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Abstract We show that, on a complete, connected and non-compact Riemannian manifold of non-negative
Ricci curvature, the solution to the heat equation with L1 initial data behaves asymptotically as the mass
times the heat kernel. In contrast to the previously known results in negatively curved contexts, the radiality
assumption on the initial data is not required. Similar long-time convergence results remain valid on more
general manifolds satisfying the Li-Yau two-sided estimate of the heat kernel. Moreover, we provide a
counterexample such that this asymptotic phenomenon fails in sup norm on manifolds with two Euclidean
ends.

1 Introduction

Let M be a Riemannian manifold of dimension n ≥ 2 and Δ be the Laplace-Beltrami operator on M. It is
well understood that the long-time behavior of solutions to the heat equation

∂tu(t, x) = Δxu(t, x), u(0, x) = u0(x), t > 0, x ∈ M (1)

is very much related to the global geometry of M . This applies also to the heat kernel ht (x, y) that is the
minimal positive fundamental solution of the heat equation or, equivalently, the integral kernel of the heat
semigroup exp (tΔ) (see for instance [7, 17, 12]).

If the initial function u0 belongs to the space Lp (M, μ) with p ∈ [1,∞) (where μ is the Riemannian
measure on M) then the Cauchy problem (1) has a unique solution u such that u (t, ∙) ∈ Lp for any t > 0,
and this solution is given by

u (t, x) =
∫

M
ht (x, y)u0 (y) dμ(y). (2)

The same is true for the case p = ∞ provided M is stochastically complete. Hence, by a solution of (1) we
always mean the function (2).

The aim of this paper is to investigate the connection between the long-time behavior of the solution
u (t, x) of (1) and that of the heat kernel ht (x, y). Let the initial function u0 belong to L1(M), and denote by
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M =
∫
M u0(x) dμ(x) its mass. In the case when M = Rn with the Euclidean metric, the heat kernel is given

by

ht (x, y) = (4πt)−
n
2 e−

|x−y |2

4t

and the solution to (1) satisfies as t → ∞

‖u(t, . ) − Mht ( . , x0)‖L1(Rn) −→ 0 (3)

and
t
n
2 ‖u(t, . ) − Mht ( . , x0)‖L∞(Rn) −→ 0. (4)

By interpolation, a similar convergence holds with respect to any Lp norm when 1 < p < ∞:

t
n

2p′ ‖u(t, . ) − Mht ( . , 0)‖Lp (Rn ) −→ 0

where p′ is the Hölder conjugate of p.

Note that (3) and (4) hold for any choice of x0, which means that in the long run the solution u (t, x)
and the heat kernel ht (x, x0) “forget” about the initial function u0 resp. initial point x0.We refer to a recent
survey [20] for more details about this property in the Euclidean setting.

The convergence properties (3) and (4) have an interesting probabilistic meaning. Let {Xt } be Brownian
motion on M whose transition density is ht (x, y) . Then (4) means, in particular, that Xt eventually “forgets”
about its starting point x0, which corresponds to the fact that Xt escapes to ∞ rotating chaotically in angular
direction.

The situation is drastically different in hyperbolic spaces. It was shown by Vázquez [21] that (3) fails for a
general initial function u0 ∈ L1 (Hn) but is still true if u0 is spherically symmetric around x0. Similar results
were obtained in [2] in a more general setting of symmetric spaces of non-compact type by using tools of
harmonic analysis. Note that these spaces have nonpositive sectional curvature. Recall that in hyperbolic
spaces Brownian motion Xt tends to escape to ∞ along geodesics, which means that it “remembers” at least
the direction of the starting point x0.

Our main result is the following theorem that deals with manifolds of non-negative Ricci curvature.
Denote by B (x, r ) the geodesic ball on M of radius r centered at x ∈ M and set V (x, r ) = μ (B (x, r )) .

