(3.32) Φ (2s) ≥ Ψ−1 (s) ≥ Φ (s) for all s ≥ 0.

Proof. Set λ = Ψ−1 (s) so that
s = λρ (1/λ) .

It follows from (3.14) that

Φ (2s) ≥
2s

ρ (1/λ)
− λ = λ,

which proves the left inequality in (3.32).
Since

Φ (s) = sup
ν>0

{
λρ (1/λ)

ρ (1/ν)
− ν

}

,

the right inequality in (3.32) is equivalent to the inequality

λρ (1/λ)

ρ (1/ν)
− ν ≤ λ, for all ν > 0,

which after division by ν becomes

(3.33)
Ψ (λ)

Ψ (ν)
≤ 1 +

λ

ν
.

Indeed, if ν ≥ λ then by the monotonicity of Ψ, Ψ (λ) ≤ Ψ (ν), which obviously implies (3.33).
If ν < λ then ρ (1/ν) ≥ ρ (1/λ) and

Ψ (λ)

Ψ (ν)
=
λρ (1/λ)

νρ (1/ν)
≤
λ

ν
,

which implies (3.33) as well. �
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Corollary 3.9. Theorem 3.4 remains true if the function Φ in condition (iv) is replaced by
Ψ−1, provided Ψ−1 exists.

3.2. Pointwise estimates of the heat kernel. Now we can state the main result about the
relation between (DUE) and (UE) in the case of a local Dirichlet form. Let us first state and
label all the required conditions in terms of the functions V and ρ:

• The upper bounds for the volume of balls: for all x ∈M and r > 0

(V ) µ (B(x, r)) ≤ CV (r).

• The version of condition (T ): for any ε > 0 there is K > 0 such that whenever r ≥ Kρ (t)
then, for almost all x ∈M ,

(Tweak)

∫

B(x,r)c
pt(x, z) dµ(z) ≤ ε.

Obviously, (Tweak) is equivalent to the fact that (T ) holds with some function h such that
h (s)→ 0 as s→∞.

• The on-diagonal upper bound: for all t > 0 and almost all x, y ∈M ,

(DUE) pt(x, y) ≤
C

V (ρ (t))
,

• The upper bound with the exponential tail: for all t > 0 and almost all x, y ∈M ,

(UEexp) pt(x, y) ≤
C

V (ρ(t))
exp

(

−tΦ

(

c
d(x, y)

t

))

,

where Φ is defined by (3.14).

Theorem 3.10. Let (E ,F) be a regular, conservative, local Dirichlet form in L2 (M) and let
pt(x, y) be its heat kernel. Assume that all metric balls in M are precompact and satisfy (V ),
and let functions ρ and V be doubling. Then

(DUE) + (Tweak)⇔ (UEexp).

Proof. Let us prove the implication

(DUE) + (Tweak)⇒ (UEexp).

Observe first that condition (Tweak) is equivalent to the condition (i) of Theorem 3.1 (cf. Remark
3.3). Hence, by Theorem 3.4, we obtain

(3.34)

∫

B(x,r)c
pt(x, z)dµ (z) ≤ C exp

(
−tΦ

(
c
r

t

))
,

for all t, r > 0 and almost all x ∈ M (cf. Remark 3.6). Using the semigroup property, (DUE),
and (3.34), we obtain, for almost all x, y ∈M and setting r = 1

2d (x, y), that

p2t(x, y) =

∫

M

pt(x, z)pt(y, z)dµ (z)

≤
∫

B(x,r)c
pt(x, z)pt(y, z) dµ(z) +

∫

B(y,r)c
pt(x, z)pt(y, z) dµ(z)

≤ essup
M×M

pt(·, ·)
∫

B(x,r)c
pt(x, z) dµ(z) + essup

M×M
pt(·, ·)

∫

B(y,r)c
pt(y, z) dµ(z)

≤
C

V (ρ (t))
exp

(
−tΦ

(
c
r

t

))
.

Renaming 2t by t and applying (3.17) and the doubling property of V and ρ, we obtain (UEexp).
Note that in this part of the proof we have not used (V ).

Let us now prove the converse, that is,

(UEexp)⇒ (DUE) + (Tweak).
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The on-diagonal bound (DUE) follows from (UEexp) trivially. To prove (Tweak), observe that,
by (UEexp),

∫

B(x,r)c
pt(x, z) dµ(z) ≤

C

V (ρ(t))

∫

B(x,r)c
exp

(

−tΦ

(
c d(x, z)

t

))

dµ(z).

Hence, we are left to prove that, for any ε > 0 there is K = K (ε) such that

(3.35)
1

V (ρ(t))

∫

B(x,r)c
exp

(

−tΦ

(
cd(x, z)

t

))

dµ(z) ≤ ε,

provided

(3.36) r ≥ Kρ (t) .

For any non-negative integer k, set

(3.37) ξk = tΦ

(

c
2kr

t

)

and observe that, by (3.17),

(3.38) ξk ≥ 2kξ0.

Next, consider the following part of the integral (3.35):

Ik =
1

V (ρ(t))

∫

B(x,2k+1r)\B(x,2kr)
exp

(

−tΦ

(
cd(x, z)

t

))

dµ(z)

≤ C
V
(
2k+1r

)

V (ρ(t))
exp

(

−tΦ

(
c2kr

t

))

≤ C

(
2k+1r

ρ (t)

)α1

exp (−ξk)

≤ C

(
r

ρ (t) ξ0

)α1

ξα1
k exp (−ξk) ,(3.39)

where we have used (V ), (2.1) (which is a consequence of the doubling property of V ), (3.37),
and (3.38). Observe that by (3.37) and (3.14)

ξ0 = tΦ
(
c
r

t

)
= sup

λ>0

{
cr

ρ (1/λ)
− λt

}

≥
cr

ρ (t)
− 1,

which follows by setting λ = 1/t. Assuming that r and t are related by (3.36) and K is so large
that

(3.40) cK ≥ 2,

we obtain

(3.41) ξ0 ≥
c

2

r

ρ (t)
.

