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Abstract

Let G = (V, E) be a locally finite graph, Ω ⊂ V be a bounded open domain, ∆ be the usual graph
Laplacian, and λ1(Ω) be the first eigenvalue of −∆ with respect to Dirichlet boundary condition.
Using the mountain pass theorem of Ambrosette and Rabinowitz, We prove that if α < λ1(Ω),
then for any p > 2, there exists a positive solution to −∆u − αu = |u|p−2u in Ω◦,

u = 0 on ∂Ω,

where Ω◦ and ∂Ω denote the interior and the boundary of Ω respectively. Also we consider simi-
lar problems involving the p-Laplacian and poly-Laplacian by the same method. Such problems
can be viewed as discrete versions of the Yamabe type equation on Euclidean space or compact
Riemannian manifolds.

Key words: Sobolev embedding, Yamabe type equation, locally finite graph
2010 MSC: 34B45; 35A15; 58E30

1. Introduction

Let Ω be a domain of Rn and W1,q
0 (Ω) be the closure of C∞0 (Ω) with respect to the norm

‖u‖W1,q
0 (Ω) =

(∫
Ω

(|∇u|q + |u|q) dx
)1/q

.

Then the Sobolev embedding theorem reads

W1,q
0 (Ω) ↪→


Lp(Ω) for q ≤ p ≤ q∗ =

nq
n−q , when n > q

Lp(Ω) for q ≤ p < +∞, when q = n

C1−n/q(Ω), when q > n.
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The model problem  −∆u + λu = |u|p−2u,

u ∈ W1,2
0 (Ω)

(1)

or its variants has been extensively studied since 1960s. Let J : W1,2
0 (Ω) → R be a functional

defined by

J(u) =
1
2

∫
Ω

(|∇u|2 + λu2)dx −
1
p

∫
Ω

|u|pdx.

Clearly the critical points of ϕ are weak solutions to the problem (1). In the case 2 < p < +∞

when n = 1, 2, or 2 < p ≤ 2∗ = 2n/(n − 2) when n ≥ 3, one can check that supW1,2
0 (Ω) J = +∞

and infW1,2
0 (Ω) J = −∞. In [12], Nehari obtained a nontrivial solution of (1) when λ ≥ 0 and

Ω = (a, b), by minimizing J in the manifold

N = {u ∈ W1,2
0 (Ω) : 〈J′(u), u〉 = 0, u , 0}.

In [13], he proved the existence of infinitely many solutions and in [14], he solved the case where
Ω = R3, λ > 0 and 2 < p < 6 after reduction to an ordinary differential equation. When Ω is
unbounded or when p = 2∗, there is a lack of compactness in Sobolev spaces because of invari-
ance by translation or by dilation. Some nonexistence results follow from the Pohozaev identity.
General existence theorems were first obtained by Strauss [18] when Ω = Rn and by Brezis-
Nirenberg [5] when p = 2∗. The Brezis-Lieb lemma and Lions’ concentration compactness
principle are important tools in solving those problems. For other existence results for variants
of (1), we refer the reader to [21].

Analogous to (1), one can consider the problem −∆nu = f (x, u) in Ω

u ∈ W1,n
0 (Ω),

(2)

where ∆n is the n-Laplace operator and f (x, s) has exponential growth as s → +∞. Instead of
the Sobolev embedding theorem, the key tool in solving the problem (2) is the Trudinger-Moser
embedding contributed by Yudovich [27], Pohozaev [16], Peetre [15], Trudinger [19] and Moser
[11]. In [1], Adimurthi proved an existence of positive solution to (2) by using a method of
Nehari manifold. In [6], de Figueiredo, Miyagaki and Ruf considered (2) in the case that Ω is
a bounded domain in R2, by using the critical point theory. In [7], by using the mountain pass
theorem without the Palais-Smale condition, do Ó improve the results of [1, 6]. In [8], using the
same method, he extended these results to the case that Ω is the whole Euclidean space Rn. For
related problems, we refer the reader to [9, 2, 23, 24] and the references there in.

On Riemannian manifolds, an analog of the model problem (1) arises from the Yamabe prob-
lem: Let (M, g) be a compact n (≥ 3) dimensional Riemannian manifold without boundary.
Does there exist a good metric g̃ in the conformal class of g such that the scalar curvature Rg̃

is a constant? This problem was studied by Yamabe [22], Trudinger [20], Aubin [4], and com-
pletely solved by Schoen [17]. Though there is no background of geometry or physics, there
are still some works concerning the problem (2) on Riemannian manifolds, see for examples
[26, 10, 28, 25].

Our goal is to consider problems (1) and (2) when an Euclidean domain Ω is replaced by a
graph. Such problems can be viewed as discrete versions of (1) and (2). In this paper, we only
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concern finite graph, which is one of the simplest graphs. The key point is an observation of
pre-compactness of the Sobolev space in our setting. Using the mountain pass theorem due to
Ambrossete and Rabinowich [3], we prove the existence of nontrivial solutions to Yamabe type
equations on finite graphs.

