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THE HEAT EQUATION ON NONCOMPACT RIEMANNIAN MANIFOLDS
UDC 517.9

A. A. GRIGOR'YAN

ABSTRACT. The behavior of the Green function G(x, y, t) of the Cauchy problem
for the heat equation on a connected, noncompact, complete Riemannian manifold
is investigated. For manifolds with boundary it is assumed that the Green function
satisfies a Neumann condition on the boundary.

Let Μ be a geodesically complete, noncompact, smooth, connected Riemannian
manifold of dimension η. Let Δ be the Laplace operator (or, equivalently, the
Laplace-Beltrami operator) on M . As we know, in local coordinates x\, ... , xn the
Laplacian Δ has the form

ι A d ( _ n d

where the glj are the contravariant components of the metric tensor (in contrast to
the covariant components gij), and g = det \\gij\\.

The paper is devoted to the type of estimates of positive solutions of the heat
equation

(0.1) u,-Au = 0

(where u = u(x, t), χ € Μ, t > 0) called Harnack's inequality.
The classical Harnack inequality states that a positive harmonic function v(x)

defined in a Euclidean ball BR of radius R satisfies the estimate

(0.2) supu/infv<P,
Br B'

where Br is a concentric ball of radius r < R, while the constant Ρ depends only
on the ratio of the radii R/r (and on the dimension of the space).

From (0.2) one can deduce many important properties of harmonic functions,
and it is therefore not surprising that much effort has been expended to generalize
Harnack's inequality to solutions of elliptic and then parabolic equations. In R" it
was established by Moser in [4] and [5] for uniformly elliptic and uniformly parabolic
equations in divergence form. After that it beame possible to approach directly the
question of just what geometric properties of the space entail Harnack's inequality
(and also other properties of solutions).

If ν is a harmonic function on a Riemannian manifold Μ (i.e., Av = 0) defined
and positive in a precompact geodesic ball BR C Μ, then, considering the Laplace
equation in local coordinates as a uniformly elliptic equation, one can obtain (0.2).
It is true—and this is most essential—that the constant Ρ will depend on R and r,
and not just on their ratio.
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This sort of Harnack inequality, which is naturally called local (in contrast to a
global inequality when Ρ depends only on R/r), makes it possible to study only
local properties of solutions, but not properties such as, for example, Liouville's
theorem and others. The same applies to the heat equation (a formulation of the
corresponding Harnack inequality is presented in §4).

The purpose of this paper is to obtain the weakest possible conditions on the
manifold Μ under which a (global) Harnack inequality is satisfied for the heat
equation (and thus also for the Laplace equation).

Bombieri and Giusti [2] (see also Yau [3]) carried out the first geometric analysis
of Moser's proofs. They established that Moser's proofs can be carried over to a
manifold Μ if it satisfies the following conditions:

(a) The ratio of the volumes of any two concentric balls of radii R and 2R does
not exceed A , where A is the same for all balls.

(b) The first eigenvalue of the Neumann problem in any ball of radius R is not
less than a/R2, where a > 0 is the same for all balls (Poincare's inequality).

(c) For any function / e C

r ft

/ |grad/| > 6 / I/I"/"-

where b > 0 is a constant not depending on / (Sobolev's inequality).
As is known, in R" all these conditions are satisfied. Other known proofs of

Harnack's inequality in R", for example, Landis' proof [13] (see also [24]), actually
use the same geometric properties of R" but in another form (thus, properties (b) and
(c) can be derived from the isoperimetric partition property in a Euclidean ball: if a
hypersurface Γ divides a ball into two parts having volume > υ , then measn_ir >

CnV(n-l)/n ^ w h e r e Cn > 0 . s e e [1 3] a n d [22]).
One of the basic results of our paper is that Harnack's inequality for equation

(0.1) (and thus also for the Laplace equation Au — 0) is satisfied if the manifold
Μ satisfies only conditions (a) and (b). Moreover, condition (b) can be relaxed,
replacing it by condition (b') (to be formulated in §1).