Substituting into (3.39), we obtain

(3.42) Ik ≤ Cξ
α1
k exp (−ξk) .
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On the other hand, using ξk/ξk−1 ≥ 2, which is true by (3.17), we obtain
∫ ∞

ξ0

sα1−1 exp (−s) ds =
∞∑

k=1

∫ ξk

ξk−1

sα1−1 exp (−s) ds

≥
∞∑

k=1

exp (−ξk)
∫ ξk

ξk−1

sα1−1 ds

≥ c′
∞∑

k=1

ξα1
k exp (−ξk) ,

where c′ = 1
α1

(1− 2−α1). It follows that

∞∑

k=0

ξα1
k exp (−ξk) = ξα1

0 exp (−ξ0) +
∞∑

k=1

ξα1
k exp (−ξk)

≤ ξα1
0 exp (−ξ0) + C

∫ ∞

ξ0

sα1−1 exp (−s) ds

≤ C exp

(

−
ξ0

2

)

.

Therefore, we obtain from (3.42), (3.41), (3.36)

(3.43)
∞∑

k=0

Ik ≤ C exp

(

−
ξ0

2

)

≤ C exp

(

−
c

4

r

ρ (t)

)

≤ C exp

(

−
cK

4

)

.

Since the left hand side of (3.35) is equal to
∑∞

k=0 Ik and K can be chosen arbitrarily large, we
obtain that (3.35) can be satisfied with any ε > 0, which finishes the proof. �

Using Lemma 3.8, we obtain immediately the following consequence.

Corollary 3.11. Theorem 3.10 remains true if the function Φ in (UEexp) is replaced by Ψ−1,
provided Ψ−1 exists.

It follows from (3.43) that, for all t, r > 0 and almost all x ∈M ,

(3.44)

∫

B(x,r)c
pt(x, z) dµ(z) ≤ C exp

(

−
c

4

r

ρ (t)

)

.

Indeed, (3.43) was proved above under the assumption that r/ρ (t) ≥ 2/c (cf. (3.36) and (3.40)).

If r/ρ (t) < 2/c then (3.44) is trivially satisfied with C = e1/2. Hence, under the hypotheses of
Theorem 3.10, we obtain (T ) with the function

(3.45) h (s) = exp (−cs) .

Let us introduce a stronger version of condition (T ), with an additional requirement on h: for
all t, r > 0 and almost all x ∈M ,

(Tstrong)

∫

B(x,r)c
pt(x, z) dµ(z) ≤ Ch

(
r

ρ(t)

)

,

and lim
t→0

1

t
h

(
r

ρ(t)

)

= 0.

For example, function (3.45) satisfies the second condition in (Tstrong) if, for some c, η > 0,

(3.46) ρ (t) ≤ ctη, 0 < t < 1.

The above observation means that, under the hypotheses of Theorem 3.10 and assuming in
addition (3.46), the following is true:

(UEexp)⇒ (DUE) + (Tstrong).
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The converse implication

(DUE) + (Tstrong)⇒ (UEexp)

is true as well, just because (Tstrong) implies (Tweak). Hence, the hypothesis (Tweak) in the
statement of Theorem 3.10 can be replaced by (Tstrong), provided one assumes in addition (3.46).
Besides, the condition (Tstrong) allows to drop the hypothesis of the locality of the Dirichlet form
in Theorem 3.10 as it is clear from the following statement.

Lemma 3.12. Let (E ,F) be a conservative Dirichlet form with the heat kernel pt (x, y). If
(Tstrong) holds then the Dirichlet form (E ,F) is local.

Proof. We need to prove that if f and g are two functions from F whose supports are disjoint
compact sets then E (f, g) = 0. Since (E ,F) is conservative, we have

E (f, g) = lim
t→0
Et (f, g) ,

where Et is defined by (1.8). Hence, it suffices to show that

(3.47) Et (f, g)→ 0 as t→ 0.

Let A = supp f and C = supp g. Since A and C are disjoint, it follows from (1.8) that

Et (f, g) = −
1

t

∫

A

∫

C

f (x) g (y) pt (x, y) dµ (y) dµ (x) ,

whence by the Cauchy-Schwarz inequality

|Et (f, g)| ≤

(
1

t

∫

A

∫

C

f2 (x) pt (x, y) dµ (y) dµ (x)

)1/2

×

(
1

t

∫

A

∫

C

g2 (y) pt (x, y) dµ (y) dµ (x)

)1/2

≤ ‖f‖ ‖g‖

(

essup
x∈A

1

t

∫

C

pt (x, y) dµ (y)

)1/2

×

(

essup
y∈C

1

t

∫

A

pt (x, y) dµ (x)

)1/2

.

Let r = dist (A,C). Choose a finite covering {Bi}
N
i=1 of A by metric balls Bi = B (xi, r/2) (xi ∈

A). Then C ⊂ (2Bi)
c for any i, and we obtain by (Tstrong)

1

t
essup
x∈A

∫

C

pt (x, y) dµ (y) ≤
1

t
sup
i

essup
x∈Bi

∫

(2Bi)
c
pt (x, y) dµ (y)

≤
1

t
h

(
2r

ρ (t)

)

→ 0 as t→ 0.