This paper is organized as follows: In Section 2, we give some notations on graph and state
main results. In Section 3, we establish Sobolev embedding such that the mountain pass theorem
can be applied to our problems. Local existence results (Theorems 1-3) are proved in Section 4,
and global existence results (Theorems 4-6) are proved in Section 5.

2. Settings and main results

Let G = (V, E) be a finite or locally finite graph, where V denotes the vertex set and E denotes
the edge set. For any edge xy ∈ E, we assume that its weight wxy > 0 and that wxy = wyx. The
degree of x ∈ V is defined as deg(x) =

∑
y∼x wxy, where we write y ∼ x if xy ∈ E. Let µ : V → R

be a finite measure. Then the µ-Laplacian (or Laplacian for short) on G is defined as

∆u(x) =
1
µ(x)

∑
y∼x

wxy(u(y) − u(x)). (3)

The associated gradient form reads

Γ(u, v)(x) =
1

2µ(x)

∑
y∼x

wxy(u(y) − u(x))(v(y) − v(x)). (4)

Write Γ(u) = Γ(u, u). For any function u : V → R, we denote the length of its gradient by

|∇u|(x) =
√

Γ(u)(x) =

 1
2µ(x)

∑
y∼x

wxy(u(y) − u(x))2

1/2

. (5)

For any positive integer m, we define the length of m-order gradient of u by

|∇mu| =

 |∇∆
m−1

2 u|, when m is odd

|∆
m
2 u|, when m is even,

(6)

where |∇∆
m−1

2 u| is defined as in (5) with u is replaced by ∆
m−1

2 u, and |∆
m
2 u| denotes the usual

absolute of the function ∆
m
2 u. Let Ω be a domain in V . To compare with the Euclidean setting,

we denote, for any function u : V → R,∫
Ω

udµ =
∑
x∈Ω

µ(x)u(x). (7)

The first eigenvalue of the Laplacian with respect to the Dirichlet boundary condition reads

λ1(Ω) = inf
u.0, u|∂Ω=0

∫
Ω
|∇u|2dµ∫

Ω
u2dµ

, (8)

where ∂Ω is the boundary of Ω, namely ∂Ω = {x ∈ Ω : ∃y < Ω such that xy ∈ E}. Moreover, we
denote the interior of Ω by Ω◦ = Ω \ ∂Ω. Our first result is the following:
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Theorem 1. Let G = (V, E) be a locally finite graph, Ω ⊂ V be a bounded open domain with
Ω◦ , ∅, and λ1(Ω) be defined as in (8). Then for any p > 2 and any α < λ1(Ω), there exists a
solution to the equation  −∆u − αu = |u|p−2u in Ω◦

u > 0 in Ω◦, u = 0 on ∂Ω.
(9)

The p-Laplacian of u : V → R, namely ∆pu, is defined in the distributional sense by∫
V

(∆pu)φdµ = −

∫
V
|∇u|p−2Γ(u, φ)dµ, ∀φ ∈ Cc(V),

where γ(u, φ) is defined as in (4) and Cc(V) denotes the set of all functions with compact support.
Point-wisely, ∆pu can be written as

∆pu(x) =
1

2µ(x)

∑
y∼x

(
|∇u|p−2(y) + |∇u|p−2(x)

)
wxy(u(y) − u(x)).

When p = 2, ∆p is the standard graph Laplacian ∆ (see (3) above). The first eigenvalue of the
p-Laplacian with respect to Dirichlet boundary condition reads

λp(Ω) = inf
u.0, u|∂Ω=0

∫
Ω
|∇u|pdµ∫

Ω
|u|pdµ

. (10)

Our second result can be stated as follows:

Theorem 2. Let G = (V, E) be a locally finite graph, Ω ⊂ V be a bounded open domain with
Ω◦ , ∅. Let λp(Ω) be defined as in (10) for some p > 1. Suppose that f : Ω × R → R satisfies
the following hypothesis:
(H1) For any x ∈ Ω, f (x, t) is continuous in t ∈ R;
(H2) For all (x, t) ∈ Ω × [0,+∞), f (x, t) ≥ 0 , and f (x, 0) = 0 for all x ∈ Ω;
(H3) There exists some q > p and s0 > 0 such that if s ≥ s0, then there holds

F(x, s) =

∫ s

0
f (x, t)dt ≤

1
q

s f (x, s), ∀x ∈ Ω;

(H4) For any x ∈ Ω, there holds

lim sup
t→0+

f (x, t)
tp−1 < λp(Ω).