Simple examples show that the superfluous condition (c) is not a consequence of
(a) and (b). It is not hard to show that in a cylinder Κ xR" , where Κ is a compact
manifold, (a) and (b) are satisfied (this follows from results of [26]), but (c) is not
satisfied (since Sobolev's inequality implies growth of the volume of a ball of radius
R -> oo like R"). Condition (a) alone does not guarantee Harnack's inequality.
Corresponding examples have long been known; see, for example, [19]. Violation of
Harnack's inequality in these examples occurs due to the presence on the manifold of
"narrow" places along which a solution may vary strongly. Condition (b) (and (b'))
forbids just such situations. It remained unclear whether condition (b') is necessary
for Harnack's inequality. As shown in §5, condition (a) follows from Harnack's
inequality for the heat equation and is thus a necessary condition.

Condition (b') is not altogether transparent. In §2 we show that (a) and (b')
result from the following rather graphic geometric condition. We denote by Γ* a
homothety of the manifold Μ along the shortest geodesic with center at the point
χ and with coefficient q e (0, 1). Suppose Γ£ for q e [1/2, 1] reduces the volume
of any ball by no more than C times, where C > 1 does not depend on χ, q , or
the ball. Then (a) and (b') are satisfied. For example, this "homothety" condition
holds on manifolds of nonnegative Ricci curvature. By the way, on such manifolds
Harnack's inequality for the heat equation was proved by another method by Li and
Yau [6] (and by Yau for the Laplace equation still earlier [9]).

The structure of the paper is as follows. Some consequences of conditions (a)



THE HEAT EQUATION ON NONCOMPACT RIEMANNIAN MANIFOLDS 49

and (b') are derived in §1. The "homothety condition" mentioned above is proved
in §2. A mean-value theorem used in §4 for the proof of Harnack's inequality is
proved in §3. Necessary conditions for Harnack's inequality are proved in §5, and
consequences are discussed.

The basic results of the paper were announced in 1987 in [25].
I am grateful to Ε. Μ. Landis for fruitful discussions of the questions touched on

in the paper, and to A. K. Gushchin for useful remarks.
Notation. d(x, y) is the geodesic distance between points χ, y e Μ; Bf, is the

geodesic open ball with center at the point χ £ Μ and of radius R; meas^ A is the
^-dimensional Riemannian volume of a set A lying in Μ or in M x R ; and

Γ measn^ ii A c Μ,
\A\ E m e a s ^ = <

[ measn+iA lfAcMxR;

All integrals unless otherwise mentioned are taken with respect to the Riemannian
measure of Μ or of the Riemannian product M x R .

§ 1. INEQUALITIES OF POINCARE TYPE

Everywhere in this paper Μ denotes a noncompact, smooth, connected Riemann-
ian manifold of dimension η . It may have a boundary dM. The manifold Μ is
always assumed to be metrically complete, i.e., any ball B% is a precompact set (in
the case of an empty boundary this is equivalent to geodesic completeness).

In this section it is everywhere assumed that the following conditions are satisfied
on the manifold Μ :

For some numbers A > 0, α > 0, and Ν > I, and for any χ e Μ and R > 0

(a)

(1-D \BX

2R\<A\B*R\;

(b') For any function / e €Χ(ΒΧ

ΝΚ)

(1-2) / \Vf\2>~mf f {f-ζ)2

JB*NR R2(€KJB*R

(as is known, the infimum is achieved when ξ is equal to the arithmetic mean of /
i n BX

R).
We observe that if in (1.2) we set Ν = 1, then we obtain precisely Poincare's

inequality (b). As we know, the validity of Poincare's inequality for domains of
Euclidean space depends on the smoothness of the boundary of the domain. Since
smoothness of the boundary of a geodesic ball has no direct relation to the geometric
properties of the manifold of interest to us, inequality (1.2) under the condition
Ν > I is a more natural characteristic of the manifold than Poincare's inequality
(b). On the other hand, the fact that the integrals in (1.2) are taken over distinct
balls creates considerable technical difficulties for the application of this inequality.
Consequences of conditions (1.1) and (1.2) more convenient for applications are
presented in the theorems of this section.

Everywhere below const denotes a positive constant depending only on A, a, and
Ν. We suppose that the number Ν is sufficiently large, for example, Ν > 2 .

Theorem 1.1. For any two intersecting balls BX

R and By

r , where R > r > 0,

(1.3) A2(R/rr < \BX

R\/W\ < A^R/rr ,
where the positive numbers A\, Αχ, a\, and a2 depend only on A .
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Proof. Let m be an integer such that 2m < R/r < 2 m + 1 . From (1.1) it follows that

1*51 < \By

2R+r\ < \By

2m+3r\ < Α"+3\Βΐ\ < A3(R/r)^A\By\.

