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1 Introduction

Let {Xi}i≥1 be a sequence of independent random variables taking the values ±1 with the
probability 1

2 , and let us set Sn = X1 +X2 + ... +Xn. A classical theorem of Hardy and
Littlewood (1914) says that, for any C > 0 and for all n large enough, we have

Sn ≤ C
√
n log n, (1)

with probability 1. In 1924, Khinchin showed that (1) can be replaced by a sharper
inequality

Sn ≤
√

(2 + ε)n log log n , (2)

for any ε > 0. In the view of Khinchin’s result, inequality (1) has long been considered
as one of a rather historical value. However, the recent results on Brownian motion on
Riemannian manifolds give a new insight into it. In this note, we show that an analogue of
(1), for the Brownian motion on Riemannian manifolds of the polynomial volume growth,
is sharp and, therefore, cannot be replaced by an analogue of (2).

Let M be a smooth connected geodesically complete non-compact Riemannian mani-
fold. Denote by ∆ the Laplace operator of the Riemannian metric of M and by Wx(t) the
minimal diffusion on M starting at the point x ∈M and generated by the operator 1

2∆.
We say that a positive function R(t) on (0,∞) is an upper radius for Wx(t) if, with

probability 1,
dist (Wx(t), x) ≤ R(t) ,

for all t large enough, where dist denotes the geodesic distance. For example, if M = R
d,

then the d-dimensional law of the iterated logarithm implies that the function√
(2 + ε) t log log t (3)

∗Supported by the EPSRC Advanced Fellowship B/94/AF/1782
†Partially supported by the collaborative grant of London Mathematical Society and by the EPSRC

Visiting Fellowship

1



is an upper radius for any ε > 0 and is not for ε ≤ 0.
Denote by B(x,R) an open geodesic ball on M of radius R with a centre x ∈M , and

by V (x,R) – its Riemannian volume. We say that manifold M has a polynomial volume
growth of order n if, for some x ∈M and all r large enough,

V (x, r) ≤ Crn , (4)

for some constant C.
The following result was obtained by the authors:

Theorem 1 ([4], [5]) Let M be a geodesically complete non-compact Riemannian mani-
fold. Assume that M has a polynomial volume growth of order n. Then, for any x ∈ M ,
the process Wx(t) has the following upper radius:√

cn t log t (5)

where cn depends only on n.

This theorem can be considered as an analogue of the Hardy–Littlewood theorem for
the Brownian motion on Riemannian manifolds. It seems remarkable that the polynomial
volume growth condition implies, by alone, a restriction on the escape rate of the Brow-
nian motion. Under the more restrictive hypotheses, one can obtain a full analogue of
Khinchin’s theorem on manifolds. For example, if M has non-negative Ricci curvature,
then the function (3) is an upper radius for ε > 0 and is not for ε < 0 [5, Theorem 1.4].

A natural question arises whether the upper radius (5) of the Hardy–Littlewood type
is sharp for some manifold. We prove in this note that, for any ε > 0, there exists a
manifold of a polynomial volume growth such that the following function√

t log1−ε t

is not an upper radius.
In this example, the manifold is spherically symmetric, which simplifies the proof.

However, the situation when the upper radius (5) cannot be essentially improved, seems
to be generic in the class of manifolds of a polynomial volume growth.

Added in proof. A similar example for random walks was constructed by M.T. Barlow
and A. Perkins ‘Symmetric Markov chains in Z

d: how fast can they move?’, Probab. Th.
Rel. Fields 82 (1989) 95–108.

2 Lower estimate for upper radius

Let p(t, x, y) be the heat kernel on a Riemannian manifoldM, that is, p(t, x, y) is the small-
est positive fundamental solution to the heat equation ut = ∆u. Equivalently, p(t, x, y) is
a kernel of the semigroup et∆ acting in L2(M). In other words, p(t/2, x, y) is a density of
the transition function of the Brownian motion Wx(t).

We will assume throughout that M is stochastically complete, that is, for all t > 0 and
x ∈M , ∫

M
p(t, x, y)dy = 1. (6)

Observe that M is stochastically complete provided M is geodesically complete and has
a polynomial volume growth (see [2], [3], [7]).

Our example is based on the following theorem which is of interest by itself.
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Theorem 2 Let M be a stochastically complete manifold and let R(t) be an upper radius
for Wx(t). Then

p(t, x, x)V (x,R(t)) ≥ 1 − o(1) (7)

as t→ ∞.