Theorem 1 Let M be a complete, connected and non-compact Riemannian manifold of non-negative Ricci
curvature. Fix a base point x0 ∈ M and suppose that u0 ∈ L1(M). Then the solution to the heat equation
(1) satisfies as t → ∞

‖u(t, . ) − Mht ( . , x0)‖L1(M) → 0 (5)

and
‖ |u(t, . ) − Mht ( . , x0)|V(∙,

√
t)‖L∞(M) → 0. (6)

Remark 1 By interpolation between (5) and (6), we obtain for any p ∈ (1,∞)

‖ |u(t, . ) − Mht ( . , x0)|V(∙,
√

t)1/p
′
‖Lp (M) −→ 0. (7)

In Section 2 we will give a short review of different estimates of the heat kernel and reformulate Theorem
1 in more general ways. In Section 3 we prove Theorem 1. An essential idea of the proof is to describe the
critical region where the heat kernel concentrates. In the last section, we show that an estimate as (6) fails
on manifolds with two Euclidean ends.
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2 Auxiliary results

2.1 Heat kernel estimates

From now on, M denotes a complete, connected, non-compact Riemannian manifold of dimension n ≥ 2.
Let μ be the Riemannian measure on M. Let d(x, y) be the geodesic distance between two points x, y ∈ M,
and V(x, r ) = μ (B (x, r )) be the Riemannian volume of the geodesic ball B(x, r ) of radius r centered at
x ∈ M.

Throughout the paper we follow the convention that C,C1, ... denote large positive constants whereas
c, c1, ... are small positive constants. These constants may depend on M but do not depend on the variables
x, y, t. Moreover, the notation A . B between two positive expressions means that A ≤ CB, and A � B
means cB ≤ A ≤ CB.

We say that M satisfies the volume doubling property if, for all x ∈ M and r > 0, we have

V(x, 2r ) ≤ C V(x, r ). (8)

It follows from (8) that there exist some positive constants ν, ν′ > 0 such that

c

(
R
r

)ν′

≤
V(x, R)
V(x, r )

≤ C

(
R
r

)ν
(9)

for all x ∈ M and 0 < r ≤ R (see for instance [12, Section 15.6]). Moreover, (9) implies that, for all
x, y ∈ M and r > 0,

V (x, r )
V (y, r )

≤ C

(

1 +
d (x, y)

r

)ν
. (10)

The integral kernel ht (x, y) of the heat semigroup exp(tΔ) is the smallest positive fundamental solution
to the heat equation (1). It is known that ht (x, y) is smooth in (t, x, y), symmetric in x, y, and satisfies the
semigroup identity (see for instance [19], [12]). Besides, for all y ∈ M and t > 0

∫

M
ht (x, y) dμ(x) ≤ 1.

The manifold M is called stochastically complete if for all y ∈ M and t > 0
∫

M
ht (x, y) dμ(x) = 1.

It is known that if M is geodesically complete and, for some x0 ∈ M and all large enough r,

V (x0, r ) ≤ eCr2
,

then M is stochastically complete. In particular, the volume doubling property (8) implies that M is
stochastically complete.

When the Ricci curvature of M is non-negative, the following two-sided estimates of the heat kernel
were proved by Li and Yau [15]:

c1

V(x,
√

t)
exp

(
− C1

d2(x, y)
t

)
≤ ht (x, y) ≤

C2

V(x,
√

t)
exp

(
− c2

d2(x, y)
t

)
. (11)

Besides, Li and Yau proved in [15] also the following gradient estimate for any positive solution u (t, x) of
the heat equation ∂tu = Δu on R+ ×M:

|∇u|2

u2
−
∂tu
u

≤
C
t

(12)
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with C = n
2 . By a result of [11], the upper bound of the heat kernel in (11), that is,

ht (x, y) ≤
C

V(x,
√

t)
exp

(
− c

d2(x, y)
t

)
, (13)

implies the following estimate of the time derivative:

�
�
�
∂ht
∂t

(x, y)
�
�
� ≤

C

t V(x,
√

t)
exp

(
− c

d2(x, y)
t

)
. (14)

It follows from (12) that

|∇u|2 ≤ u∂tu+
C
t

u2

and, hence,

|∇u| ≤
√

u |∂tu| +
C
√

t
u.

