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Abstract

Let G = (V, E) be a connected finite graph and ∆ be the usual graph Laplacian. Using the calculus
of variations and a method of upper and lower solutions, we give various conditions such that the
Kazdan-Warner equation ∆u = c− heu has a solution on V , where c is a constant, and h : V → R
is a function. We also consider similar equations involving higher order derivatives on graph.
Our results can be compared with the original manifold case of Kazdan-Warner (Ann. Math.,
1974).
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1. Introduction

A basic problem in Riemannian geometry is that of describing curvatures on a given man-
ifold. Suppose that (Σ, g) is a 2-dimensional compact Riemannian manifold without boundary,
and K is the Gaussian curvature on it. Let g̃ = e2ug be a metric conformal to g, where u ∈ C∞(Σ).
To find a smooth function K̃ as the Gaussian curvature of (Σ, g̃), one is led to solving the nonlinear
elliptic equation

∆gu = K − K̃e2u, (1)

where ∆g denotes the Laplacian operator on (Σ, g). Let v be a solution to ∆gv = K − K. Here and
in the sequel, we denote the integral average on Σ by

w =
1

Volg(Σ)

∫
Σ

wdvg

for any function w : V → R. Set ψ = 2(u − v). Then ψ satisfies

∆ψ = 2K − (2K̃e2v)eψ.
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If one frees this equation from the geometric situation, then it is a special case of

∆gu = c − heu, (2)

where c is a constant, and h is some prescribed function, with neither c nor h depends on ge-
ometry of (Σ, g). Clearly one can consider (2) in any dimensional manifold. Now let (Σ, g) be a
compact Riemannian manifold of any dimension. Note that the solvability of (2) depends on the
sign of c. Let us summarize results of Kazdan-Warner [5]. For this purpose, think of (Σ, g) and
h ∈ C∞(Σ) as being fixed with dim Σ ≥ 1.

Case 1. c < 0. A necessary condition for a solution is that h < 0, in which case there is a
critical strictly negative constant c−(h) such that (2) is solvable if c−(h) < c < 0, but not solvable
if c < c−(h).

Case 2. c = 0. When dim Σ ≤ 2, the equation (2) has a solution if and only if both h < 0 and
h is positive somewhere. When dim Σ ≥ 3, the necessary condition still holds.

Case 3. c > 0. When dim Σ = 1, so that Σ = S 1, then (2) has a solution if and only if h is
positive somewhere. When dim Σ = 2, there is a constant 0 < c+(h) ≤ +∞ such that (2) has a
solution if h is positive somewhere and if 0 < c < c+(h).

There are tremendous work concerning the Kazdan-Warner problem, among those we refer
the reader to Chen-Li [1, 2], Ding-Jost-Li-Wang [3, 4], and the references therein.

In this paper, we consider the Kazdan-Warner equation on a finite graph. In our setting, we
shall prove the following: In Case 1, we have the same conclusion as the manifold case; In Case
2, the equation (2) has a solution if and only if both h < 0 and h is positive somewhere; While
in Case 3, the equation (2) has a solution if and only if h is positive somewhere. Following the
lines of Kazdan-Warner [5], for results of Case 2 and Case 3, we use the variational method; for
results of Case 1, we use the principle of upper-lower solutions. It is remarkable that Sobolev
spaces on a finite graph are all pre-compact. This leads to a very strong conclusion in Case 3
compared with the manifold case.

We organized this paper as follows: In Section 2, we introduce some notations on graphs and
state our main results. In Section 3, we give two important lemmas, namely, the Sobolev embed-
ding and the Trudinger-Moser embedding. In Sections 4-6, we prove Theorems 1-4 respectively.
In Section 7, we discuss related equations involving higher order derivatives.

2. Settings and main results

Let G = (V, E) be a finite graph, where V denotes the vertex set and E denotes the edge set.
Throughout this paper, all graphs are assumed to be connected. For any edge xy ∈ E, we assume
that its weight wxy > 0 and that wxy = wyx. Let µ : V → R+ be a finite measure. For any function
u : V → R, the µ-Laplacian (or Laplacian for short) of u is defined by

∆u(x) =
1
µ(x)

∑
y∼x

wxy(u(y) − u(x)), (3)
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where y ∼ x means xy ∈ E. The associated gradient form reads

Γ(u, v)(x) =
1

2µ(x)

∑
y∼x

wxy(u(y) − u(x))(v(y) − v(x)). (4)