Proof. Let us put
ρx(t) = dist(Wx(t), x).

Since R(t) is an upper radius, then

Px {ρx(t) > R(t)} → 0 (8)

as t→ ∞. Indeed, the fact that R(t) is an upper radius, implies that, for almost all paths
ω in the path space,

ft(ω) := 1{ρx(t)>R(t)} −→
t→∞ 0 .

Therefore, (8) is implied by the Lebesgue convergence theorem as follows:

Px {ρx(t) > R(t)} =
∫
ft(ω)dω −→

t→∞ 0 .

Let us observe that

Px {ρx(t) > R(t)} =
∫

M\B(x,R(t))

p(t/2, x, y)dy,

whence
lim
t→∞

∫
M\B(x,R(t))

p(t/2, x, y)dy = 0. (9)

By using the semigroup identity, the Cauchy–Schwarz inequality, (6) and (9), we obtain
(7) as follows:

p(t, x, x) =
∫
M

p2(t/2, x, y)dy

≥
∫

B(x,R(t))

p2(t/2, x, y)dy

≥ 1
V (x,R(t))


 ∫

B(x,R(t))

p(t/2, x, y)dy




2

=
1

V (x,R(t))


1 −

∫
M\B(x,R(t))

p(t/2, x, y)dy




2

=
1

V (x,R(t))
(1 − o(1)) .
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Corollary 3 Under the hypotheses of Theorem 2, we have

R(t) ≥ V −1

(
x,

1 − o(1)
p(t, x, x)

)
(10)

as t→ ∞, where V −1(x, ·) denotes the inverse function of V (x, ·).

Let us show an example of application of (10), for M = R
d. In R

d, we have V (r) = cdr
d

and p(t, x, x) = (4πt)−d/2. Thus, (10) yields, for all t large enough,

R(t) ≥ const
√
t. (11)

Of course, in view of the law of the iterated logarithm, this result looks not very sharp.
However, the estimate (11) is still not empty and even seems to be new. Indeed, the law
of the iterated logarithm says that a.s.

lim sup
t→∞

dist(Wx(t), x)√
2t log log t

= 1,

which implies that, for any upper radius R(t),

lim sup
t→∞

R(t)√
2t log log t

≥ 1

and
R(t) ≥

√
(2 − ε)t log log t ,

for a sequence of t = tk → ∞. On the contrary, estimate (11) holds, although without
log log t, for all t large enough.

Given an increasing function R(t) such that

R(t)√
t

is non-decreasing, (12)

the Kolmogorov–Dvoretzky–Erdös integral test provides the criterion for R(t) to be an
upper radius for the Brownian motion in R

d (see [6, Section 4.12]). However, (12) implies
already (11). If (12) is not satisfied, then there seems to be no way of deciding whether
R(t) is an upper radius or not. Inequality (11) provides a necessary condition for that.

3 Manifold with ‘big’ upper radius

Our main result is the following theorem.

Theorem 4 For any real number n ≥ 2, there exists a geodesically complete non-compact
Riemannian manifold M of bounded curvature and of a polynomial volume growth of order
n such that any upper radius R(t) for the Brownian motion on M satisfies the inequality

R(t) ≥
√
ct log1− 2

n t , (13)

for a sequence of t = tk → ∞ as k → ∞ and for some c > 0.
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By taking n sufficiently large, we obtain, for any ε > 0, a manifold on which the
function √

t log1−ε t

is not an upper radius.
Proof. We construct a complete Riemannian manifold M with the following proper-

ties:

(A) M has a polynomial volume growth of order n;

(B) for some x ∈M , for some sequence {tk} → ∞ and for all t = tk, the following upper
bound of the heat kernel holds:

p(t, x, x)≤ const
tn/2(log t)n/2−1

. (14)

(C) M has bounded curvature.

Remark: As was proved in [1, Theorem 6.1], condition (A) implies that, for all t large
enough,

p(t, x, x) ≥ const
tn/2 logn/2 t

. (15)

Comparison with (14) shows that the result of [1, Theorem 6.1] is nearly sharp. As was
shown in [1, Section 9], one cannot have in general the lower bound

p(t, x, x) ≥ const
tn/2

,

assuming only (A). The manifold M of our example is a further elaboration of the example
in [1, Section 9].