Similarly, we have that
1

t
essup
y∈C

∫

A

pt (x, y) dµ (x)→ 0 as t→ 0,

whence (3.47) follows. �

Combining Lemma 3.12 with the previous remarks, we obtain the following result.

Corollary 3.13. Under the hypotheses of Theorem 3.10, drop the assumption of the locality of
(E ,F) and add condition (3.46). Then the following is true:

(DUE) + (Tstrong)⇔ (UEexp).
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4. Appendix: Markovian properties

We prove here a number of the consequences of the Markov property of the Dirichlet forms,
such as the maximum and comparison principles, the properties of the resolvents and the heat
semigroups in subsets, etc., which are necessary for Section 3 (Corollary 4.15 and Lemma 4.18
are explicitly used in the proofs of Theorem 3.4 and 3.1, respectively). These results are “well-
known”, but it is hardly possible to give accurate references. Besides, the existing proofs would
normally use the Hunt process associated with the Dirichlet form. We give self-contained,
analytic proofs of all these results, some of which are new.

Let us state some frequently used basic facts about Dirichlet forms:

• (Extension of the Markov property). If ϕ : R→ R is a Lipschitz function with the
Lipschitz constant ≤ 1 and ϕ (0) = 0 then, for any u ∈ F , the function ϕ (u) is also in
F and E (ϕ (u)) ≤ E (u). For the function ϕ (s) = max(min (s, 1) , 0) this property holds
by the definition of the Markov property. The proof for a general ϕ can be found in [10,
Theorem 1.4.1, p.23].
• If u, v ∈ F ∩ L∞ (M) then uv ∈ F (see [10, Theorem 1.4.2(ii)]).

Definition 4.1. For any open subset Ω of M , let F0 (Ω) be the set of functions from F whose
support is compact and is contained in Ω. Then define F (Ω) as the closure of F0 (Ω) in F with
respect to the E1-norm.

In particular, it follows that any function from F (Ω) vanishes in Ωc and, hence, can be
identified as an element of L2 (Ω). If F (Ω) is dense in L2 (Ω) then (E ,F (Ω)) is a Dirichlet form
in L2 (Ω). In this case, denote by ∆Ω and PΩ

t respectively the generator and the semigroup of
(E ,F (Ω)). If f ∈ L2 (M) then set PΩ

t f := PΩ
t (f |Ω).

In general F (Ω) need not be dense in L2 (Ω). However, if the Dirichlet form (E ,F) is regular
then F0 (Ω) is obviously dense in L2 (Ω). In this case, F (Ω) admits the following two equivalent
definitions (see [10, Corollary 2.3.1, p.95 and Theorem 4.4.2, p.154]):

(1) F (Ω) is the closure of F ∩ C0 (Ω) in F .

(2) F (Ω) =
{
f ∈ F : f̃ = 0 q.e. on Ωc

}
where f̃ is a quasi-continuous modification of f and

“q.e.” stands for “quasi everywhere”.

Let us state the following useful properties of regular Dirichlet forms:

• If (E ,F) is a regular Dirichlet form then (E ,F (Ω)) is also a regular Dirichlet form.
• For any open set Ω ⊂ M and any set S b Ω, there is a function ϕ ∈ F ∩ C0 (Ω) such

that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in an open neighborhood of S (see [10, p.27]). Such a function
ϕ is called a cut-off function of the pair (S,Ω).

4.1. Maximum principle for weak solutions. In this subsection, (E ,F) is a Dirichlet form
in L2 (M), not necessarily regular, unless otherwise stated.

Lemma 4.2. ([1]) Let u, v be two functions from F such that 0 ≤ u ≤ 1 and v ≥ 0. If

u ≡ 1 on the set {v > 0}

then E (u, v) ≥ 0.

Proof. It follows from the hypotheses that, for any λ > 0,

min (u+ λv, 1) = u.

By the Markov property and the bilinearity of the Dirichlet form, we obtain

E(u) ≤ E(u+ λv) = E(u) + 2λE(u, v) + λ2E(v),

whence

2λE(u, v) + λ2E(v) ≥ 0.

Dividing by λ and then letting λ→ 0, we obtain E (u, v) ≥ 0, which was to be proved. �



UPPER ESTIMATES 25

Lemma 4.3. Let ϕ (s) be an increasing function on R such that ϕ (0) = 0 and |ϕ (s1)− ϕ (s2)| ≤
|s1 − s2| for all s1, s2 ∈ R. Then, for any u ∈ F , also ϕ (u) ∈ F and

(4.1) E (u, ϕ (u)) ≥ E (ϕ (u)) .

In particular, (4.1) implies

(4.2) E (u, ϕ (u)) ≥ 0.

For example, applying this with the function ϕ (s) = s+ := max (s, 0), we obtain that

(4.3) E(u, u+) ≥ 0.

Proof. That ϕ (u) belongs to F is true by the Markov property. Fix some λ ∈ (0, 1) and consider
the function

(4.4) ψ (s) = λs+ (1− λ)ϕ (s) .

Obviously, ψ is Lipschitz and ψ (0) = 0, whence it follows that ψ (u) ∈ F . Using 0 ≤ ϕ′ ≤
1 (where all relations involving the derivatives of Lipschitz functions are understood almost
everywhere), we obtain from (4.4)

(4.5) ψ′ ≥ max
(
λ, ϕ′

)
.