Write Γ(u) = Γ(u, u). We denote the length of its gradient by

|∇u|(x) =
√

Γ(u)(x) =

 1
2µ(x)

∑
y∼x

wxy(u(y) − u(x))2

1/2

. (5)

For any function g : V → R, an integral of g over V is defined by∫
V

gdµ =
∑
x∈V

µ(x)g(x), (6)

and an integral average of g is denoted by

g =
1

Vol(V)

∫
V

gdµ =
1

Vol(V)

∑
x∈V

µ(x)g(x),

where Vol(V) =
∑

x∈V µ(x) stands for the volume of V .
The Kazdan-Warner equation on graph reads

∆u = c − heu in V, (7)

where ∆ is defined as in (3), c ∈ R, and h : V → R is a function. If c = 0, then (7) is reduced to

∆u = −heu in V. (8)

Our first result can be stated as following:

Theorem 1. Let G = (V, E) be a finite graph, and h(. 0) be a function on V. Then the equation
(8) has a solution if and only if h changes sign and

∫
V hdµ < 0.

In cases c > 0 and c < 0, we have the following:

Theorem 2. Let G = (V, E) be a finite graph, c be a positive constant, and h : V → R be a
function. Then the equation (7) has a solution if and only if h is positive somewhere.

Theorem 3. Let G = (V, E) be a finite graph, c be a negative constant, and h : V → R be a
function.
(i) If (7) has a solution, then h < 0.
(ii) If h < 0, then there exists a constant −∞ ≤ c−(h) < 0 depending on h such that (7) has a
solution for any c−(h) < c < 0, but has no solution for any c < c−(h).

Concerning the constant c−(h) in Theorem 3, we have the following:

Theorem 4. Let G = (V, E) be a finite graph, c be a negative constant, and h : V → R be a
function. Suppose that c−(h) is given as in Theorem 3. If h(x) ≤ 0 for all x ∈ V, but h . 0, then
c−(h) = −∞.
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3. Preliminaries

Define a Sobolev space and a norm on it by

W1,2(V) =

{
u : V → R :

∫
V

(|∇u|2 + u2)dµ < +∞

}
,

and

‖u‖W1,2(V) =

(∫
V

(|∇u|2 + u2)dµ
)1/2

respectively. If V is a finite graph, then W1,2(V) is exactly the set of all functions on V , a finite
dimensional linear space. This implies the following Sobolev embedding:

Lemma 5. Let G = (V, E) be a finite graph. The Sobolev space W1,2(V) is pre-compact. Namely,
if {u j} is bounded in W1,2(V), then there exists some u ∈ W1,2(V) such that up to a subsequence,
u j → u in W1,2(V).

As a consequence of Lemma 5, we have the following Poincaré inequality:

Lemma 6. Let G = (V, E) be a finite graph. For all functions u : V → R with
∫

V udµ = 0, there
exists some constant C depending only on G such that∫

V
u2dµ ≤ C

∫
V
|∇u|2dµ.

Proof. Suppose not. There would exist a sequence of functions {u j} satisfying
∫

V u jdµ = 0,∫
V u2

jdµ = 1, but
∫

V |∇u j|
2dµ → 0 as j → ∞. Clearly u j is bounded in W1,2(V). It follows from

Lemma 5 that there exists some function u0 such that up to a subsequence, u j → u0 in W1,2(V)
as j → ∞. Hence

∫
V |∇u0|

2dµ = lim j→∞
∫

V |∇u j|
2dµ = 0. This leads to |∇u0| ≡ 0 and thus

u0 ≡ const on V since G is connected. Noting that
∫

V u0dµ = lim j→∞
∫

V u jdµ = 0, we conclude
that u0 ≡ 0 on V , which contradicts

∫
V u2

0dµ = lim j→∞
∫

V u2
jdµ = 1. �

Also we have the following Trudinger-Moser embedding:

Lemma 7. Let G = (V, E) be a finite graph. For any β ∈ R, there exists a constant C depending
only on β and G such that for all functions v with

∫
V |∇v|2dµ ≤ 1 and

∫
V vdµ = 0, there holds∫

V
eβv2

dµ ≤ C.