Thus, the right inequality in (1.3) is satisfied for A\= A3 and a.\ = Iog2.4 .
Before proving the left inequality, we show that

|β 3

χ *Ι>(ΐ + Λ " 3 ) Ι ^ Ι ·

Indeed, if ζ is any point a distance 2R from χ , then, by what has been proved
above,

l*i*l = 1*51 + l*fr\*5l > 1*51 + \BR\

>\Bx

R\ + A~i\Bx

R\ = (l+A-i)\Bx

R\.

Suppose, further, that m is an integer such that 3 m < R/r < 3 m + 1 . Then

> {A3 + \)

Thus, A2 = (1+ A3)~l and a 2 = Iog3(l + A~3). Theorem 1.1 is proved.

Theorem 1.2. For each ε > 0 and for each Lipschitz function f in the ball
where ζ € Μ and R > 0,

(1.4)

where Η = {f < 0} Π BZ

R, and

(1.5) / |V/|2> const ̂ r inf/ {f-ξ)2.

Here a > 0 depends on A.

Proof. It obviously suffices to restrict attention to infinitely smooth functions / . We
shall first show that (1.4) implies (1.5). Indeed, there exists ξ such that each of the
sets {/ > ζ} and {/ < ξ} occupies at least half the volume of B^ . Applying (1.4)
to the functions f-ξ and ξ - f and adding the inequalities thus obtained, we get
(1.5).

We proceed to the proof of (1.4).

Lemma 1.1. Let f € C°°(B^r), and suppose that the volumes of the sets {/ < ί} Π
Bf and {/ > t'} Π Bf , where t' > t, are equal to V and V respectively. Then

/ 1V/|2> const(

J{t<f<t·}
/
{t<f<t·}

Proof. We apply inequality (1.2) to the function Φ equal to t in {/ < t] , to t' in
{/ > t'} , and to / in {t < f < t'} . For some ξ we obtain

> f |V<D|2>^ / (Φ-ξ)

Here we use the fact that the minimum of the quadratic function of ξ
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FIGURE 1

is equal to
(t' -t)2VV'/(V+ V).

The lemma is proved.
In order to use this lemma we must first decompose the region {/ > 0} Π

into the sets of the form {tk < f < tk+l}, and then for each of these sets find a
suitable ball in which we can apply (1.6). We set

m(t) = meas{/ > t} Π BZ

R, m(t) = meas{/ > t} η BZ

R.

We construct an increasing sequence {tk} such that

(1.7) io = O and m(tk+1) > (1 - S)m{tk),

where we shall choose δ > 0 later. We fix k and seek a ball Bf of radius r = eR/2N
such that the volumes of the sets £lk η Β? and HknB? , where

£ik = {f>tk}nBR,

are sufficiently large (see Figure 1).
We set

= {f<tk}nBR,

We introduce the function

1 if d(x,y)<r,

0 if d(x,y)>r,

where χ e B^+r and y £ Qk . Obviously,

X(x,y)dx = \Bj!\,

Therefore,

f
Jn*

\B?\dy= [ [ X(x,y)dxdy
Jak JB2

R+r

= [ dx [ X(x,y)dy= ί μχ{χ)\ΒΪ\άχ.
JBl,. JClk JBl,.
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Hence, for some χ and y we have

I#1IG*I

y\|Qfc| l̂ gjll Ι # Ί |Q f c | \BR\ \Br

\ B Z \ \ B \ \Bf\\BZ

R\ \BR+T\ \Bf\ ~ \BR\ \B*R\

UR) \B\ ~
> A ( BA A (Y
- ' UR) \BR\ ~ l

 \SN) \BR\

In exactly the same way, for some χ e B^+r we have

Since for all χ e

there exists a point χ for which (1.8) and (1.9) are satisfied simultaneously. We fix
this point and apply Lemma 1.1 in the ball B^r for t = tk and t' = t^+ι (the ball
B^r lies in the domain of the function / by the choice of r).

We note that \Hk\ > \H\, and hence

(1.10) m e a s { / < / f c } n ^ = / i 2 ( x ) ^ | > conste°'

Since

> tk+l} η B*r D Uk+l η ̂  = Ω*νΩ*\Ω*_,) η β-

(flt\«t+i).