In particular, ψ′ ≥ λ, which implies that the function ψ has the inverse ψ−1 on R, which is also
a Lipschitz function. Using the identity

(
ϕ ◦ ψ−1

)′
(s) =

ϕ′
(
ψ−1 (s)

)

ψ′
(
ψ−1 (s)

)

and ψ′ ≥ ϕ′ (cf. (4.5)), we obtain

0 ≤
(
ϕ ◦ ψ−1

)′
≤ 1,

which implies by the Markov property that

(4.6) E (ϕ (u)) = E
((
ϕ ◦ ψ−1

)
(ψ (u))

)
≤ E (ψ (u)) .

On the other hand, by (4.4),

E (ψ (u)) = λ2E (u) + (1− λ)2 E (ϕ (u)) + 2λ (1− λ) E (u, ϕ (u)) .

Expanding in λ and comparing with (4.6), we obtain

2λ (E (u, ϕ (u))− E (ϕ (u))) + λ2 (E (u)− 2E (u, ϕ (u)) + E(ϕ, u)) ≥ 0.

Dividing by λ and then letting λ→ 0, we obtain (4.1). �

The maximum principles that will be stated below in Propositions 4.6 and 4.11, use the
boundary condition

(4.7) u ≤ 0 on Ωc,

that is to be understood in a weak sense. The precise meaning of (4.7) is that u+ ∈ F (Ω). The
next statement provides a convenient equivalent way of stating this condition.

Lemma 4.4. Let (E ,F) be a regular Dirichlet form. Let u ∈ F and Ω be an open subset of M .
Then the following are equivalent:

(i) u+ ∈ F (Ω).
(ii) u ≤ v in M for some function v ∈ F (Ω).
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Proof. The implication (i) ⇒ (ii) is trivial since we can take v = u+. Let us prove (ii) ⇒ (i).
Set f = u− v so that f ∈ F and f ≤ 0 in M . The question amounts to proving that

(4.8) (v + f)+ ∈ F (Ω) ,

for any non-positive f ∈ F and any v ∈ F (Ω) . Assume first that f ∈ F∩L∞ (M) and v ∈ F0 (Ω).
Let ϕ be a cut-off function of supp v in Ω. Since ϕ ∈ F ∩ L∞ (M) and suppϕ ⊂ Ω, it follows
that ϕf ∈ F (Ω). Observe that

(4.9) (v + f)+ = (v + ϕf)+ .

Indeed, on supp v we have ϕ ≡ 1 so that the identity (4.9) is trivially satisfied, while on the set
{v = 0} the both sides of (4.9) vanish because f ≤ 0 (see Fig. 7). Since v + ϕf ∈ F (Ω), we

Figure 7. Function v + ϕf

conclude that (v + ϕf)+ ∈ F (Ω) whence (4.8) follows.
For an arbitrary non-positive function f ∈ F , consider the sequence fk = max (f,−k) so that

fk ∈ F ∩ L∞ (M), fk ≤ 0, and fk
E1−→ f (see [10, Theorem 1.4.2(iii), p.26]). Also, if v ∈ F (Ω)

then there is a sequence of functions {vk}
∞
k=1 ⊂ F ∩C0 (Ω) such that vk

E1−→ v. By the previous
argument, we have

(4.10) (vk + fk)+ ∈ F (Ω) .

Since

vk + f
E1−→ v + f,

it follows by [10, Theorem 1.4.2(v), p.26] that

(vk + f)+
E1⇀ (v + f)+ = u+,

where the convergence is weak with respect to E1-norm. However, F (Ω) being a closed subspace
of the Hilbert space F , is also weakly closed. Together with (4.10), this implies u+ ∈ F (Ω),
which was to be proved. �

In the two propositions below, the regularity of (E ,F) is not assumed.

Definition 4.5. Let Ω be an open subset of M , f ∈ L2 (Ω) and λ ∈ R. We say that a function
u ∈ F satisfies weakly the inequality

−∆u+ λu ≤ f in Ω,

if, for any non-negative function ψ ∈ F(Ω),

(4.11) E(u, ψ) + λ (u, ψ) ≤ (f, ψ) .

Similarly one defines in the weak sense the inequality −∆u+λu ≥ f and the identity −∆u+
λu = f .
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Proposition 4.6 (Elliptic maximum principle). Let u ∈ F be a function such that, for some
open set Ω ⊂M and λ > 0,

{
−∆u+ λu ≤ 0 weakly in Ω,
u+ ∈ F (Ω) .

Then u ≤ 0 a.e. in Ω.

Proof. Since u+ ∈ F(Ω), we can take ψ = u+ in (4.11) and obtain that

E(u, u+) + λ (u, u+) ≤ 0.

Since λ > 0 and by (4.3) E(u, u+) ≥ 0, it follows that

‖u+‖L2(Ω) = (u, u+) ≤ 0,

whence u+ = 0 in Ω. �

Remark 4.7. By Lemma 4.4, in the case when the Dirichlet form is regular, condition u+ ∈
F (Ω) can be replaced by u ≤ v for some v ∈ F (Ω).

Remark 4.8. For the case λ = 0 some additional assumptions on the domain Ω are necessary
for the validity of the maximum principle. Under different assumptions on Ω and for a local
form E , the following version of the elliptic maximum principle was proved in [5, p.140] and
[17, Corollary 1.1]: if u ∈ F , −∆u ≤ 0 weakly in Ω and ũ is a quasi-continuous version of u
then ũ ≤ C q.e.in M \ Ω implies that ũ ≤ C q.e. in Ω, where C ≥ 0 is an arbitrary constant.
Note that the condition ũ ≤ 0 q.e. in M \ Ω is equivalent to u+ ∈ F (Ω) (cf. the remark after
Definition 4.1).