Then there exists a nontrivial solution to the equation −∆pu = f (x, u) in Ω◦

u ≥ 0 in Ω◦, u = 0 on ∂Ω.
(11)

In Theorem 2, if p = 2, then |s|q−2s (q > 2) satisfies (H1)− (H4). Moreover, the nonlinearities
in Theorem 2 include the case of exponential growth as in the problem (2). For further extension,
we define an analog of λp(Ω) by

λmp(Ω) = inf
u∈H

∫
Ω
|∇mu|pdµ∫
Ω
|u|pdµ

, (12)
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where m is any positive integer andH denotes a set of all functions u . 0 with u = |∇u| = · · · =
|∇m−1u| = 0 on ∂Ω. Then we have the following:

Theorem 3. Let G = (V, E) be a locally finite graph and Ω ⊂ V be a bounded open domain with
Ω◦ , ∅. Let m ≥ 2 be an integer and p > 1. Suppose that f : Ω × R→ R satisfies the following
assumptions:
(A1) f (x, 0) = 0, f (x, t) is continuous with respect to t ∈ R;
(A2) lim supt→0

| f (x,t)|
|t|p−1 < λmp(Ω);

(A3) there exists some q > p and M > 0 such that if |s| ≥ M, then

0 < qF(x, s) ≤ s f (x, s), ∀x ∈ Ω.

Then there exists a nontrivial solution to the equation Lm,p u = f (x, u) in Ω◦

|∇ ju| = 0 on ∂Ω, 0 ≤ j ≤ m − 1,
(13)

where Lm,p u is defined as follows: for any φ with φ = |∇φ| = · · · = |∇m−1φ| = 0 on ∂Ω, there
holds ∫

Ω

(Lm,p u)φdµ =


∫

Ω
|∇mu|p−2Γ(∆

m−1
2 u,∆

m−1
2 φ)dµ, when m is odd,∫

Ω
|∇mu|p−2∆

m
2 u∆

m
2 φdµ, when m is even.

In particular, if p = 2, then Lm,p u = (−∆)mu.

If G = (V, E) is a finite graph, we also have existence results similar to the above theorems.
Analogous to Theorem 1, we state the following:

Theorem 4. Let G = (V, E) be a finite graph. Suppose that p > 2 and h(x) > 0 for all x ∈ V.
Then there exists a solution to the equation −∆u + hu = |u|p−2u in V

u > 0 in V.
(14)

Similar to Theorem 2, we have

Theorem 5. Let G = (V, E) be a finite graph. Suppose that h(x) > 0 for all x ∈ V. Suppose that
f : V × R→ R satisfies the following hypothesis:
(H1

V ) For any x ∈ V, f (x, t) is continuous in t ∈ R;
(H2

V ) For all (x, t) ∈ V × [0,+∞), f (x, t) ≥ 0 , and f (x, 0) = 0 for all x ∈ V;
(H3

V ) There exists some q > p > 1 and s0 > 0 such that if s ≥ s0, then there holds

F(x, s) =

∫ s

0
f (x, t)dt ≤

1
q

s f (x, s), ∀x ∈ V;

(H4
V ) For any x ∈ V, there holds

lim sup
t→0+

f (x, t)
tp−1 < λp(V) = inf

u.0

∫
V (|∇u|p + h|u|p)dµ∫

V |u|
pdµ

.
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Then there exists a nontrivial solution to the equation −∆pu + h|u|p−2u = f (x, u) in V

u ≥ 0 in V,
(15)

where ∆pu denotes the p-Laplacian of u.

Finally we have an analog of Theorem 3, namely

Theorem 6. Let G = (V, E) be a finite graph. Let m ≥ 2 be an integer and p > 1. Suppose that
h(x) > 0 for all x ∈ V. Assume f (x, u) satisfies the following assumptions:
(A1

V ) For any x ∈ V, f (x, 0) = 0, f (x, t) is continuous with respect to t ∈ R;

(A2
V ) lim supt→0

| f (x,t)|
|t|p−1 < λmp(V) = infu.0

∫
V (|∇mu|p+h|u|p)dµ∫

V |u|
pdµ

;

(A3
V ) there exists some q > p and M > 0 such that if |s| ≥ M, then

0 < qF(x, s) ≤ s f (x, s), ∀x ∈ V.

Then there exists a nontrivial solution to

Lm,p u + h|u|p−2u = f (x, u) in V, (16)

where Lm,p u is defined in the distributional sense: for any function φ, there holds∫
V

(Lm,p u)φdµ =


∫

V |∇
mu|p−2Γ(∆

m−1
2 u,∆

m−1
2 φ)dµ, when m is odd,∫

V |∇
mu|p−2∆

m
2 u∆

m
2 φdµ, when m is even.