Assuming that we have already such a manifold, Corollary 3, (A) and (B) imply that,
for all t = tk as k → ∞,

R(t) ≥ V −1

(
x,

1 − o(1)
p(t, x, x)

)

≥ c′
(

1 − o(1)
p(t, x, x)

) 1
n

≥ c′′t1/2 (log t)
1
2
− 1

n (1 − o(1)) ,

whence (13) follows.
The simplest example of a manifold with a polynomial volume growth of order n is the

Euclidean space R
n (provided n is an integer). However, the Euclidean heat kernel on the

diagonal is given by

p(t, x, x) =
1

(4πt)n/2
, (16)

which clearly does not satisfy (14). On the other hand, on the hyperbolic space, the heat
kernel decays exponentially as t → ∞. This suggests the following approach for construct-
ing M . The manifold M will be realized as R

d, with a special choice of Riemannian metric.
This metric is constructed in such a way that makes the curvature negative in appropriate
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places so that the heat kernel becomes smaller than (16), whereas the volume growth is
still polynomial.

The dimension d can be anything at least 2. However, in the part of the proof devoted
to the computation of the curvature, we assume for simplicity d = 2.

Let us fix a point z ∈ R
d and define in R

d the polar coordinates (r, ϕ) centred at z.
The Riemannian metric of M has the following form:

ds2 = dr2 + h2(r)dϕ2, (17)

so that M is spherically symmetric. Here dϕ is the standard metric on S
d−1.

The function h(r) is so far any smooth positive function on (0,∞), such that h(r) = r
for r ≤ 1. This means that the metric in the ball B(z, 1) is exactly Euclidean. We will
choose h(r), for r > 1, in such a way that M has an infinite sequence of long enough
shells of constant negative curvature. These shells serve as ‘accelerators’ for the Brownian
motion Wz(t) towards infinity and, thus, diminish the probability of Wz(t) to return to z.

The boundary area of any sphere ∂B(z, r) can be found as

S(r) = ωdh
d−1(r),

where ωd is the area of the unit sphere in R
d. The volume function is obviously given by

V (r) = V (z, r) =
∫ r

0
S(ξ)dξ,

It will be convenient for us to work with the following function:

σ(r) =
S(r)
V (r)

. (18)

For r ≤ 1, we have σ(r) = d
r . Clearly, V (r) (and, thus, S(r) and h(r)) can be recovered

through σ, as follows:

V (r) = V (1) exp
(∫ r

1
σ(ξ)dξ

)
. (19)

Let {(ak, bk)}∞k=0 be a sequence of intervals on (0,∞), which do not intersect, go to ∞
as k → ∞ and satisfy the following conditions: for any k ≥ 1,

1 + bk−1 ≤ ak ≤ Cbk−1, (20)

for a large constant C, and
bk ≥ eak . (21)

In fact, the exact recurrence relations between bk−1, ak and bk will be chosen later, in (53)
and (46). So far, we assume only (20) and (21). Let us also put for certainty a0 = 2 and
b0 = 3.

Assuming that {ak}, {bk} are chosen already, let us show that there exists a function
σ(r) on (0,∞) satisfying the following conditions:

(i) for r ≤ 1, we have σ(r) = d
r ;

(ii) σ(r) is non-increasing, smooth and positive on (0,∞);

(iii) on each interval (ak, bk), the function σ(r) is equal to a constant, which will be
denoted by ηk;
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(iv) for each k ≥ 1, the volume function V (r), defined by (19), satisfies the identities

V (ak) = an
k and V (bk) = bnk . (22)

Clearly, for any non-increasing sequence {ηk} of positive numbers, the function σ(r)
can be constructed to satisfy (i)-(iii), by a smooth interpolation on (bk−1, ak) between the
constants ηk−1 and ηk. In order to satisfy (iv), it suffices to have (22), for k = 0, and the
following two equations, for all k ≥ 1:∫ bk

ak

σ(r)dr = n(log bk − log ak) (23)

and ∫ ak

bk−1

σ(r)dr = n(log ak − log bk−1). (24)

Indeed, as soon as we have (23) and (24), (22) follows, by induction, from (19).
Let us show that (23) and (24) can be, indeed, satisfied. Since σ(r) = ηk on (ak, bk),

then (23) is equivalent to

ηk = n
log bk − log ak

bk − ak
. (25)

From now on, let us assume that ηk is defined by (25). Since σ(r) varies on (bk−1, ak)
between ηk and ηk−1, then it is possible to construct σ, satisfying (24), provided

ηk ≤ n
log ak − log bk−1

ak − bk−1
≤ ηk−1. (26)

In view of (25), this is equivalent to

log bk − log ak

bk − ak
≤ log ak − log bk−1

ak − bk−1
≤ log bk−1 − log ak−1

bk−1 − ak−1
,

which is true for any increasing sequence of four numbers ak−1, bk−1, ak, bk, just by the
concavity of log.