Definition 4.9. Let I be an open interval in R, Ω be an open subset of M , and f ∈ L2 (Ω).
We say that a function u : I → F satisfies weakly the inequality

(4.12)
∂u

∂t
−∆u ≤ f in I × Ω,

if the Fréchet derivative ∂u
∂t of u exists in L2(Ω) for any t ∈ I and, for any non-negative function

ψ ∈ F (Ω),

(4.13)

(
∂u

∂t
(t, ·), ψ

)

+ E (u(t, ·), ψ) ≤ (f, ψ) .

Similarly one defines in the weak sense the inequality ∂u
∂t −∆u ≥ f and the identity ∂u

∂t −∆u = f .

If ∂u
∂t − ∆u = 0 weakly in I × Ω then the function u is called a weak solution to the heat

equation in I × Ω. The weak inequality ∂u
∂t − ∆u ≤ 0 (≥ 0) defines a weak subsolution (resp.,

supersolution) to the heat equation.

Example 4.10. For example, for any f ∈ L2 (M), the function u = Ptf is a weak solution to
the heat equation in (0,+∞)×M , that is, for any ψ ∈ F (M),

(4.14)

(
∂

∂t
Ptf, ψ

)

+ E (Ptf, ψ) = 0.

Indeed, it follows from the spectral theory that the following equation is satisfied strongly

∂

∂t
Ptf = ∆ (Ptf) ,

that is, ∆ is understood here as an operator in L2 (M). By the definition of the generator ∆,
we have

(∆ (Ptf) , ψ) = −E (Ptf, ψ) ,

whence (4.14) follows.
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Proposition 4.11 (parabolic maximum principle). Fix T ∈ (0,+∞] and an open subset Ω ⊂M ,
and assume that a function u : (0, T )→ F satisfies the following conditions:






∂u
∂t −∆u ≤ 0 weakly in (0, T )× Ω,
u+(t, ·) ∈ F(Ω) for any t ∈ (0, T )

u+ (t, ·)
L2(Ω)
−→ 0 as t→ 0.

Then u ≤ 0 a.e. on (0, T )× Ω.

Proof. Fix a function ϕ ∈ C∞(R) such that ϕ = 0 on (−∞, 0], ϕ > 0 on (0,∞), and 0 ≤ ϕ′ ≤ 1
on R. Choosing in (4.13) the function

ψ := ϕ(u(t, ·)) = ϕ(u+(t, ·)) ∈ F(Ω),

we obtain (
∂u

∂t
, ϕ(u)

)

+ E (u, ϕ(u)) ≤ 0.

By (4.2), we have E (u, ϕ(u)) ≥ 0, whence

(4.15)

(
∂u

∂t
, ϕ(u)

)

≤ 0.

Now define the function Φ by

Φ(s) =

(∫ s

0
ϕ(ξ) dξ

)1/2

, s ∈ R.

By choosing a suitable ϕ in a right neighborhood of 0, for example, letting ϕ(s) = d
ds exp

(
−s−2

)
,

we can make Φ (s) and all its derivatives Φ(k)(s) tend to 0 as s→ 0, so that Φ ∈ C∞(R). Note
that Φ = 0 on (−∞, 0], Φ > 0 on (0,∞), and 0 ≤ Φ′ ≤ 1 on R. All these properties are obvious
except that Φ′ ≤ 1 on (0,∞). The latter is proved as follows: since

d

ds

∫ s

0
ϕ(ξ) dξ = ϕ(s) ≥ ϕ′(s)ϕ(s) =

1

2

d

ds
ϕ2(s),

we have

Φ(s)2 =

∫ s

0
ϕ(ξ) dξ ≥

1

2
ϕ2(s), s > 0,

whence

Φ′(s) =
ϕ(s)

2Φ(s)
≤

√
2Φ(s)

2Φ(s)
=

√
2

2
< 1.

It follows that Φ (u) ∈ F . It is easy to show that the function t 7→ Φ (u (t, ·)) is Fréchet
differentiable in L2 (Ω) and, by the chain rule,

∂

∂t
Φ (u) = Φ′(u)

∂u

∂t
.

By the product rule for the Fréchet derivative , we obtain from (4.15) that

d

dt
(Φ(u),Φ(u)) = 2

(

Φ′(u)
∂u

∂t
,Φ(u)

)

=

(
∂u

∂t
, 2Φ′(u)Φ(u)

)

=

(
∂u

∂t
, ϕ(u)

)

≤ 0.

Hence, the function ‖Φ(u(t, ·))‖ is non-increasing in t. As Φ(s) ≤ s+, it follows that, for any
t ∈ (0, T ),

‖Φ(u(t, ·))‖ ≤ lim
s→0+

‖Φ(u(s, ·))‖ ≤ lim
s→0+

‖u+(s, ·)‖ = 0,

which implies that u ≤ 0 a.e. on (0, T )× Ω. �
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4.2. Comparison lemmas for the resolvent. In this subsection, (E ,F) is a regular Dirichlet
form in L2 (M). For any open subset Ω ⊂ M and any λ > 0, define the resolvent operator
RΩ
λ : L2 (Ω)→ L2 (Ω) by

(4.16) RΩ
λ f = (−∆Ω + λ)−1 f =

∫ ∞

0
e−λtPΩ

t f dt,

for any f ∈ L2 (Ω). It follows that RΩ
λ is a bounded operator in L2 (Ω) and, for any f ∈ L2 (Ω),

RΩ
λ f ∈ dom (∆Ω) ⊂ F (Ω) .