, \ak\ak+l\>Sm{tk),
and meas(Qfc η Β?) = μι(χ)\Β?\, by (1.8)

meas{/> tk+i] nfi? > constea'

We note that
Μ > A-\ (LYl - ,4-1 CJ-V
\BR\ ~ l \RJ ~ l

 \2N) ·1*51
Setting δ = |consteQM~'(e/2iV)a ', we obtain meas{/ > tk+1} Π Bf > om(tk).
According to Lemma 1.1, from this and (1.10) we have

|V/|2 >

Summing over all fc and replacing δ by its value, we obtain

(1.11)

On the other hand, if m(tk) —> 0, then there is the obvious inequality

(1.12) / fl <Y,t2

k+{(m{tk) - m{tk+x)).
fc=0
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We now compare the sums on the right sides of (1.11) and (1.12). For this we specify
the choice of the sequence {tk} • We recall that so far we have required of it only
that (1.7) be satisfied. We set

to = O, tk+l = inf{t:m(t) > (I -S)m(t)}, k = 0, 1, 2, . . . .

Obviously condition (1.7) is satisfied, but together with it we also have

(1.13) m(tk+l)<(l-S)m(tk).

In particular, this implies that m(tk) —* 0 as k —» oo . We now use a lemma.

Lemma 1.2. Let {tk} be an increasing sequence with t0 = 0, and let {mk} be a
decreasing sequence of positive numbers for which mk+\ < (1 — S)mk, where δ > 0.
Then

OO ζ OO

Y^(tk+i -h)2mk > — Σ tl+i(mk ~ mk+i).
fc=0 /t=0

Proof. On the positive semiaxis we consider a piecewise linear function φ(μ) defined
as follows: <p{mk) = tk φ(μ) is linear on each interval {mk+i, mk), and φ(μ) = 0
on (mo, +oo). We remark that on (mk+i, m^)

dq> tk+x - tk

άμ mk - mk+l'

Using (1.13), we therefore have

k=0 k=0
oo

κ—U

On the other hand, since the integral over the segment [mk+l, mk] of the quadratic
function φ{μ)2 monotone on this segment is not less than 1/3 the product of the
length of the segment by the maximum t\+l of the function in question (on this
segment), it follows that

°° °°^ r-mk <·οο

- mk+{) < 3 ^ / φ{μ)2άμ = 3 φ{μ)2άμ.
k=o k=o JmM Jo

Finally, according to Hardy's inequality

^•OO 1 /·ΟΟ

φαμ2άμ>- φ{μ)2άμ.
o 4 ./o

Collecting all these inequalities, we complete the proof of the lemma.
From (1.11), (1.12), and Lemma 1.2 we obtain (1.4) in an obvious manner. The-

orem 1.2 is proved.

Theorem 1.3. Let f be a Lipschitz function in the ball B£, and let Η = {y e
Bx

R/2:f(y)<0}. Then
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where η(γ) = (d{y)/R)a/2, a is the constant of Theorem 1.2, and d(y) is the
distance from the point y to dBR.

Proof. We set Rk = R(l - 2~k), k > 1. According to Theorem 1.2, for each pair
of balls β ί , B% we have

[
JB*

\Vf+\2> const
BI

(1.15)
2~ak\H\

> const- ' ' 1,
We set £lk = B^B*^, A: > 1, and Ω, = Bx

Rx . Multiplying (1.15) by 2~ak and
summing over all k = 1, 2, ... , we obtain

<U6)

Since for 2R · 2~k > d(y) >R-2-k for y e Ω^ , it follows that 2- fca < {d{y)/R)a =
η2 and 4~fca < (d{y)/2R)2a = ηΑ/22α . Therefore, from (1.16) it follows that

/ |V/+|V > const J § - /
JBX

R

 K \ϋϋ\ JB

Applying the Cauchy-Schwarz-Bunyakovskii inequality to the right side of this rela-
tion, we obtain (1.14).

Theorem 1.4. For any y e Μ and R> 0, for any domain Ω, Ω c By

R, and for any
Lipschitz function u in Ω vanishing on <9Ω,

where b > 0 and β > 0 depend only on A, a, and Ν.