Applying this for the function u (t, y) = ht (x, y) and combining with (13) and (14), we obtain that

|∇y ht (x, y)| ≤
C

√
t V(x,

√
t)

exp
(
− c

d2(x, y)
t

)
. (15)

It is known that the upper bound (13) of ht (and, hence, its consequence (14)) holds on a larger class
of Riemannian manifolds satisfying a so called relative Faber-Krahn inequality (see, for example, [12]).
But the estimate (15) of the gradient ∇ht is much more subtle and requires more serious hypotheses, for
example, non-negative Ricci curvature as we consider here.

Let us observe that the gradient estimate (15) is a particular (and limiting) case of the following Hölder
estimate:

|ht (x, y) − ht (x, z)| ≤
( d(y, z)

√
t

)θ C

V(x,
√

t)
exp

(
− c

d2(x, y)
t

)
, (16)

for some 0 < θ ≤ 1, and all t > 0, x, y, z ∈ M such that d(y, z) ≤
√

t. It is important to mention that (16) is
a consequence of the two-sided estimate (11) alone (for some 0 < θ < 1, see [17, Theorem 5.4.12]), and,
hence, (16) holds on more general classes of manifolds than (15).

Finally, let us observe that on spaces of essentially negative curvature the above estimates of the heat
kernel typically fail: for example, these are hyperbolic spaces [6], non-compact symmetric spaces [1],
asymptotically hyperbolic manifolds [5], and fractal-like manifolds [3].

2.2 Alternative statements of the main theorem

Now let us reformulate Theorem 1 in a bit more general way.

Theorem 2 Let M be a geodesically complete non-compact manifold that satisfies the following conditions:

• the volume doubling condition (8);

• the upper bound (13) of the heat kernel;

• the Hölder regularity (16) of the heat kernel.

Then the conclusions of Theorem 1 hold.

Apart from manifolds with non-negative Ricci curvature, the above-described manifolds cover many
other examples. Let us recall that, on a complete Riemannian manifold, the following three properties are
equivalent:
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• The two-sided estimate (11) of the heat kernel;

• The uniform parabolic Harnack inequality:

sup
( T4 ,

T
2 )×B(x,

r
2 )

u(t, x) ≤ C sup
( 3T

4 ,T )×B(x, r2 )

u(t, x), (17)

where u(t, x) is a non-negative solution of the heat equation ∂tu = Δu in a cylinder (0,T) × B(x, r ) with
x ∈ M, r > 0 and T = r 2.

• The conjunction of the volume doubling property (8) and the Poincaré inequality:
∫

B(x,r)
| f − fB |

2 dμ ≤ C r2
∫

B(x,r)
|∇ f |2 dμ, (18)

for all x ∈ M, t > 0, and bounded Lipschitz functions f in B(x, r ). Here, fB is the mean of f over B(x, r ).

See, for instance, [9, 10, 16, 17] for more details. Manifolds satisfying these equivalent conditions include
complete manifolds with non-negative Ricci curvature, connected Lie groups with polynomial volume
growth, co-compact covering manifolds whose deck transformation has polynomial growth, and many
others. We refer to [18, pp. 417–418] for a list of examples. These equivalent conditions yield particularly
the Hölder regularity (16) for some 0 < θ < 1, see [17, Theorem 5.4.12]. Hence, we obtain following
corollary.

Corollary 1 Let M be a geodesically complete non-compact manifold that satisfies one of the following
equivalent conditions:

• the two-sided estimate (11) of the heat kernel;

• the uniform parabolic Harnack inequality (17);

• the conjunction of the volume doubling property (8) and the Poincaré inequality (18).

Then the conclusions of Theorem 1 hold.

In fact, we do not need a differential operator like the Laplacian (or sub-Laplacian). All we need is a
function ht (x, y) satisfying certain estimates, and the result can be formulated as a property of integral
operators. For example, our method can be applied on a metric space (X, d, μ) of homogeneous type,
assuming that one has a semigroup of self-adjoint linear operators acting on L2(X, μ) and admitting a good
integral kernel, see for instance [8].

2.3 Two preliminary lemmas

We prove Theorem 2 in the next section. In the next two lemmas we describe some consequences of the
hypotheses of Theorem 2, in particular, the critical annulus where the heat kernel concentrates.