It is clear from (4.16) that f ≥ 0 implies RΩ
λ f ≥ 0 and f ≤ 1 implies λRΩ

λ f ≤ 1.

If f ∈ L2 (M) then set RΩ
λ f := RΩ

λ (f |Ω) .

Lemma 4.12. Let Ω ⊂M be an open set, λ > 0, and let a non-negative function u ∈ F satisfy
weakly in Ω the inequality

(4.17) −∆u+ λu ≥ f,

where 0 ≤ f ∈ L2 (Ω). Then

u ≥ RΩ
λ f.

Proof. It follows from the definition (4.16) of the resolvent that the function v = RΩ
λ f satisfies

in Ω the equation

(4.18) −∆Ωv + λv = f.

Multiplying (4.18) by ψ ∈ F (Ω) and integrating over Ω, we obtain

E (v, ψ) + λ (v, ψ) = (f, ψ) ,

that is, v satisfies weakly the equation

−∆v + λv = f in Ω.

It follows from (4.17) that the function w = v−u belongs to F and satisfies weakly the inequality

−∆w + λw ≤ 0 in Ω.

Since w ≤ v and v ∈ F (Ω), we conclude by Lemma 4.4 that w+ ∈ F (Ω). Then by Proposition
4.6, we obtain w ≤ 0 in Ω, that is, u ≥ v, which was to be proved. �

It follows from Lemma 4.12 that the function u = RΩ
λ f is the minimal non-negative solution

from the class F to the equation
−∆u+ λu = f in Ω,

which is understood in the weak sense.

Lemma 4.13. If {Ωi}
∞
i=1 is an increasing sequence of open subsets of M and Ω =

⋃∞
i=1 Ωi then,

for any λ > 0 and any 0 ≤ f ∈ L2 (Ω),

RΩi
λ f

a.e.
−→ RΩ

λ f.

Proof. Set ui = RΩi
α f and observe that, by Lemma 4.12, the sequence {ui} is increasing and

0 ≤ ui ≤ R
Ω
αf.

Therefore, ui converges almost everywhere to a measurable function u on Ω such that

0 ≤ u ≤ RΩ
αf.

This implies that u ∈ L2 (Ω) and, by the dominated convergence theorem, ui → u in L2 (Ω).
We need to prove that u = RΩ

λ f .
Let us first show that u ∈ F (Ω). The function ui belongs F (Ωi) and, hence, ui ∈ F (Ω). Let

us show that the sequence {ui} is Cauchy in F (Ω) with respect to the norm E1. Each function
ui satisfies the equation

(4.19) E (ui, ϕ) + α (ui, ϕ) = (f, ϕ) ,
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for any ϕ ∈ F (Ωi). Choosing here ϕ = ui, we obtain

E (ui, ui) + α (ui, ui) = (f, ui) .

Fix k > i and observe that the function ϕ = uk − 2ui belongs to F (Ωk). Therefore, by the
analogous equation for uk, we obtain

E (uk, uk − 2ui) + α (uk, uk − 2ui) = (f, uk − 2ui) .

Adding up the above two lines yields

E (uk) + E (ui)− 2E (uk, ui) + α
(
‖uk‖

2 + ‖ui‖
2 − 2 (uk, ui)

)
= (f, uk − ui) ,

whence

E (uk − ui) + α‖uk − ui‖
2 = (f, uk − ui) ≤ ‖f‖‖uk − ui‖.

Since ‖uk−ui‖ → 0 as k, i→∞, we conclude that also E (uk − ui)→ 0 and, hence, E1 (uk − ui)→
0. Therefore, the sequence {ui} is Cauchy in F (Ω) and, hence, converges in F (Ω). Since its
limit in L2 (Ω) is u, we conclude that the limit of {ui} in F (Ω) is also u. In particular, u ∈ F (Ω).

Now we can show that u = RΩ
αf . Fix a function ϕ ∈ F0 (Ω) and observe that the support

of ϕ is contained in Ωi when i is large enough. Therefore, (4.19) holds for this ϕ for all large
enough i. Passing to the limit as i→∞, we obtain that the same equation holds for u instead
of ui, that is,

(4.20) E (u, ϕ) + α (u, ϕ) = (f, ϕ) .

Since F0 (Ω) is dense in F (Ω), this identity holds for all ϕ ∈ F (Ω). Since the function RΩ
αf

belongs to F (Ω) and also satisfies (4.20), we obtain that the function v = u − Rαf belongs to
F (Ω) and satisfies the identity

E (v, ϕ) + α (v, ϕ) = 0,

for all ϕ ∈ F (Ω). Setting ϕ = v, we obtain v = 0, which finishes the proof. �

The following statement is a modification of Lemma 4.12 in the case of a local form, where
the hypotheses u ≥ 0 in M can be relaxed to u ≥ 0 in Ω.

Lemma 4.14. Let the Dirichlet form (E ,F) be local. Let Ω ⊂M be an open set, λ > 0, and let
a function u ∈ F ∩ L∞ (M) be non-negative in Ω and satisfy weakly in Ω the inequality

(4.21) −∆u+ λu ≥ f,

where 0 ≤ f ∈ L2 (Ω). Then

u ≥ RΩ
λ f.

Proof. It suffices to prove that

u ≥ RUλ f,

for any open set U b Ω and then take an exhaustion of Ω by such sets U and pass to the limit
by Lemma 4.13. Let ϕ be a cut-off function of the pair (U,Ω). Then ϕu ∈ F and, since ϕu is
supported in Ω, it follows that ϕu ∈ F (Ω). Observe that ϕu ≥ 0. Let us apply Lemma 4.12 to
the function ϕu instead of u and in the space Ω instead of M . For that, we need to verify that
the following inequality holds weakly in U :

−∆ (ϕu) + λ (ϕu) ≥ f.