3. Preliminary analysis

Let G = (V, E) be a locally finite graph, Ω ⊂ V be an open domain, ∂Ω be its boundary and
Ω◦ be its interior. For any p > 1, Wm,p(Ω) is defined as a space of all functions u : V → R
satisfying

‖u‖Wm,p(Ω) =

 m∑
k=0

∫
Ω

|∇ku|pdµ

1/p

< ∞. (17)

Denote Cm
0 (Ω) be a set of all functions u : Ω → R with u = |∇u| = · · · = |∇m−1u| = 0 on ∂Ω. We

denote Wm,p
0 (Ω) be the completion of Cm

0 (Ω) under the norm (17). If we further assume that Ω is
a bounded domain, then Ω is a finite set. Observing that the dimension of Wm,p

0 (Ω) is finite when
Ω is bounded, we have the following Sobolev embedding:

Theorem 7. Let G = (V, E) be a locally finite graph, Ω be a bounded open domain of V such
that Ω◦ , ∅. Let m be any positive integer and p > 1. Then Wm,p

0 (Ω) is embedded in Lq(Ω) for
all 1 ≤ q ≤ +∞. In particular, there exists a constant C depending only on m, p and Ω such that(∫

Ω

|u|qdµ
)1/q

≤ C
(∫

Ω

|∇mu|pdµ
)1/p

(18)

for all 1 ≤ q ≤ +∞ and for all u ∈ Wm,p
0 (Ω). Moreover, Wm,p

0 (Ω) is pre-compact, namely, if uk is
bounded in Wm,p

0 (Ω), then up to a subsequence, there exists some u ∈ Wm,p
0 (Ω) such that uk → u

in Wm,p
0 (Ω).
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Proof. Since Ω is a finite set, Wm,p
0 (Ω) is a finite dimensional space. Hence Wm,p

0 (Ω) is
pre-compact. We are left to show (18). It is not difficult to see that

‖u‖Wm,p
0 (Ω) =

(∫
Ω

|∇mu|pdµ
)1/p

(19)

is a norm equivalent to (17) on Wm,p
0 (Ω). Hence for any u ∈ Wm,p

0 (Ω), there exists some constant
C depending only on m, p and Ω such that(∫

Ω

|u|pdµ
)1/p

=

∑
x∈Ω

µ(x)|u(x)|p
1/p

≤ C
(∫

Ω

|∇mu|pdµ
)1/p

, (20)

since Wm,p
0 (Ω) is a finite dimensional space. Denote µmin = minx∈Ω µ(x). Then (20) leads to

‖u‖L∞(Ω) ≤
C
µmin
‖u‖Wm,p

0 (Ω),

and thus for any 1 ≤ q < +∞,(∫
Ω

|u|qdµ
)1/q

≤
C
µmin
|Ω|1/q‖u‖Wm,p

0 (Ω) ≤
C
µmin

(1 + |Ω|)‖u‖Wm,p
0 (Ω),

where |Ω| =
∑

x∈Ω µ(x) denotes the volume of Ω. Therefore (18) holds. �

If V is a finite graph, then Wm,p(V) can be defined as the set of all functions u : V → R under
the norm

‖u‖Wm,p(V) =

(∫
V

(|∇mu|p + h|u|p)dµ
)1/p

, (21)

where h(x) > 0 for all x ∈ V . Then we have an obvious analog of Theorem 7 as follows:

Theorem 8. Let V be a finite graph. Then Wm,p(V) is embedded in Lq(V) for all 1 ≤ q ≤ +∞.
Moreover, Wm,p(V) is pre-compact.

Obviously, both Wk,p
0 (Ω) and Wk,p(V) with norms (19) and (21) respectively are Banach

spaces. Let (X, ‖ · ‖) be a Banach space, J : X → R be a functional. We say that J satisfies the
(PS )c condition for some real number c, if for any sequence of functions uk : X → R such that
J(uk) → c and J′(uk) → 0 as k → +∞, there holds up to a subsequence, uk → u in X. To prove
Theorems 1-6, we need the following mountain pass theorem.

Theorem 9. (Ambrosetti-Rabinowitz, [3]). Let (X, ‖ · ‖) be a Banach space, J ∈ C1(X,R), e ∈ X
and r > 0 be such that ‖e‖ > r and

b := inf
‖u‖=r

J(u) > J(0) ≥ J(e).

If J satisfies the (PS )c condition with c := infγ∈Γ maxt∈[0,1] J(γ(t)), where

Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e},

then c is a critical value of J.
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4. Local existence

In this section, we prove Theorems 1-3 by applying Theorem 9.

Proof of Theorem 1. Let p > 2 and α < λ1(Ω) be fixed. For any u ∈ W1,2
0 (Ω), we let

J(u) =
1
2

∫
Ω

(|∇u|2 − αu2)dµ −
1
p

∫
Ω

(u+)pdµ,

where u+(x) = max{u(x), 0}. It is clear that J ∈ C1(W1,2
0 (Ω),R). We claim that J satisfies the

(PS )c condition for any c ∈ R. To see this, we take a sequence of functions uk ∈ W1,2
0 (Ω) such

that J(uk)→ c, J′(uk)→ 0 as k → +∞. This leads to

1
2

∫
Ω

(|∇uk |
2 − αu2

k)dµ −
1
p

∫
Ω

(u+
k )pdµ = c + ok(1), (22)

∣∣∣∣∣∫
Ω

(|∇uk |
2 − αu2

k)dµ −
∫

Ω

(u+
k )pdµ

∣∣∣∣∣ ≤ ok(1)‖uk‖W1,2
0 (Ω). (23)

Noting that p > 2, we conclude from (22) and (23) that uk is bounded in W1,2
0 (Ω). Then the

Sobolev embedding (Theorem 7) implies that up to a subsequence, uk converges to some function
u in W1,2

0 (Ω). Hence the (PS )c condition holds.
To proceed, we need to check that J satisfies all conditions in the mountain pass theorem

(Theorem 9). Note that
J(0) = 0. (24)

By Theorem 7, there exists some constant C depending only on p and Ω such that(∫
Ω

(u+)pdµ
)1/p

≤ C
(∫

Ω

|∇u|2dµ
)1/2

.