Lemma 1 Under the volume doubling condition (8), we have, for any c > 0, x0 ∈ M, and t > 0,

∫

M
exp

(

− c
d (x, x0)

2

t

)
dμ(x)

V(x0,
√

t)
. 1 (19)

and, for any N ∈ N and all r ≥
√

t,

∫

B(x0,r)
c

exp

(

− c
d (x, x0)

2

t

)
dμ(x)

V(x0,
√

t)
.

(
r
√

t

)−N
. (20)

Proof. Let us prove first (20). Using (9), we have
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1

V(x0,
√

t)

∫

d(x,x0)≥r
exp

(

− c
d (x, x0)

2

t

)

dμ(x)

=
1

V(x0,
√

t)

∞∑

j=0

∫

2 jr ≤d(x,x0)< 2 j+1r

exp

(

− c
d (x, x0)

2

t

)

dμ(x)

.
∞∑

j=0

V(x0, 2j+1r )

V(x0,
√

t)
exp

(

− c

(
2jr

)2

t

)

.
∞∑

j=0

(
2j+1r
√

t

)ν
exp

(

− c
22jr 2

t

)

.

Since exp (−s) ≤ (N!) s−N for any s > 0 and N ∈ N, we obtain that

∫

B(x0,r)
c

exp

(

− c
d (x, x0)

2

t

)
dμ(x)

V(x0,
√

t)
.

∞∑

j=0

(
r
√

t

)ν
2ν j−2N j

( t

r 2

)N

.

(
r
√

t

)ν−2N

,

which proves (20).

In order to prove (19) we apply (20) with r =
√

t and N = 1 and obtain

∫

M
exp

(

− c
d (x, x0)

2

t

)
dμ(x)

V(x0,
√

t)

=

(∫

B(x0,
√
t)c

+

∫

B(x0,
√
t)

)

exp

(

− c
d (x, x0)

2

t

)
dμ(x)

V(x0,
√

t)

. 1 +

∫

B(x0,
√
t)

dμ(x)

V(x0,
√

t)
= 2.

The next lemma describes the annulus where the heat kernel concentrates. Let us fix a point x0 ∈ M and
a positive function ϕ (t) such that ϕ (t) → 0 and ϕ(t)

√
t → ∞ as t → ∞. For any t > 0, define the following

annulus in M:

Ωt =

{

x ∈ M
�
� ϕ(t)

√
t ≤ d(x, x0) ≤

√
t
ϕ(t)

}

. (21)

Lemma 2 Under the hypotheses (8) and (13), we have for all large enough t
∫

M\Ωt

ht (x, x0) dμ(x) . ϕ (t)ν
′

(22)

where ν′ is the exponent from (9). Consequently,
∫

Ωt

ht (x, x0) dμ(x) −→ 1 as t −→ ∞. (23)

Proof. Since M is stochastically complete, (23) follows from (22) and ϕ (t) → 0. Since

M \ Ωt = B
(
x0, ϕ(t)

√
t
)
∪ Bc

(
x0,

√
t/ϕ(t)

)
,
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we estimate the integrals over B(x0, ϕ(t)
√

t) and Bc(x0,
√

t/ϕ(t)) separately. Assume that t is large enough
so that ϕ (t) < 1. Using (13) and (9) we obtain

∫

d(x,x0)<ϕ(t)
√
t

ht (x, x0) dμ(x) .
V(x0, ϕ(t)

√
t)

V(x0,
√

t)
. ϕ(t)ν

′
.

Using (13) and (20) with r =
√
t

ϕ(t) and any N ∈ N, we obtain

∫

d(x,x0)>
√
t

ϕ(t )

ht (x, x0) dμ(x) .
∫

B(x0,r)
c

dμ(x)

V(x0,
√

t)
exp

(

− c
d (x, x0)

2

t

)

.

(
r
√

t

)−N
= ϕ (t)N ,

whence the claim follows.

3 Proof of the main theorem

We start the proof of Theorem 2 with continuous compactly supported initial data and prove the asymptotic
properties of the solution in the L1 norm, working separately outside and inside the critical region Ωt . Then,
we show that these properties remain valid for all L1 initial data by using a density argument. The L∞

convergence is proved in the same spirit.