Indeed, for any 0 ≤ ψ ∈ F (U), we have

E (ϕu, ψ) + λ (ϕu, ψ) = E ((ϕ− 1)u, ψ) + E (u, ψ) + λ (u, ψ) ≥ (f, ψ) ,

where we have used

E ((ϕ− 1)u, ψ) = 0,

which is true by the locality of the form (E ,F), and

E (u, ψ) + λ (u, ψ) ≥ (f, ψ) ,
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which is true by (4.21). By Lemma 4.12, we conclude that in U

u = ϕu ≥ RUλ f,

which was to be proved. �

Corollary 4.15. Assume that the Dirichlet form (E ,F) is local. Let Ω ⊂ M be a precompact
open set and λ > 0. If a function w ∈ F ∩ L∞ (M) is such that 0 ≤ w ≤ 1 in Ω and w satisfies
weakly in Ω the inequality

(4.22) −∆w + λw ≤ 0,

then

(4.23) w ≤ 1− λRΩ
λ1Ω in Ω.

Proof. Let ϕ be a cut-off function of the pair (Ω,M) and consider the function u = ϕ− w (see
Fig. 8). Clearly, u ∈ F ∩ L∞ (M) and u ≥ 0 in Ω. Let us show that u satisfies weakly in Ω the

R 1λ

Figure 8. Functions w,ϕ, RΩ
λ1Ω

inequality

−∆u+ λu ≥ λ.

Indeed, for any 0 ≤ ψ ∈ F (Ω), we have

E (u, ψ) + λ (u, ψ) = E (ϕ,ψ) + λ (ϕ,ψ)− (E (w,ψ) + λ (w,ψ)) ≥ λ (1, ψ) ,

where we have used that E (ϕ,ψ) ≥ 0 by Lemma 4.2, (ϕ,ψ) = (1, ψ), and

E (w,ψ) + λ (w,ψ) ≤ 0

by (4.22). By Lemma 4.14, we conclude that

u ≥ λRΩ
λ1Ω,

whence it follows that in Ω

w = ϕ− u = 1− u ≤ 1− λRΩ
λ1Ω,

proving (4.23). �

4.3. Comparisons lemmas for the heat semigroup. In this subsection, (E ,F) is a regular
Dirichlet form in L2 (M).

Lemma 4.16. Let U be an open subset of M , and 0 ≤ f ∈ L2 (U). If u : R+ → F is a weak
non-negative supersolution to the heat equation in R+ × U and

(4.24) u (t, ·)
L2(U)
−→ f as t→ 0

then, for all t > 0,

(4.25) u (t, ·) ≥ PUt f.
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Proof. Function PUt f is a weak solution to the heat equation in R+×U (cf. Example 4.10), and
satisfies the initial condition (4.24). Hence, for the difference w = PUt f − u, we have






∂w
∂t −∆w ≤ 0 weakly in R+ × U,
w+ (t, ·) ∈ F (U) for any t > 0,

w (t, ·)
L2(U)
−→ 0 as t→ 0,

where the middle condition follows from w (t, ·) ≤ PUt f ∈ F (U) and Lemma 4.4. By Proposition
4.11, we conclude that w ≤ 0, whence (4.25) follows. �

In particular, if Ω is an open set containing U then applying Lemma 4.16 to u = PΩ
t f we

obtain PΩ
t f ≥ P

U
t f .

Lemma 4.17. If {Ωi}
∞
i=1 is an increasing sequence of open subsets of M and Ω =

⋃∞
i=1 Ωi then,

for any t > 0 and any 0 ≤ f ∈ L2 (Ω),

(4.26) PΩi
t f

a.e.
−→ PΩ

t f as i→∞.

Proof. Assume first that f ∈ L2 (Ω1). The sequence of functions {PΩi
t f}∞i=1 is increasing and is

bounded by PΩ
t f . Hence, for any t > 0, the sequence {PΩi

t f} converges almost everywhere to a
measurable function ut on Ω such that

0 ≤ ut ≤ P
Ω
t f.

We need to show that ut = PΩ
t f . Since ut ∈ L2 (Ω), the dominated convergence theorem implies

that

PΩi
t f

L2(Ω)
−→ ut.

Since the semigroup
{
PΩ
t

}
t≥0

is strongly continuous, the function t 7→ PΩ
t f is continuous as a

path in L2 (Ω), for all t ≥ 0. Let us prove that the path t 7→ ut is continuous in L2 (Ω). For all
s > 0 and t ≥ 0, we have

∥
∥
∥PΩi

t+sf − P
Ωi
t f

∥
∥
∥ =

∥
∥
∥PΩi

t

(
PΩi
s f − f

)∥∥
∥ ≤

∥
∥PΩi

s f − f
∥
∥ .

Since PΩ1
s f ≤ PΩi

s f ≤ PΩ
s f , it follows that
∥
∥
∥PΩi

t+sf − P
Ωi
t f

∥
∥
∥ ≤

∥
∥PΩ1

s f − f
∥
∥+

∥
∥PΩ

s f − f
∥
∥ .

Letting i→∞, we obtain

‖ut+s − ut‖ ≤
∥
∥PΩ1

s f − f
∥
∥+

∥
∥PΩ

s f − f
∥
∥→ 0 as s→ 0,

which means that ut is right continuous. If t > s > 0 then we have
∥
∥
∥PΩi

t−sf − P
Ωi
t f

∥
∥
∥ =

∥
∥
∥PΩi

t−s

(
f − PΩi

s f
)∥∥
∥ ≤

∥
∥PΩi

s f − f
∥
∥ .