Proof. Since the case β ≤ 0 is trivial, we assume β > 0. For any function v satisfying∫
V |∇v|2dµ ≤ 1 and

∫
V vdµ = 0, we have by Lemma 6 that∫

V
v2dµ ≤ C0

∫
V
|∇v|2dµ ≤ C0,

for some constant C0 depending only on G. Denote µmin = minx∈V µ(x). In view of (6), the above
inequality leads to ‖v‖L∞(V) ≤ C0/µmin. Hence∫

V
eβv2

dµ ≤ eβC2
0/µmin Vol(V).

This gives the desired result. �
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4. The case c = 0

In the case c = 0, our approach comes out from that of Kazdan-Warner [5].
Proof of Theorem 1.
Necessary condition. If (8) has a solution u, then e−u∆u = −h. Integration by parts gives

−

∫
V

hdµ =

∫
V

e−u∆udµ

= −

∫
V

Γ(e−u, u)dµ

= −
1
2

∑
x∈V

∑
y∼x

wxy(e−u(y) − e−u(x))(u(y) − u(x))

> 0,

since (e−u(y) − e−u(x))(u(y) − u(x)) ≤ 0 for all x, y ∈ V and u is not a constant. Integrating the
equation (8), we have ∫

V
heudµ = −

∫
V

∆udµ = 0.

This together with h . 0 implies that h must change sign.
Sufficient condition. We use the calculus of variations. Suppose that h changes sign and∫

V
hdµ < 0. (9)

Define a set

B1 =

{
v ∈ W1,2(V) :

∫
V

hevdµ = 0,
∫

V
vdµ = 0

}
. (10)

We claim that
B1 , ∅. (11)

To see this, since h changes sign and (9), we can assume h(x1) > 0 for some x1 ∈ V . Take a
function v1 satisfying v1(x1) = ` and v1(x) = 0 for all x , x1. Hence∫

V
hev1 dµ =

∑
x∈V

µ(x)h(x)ev1(x)

= µ(x1)h(x1)e` +
∑
x,x1

µ(x)h(x)

= (e` − 1)µ(x1)h(x1) +

∫
V

hdµ

> 0

for sufficiently large `. Writing φ(t) =
∫

V hetv1 dµ, we have by the above inequality that φ(1) > 0.
Obviously φ(0) =

∫
V hdµ < 0. Thus there exists a constant 0 < t0 < 1 such that φ(t0) = 0. Let

v∗ = t0v1 −
1

Vol(V)

∫
V t0v1dµ, where Vol(V) =

∑
x∈V µ(x) stands for the volume of V . Then v∗ ∈ B1.

This concludes our claim (11).
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We shall minimize the functional J(v) =
∫

V |∇v|2dµ. Let

a = inf
v∈B1

J(v).

Take a sequence of functions {vn} ⊂ B1 such that J(vn) → a. Clearly
∫

V |∇vn|
2dµ is bounded

and
∫

V vndµ = 0. Hence vn is bounded in W1,2(V). Since V is a finite graph, the Sobolev
embedding (Lemma 5) implies that up to a subsequence, vn → v∞ in W1,2(V). Hence

∫
V v∞dµ =

0,
∫

V hev∞dµ = limn→∞
∫

V hevn dµ = 0, and thus v∞ ∈ B1. Moreover∫
V
|∇v∞|2dµ = lim

n→∞

∫
V
|∇vn|

2dµ = a.

One can calculate the Euler-Lagrange equation of v∞ as follows:

∆v∞ = −
λ

2
hev∞ −

γ

2
, (12)

where λ and γ are two constants. This is based on the method of Lagrange multipliers. Indeed,
for any φ ∈ W1,2(V), there holds

0 =
d
dt

∣∣∣∣∣
t=0

{∫
V
|∇(v∞ + tφ)|2dµ − λ

∫
V

hev∞+tφdµ − γ
∫

V
(v∞ + tφ)dµ

}
= 2

∫
V

Γ(v∞, φ)dµ − λ
∫

V
hev∞φdµ − γ

∫
V
φdµ

= −2
∫

V
(∆v∞)φdµ − λ

∫
V

hev∞φdµ − γ
∫

V
φdµ, (13)

which gives (12) immediately. Integrating the equation (12), we have γ = 0. We claim that
λ , 0. For otherwise, we conclude from ∆v∞ = 0 and

∫
V v∞dµ = 0 that v∞ ≡ 0 < B1. This is a

contradiction. We further claim that λ > 0. This is true because
∫

V hdµ < 0 and

0 <
∫

V
e−v∞∆v∞dµ = −

λ

2

∫
V

hdµ.