Proposition 1 Let M be a manifold defined as in Theorem 2. Let x0 ∈ M and u0 ∈ Cc(B(x0, a)) for some
a > 0. Assume that ϕ (t) is a positive function such that ϕ (t) → 0 and ϕ (t)

√
t → ∞ as t → ∞. Then the

solution (2) satisfies
‖u(t, . ) − Mht ( . , x0)‖L1(MrΩt ) . ϕ(t)

ν′ (24)

and
‖u(t, . ) − Mht ( . , x0)‖L1(Ωt ) . t−

θ
2 , (25)

where Ωt is defined by (21), ν′ and θ are exponents from (9) and (16), and

M =

∫

M
u0(x) dμ(x).

Consequently,
‖u(t, . ) − Mht ( . , x0)‖L1(M) . t−η (26)

for any η < min(ν′, θ)/2.

Proof. By the upper bound (13) of the heat kernel and Lemma 2 we have

‖ht ( . , x0)‖L1(MrΩt ) . ϕ(t)
ν′

so that (24) will follow if we prove that

‖u(t, . )‖L1(MrΩt ) . ϕ(t)
ν′ . (27)

We write

‖u(t, . )‖L1(MrΩt ) =

∫

MrΩt

�
�
�
�

∫

B(x0,a)
ht (x, y)u0(y) dμ(y)

�
�
�
� dμ(x)

≤
∫

B(x0,a)
|u0(y)|

{∫

MrΩt

ht (x, y) dμ(x)
}

dμ(y).
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Notice that x ∈ M r Ωt and y ∈ B(x0, a) imply x ∈ M r Ω̃t,y , where

Ω̃t,y =

{

x ∈ M
�
� 2 ϕ(t)

√
t ≤ d(x, y) ≤

1
2

√
t
ϕ(t)

}

provided t is large enough. Indeed, if x ∈ Ω̃t,y then

d(x, x0) ≤ d(x, y) + d(y, x0) ≤
1
2

√
t
ϕ(t)

+ a ≤

√
t
ϕ(t)

and
d(x, x0) ≥ d(x, y) − d(y, x0) ≥ 2 ϕ(t)

√
t − a ≥ ϕ(t)

√
t

for t large enough, since ϕ(t) → 0 and ϕ(t)
√

t → ∞ as t → ∞. It follows that x ∈ Ωt .

Applying (22) with Ω̃t,y instead of Ωt we obtain
∫

MrΩt

ht (x, y) dμ(x) ≤
∫

MrΩ̃t,y

ht (x, y) dμ(x) . ϕ(t)ν
′
,

whence (27) follows.

Now, let us turn to (25). Observe that

u(t, x) − Mht (x, x0) =

∫

M
u0(y) (ht (x, y) − ht (x, x0)) dμ(y)

=

∫

B(x0,a)
u0(y) (ht (x, y) − ht (x, x0)) dμ(y). (28)

One the one hand, we deduce from the Hölder regularity (16) that

|u(t, x) − Mht (x, x0)|

≤
C

V(x,
√

t)
exp

(
− c

d2(x, x0)
t

) ∫

B(x0,a)

( d(x0, y)
√

t

)θ
|u0(y)| dμ(y)

. t−
θ
2

1

V(x,
√

t)
exp

(
− c

d2(x, x0)
t

)
, (29)

for some 0 < θ ≤ 1 and for t large enough such that d(x0, y) ≤ a ≤
√

t. On the other hand, (10) implies that

1

V(x,
√

t)
exp

(

−c
d2(x, x0)

t

)

.

(
d(x, x0)
√

t
+ 1

)ν 1

V(x0,
√

t)
exp

(

−c
d2(x, x0)

t

)

.
1

V(x0,
√

t)
exp

(

−c
d2(x, x0)

2t

)

. (30)

Substituting (30) into the right-hand side of (29) and integrating in x over Ωt , we obtain by (19)

∫

Ωt

|u(t, x) − Mht (x, x0)| dμ(x) . t−
θ
2

∫

Ωt

dμ(x)

V(x0,
√

t)
exp

(

−c
d2(x, x0)

2t

)

. t−
θ
2 .

Finally, (26) follows by adding up (24) and (25) with ϕ (t) = tε−
θ
2 with small enough ε.

Next, we prove our main theorem.