Before proving the theorem we observe that it admits the following reformulation.
If Αι(Ω) denotes the first eigenvalue of the boundary value problem

du
(1.18) ΔΜ + /ΙΜ = 0 , « | a n = C, d y

= 0,

where ν is the normal to the boundary dM (in the case of an empty boundary
dM this is the Dirichlet problem; in the general case we also call (1.18) the Dirichlet
problem), it follows that

(1-19) λ ι ( Ω ) -έ{ ΐ ϊ |
For example, in R" (1.19) is satisfied for β = 2/η .

Proceeding to the proof of (1.17), for each / > 0 we consider the set Vt = {u > t} ,
and define m{t) = meas Vt and Tn{t) = meas Vt. We fix some t > 0 and suppose
that t' > t is such that

(1.20) m(t') > (1 -S)m(t),

oi

(1.21) meas(fi* η V,) = {\B?\.

where δ > 0 will be chosen later. For each point χ € V, we construct a ball
such that
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FIGURE 2

Such an r (depending, of course, on x) exists, since as r —> 0 the left side of (1.21)
is greater than the right side, while for r > R, according to Theorem 1.1,

* η Vt) < \By

R\ <

Therefore, if r is so large that

then the right side in (1.21) is greater than the left side. Hence (1.21) is satisfied for
some r such that

(1.22) r < const/?.

The collection of all balls Bf covers Vt. From them we select a countable (or
finite) number Bf· such that the balls B^ do not intersect, while the balls B^r

cover V, (see [12], p. 272). By (1.1)

and by (1.21) the volume of that part of Vt covered by the balls Bf.' is not less than

2"
U-4m(t) (see Figure 2).

Suppose the function ν is equal to t' — t and V? , to u — t in Vt\Vti , and to 0
outside Vt. Applying inequality (1.4) for the function ν in the balls Bf'. and B^r ,
and considering that the set {v < 0} occupies half of the volume in the ball Bf·,
we obtain

> const / v2.
, r} J B*i, Bx

r>

Adding these inequalities over all / and noting that

(where const on the left side is the same as in (1.22)), i.e.,

Π < constufl^'l/l^l)1/0 1 < constR(\n\/\By

R\)l'a< ,
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we obtain

Γ ,« α ί , r, a const (\By

R\\2/ai f

Jv,\v,, JM R2 Ι |Ω| J y

const (\By

R\\2/ai f ,
- ^ - { ^ ^ / ν2.

Since the balls /?£' cover in F( a volume at least \A~4m{t), in Vt, they cover
(by (1.20)) a volume at least jA~4m(t) - <Sm(i), which is not less than Sm(t) for
δ = \A~4 . Since v\y t = t' - t, it follows that

υ 2 > {t'- t)2Sm{t),
J\J,tf

and so

On the other hand, obviously,

(1.24) / u2 < t'2(m(t) -
Jv,\v,,

Finally, in analogy to what was done in the proof of Theorem 1.2, we choose a
sequence {t^} satisfying condition (1.7). Setting t — t^ and t' = i^+1 in (1.23) and
(1.24), summing over k, and using Lemma 1.2, we obtain (1.17).

§2. MANIFOLDS WITH A "HOMOTHETY CONDITION"

In this section we assume that on the manifold Μ a homothety is defined in the
following manner. Suppose any two points χ, y e Μ are joined by a piecewise
smooth, non-self-intersecting curve yx<y (where yx,y = yy,x). A homothety with
center at the point ζ e Μ and coefficient q , 0 < q < 1, is a mapping Tz

q:M-+M
given by

where yz,x(t):[0, σ] —> Μ is the natural parametrization of the curve γ with
yZtX(0) = ζ and yz,x{e) — x- We also assume that this homothety satisfies the
following conditions:

1) If z e yx>y, then yx,z <zyx,y.
2) For some constant Ν > 1 and all χ, y e Μ

(2.1) measi yx<y < Nd{x, y).

3) For any point ζ e Μ, any q e (1/2, 1), and any bounded domain Β c Μ
the image Tz

q{B) is a measurable set and

(2.2) m e a s r ^ ) > c | £ | ,

where c > 0 is a constant.

Examples. 1. Let Μ be a convex unbounded domain in Euclidean space. If yx%y

is a line segment joining the points χ and y , then conditions l)-3) are obviously
satisfied with constants c = 2"n and Ν = 1 .