Thus we can write λ
2 = e−ϑ for some constant ϑ. Then u = v∞ + ϑ is a desired solution of (8). �

5. The case c > 0

Proof of Theorem 2.
Necessary condition. Suppose c > 0 and u is a solution to (7). Since

∫
V ∆udµ = 0, we have∫

V
heudµ = cVol(V) > 0.

Hence h must be positive somewhere on V .

Sufficient condition. Suppose h(x0) > 0 for some x0 ∈ V . Define a set

B2 =

{
v ∈ W1,2(V) :

∫
V

hevdµ = cVol(V)
}
.
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We claim that B2 , ∅. To see this, we set

u`(x) =

 `, x = x0

0, x , x0.

It follows that ∫
V

heu`dµ→ +∞ as ` → +∞.

We also set ũ` ≡ −`, which leads to∫
V

heũ`dµ = e−`
∫

V
hdµ→ 0 as ` → +∞.

Hence there exists a sufficiently large ` such that
∫

V heu`dµ > cVol(V) and
∫

V heũ`dµ < cVol(V).
We define a function φ : R→ R by

φ(t) =

∫
V

hetu`+(1−t)̃u`dµ.

Then φ(0) < cVol(V) < φ(1), and thus there exists a t0 ∈ (0, 1) such that φ(t0) = cVol(V). Hence
B2 , ∅ and our claim follows. We shall solve (7) by minimizing the functional

J(u) =
1
2

∫
V
|∇u|2dµ + c

∫
V

udµ

on B2. For this purpose, we write u = v + u, so v = 0. Then for any u ∈ B2, we have∫
V

hevdµ = cVol(V)e−u > 0,

and thus
J(u) =

1
2

∫
V
|∇u|2dµ − cVol(V) log

∫
V

hevdµ + cVol(V) log(cVol(V)). (14)

Let ṽ = v/‖∇v‖2. Then
∫

V ṽdµ = 0 and ‖∇̃v‖2 = 1. By Lemma 6, ‖̃v‖2 ≤ C0 for some constant C0
depending only on G. By Lemma 7, for any β ∈ R, one can find a constant C depending only on
β and V such that ∫

V
eβ̃v2

dµ ≤ C(β,V). (15)

This together with an elementary inequality ab ≤ εa2 + b2

4ε implies that for any ε > 0,∫
V

evdµ ≤

∫
V

e
ε‖∇v‖22+ v2

4ε‖∇v‖22 dµ

= eε‖∇v‖22

∫
V

e
v2

4ε‖∇v‖22 dµ

≤ Ceε‖∇v‖22 ,

where C is a positive constant depending only on ε and G. Hence∫
V

hevdµ ≤ C(max
x∈V

h(x))eε‖∇v‖22 .
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In view of (14), the above inequality leads to

J(u) ≥
1
2

∫
V
|∇u|2dµ − cVol(V)ε‖∇v‖22 −C1,

where C1 is some constant depending only on ε and G. Choosing ε = 1
4cVol(V) , and noting that

‖∇v‖2 = ‖∇u‖2, we obtain for all u ∈ B2,

J(u) ≥
1
4

∫
V
|∇u|2dµ −C1. (16)

Therefore J has a lower bound on the set B2. This permits us to consider

b = inf
u∈B2

J(u).

Take a sequence of functions {uk} ⊂ B2 such that J(uk) → b. Let uk = vk + uk. Then vk = 0, and
it follows from (16) that vk is bounded in W1,2(V). This together with the equality∫

V
ukdµ =

1
c

J(uk) −
1
2c

∫
V
|∇vk |

2dµ

implies that {uk} is a bounded sequence. Hence {uk} is also bounded in W1,2(V). By the Sobolev
embedding (Lemma 5), up to a subsequence, uk → u in W1,2(V). It is easy to see that u ∈ B2
and J(u) = b. Using the same method of (13), we derive the Euler-Lagrange equation of the
minimizer u, namely, ∆u = c − λheu for some constant λ. Noting that

∫
V ∆udµ = 0, we have

λ = 1. Hence u is a solution of the equation (7). �

6. The case c < 0

In this section, we prove Theorem 3 by using a method of upper and lower solutions. In par-
ticular, we show that it suffices to construct an upper solution of the equation (7). This is exactly
the graph version of the argument of Kazdan-Warner ([5], Sections 9 and 10).