Arguing as above, we obtain that ut is also left continuous.
Fix a non-negative function ϕ ∈ F ∩ C0 (Ω) and observe that ϕ ∈ F (Ωi) for large enough i.

It follows from (4.16) and the monotone convergence theorem that, for any α > 0,

(RΩi
α f, ϕ) =

∫ ∞

0
e−αt(PΩi

t f, ϕ)dt −→
∫ ∞

0
e−αt (ut, ϕ) dt,

as i→∞. On the other hand, by Lemma 4.13,

(RΩi
α f, ϕ) −→

(
RΩ
αf, ϕ

)
=

∫ ∞

0
e−αt

(
PΩ
t f, ϕ

)
dt,

whence it follows that
∫ ∞

0
e−αt (ut, ϕ) dt =

∫ ∞

0
e−αt

(
PΩ
t f, ϕ

)
dt.
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Since (ut, ϕ) ≤
(
PΩ
t f, ϕ

)
and the functions (ut, ϕ),

(
PΩ
t f, ϕ

)
are continuous in t, this identity is

only possible when

(4.27) (ut, ϕ) =
(
PΩ
t f, ϕ

)
for all t > 0.

It follows that ut = PΩ
t f , which was claimed.

Finally, consider an arbitrary non-negative function f ∈ L2 (Ω). Fix k ∈ N and set fk = f |Ωk .
By the previous part of the proof, we have

PΩi
t fk

L2(Ω)
−→ PΩ

t fk as i→∞.

For any i > k, we have
∥
∥
∥PΩ

t f − P
Ωi
t f

∥
∥
∥ ≤

∥
∥PΩ

t f − P
Ω
t fk

∥
∥+

∥
∥
∥PΩ

t fk − P
Ωi
t fk

∥
∥
∥+

∥
∥
∥PΩi

t fk − P
Ωi
t f

∥
∥
∥

≤ 2 ‖f − fk‖+
∥
∥
∥PΩ

t fk − P
Ωi
t fk

∥
∥
∥

whence it follows that

lim sup
i→∞

∥
∥
∥PΩ

t f − P
Ωi
t f

∥
∥
∥ ≤ 2 ‖f − fk‖ .

Letting k →∞, we obtain limi→∞

∥
∥
∥PΩ

t f − P
Ωi
t f

∥
∥
∥ = 0, whence (4.26) follows. �

Lemma 4.18. For any two open subsets U ⊂ Ω of M , for any compact set K ⊂ U , for any
0 ≤ f ∈ L2 (M) and all t > 0,

(4.28) essup
Ω

(
PΩ
t f − P

U
t f
)
≤ sup

s∈[0,t]
essup
Ω\K

PΩ
s f.

In particular, applying (4.28) for Ω = M , we obtain, for any f ∈ L2 (M), t > 0 and almost
all x ∈M ,

(4.29) Ptf(x)− PUt f(x) ≤ sup
s∈[0,t]

essup
Kc

Psf.

Proof. Let {Ωi}
∞
i=1 be an increasing sequence of precompact open sets that exhausts Ω and

{Ui}
∞
i=1 be a similar sequence to exhaust U and such that K ⊂ Ui ⊂ Ωi for all i. By (4.26) and

PUit f ≤ PUt f , it suffices to prove that

essup
Ωi

(
PΩi
t f − PUit f

)
≤ sup

s∈[0,t]
essup
Ωi\K

PΩi
s f.

Hence, renaming Ωi to Ω and Ui to U , we can assume in the sequel that U and Ω are precompact.
Fix some T > 0 and set

m = sup
s∈[0,T ]

essup
Ω\K

PΩ
s f.

If m ≡ ∞ then (4.28) is trivially satisfied for t = T . Assuming in the sequel that m <∞, choose
a cut-off function ϕ of the couple (Ω,M), and consider the function

(4.30) ut = PΩ
t f − P

U
t f −mϕ.

It suffices to prove that uT ≤ 0 in Ω. In fact, we shall prove that ut ≤ 0 in Ω for all t ∈ [0, T ].
For any t ∈ [0, T ], we have ut ∈ F and ut ≤ 0 in M \K, the latter being true by the definition

of m. It follows that (ut)+ = 0 in M \K and, hence, (ut)+ ∈ F(U). By Proposition 4.11, in
order to prove that ut ≤ 0 in U , it suffices to verify that ut is a weak subsolution to the heat
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equation in (0, T ) × U and that (ut)+ → 0 in L2 (U) as t → 0. Indeed, for any 0 ≤ ψ ∈ F(U),
we have (

∂ut
∂t

, ψ

)

=

(
∂

∂t
PΩ
t f −

∂

∂t
PUt f, ψ

)

= −E
(
PΩ
t f − P

U
t f, ψ

)

= −E (ut, ψ)−mE(ϕ,ψ) ≤ −E (ut, ψ) ,

where we have used the identity (4.14) and the fact that E(ϕ,ψ) ≥ 0 by Lemma 4.2. Hence, ut
is a weak subsolution to the heat equation in (0, T )× U .

Since PΩ
t f and PUt f tend to f in the norm of L2 (U) as t→ 0 and ϕ ≡ 1 in U , it follows from

(4.30) that ut → −m in L2 (U) as t → 0. Hence, (ut)+ → 0 in L2 (U) as t → 0, which finishes
the proof. �
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