2. Let yx,y be a segment of the shortest geodesic on an arbitrary manifold without
boundary (if the points χ and y can be joined by several shortest ones, we choose
one of them arbitrarily). Conditions 1) and 2) are satisfied by the general properties
of geodesies. Condition 3) is a strong condition on the geometry of the manifold.
It is easy to see, for example, that in Lobachevsky space and, more generally, on
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Cartan-Hadamard manifolds with negative curvature bounded away from zero it is
not satisfied (at any rate because on such manifolds the volume of a ball of radius
R grows exponentially as R -> oo, while condition (2.2) implies power growth).
As Sullivan [20] and Anderson [21] have proved, on such manifolds there exists a
nontrivial bounded harmonic function, and thus Harnack's inequality for the heat
and Laplace equations is not satisfied.

3. To the contrary, we shall prove that if the manifold Μ has nonnegative Ricci
curvature, then condition (2.2) is satisfied. Suppose first that the domain Β lies away
from a cut site S of the point ζ . We set Βτ = TZ(B). For each point χ g S the
curve γ (τ) = Τ%(χ) is a phase curve of the variable vector field (l/T)d(x)Vd(x),
where d(x) = d(x, z). By the Liouville-Ostrogradskii formula we have

d ID ι f A- [dVd\ ^ f 1+dAd
~τ\Βτ\ = div < / .

d* JBt \ τ ) ~ JBr τ
If the Ricci curvature is nonnegative, then Ad < (n — \)/d (see [23]), so that
(d/dr)\BT\ < (η/τ)\Βτ\, \B\ < τ~η\Βτ\, and it is possible to set c = 2~".

If Β intersects a cut site, then we have
\B\ = \B\S\ < x-nmeasYz

x{B\S) = T-nmeasTz

T(B),
since |5 | = 0 = measI^S) . Indeed, S is the image of the exponential mapping of
a cut site S in the tangent space TZM, while S has measure zero as the graph of a
function on the unit sphere (see [16], p. 100). The same applies to T*(S).

The following theorem is the main result of this section.

Theorem 2.1. If on the manifold Μ there is a homothety satisfying conditions l)-3),
then conditions (a) and (b') of § 1 are also satisfied.

Proof. We first note that inequality (2.2) extends in an obvious way to all q e (0, 1) :

(2.3) C{q)mea&rq(B)>\B\,

where C{q) = c~k , and k is the smallest positive integer such that q > (1/2)* (the
composition of k homotheties with coefficient ql/k > 1/2 is equal to one homothety
with coefficient q).

We first prove (a). According to (2.3), for any ball B% we have

(2.4) C ( 9 ) m e a s r j ( ^ ) > | ^ | .

We set q = 1/2N. From (2.1) it follows that T%(B$R) c BX

R, while condition (a)
with coefficient A = C{q) follows from (2.4).

We proceed to the derivation of (b'). We denote by const a positive constant
depending only on Ν and c. We first prove that, for any ball B$NR and any
function / smooth in it,

(2-5) / \Vf\2>£?§- [ [ \f(x)-f(y)\2dxdy.

We note that if χ, y 6 BR , then by (2.1) measi γχ<γ < 2NR, so that in any case
Vx,y C BlNR. Since

\f(x)-f(y)\2< \ f |v/|l <2NR [

setting F = |V/|2 , we find that in place of (2.5) it suffices to prove

(2.6) /
R\B
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FIGURE 3

By the linearity and continuity in F of both sides of (2.6), it suffices to prove
(2.6) for the case where F is the characteristic function of a sufficiently small ball
Bp

p c Β\ΉΚ. We denote by X(x, y) the function equal to 1 if γχ<γ intersects the
ball Bp

p and equal to zero otherwise. It is obvious that

Jyx

F <2NpX{x,y).

Therefore, the integral on the right side of (2.6) does not exceed

(2.7) 2NpI J X(x,y)dxdy.

We decompose the region of integration in (2.7) into two parts. We set

Ω DP /-. DZ / 1 Ο

/ = & •>( ' ' ™R 5 * — 1 , Ζ , . . . .

Let m be the least integer such that Qm == BR . Then, in particular, 2mp < \2NR .
Obviously the direct product BR χ BR is the union of sets of the form

(Ω/\Ω/_!) χ Ω / ; Ω/χ (Ω/\Ω/_,), 2<l<m, and Ωι χ Ω,.