We call a function u− a lower solution of (7) if for all x ∈ V , there holds

∆u−(x) − c + heu−(x) ≥ 0.

Similarly, u+ is called an upper solution of (7) if for all x ∈ V , it satisfies

∆u+(x) − c + heu+(x) ≤ 0.

We begin with the following:

Lemma 8. Let c < 0. If there exist lower and upper solutions, u− and u+, of the equation (7)
with u− ≤ u+, then there exists a solution u of (7) satisfying u− ≤ u ≤ u+.

Proof. We follow the lines of Kazdan-Warner ([5], Lemma 9.3). Set k1(x) = max{1,−h(x)},
so that k1 ≥ 1 and k1 ≥ −h. Let k(x) = k1(x)eu+(x). We define Lϕ ≡ ∆ϕ − kϕ and f (x, u) ≡
c − h(x)eu. Since G = (V, E) is a finite graph and infx∈V k(x) > 0, we have that L is a compact
operator and Ker(L) = {0}. Hence we can define inductively u j+1 as the unique solution to

Lu j+1 = f (x, u j) − ku j, (17)
8



where u0 = u+. We claim that
u− ≤ u j+1 ≤ u j ≤ · · · ≤ u+. (18)

To see this, we estimate

L(u1 − u0) = f (x, u0) − ku0 − ∆u0 + ku0 ≥ 0.

Suppose u1(x0) − u0(x0) = maxx∈V (u1(x) − u0(x)) > 0. Then ∆(u1 − u0)(x0) ≤ 0, and thus
L(u1 −u0)(x0) < 0. This is a contradiction. Hence u1 ≤ u0 on V . Suppose u j ≤ u j−1, we calculate
by using the mean value theorem

L(u j+1 − u j) = k(u j−1 − u j) + h(eu j−1 − eu j )
≥ k1(eu+ − eξ)(u j−1 − u j)
≥ 0,

where u j ≤ ξ ≤ u j−1. Similarly as above, we have u j+1 ≤ u j on V , and by induction, u j+1 ≤ u j ≤

· · · ≤ u+ for any j. Noting that

L(u− − u j+1) ≥ k(u j − u−) + h(eu j − eu− ),

we also have by induction u− ≤ u j on V for all j. Therefore (18) holds. Since V is finite, it is
easy to see that up to a subsequence, u j → u uniformly on V . Passing to the limit j→ +∞ in the
equation (17), one concludes that u is a solution of (7) with u− ≤ u ≤ u+. �

Next we show that the equation (7) has infinitely many lower solutions. This reduces the
proof of Theorem 3 to finding its upper solution.

Lemma 9. There exists a lower solution u− of (7) with c < 0. Thus (7) has a solution if and only
if there exists an upper solution.

Proof. Let u− ≡ −A for some constant A > 0. Since V is finite, we have

∆u−(x) − c + h(x)eu−(x) = −c + h(x)e−A → −c as A→ +∞,

uniformly with respect to x ∈ V . Noting that c < 0, we can find sufficiently large A such that u−
is a lower solution of (7). �

Proof of Theorem 3.
(i) Necessary condition. If u is a solution of (7), then

−

∫
V

hdµ =

∫
V

e−u∆udµ − c
∫

V
e−udµ

= −

∫
V

Γ(e−u, u)dµ − c
∫

V
e−udµ

> 0.

(ii) Sufficient condition. It follows from Lemmas 8 and 9 that (7) has a solution if and only if
(7) has an upper solution u+ satisfying

∆u+ ≤ c − heu+ .
9



Clearly, if u+ is an upper solution for a given c < 0, then u+ is also an upper solution for all c̃ < 0
with c ≤ c̃. Therefore, there exists a constant c−(h) with −∞ ≤ c−(h) ≤ 0 such that (7) has a
solution for any c > c−(h) but has no solution for any c < c−(h).

We claim that c−(h) < 0 under the assumption
∫

V hdµ < 0. To see this, we let v be a solution
of ∆v = h − h. The existence of v can be seen in the following way. If we consider orthogonality
with respect to the standard scalar product, namely 〈φ, ψ〉 =

∫
V φψdµ, we have

ran ∆ = (ker ∆)⊥ = {const}⊥.

So, since h − h is orthogonal to the constant functions such a solution exists by invertibility of
∆ on {const}⊥ and in the case of constant h a solution can be chosen to be an arbitrary constant
since the right hand side satisfies h − h = 0 in this case.