Proof of Theorem 2. Given u0 ∈ L1(M), fix ε > 0 and choose ũ0 ∈ Cc(M) such that
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‖u0 − ũ0‖L1(M) <
ε

3
.

Let us prove first (5). Setting M̃ =
∫
M ũ0(y) dμ(y) we have

|M − M̃ | ≤
∫

M
dμ(y) |u0(y) − ũ0(y)| = ‖u0 − ũ0‖L1(M) <

ε

3
. (31)

It follows that

‖Mht ( . , x0) − M̃ht ( . , x0)‖L1(M) ≤ |M − M̃ | ‖ht ( . , x0)‖L1(M) <
ε

3
. (32)

Let ũ(t, x) be the semigroup solution to the heat equation with the initial data ũ0. Then we have

‖u(t, . ) − ũ(t, . )‖L1(M)

≤
∫

M
|u0(y) − ũ0(y)|

{∫

M
dμ(x) ht (x, y)

}
dμ(y) <

ε

3
. (33)

By the estimate (26) of Proposition 1, we have, for sufficiently large t,

‖ũ(t, . ) − M̃ht ( . , x0)‖L1(M) <
ε

3
. (34)

Combining (32), (33) and (34) together, we obtain

‖u(t, . ) − Mht ( . , x0)‖L1(M) < ε

which finishes the proof of (5).

Let us turn to the sup norm convergence (6). Since ũ0 is compactly supported, we can apply (29) which
gives for all x

|ũ(t, x) − M̃ht (x, x0)| ≤
C

tθ/2V(x,
√

t)
≤

ε

V(x,
√

t)
(35)

for sufficiently large t . Next, we have

|u(t, x) − ũ(t, x)| ≤
∫

M
ht (x, y) |u0(y) − ũ0(y)| dμ(y)

≤
C ‖u0 − ũ0‖L1

V(x,
√

t)
.

ε

V(x,
√

t)
(36)

and
|Mht (x, x0) − M̃ht (x, x0)| = |M − M̃ | ht (x, x0) .

ε

V(x,
√

t)
. (37)

Putting together (35), (36) and (37), we conclude that

| u(t, x ) − Mht ( x , x0)| .
ε

V(x,
√

t)

whence (6) follows.
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4 A counterexample

Let n ≥ 3. Consider a manifold M = Rn#Rn that is a connected sum of two copies of Rn. This means that
M is a union of a compact part K and two Euclidean ends E± = Rn\B(0, R) (see Fig. 1). This is a classical
setting where the two-sided heat kernel estimate (11) fails, see for instance [13].

E−

E+

K

B(0, R)

Fig. 1 Manifold M = Rn#Rn .

Note that V(x, R) � Rn for all x ∈ M, and the heat kernel on M satisfies the upper bound (13) (see, for
instance, [13, Corollary 4.6, p.1946]). However, the essential hypotheses, Hölder regularity (16) or pointwise
gradient estimate (15), fail in the present setting (and so does the Poincaré inequality, [14]). Indeed, it was
shown in [4, Proposition 6.1] that, for large t,

sup
x,y∈M

�
�∇yht (x, y)

�
� ≥ c t−n/2,

which is incompatible with (15).

Let us verify that also the conclusion (6) of Theorem 1 fails in this setting. For that consider on E+ for
any t > 1 a point xt with |xt | =

√
t and with a fixed direction ω = xt/

√
t . It was proved in [4, Proposition

6.1] that, for any x ∈ K,
lim
t→∞

t
n
2 ht (xt, x) = Φ(x) (38)

where Φ (x) is a positive harmonic function on M that tends to a positive constant as x → ∞ at the end E+

and tends to 0 as x → ∞ at the end E−. Let us fix two points x1 and x2 in K such that Φ (x1) , Φ (x2) . Then
(38) implies that

t
n
2
(
ht (xt, x1) − ht (xt, x2)

)
−→

(
Φ(x1) − Φ(x2)

)
as t −→ ∞ (39)

while (6) would imply that

t
n
2 ‖ht ( ∙ , x1) − ht ( ∙ , x2)‖L∞(M) −→ 0 as t −→ ∞ ,

hence,
t
n
2 (ht (xt, x1) − ht (xt, x2)) −→ 0,

which contradicts to (39).
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