Hence there holds for all u ∈ W1,2
0 (Ω)

J(u) ≥
1
2
‖u‖2

W1,2
0 (Ω)

−
Cp

p
‖u‖p

W1,2
0 (Ω)

.

One can find some sufficiently small r > 0 such that

inf
‖u‖

W1,2
0 (Ω)

=r
J(u) > 0. (25)

Take a function u∗ ∈ W1,2
0 (Ω) satisfying u∗ > 0 in Ω◦. Passing to the limit t → +∞, we have

J(tu∗) =
t2

2

∫
Ω

(|∇u∗|2 − α(u∗)2)dµ −
tp

p

∫
Ω

(u∗+)pdµ→ −∞.

Hence there exists some u0 ∈ W1,2
0 (Ω) such that

J(u0) < 0, ‖u0‖W1,2
0 (Ω) > r. (26)
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Combining (24), (25) and (26), we conclude by Theorem 9 that c = infγ∈Γ maxt∈[0,1] J(γ(t)) is a
critical value of J, where Γ = {γ ∈ C([0, 1],W1,2

0 (Ω)) : γ(0) = 0, γ(1) = u0}. In particular, there
exists some function u ∈ W1,2

0 (Ω) such that

−∆u − αu = (u+)p−1 in Ω◦. (27)

Testing this equation by u− = min{u, 0} and noting that u−u+ = u−(u+)p−1 = 0, we have

−

∫
Ω

u−∆udµ − α
∫

Ω

(u−)2dµ = 0.

Since u = u+ + u−, the above equation leads to

α

λ1(Ω)

∫
Ω

|∇u−|2dµ ≥ α
∫

Ω

(u−)2dµ =

∫
Ω

|∇u−|2dµ −
∫

Ω

u−∆u+dµ. (28)

Note that

−

∫
Ω

u−∆u+dµ = −
∑
x∈Ω◦

u−(x)
∑
y∼x

wxy(u+(y) − u+(x))

= −
∑
x∈Ω◦

∑
y∼x

wxyu−(x)u+(y) ≥ 0. (29)

Inserting (29) into (28) and recalling that α < λ1(Ω), we obtain
∫

Ω
|∇u−|2dµ = 0, which implies

that u− ≡ 0 in Ω. Whence u ≥ 0 and (27) becomes −∆u − αu = up−1 in Ω◦

u ≥ 0 in Ω◦, u = 0 on ∂Ω.
(30)

Suppose u(x) = 0 = minx∈Ω u(x) for some x ∈ Ω◦. If y is adjacent to x, then we know from (30)
that ∆u(x) = 0, and thus by the definition of ∆ (see (3) above), u(y) = 0. Therefore we conclude
that u ≡ 0 in Ω, which contradicts (25). Hence u > 0 in Ω◦ and this completes the proof of the
theorem. �

Proof of Theorem 2. Let p > 1 be fixed. For any u ∈ W1,p
0 (Ω), we let

Jp(u) =
1
p

∫
Ω

|∇u|pdµ −
∫

Ω

F(x, u+)dµ,

where u+(x) = max{u(x), 0}. In view of (H4), there exist two constants λ and δ > 0 such that
λ < λp(Ω) and

F(x, u+) ≤
λ

p
(u+)p +

(u+)p+1

δp+1 F(x, u+).

For any u ∈ W1,p
0 (Ω) with ‖u‖W1,p

0 (Ω) ≤ 1, we have by the Sobolev embedding (Theorem 7) that
‖u‖∞ ≤ C for some constant C depending only on p and Ω, and that

F(x, u+) ≤
λ

p
(u+)p + C(u+)p+1.

9



This together with (10), the definition of λp(Ω), and Theorem 7 leads to∫
Ω

F(x, u+)dµ ≤
λ

pλp(Ω)

∫
Ω

|∇u+|pdµ + C
(∫

Ω

|∇u+|pdµ
)1+1/p

.

Here and throughout this paper, we often denote various constant by the same C. Noting that

|∇u|2(x) =
1

2µ(x)

∑
y∼x

wxy(u(y) − u(x))2

=
1

2µ(x)

∑
y∼x

wxy

{
(u+(y) − u+(x))2 + (u−(y) − u−(x))2

−2u+(y)u−(x) − 2u+(x)u−(y)
}

≥ |∇u+|2(x),

we have |∇u+|p ≤ |∇u|p. Hence if ‖u‖W1,p
0 (Ω) ≤ 1, then we obtain

Jp(u) ≥
λp(Ω) − λ

pλp(Ω)

∫
Ω

|∇u|pdµ −C
(∫

Ω

|∇u|pdµ
)1+1/p

.