There exists some constant a > 0 such that

|eav − 1| ≤
−h

2 maxx∈V |h(x)|
.

Let eb = a. If c = ah
2 and u+ = av + b, we have

∆u+ − c + heu+ = ah(eav − 1) +
ah
2

≤ a(max
x∈V
|h(x)|)|eav − 1| +

ah
2

≤
ah
2
−

ah
2

= 0.

Thus if c = ah/2 < 0, then the equation (7) has an upper solution u+. Therefore, h < 0 implies
that c−(h) ≤ ah/2 < 0. �

Proof of Theorem 4. We shall show that if h(x) ≤ 0 for all x ∈ V , but h . 0, then (7) is
solvable for all c < 0. For this purpose, as in the proof of Theorem 3, we let v be a solution of
∆v = h − h. Note that h < 0. Pick constants a and b such that ah < c and eav+b − a > 0. Let
u+ = av + b. Since h ≤ 0,

∆u+ − c + heu+ = a∆v − c + heav+b

= ah − ah − c + heav+b

≤ h(eav+b − a)
≤ 0.

Hence u+ is an upper solution. Consequently, c−(h) = −∞ if h ≤ 0 but h . 0. �

7. Some extensions

The equation (2) involving higher order differential operators was also extensively studied
on manifolds, see for examples [6, 7] and the references therein. In this section, we shall extend
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Theorems 1-4 to nonlinear elliptic equations involving higher order derivatives. For this purpose,
we define the length of m-order gradient of u by

|∇mu| =

 |∇∆
m−1

2 u|, when m is odd

|∆
m
2 u|, when m is even,

(19)

where |∇∆
m−1

2 u| is defined as in (5) for the function ∆
m−1

2 u, and |∆
m
2 u| denotes the usual absolute

of the function ∆
m
2 u. Define a Sobolev space by

Wm,2(V) =

{
v : V → R :

∫
V

(|v|2 + |∇mv|2)dµ < +∞

}
and a norm on it by

‖v‖Wm,2(V) =

(∫
V

(|v|2 + |∇mv|2)dµ
)1/2

.

Clearly Wm,2(V) is the set of all functions on V since V is finite. Moreover, we have the following
Sobolev embedding, the Poincaré inequality and the Trudinger-Moser embedding:

Lemma 10. Let G = (V, E) be a finite graph. Then for any integer m > 0, Wm,2(V) is pre-
compact.

Lemma 11. Let G = (V, E) be a finite graph. For all functions u : V → R with
∫

V udµ = 0, there
exists some constant C depending only on m and G such that∫

V
u2dµ ≤ C

∫
V
|∇mu|2dµ.

Proof. Similar to the proof of Lemma 6, we suppose the contrary. There exists a sequence of
functions {u j} such that

∫
V u jdµ = 0,

∫
V u2

jdµ = 1 and
∫

V |∇
mu j|

2dµ → 0 as j → ∞. Noting that
G is a finite graph, there would exist a function u∗ such that up to a subsequence,∫

V
u∗2dµ = lim

j→∞

∫
V

u2
jdµ = 1, (20)∫

V
u∗dµ = lim

j→∞

∫
V

u jdµ = 0, (21)∫
V
|∇mu∗|2dµ = lim

j→∞

∫
V
|∇mu j|

2dµ = 0. (22)

If m is odd and m ≥ 3, using the same argument in the proof of Lemma 6, we conclude from
(22) that ∆

m−1
2 u∗ ≡ 0 on V since

∫
V ∆

m−1
2 u∗dµ = 0. While if m is even and m ≥ 4, (22) leads to

∆
m
2 −1u∗ ≡ 0 since

∫
V ∆

m
2 −1u∗dµ = 0. In view of (21) and the fact that

∫
V ∆ku∗dµ = 0 for any

k ≥ 1, after repeating the above procedure finitely many times, we conclude that u∗ ≡ 0 on V .
This contradicts (20). �

Lemma 12. Let G = (V, E) be a finite graph. Let m be a positive integer. Then for any β ∈
R, there exists a constant C depending only on m, β and G such that for all functions v with∫

V |∇
mv|2dµ ≤ 1 and

∫
V vdµ = 0, there holds∫

V
eβv2

dµ ≤ C.