Thus, all conditions (i)-(iv) can be satisfied, by a proper choice of function σ(r). In the
last part of this proof, we will construct σ(r) explicitly, in order to control the curvature
of M . If we forget for a while about the smoothness of σ, then such a function can be
easily written down as follows:

σ(r) =
{

n
r , bk−1 < r < ak

ηk, ak ≤ r ≤ bk
(27)

(for small r, the function σ(r) is defined arbitrarily, only satisfying (i) and (ii)). This
function is shown on Fig. 1.

In order to verify that function (27) satisfies the conditions (i)-(iv), it suffices to show
identity (24) and that function (27) is non-increasing. The former is obvious, whereas the
latter amounts to

ηk−1 ≥ n

r
≥ ηk, (28)

for any r ∈ (bk−1, ak), or to
n

bk
≤ ηk ≤ n

ak
. (29)
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In the view of (25), inequality (29) can be rewritten as

1
bk

≤ log bk − log ak

bk − ak
≤ 1
ak
,

which is true again by the concavity of log.

σ(r)

r1 ak bk+1bk ak+1

r
n

ηk+1

ηk

_

Figure 1 Example of discontinuous σ(r)

The corresponding function V (r), determined from (19), is as follows:

V (r) =
{
rn, bk−1 < r < ak,
an

k exp (ηk(r − ak)) , ak ≤ r ≤ bk,

which is sketched in Fig. 2.

V(r)

rak bk+1bk ak+1

anexp(η(r-a))

rn

Figure 2 Example of the volume function V (r)

Remark: The main role in the construction is played by the intervals (ak, bk) where
V (r) is growing exponentially. If we were to allow discontinuous σ then we could put

8



ak+1 = bk removing thus the layers of the polynomial volume growth. The role of the
intervals (bk, ak+1) is to provide some space for smoothing out the functions σ and V .

Now we may assume that all conditions (i)-(iv) hold and will show that (A), (B) and
(C) can be satisfied, too by further specifying {ak}, {bk} and σ(r), within the limitations
imposed already.

CONDITION (A). Let us prove that, for all r large enough,

V (z, r) = V (r) ≤ Crn.

If r = ak or r = bk, then it follows from (22). Let us consider the case r ∈ (ak, bk). Then,
by (19), (iii), (22), (25) and by the concavity of log, we have

V (r) = V (ak) exp
(∫ r

ak

σ(ξ)dξ
)

= V (ak) exp (ηk(r − ak)) (30)

= an
k exp

(
n

log bk − log ak

bk − ak
(r − ak)

)
≤ an

k exp (n(log r − log ak))
= rn.

If r ∈ (bk−1, ak), then, by (20), we obtain

V (r) ≤ V (ak) = an
k =

(
ak

bk−1

)n

bnk−1 ≤ const rn.

CONDITION (B). To get an upper bound for p(t, z, z), we apply [1, Theorem 8.3],
which gives an upper bound of the heat kernel p(t, z, z) on a spherically symmetric manifold
M , provided the function σ(r) = S(r)

V (r) is non-increasing.
Let us define the function ρ(t) from the identity

t = 4

ρ(t)∫
0

dr

σ(r)
. (31)

Then [1, Theorem 8.3] says that, for any s ∈ (0, t), the following estimate holds:

p(t, z, z)≤ 2t
(t− s)V (ρ(s))

. (32)

Let us define the sequences {θk} and {τk} as follows (see Fig. 3)

θk := 4
∫ ak

0

dr

σ(r)
and τk := 4

∫ bk

0

dr

σ(r)
. (33)

In other words,
ρ(θk) = ak and ρ(τk) = bk .

We apply (32) for t = τk and for

s = sk := τk − 4
η2

k

. (34)
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This choice of s is motivated by the fact that the ratio

V (ρ(sk))
V (bk)

is equal to a constant, regardless of k (see below (38)).

t

r=ρ(t)

ak ρ(sk) bk ak+1 bk+1

θk+1θk sk τk τk+1

Figure 3 Sequences θk, τ k and sk.