Therefore
inf

‖u‖
W1,p

0 (Ω)
=r

Jp(u) > 0 (31)

provided that r > 0 is sufficiently small.
By (H3), there exist two positive constants c1 and c2 such that

F(x, u+) ≥ c1(u+)q − c2.

Take u0 ∈ W1,p
0 (Ω) such that u0 ≥ 0 and u0 . 0. For any t > 0, we have

Jp(tu0) ≤
tp

p

∫
Ω

|∇u0|
pdµ − c1tq

∫
Ω

uq
0dµ − c2|Ω|.

Since q > p, we conclude Jp(tu0) → −∞ as t → +∞. Hence there exists some u1 ∈ W1,p
0 (Ω)

satisfying
Jp(u1) < 0, ‖u1‖W1,p

0 (Ω) > r. (32)

We claim that Jp satisfies the (PS )c condition for any c ∈ R. To see this, we assume Jp(uk)→
c and J′p(uk)→ 0 as k → +∞. It follows that

1
p

∫
Ω

|∇uk |
pdµ −

∫
Ω

F(x, u+
k )dµ = c + ok(1)

∫
Ω

|∇uk |
pdµ −

∫
Ω

uk f (x, u+
k )dµ = ok(1)‖uk‖W1,p

0 (Ω).

In view of (H3), we obtain from the above two equations that uk is bounded in W1,p
0 (Ω). Then

the (PS )c condition follows from Theorem 7.
10



Combining (31), (32) and the obvious fact Jp(0) = 0, we conclude from Theorem 9 that there
exists a function u ∈ W1,p

0 (Ω) such that Jp(u) = infγ∈Γ maxt∈[0,1] Jp(γ(t)) > 0 and J′p(u) = 0,
where Γ = {γ ∈ C([0, 1],W1,p

0 (Ω)) : γ(0) = 0, γ(1) = u1}. Hence there exists a nontrivial solution
u ∈ W1,p

0 (Ω) to the equation
−∆pu = f (x, u+) in Ω◦.

Noting that Γ(u−, u) = Γ(u−) + Γ(u−, u+) ≥ |∇u−|2, we obtain∫
Ω

|∇u−|pdµ ≤
∫

Ω

|∇u−|p−2Γ(u−, u)dµ = −

∫
Ω

u−∆pudµ =

∫
Ω

u− f (x, u+)dx = 0.

This implies that u− ≡ 0 and thus u ≥ 0. �

Proof of Theorem 3. Let m ≥ 2 and p > 1 be fixed. For any u ∈ Wm,p
0 (Ω), we write

Jmp(u) =
1
p

∫
Ω

|∇mu|pdµ −
∫

Ω

F(x, u)dµ.

By (A2), there exists some λ < λmp(Ω) and δ > 0 such that for all s ∈ R,

F(x, s) ≤
λ

p
|s|p +

|s|p+1

δp+1 |F(x, s)|.

By Theorem 7, we have ∫
Ω

|u|p+1dµ ≤ C
(∫

Ω

|∇mu|pdµ
)1+1/p

, (33)

‖u‖L∞(Ω) ≤ C
(∫

Ω

|∇mu|pdµ
)1/p

. (34)

For any u ∈ Wm,p
0 (Ω) with ‖u‖Wm,p

0 (Ω) ≤ 1, in view of (34), there exists some constant C, depending
only on m, p and Ω, such that ‖u‖L∞(Ω) ≤ C and thus ‖F(x, u)‖L∞(Ω) ≤ C. This together with (33)
gives ∫

Ω

F(x, u)dµ ≤
λ

p

∫
Ω

|u|pdµ +
C
δp+1

∫
Ω

|u|p+1|F(x, u)|dµ

≤
λ

λmp(Ω)p

∫
Ω

|∇mu|pdµ + C
(∫

Ω

|∇mu|pdµ
)1+1/p

.

Hence

Jmp(u) ≥
λmp(Ω) − λ
λmp(Ω)p

∫
Ω

|∇mu|pdµ −C
(∫

Ω

|∇mu|pdµ
)1+1/p

,

and thus
inf

‖u‖Wm,p
0 (Ω)=r

Jmp(u) > 0 (35)

for sufficiently small r > 0.
By (A3), there exist two positive constants c1 and c2 such that

F(x, s) ≥ c1|s|q − c2, ∀s ∈ R.
11



For any fixed u ∈ Wm,p
0 (Ω) with u . 0, we have

Jmp(tu) ≤
|t|p

p

∫
Ω

|∇mu|pdµ − c1|t|q
∫

Ω

|u|qdµ + c2|Ω| → −∞

as t → ∞. Hence there exists some u2 ∈ Wm,p
0 (Ω) such that

Jmp(u2) < 0, ‖u2‖Wm,p
0 (Ω) > r. (36)

Now we claim that Jmp satisfies the (PS )c condition for any c ∈ R. For this purpose, we take
uk ∈ Wm,p