We shall estimate the integral of X(x, y) over (Ω/\Ω/_!) χ Ω/, 2 < I < m. Let
χ e Ω/\Ω/_! , and let Υ = Y(x) = {y € £lt:yx,y intersects Bp

p]. We shall obtain
an upper bound for \Y\. Let t be the natural parameter on the curve yXiy , where
y e Υ , with yx,y(0) = x . For brevity we set 2lρ = r . Since χ, y e BP , it follows
that d(x, y) < 2r and measi yx>y < 2Nr. Let τ be the first point of entry of the

curve yXty into the ball B~P

p (see Figure 3). If the homothety Γ£ with coefficient
q = 2Nr/(2Nr + ρ) > τ/(τ + ρ) is applied several times, then any point yx,y(t) for
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t > τ finally lands in the segment [τ, τ + p] of the curve yx>y • The largest number
of homotheties needed for this does not exceed

meas\yx^y/(Tq~1 — τ) < \6N2r/p.

We have here used the fact that

x>d{x, BP) >r/2-p = r/2 - 2~'r > r/4,

since χ e Ω/\Ω/_! .
For each k > 0 we denote by Yk the set of points y £ Υ which after k ap-

plications of the homothety Γ£ land in the segment [τ, τ + p] of the curve yx,y.
Obviously,

m< Σ iy*i·
k<i6N2r/p

According to (2.3),

\Yk\ < C(qk)measrx

gk(Yk) < C(gk)\Y0\.

Since

2Nr y
2Mr + p) \. + 2Nr)

it follows that C{qk) < C{e~*N) and 1^1 < C{e~m)\Y0\. Further, if y e Yo, then
d(x, y) < 2p, so that |Fo| < \^2P\ ^ A\BP

P\. Combining these inequalities, we obtain

|y| < 17N2-C(e~m)A\BP\.

Finally, noting that |Ω/\Ω/_1 | < | 5 | | , we get

/ [ X(x,y)dxdy< [ \Y(x)\dx < nN22lC{e-%N)A\Bp

p\ \BZ

R\.
Ja,\Q.i_x Jii, JiiiXSi,-,

The analogous integral over Ω/ χ (Ω/\Ω/_!) can be estimated in the same way. For
the integral over Ωι χ Ω ι we obviously have

X(x,y)dxdy<\Bp\\Bz

R\<A\Bp\\B^\.

Adding all the estimates of the integrals of X(x, y) and noting that 21 +22H \-2m <
2 m + 1 < 24NR/p, we obtain

/ X(x,y)dxdy<lOOON3-C(e-&N)A\Bp\\BR\.
I B>R r

Noting that the integral on the right side of (2.6) does not exceed the expression (2.7),
which we actually just estimated, while the integral on the left side is equal to \BP

P\,
we obtain the desired estimate (2.6).

We shall now prove that

(2.8) / |V/|2>^inf/ {f-ξγάχ,

i.e., condition (b'). For this we find ξ such that each of the sets Ω + = {/ > ξ} (~)BR

and Ω_ = {/ < £} η B7

R has volume >\\BZ

R\. Since

\f(x)-f(y)\2dxdy> [ [ \f(x) - f{y)\2dxdy

{/{χ)-ξ)2άχ
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and in the same way

J JJf(x)-f(y)\2dxdy>\Cl+\j (Κχ)-ξ)2άχ,

adding these inequalities, we obtain

/ / \f(x)-f(y)\2dxdy>j\BR\ ί (ηχ)-ξ)2άχ.
JBR JBR 4 JBR

From this and (2.5) we obtain (2.8). The theorem is proved.

§3. A MEAN-VALUE THEOREM

We say that an isoperimetric inequality with function A(v) (where Λ is a positive,
continuous, monotone decreasing function on (0, +oo)) is satisfied in a region Ω c
Μ if for any open set D, D c Ω, we have

(3.1) λι(Ό)>Α(\ΰ\),

where X\{D) is the first eigenvalue of the Dirichlet problem in D (see (1.18)). For
example, in R" and on Cartan-Hadamard manifolds there is an isoperimetric in-
equality with the function

(3.2) A(v) = av~2ln ,

where a — a(n) > 0 (this follows from results of [7] and [18]).
On any manifold Μ, infAi(D) over all domains D c Μ is equal to the spec-

tral radius of Μ, and we denote it by λ\(Μ). As is known (see [8]), on a sim-
ply connected manifold with sectional curvature < -k2 < 0 we have λ\{Μ) >
(η - Y)2k2jA, so that for such manifolds we can set

(3.3) A{v) = max(um-2/" , (n - \)2k2/A).