Let is first verify that sk ∈ (θk, τk). To that end, it is sufficient to show that

τk − θk≥ 4
η2

k

. (35)

We have, by (33) and (iii),

τk − θk = 4
∫ bk

ak

dr

σ(r)
= 4

bk − ak

ηk

. (36)

Thus, by (25) and (21) ,

τk − θk =
4
ηk

(bk − ak) ≥ 4
ηk

bk − ak

n log bk
ak

=
4
η2

k

,

whence (35) follows.
Since sk ∈ (θk, τ k), we have by (31), (33) and (iii)

sk − θk = 4

ρ(sk)∫
ak

dr

σ(r)
=

4(ρ(sk) − ak)
ηk

,

whence
ρ(sk) − ak =

ηk

4
(sk − θk) . (37)

Let us compute V (ρ(sk)), by using successively (22), (30), (37), (34) and (36):

V (ρ(sk)) = an
k exp (ηk(ρ(sk) − ak))

= an
k exp(

η2
k

4
(sk − θk))

= an
k exp(

η2
k

4
(τk − 4

η2
k

− θk))

= an
k exp(

η2
k

4
(4
bk − ak

ηk

− 4
η2

k

))

= an
ke

−1 exp(ηk(bk − ak))
= e−1V (bk) (38)
= e−1bnk .
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Therefore, we have, by (32) and (34),

p(τk, z, z) ≤ 2τk

(τk − sk)V (ρ(τ k))
≤ eη2

kτk

2bnk

and

τ
n/2
k p(τk, z, z)≤ e2

η2
kτ

n/2+1
k

bnk
. (39)

As follows from (33) and from non-increasing of σ,

τk = 4
∫ bk

0

dr

σ(r)
≤ 4bk

ηk

. (40)

Hence, (39) implies

τ
n/2
k p(τk, z, z) ≤ e

2
η2

k

bnk

(
4bk
ηk

)n/2+1

= c(bkηk)
−n/2+1. (41)

Let us observe that, by (25),

bkηk = bk
n(log bk − log ak)

bk − ak
≥ n log bk − n log ak (42)

On the other hand, by (40), (25) and (21),

log τk ≤ log
(

4bk
ηk

)
= log

(
4bk

bk − ak

n log bk
ak

)
≤ log

(
4b2k
)

= 2 log bk + log 4. (43)

Comparison of (42) and (43) shows that we can have

log τk ≤ 2bkηk , (44)

provided
bk ≥ 2an/(n−1)

k . (45)

Thus, let us set
bk = ea

n/(n−1)
k , (46)

which satisfies also (21). Inequalities (41) and (44) imply

τ
n/2
k p(τk, z, z)≤ c′(log τk)−n/2+1

and

p(τk, z, z)≤ c′

τ
n/2
k (log τk)n/2−1

,

which was to be proved.
CONDITION (C). We will show that the manifold M has bounded curvature, for a

certain choice of σ(r). For simplicity, we will assume in this part of the proof that d = 2.
Then the Gauss curvature of M can be easily computed from (17):

K = K(r) = −h
′′

h
= −S

′′

S
= −V

′′′

V ′ = −
(
σ′′

σ
+ 3σ′ + σ2

)
. (47)
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Since σ(r) = ηk = const for r ∈ (ak, bk), then the curvature in the annulus {ak < r < bk}
is equal to −η2

k. Since, by (25) and (46),

ηk ∼ log bk
bk

−→
k→∞

0, (48)

then the curvature in all annuli {ak < r < bk} remains negative, bounded and, moreover,
vanishes at infinity.

To control the curvature in the annuli {bk−1 < r < ak} , we have to carefully construct
σ(r) for r ∈ (bk−1, ak). (Let us remark the part bk−1+1 ≤ ak of condition (20) was imposed
from the very beginning to ensure that the length of interval (bk−1, ak) is bounded away
from zero, which helps to make the curvature bounded.) The following restrictions, which
are mostly implied by (i)-(iv), should be taken care of:

(a) σ(r) is non-increasing and smooth;

(b) the “boundary” conditions:

σ(bk−1) = ηk−1 and σ(ak) = ηk; (49)

(c) the identity (24): ∫ ak

bk−1

σ(r)dr = n(log ak − log bk−1). (50)

(d) as follows from (47) and from the decreasing of σ, the boundedness of curvature will
be implied by

sup
bk−1<r<ak

∣∣∣∣σ′′(r)σ(r)

∣∣∣∣+ sup
bk−1<r<ak

∣∣σ′(r)∣∣ < C, (51)

where the constant C should be the same for all k large enough.