0 (Ω) such that Jmp(uk)→ c and J′mp(uk)→ 0 as k → +∞. In particular,

1
p

∫
Ω

|∇muk |
pdµ −

∫
Ω

F(x, uk)dµ = c + ok(1), (37)

∫
Ω

|∇muk |
pdµ −

∫
Ω

uk f (x, uk)dµ = ok(1)‖uk‖Wm,p
0
. (38)

By (A3), we have

q
∫

Ω

F(x, uk)dµ ≤ q
∫
|uk |≤M

|F(x, uk)|dµ + q
∫
|uk |>M

F(x, uk)dµ

≤

∫
|uk |>M

uk f (x, uk)dµ + C

≤

∫
Ω

uk f (x, uk)dµ + C. (39)

Combining (37), (38) and (39), we conclude that uk is bounded in Wm,p
0 (Ω). Then the (PS )c

condition follows from Theorem 7.
In view of (35) and (36), applying the mountain pass theorem as before, we finish the proof

of the theorem. �

5. Global existence

In this section, using Theorem 9, we prove global existence results (Theorems 4-6). These
procedures are very similar to that of Theorems 1-3. We only give the outline of the proof.

Proof of Theorem 4. Let p > 2 be fixed. For u ∈ W1,2(V), we let

JV (u) =
1
2

∫
V

(|∇u|2 + hu2)dµ −
1
p

∫
V

(u+)pdµ.

We first prove that JV satisfies the (PS )c condition for any c ∈ R. To see this, we assume
JV (uk)→ c and J′V (uk)→ 0 as k → ∞, namely

1
2

∫
V

(|∇uk |
2 + hu2

k)dµ −
1
p

∫
V

(u+)pdµ = c + ok(1), (40)∣∣∣∣∣∫
V

(|∇uk |
2 + hu2

k)dµ −
∫

V
(u+

k )pdµ
∣∣∣∣∣ ≤ ok(1)‖uk‖W1,2(V). (41)

12



It follows from (40) and (41) that uk is bounded in W1,2(V). By Theorem 8, W1,2(V) is pre-
compact, we conclude up to a subsequence, uk → u in W1,2(V). Thus JV satisfies the (PS )c

condition.
To apply the mountain pass theorem, we check the conditions of JV . Obviously

JV (0) = 0. (42)

Note that h(x) > 0 for all x ∈ V . By (21),

‖u‖2W1,2(V) =

∫
V

(|∇u|2 + hu2)dµ, ∀u ∈ W1,2(V).

By the Sobolev embedding (Theorem 8), we have for any p > 2,∫
V

(u+)pdµ ≤ C‖u‖pW1,2(V).

Hence
inf

‖u‖W1,2(V)=r
JV (u) > 0 (43)

for sufficiently small r > 0. For any fixed ũ ≥ 0 with ũ . 0, we have JV (tũ) → −∞ as t → −∞.
Hence there exists some e ∈ W1,2(V) such that

JV (e) < 0, ‖e‖W1,2(V) > r. (44)

Combining (42), (43) and (44) and applying the mountain pass theorem (Theorem 9), we find
some u ∈ W1,2(V) \ {0} satisfying

−∆u + hu = (u+)p−1 in V.

Testing this equation by u−, we have∫
V

(|∇u−|2 + h(u−)2)dµ ≤
∫

V
u−(−∆u + hu)dµ = 0,

which leads to u− ≡ 0. Therefore u ≥ 0 and

−∆u + hu = up−1 in V.

If u(x) = 0 for some x ∈ V , then ∆u(x) = 0, which together with u ≥ 0 implies that u ≡ 0 in V .
This contradicts u . 0. Therefore u > 0 in V and this completes the proof of the theorem. �

Proof of Theorem 5. Let p > 1 be fixed. For u ∈ W1,p(V), we define

JV,p(u) =
1
p

∫
V

(|∇u|p + h|u|p)dµ −
∫

V
F(x, u+)dµ.

Write

‖u‖W1,p(V) =

(∫
V

(|∇u|p + h|u|p)dµ
)1/p

.
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By (H4
V ), there exist two constants λ and δ > 0 such that λ < λh

p(V) and

F(x, u+) ≤
λ

p
(u+)p +

(u+)p+1

δp+1 F(x, u+).

For any u ∈ W1,p(V) with ‖u‖W1,p(V) ≤ 1, we have by Theorem 8 that ‖u‖∞ ≤ C, and that

F(x, u+) ≤
λ

p
(u+)p + C(u+)p+1.

This together with the definition of λh
p(V) and the Sobolev embedding (Theorem 8) leads to∫

V
F(x, u+)dµ ≤

λ

pλh
p(V)
‖u+‖

p
W1,p(V) + C‖u+‖

p+1
W1,p(V).

Then we obtain for all u with ‖u‖W1,p(V) ≤ 1,

JV,p(u) ≥
λh

p(V) − λ

pλh
p(V)

‖u‖pW1,p(V) −C‖u‖p+1
W1,p(V).