11



Proof. The same argument in the proof of Lemma 7. �

We consider an analog of (7), namely

∆mu = c − heu in V, (23)

where m is a positive integer, c is a constant, and h : V → R is a function. Obviously (23) is
reduced to (7) when m = 1. Firstly we have the following:

Theorem 13. Let G = (V, E) be a finite graph, h(. 0) be a function on V, and m be a positive
integer. If c = 0, h changes sign, and

∫
V hdµ < 0, then the equation (23) has a solution.

Proof. We give the outline of the proof. Denote

B3 =

{
v ∈ Wm,2(V) :

∫
V

hevdµ = 0,
∫

V
vdµ = 0

}
.

In view of (10), we have that B3 = B1, since V is finite. Hence B3 , ∅. Now we minimize the
functional J(v) =

∫
V |∇

mu|2dµ on B3. The remaining part is completely analogous to that of the
proof of Theorem 1, except for replacing Lemma 5 by Lemma 10. We omit the details but leave
it to interested readers. �

Secondly, in the case c > 0, the same conclusion as Theorem 2 still holds for the equation
(23) with m > 1. Precisely we have the following:

Theorem 14. Let G = (V, E) be a finite graph, c be a positive constant, h : V → R be a function,
and m be a positive integer. Then the equation (23) has a solution if and only if h is positive
somewhere.

Proof. Repeating the arguments of the proof of Theorem 2 except for replacing Lemmas 5
and 7 by Lemmas 10 and 12 respectively, we get the desired result. �

Finally, concerning the case c < 0, we obtain a result weaker than Theorem 3.

Theorem 15. Let G = (V, E) be a finite graph, c be a negative constant, m is a positive integer,
and h : V → R be a function such that h(x) < 0 for all x ∈ V. Then the equation (23) has a
solution.

Proof. Since the maximum principle is not available for equations involving poly-harmonic
operators, we use the calculus of variations instead of the method of upper and lower solutions.
Let c < 0 be fixed. Consider the functional

J(u) =
1
2

∫
V
|∇mu|2dµ + c

∫
V

udµ. (24)

Set

B4 =

{
u ∈ Wm,2(V) :

∫
V

heudµ = cVol(V)
}
.

Using the same method of proving (11) in the proof of Theorem 2, we have B4 , ∅.

12



We now prove that J has a lower bound on B4. Let u ∈ B4. Write u = v + u. Then v = 0 and∫
V

hevdµ = e−ucVol(V),

which leads to

u = − log
(

1
cVol(V)

∫
V

hevdµ
)
.

Hence

J(u) =
1
2

∫
V
|∇mu|2dµ − cVol(V) log

(
1

cVol(V)

∫
V

hevdµ
)
. (25)

Since c < 0 and h(x) < 0 for all x ∈ V , we have maxx∈V h(x) < 0, and thus

h
cVol(V)

≥ δ =
maxx∈V h(x)

cVol(V)
> 0. (26)

Inserting (26) into (25), we have

J(u) ≥
1
2

∫
V
|∇mu|2dµ − cVol(V) log δ − cVol(V) log

∫
V

evdµ. (27)

By the Jensen inequality,
1

Vol(V)

∫
V

evdµ ≥ ev = 1. (28)

Inserting (28) into (27), we obtain

J(u) ≥
1
2

∫
V
|∇mu|2dµ − cVol(V) log δ − cVol(V) log Vol(V). (29)

Therefore J has a lower bound on B4. Set

τ = inf
v∈B4

J(v).

Take a sequence of functions {uk} ⊂ B4 such that J(uk)→ τ. We have by (29) that∫
V
|∇muk |

2dµ ≤ C (30)

for some constant C depending only on c, τ, G and h. By (24), we estimate∣∣∣∣∣∫
V

ukdµ
∣∣∣∣∣ ≤ 1
|c|
|J(uk)| +

1
2|c|

∫
V
|∇muk |

2dµ. (31)

Lemma 11 implies that there exists some constant C depending only on m and G such that∫
V
|uk − uk |

2dµ ≤ C
∫

V
|∇muk |

2dµ (32)

Combining (30), (31), and (32), one can see that {uk} is bounded in Wm,2(V). Then it follows
from Lemma 10 that there exists some function u such that up to a subsequence, uk → u in
Wm,2(V). Clearly u ∈ B4 and J(u) = limk→∞ J(uk) = τ. In other words, u is a minimizer of

13



J on the set B4. It is not difficult to check that (23) is the Euler-Lagrange equation of u. This
completes the proof of the theorem. �
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