Let us fix a function ψ(r) ∈ C∞(R) such that ψ(r) = 1 for r ≤ 0, ψ(r) = 0 for r ≥ 1,
and ψ(r) is monotonically decreasing on (0, 1). Let us denote

I :=
∫ 1

0
ψ(r)dr.

We define σ(r) on (bk−1, ak) as follows, for k large enough (see Fig. 4)

σ(r) = ηk + (ηk−1 − ηk)ψ
(

1
αk

r − bk−1

ak − bk−1

)
, (52)

where αk ∈ (0, 1] will be chosen below. Clearly, function (52) satisfies (a) and (b).
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σ(r)

rbk-11 ak bk+1bk ak+1

ηk+1

ηk

Figure 4 Smooth function σ(r)

To check (c), let us compute the integral of σ:∫ ak

bk−1

σ(r)dr = (ak − bk−1)
(
ηk + (ηk−1 − ηk)αkI

)
.

From here and (50), we can find αk. To simplify the computations, let us set

ak = 2bk−1, (53)

which satisfies (20) and implies, by (46),

bk = cb
n/(n−1)
k−1 . (54)

Then (50) acquires the form ∫ ak

bk−1

σ(r)dr = n log 2,

and we find

αk =
n log 2
bk−1

− ηk

I(ηk−1 − ηk)
. (55)

By (26), we have αk > 0. Let us show that for k large enough, αk ≤ 1. As is clear
from (48) and (54),

ηk ∼ log bk
bk

∼ c′
log bk−1

b
n/(n−1)
k−1

, k → ∞.

Therefore,

ηk = o(
1

bk−1
) and ηk = o(ηk−1), k → ∞,

and we obtain from (55) and (48), that

αk ∼ n

I

log 2
bk−1

log bk−1

bk−1

=
c′′

log bk−1
, k → ∞. (56)

Thus, αk → 0 as k → ∞, and, for k large enough, αk < 1.
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Now, let us verify (d). For the first derivative of σ, we have, for r ∈ (bk−1, ak),

σ′(r) =
ηk−1 − ηk

αk(ak − bk−1)
ψ′
(

1
αk

r − bk−1

ak − bk−1

)
.

Therefore, by (48), (56) and (53),

∣∣σ′(r)∣∣ ≤ C

(
log bk−1

bk−1

)2

−→
k→∞

0. (57)

In particular, |σ′| remains bounded.

Figure 5 Manifold M

Finally, let us estimate the ratio σ′′
σ . We have, by (52),

σ′′(r) =
ηk−1 − ηk

α2
k(ak − bk−1)2

ψ′′
(

1
αk

r − bk−1

ak − bk−1

)
.

Since σ(r) ≥ ηk, then, by (48), (56), and (54),∣∣∣∣σ′′σ
∣∣∣∣ ≤ C

ηk−1 − ηk

α2
k(ak − bk−1)2ηk

≤ C1

log bk−1

bk−1
log2 bk−1

b2k−1
log bk

bk

≤ C2
log3 bk−1

b3k−1

bk
log bk

≤ C3
log2 bk

b
2−3/n
k

−→ 0, k → ∞. (58)

Thus, we see from (48), (57) and (58) that manifold M has bounded curvature and,
moreover, is asymptotically flat.

The manifold M is sketched in Fig. 5. Let us note that the shape of M is deter-
mined by the function S(r). In our example, this function is oscillating but, nevertheless,
limr→∞ S(r) = ∞. Indeed, if r ∈ (ak, bk), then, by (18), (49), (22), (46) and (48),

S(r) = σ(r)V (r) ≥ ηkV (ak) = ηka
n
k = cηkb

n−1
k ∼ cbn−2

k log bk.
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If r ∈ (bk−1, ak), then, by (53),

S(r) = σ(r)V (r) ≥ ηkV (bk−1) = 2−nηka
n
k ∼ c′bn−2

k log bk.

In both cases, we see that S(r) → ∞ as k → ∞.
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