Therefore
inf

‖u‖W1,p (V)=r
JV,p(u) > 0 (45)

provided that r > 0 is sufficiently small.
By the hypothesis (H3

V ), there exist two positive constants c1 and c2 such that

F(x, u+) ≥ c1(u+)q − c2.

For some u∗ ∈ W1,p(V) with u∗ ≥ 0 and u∗ . 0, we have for any t > 0,

JV,p(tu∗) ≤
tp

p
‖u∗‖pW1,p(V) − c1tq

∫
V

(u∗)qdµ − c2|V |.

Hence JV,p(tu∗)→ −∞ as t → +∞, from which one can find some e ∈ W1,p(V) satisfying

JV,p(e) < 0, ‖e‖W1,p(V) > r. (46)

We claim that JV,p satisfies the (PS )c condition for any c ∈ R. To see this, we assume
JV,p(uk)→ c and J′V,p(uk)→ 0 as k → +∞. It follows that

1
p
‖uk‖

p
W1,p(V) −

∫
V

F(x, u+
k )dµ = c + ok(1)

‖uk‖
p
W1,p(V) −

∫
V

u+
k f (x, u+

k )dµ = ok(1)‖uk‖W1,p(V).

In view of (H3
V ), we conclude from the above two equations that uk is bounded in W1,p(V). Then

the (PS )c condition follows from Theorem 8.
Combining (45), (46) and JV,p(0) = 0, we conclude from Theorem 9 that there exists a

nontrivial solution u ∈ W1,p(V) to the equation

−∆pu + h|u|p−2u = f (x, u+) in V.
14



Noting that Γ(u−, u) = Γ(u−) + Γ(u−, u+) ≥ |∇u−|2, we obtain∫
V

(|∇u−|p + h|u−|p)dµ ≤ −
∫

V
u−∆pudµ +

∫
V

hu−|u|p−2udµ =

∫
V

u− f (x, u+)dx = 0.

This implies that u− ≡ 0 and thus u ≥ 0 in V . �

Proof of Theorem 6. Let m ≥ 2 and p > 1 be fixed. We define

JV
mp(u) =

1
p

∫
V

(|∇mu|p + h|u|p)dµ −
∫

V
F(x, u)dµ.

By (A2
V ), there exists some λ < λmp(V) and δ > 0 such that for all x ∈ V and s ∈ R,

F(x, s) ≤
λ

p
|s|p +

|s|p+1

δp+1 |F(x, s)|.

For any u ∈ Wm,p(V) with ‖u‖Wm,p(V) ≤ 1, we have ‖u‖∞ ≤ C and thus ‖F(x, u)‖∞ ≤ C. Hence∫
V

F(x, u)dµ ≤
λ

p

∫
V
|u|pdµ +

C
δp+1

∫
V
|u|p+1|F(x, u)|dµ

≤
λ

λmp(V)p
‖u‖pWm,p(V) + C‖u‖p+1

Wm,p(V).

It follows that

JV
mp(u) ≥

λmp(V) − λ
λmp(V)p

‖u‖pWm,p(V) −C‖u‖p+1
Wm,p(V),

and thus
inf

‖u‖Wm,p (V)=r
JV

mp(u) > 0 (47)

for sufficiently small r > 0.
By (A3

V ), there exist two positive constants c1 and c2 such that

F(x, s) ≥ c1|s|q − c2, ∀s ∈ R.

For any fixed u ∈ Wm,p(V) with u . 0, we have

JV
mp(tu) ≤

|t|p

p

∫
V

(|∇mu|p + h|u|p)dµ − c1|t|q
∫

V
|u|qdµ + c2|V | → −∞

as t → ∞. Hence there exists some e ∈ Wm,p(V) such that

JV
mp(e) < 0, ‖e‖Wm,p(V) > r. (48)

Now we claim that JV
mp satisfies the (PS )c condition for any c ∈ R. For this purpose, we take

uk ∈ Wm,p(V) such that JV
mp(uk)→ c and (JV

mp)′(uk)→ 0 as k → +∞. In particular,

1
p

∫
V

(|∇muk |
p + h|uk |

p)dµ −
∫

V
F(x, uk)dµ = c + ok(1), (49)

∫
V

(|∇muk |
p + h|uk |

p)dµ −
∫

V
uk f (x, uk)dµ = ok(1)‖uk‖Wm,p(V). (50)
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By (A3
V ), we have

q
∫

V
F(x, uk)dµ ≤ q

∫
|uk |≤M

|F(x, uk)|dµ + q
∫
|uk |>M

F(x, uk)dµ

≤

∫
|uk |>M

uk f (x, uk)dµ + C

≤

∫
V

uk f (x, uk)dµ + C. (51)

Combining (49), (50) and (51), we conclude that uk is bounded in Wm,p(V). Then the (PS )c

condition follows from Theorem 8.
In view of (47), (48) and the fact JV

mp(0) = 0, applying the mountain pass theorem, we finish
the proof of the theorem. �
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