If Μ is a manifold of nonnegative Ricci curvature, then, as follows from Theo-
rems 2.1 and 1.4, in each ball \BR\ there is an isoperimetric inequality with function

(3.4) A(v) = ^

where b, β > 0 depend only on η .
Before formulating the main results of this section, we introduce some notation.

The function v/A(v) is obviously strictly monotonically increasing on (0, +oo) with
range (0, +oo). It therefore has an inverse function on (0, +oo), which we denote
by ω . We define functions V(t) and W(r) (where t > 0 and r > 0) by the
equalities

fV(t) j ? rW(r)

(3.5) ct =
Jo

where c > 0 is an absolute constant which will be determined in the course of the
proof. Everywhere below we assume that the integrals in (3.5) converge to zero. This
is clearly the case if in a neighborhood of zero we have A(v) >ν~ε, ε > 0 .

Theorem 3.1. Suppose in some ball BR there is an isoperimetric inequality with func-
tion A(v). Let U = BZ

R χ (0, Τ), Τ > 0, and suppose that in the cylinder \\ a
function u e C°°(Ll) satisfies the inequality

(3.6) Μ , - Δ Μ < 0
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and the Neumann condition on the boundary of the manifold {if it is nonempty)

(3.7) du/dv\xedMnBR = 0.

Then

Examples. 1. If A{v) is the function (3.2), then

V(t) = Q («)tf"/¥n+2>/2, W(r) = C2{n)anl2rn+2,

and (3.8) acquires the form

(3-9) u{z,T)2

+< C ^ \u

In R" for Τ = R2 this inequality was proved by Moser [5].
2. If A{v) = max{av-2fn , A), A>0, then

V{t) χ an/2 min{t, A~l){n+2)/2 e\p{cAt),

W{r) χ a"'1 min(r2, A~l)("+2)/2

where the symbol χ means "is in finite ratio with", and the constants bounding the
ratio of right and left sides in these relations depend only on η .

3. If A{v) is the function (3.4), then we essentially have the situation of Example
1 for a = b\Bz

R\P jR2 and« = 2//?. Substituting into (3.9) and noting that \BZ

R\T =
|U|, we obtain

(3.10) u{z,T)\< l

For Τ = R2 the coefficient in front of the integral depends on Τ and R. Inequality
(3.10) is the reason why we called Theorem 3.1 a mean-value theorem.

Lemma 3.1. Suppose, under the conditions of Theorem 3.1, that υ = {u - θ)+, where
θ > 0 is an arbitrary number. Let η{χ, t) be a Lipschitz function in Μ χ [Ο, +οο)
equal to zero for t = 0 and having support in B^ for each t > 0. Then

(3.11) / v2^{x,T)dx+U Μνη)\2<5 ί ν2{\νη\2 + \ηηι\).

Proof. We first prove that for any function φ e C^{BZ

R), for each t € (0, Τ),

(3.12) / νν,φ2<-
J

Indeed, if θ is a regular value of the functions u and u\dM , then from (3.6) and
(3.7) we obtain

/ vvt(p2 = / vu,tp2 < /
JBZ

R J{U>6} J{u

/

du 7 f du , f
7)7VV + / ΤΪ7ν(Ρ

= - I (VH,V(V))
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(here, in particular, we have used the fact that ν = 0 on the hypersurface {u = Θ}).
This same argument goes through if θ does not lie in the range of u. If θ is a
nonregular value, then (3.12) can be established by passing to the limit from regular
values. We note that by this limiting procedure (3.12) extends also to Lipschitz
functions φ with support in BZ

R .
Setting φ{χ) = η(χ, t) in (3.12) and integrating on t, we obtain

/ vvtn
2 <— Ι \νν\2η2 -2 (Vv , νη)νη.

JiX Ju Ju

Noting that

We

The

obtain

left side

-2(Vv, νη

\Vv

[ vvtn
2 < -

Ju
here is equal to

)υη<

w>
ilvw|V
\\ν{νη)\2

+ 2ν2\νη\2

-|V^| 2v 2 .

Ι Ι ΐν>/|2υ
ι Ju

and since f/|(=o = 0, from the last two inequalities we obtain (3.11).

Lemma 3.2. Suppose, under the conditions of Theorem 3.1, that U = BZ

R^ χ (Γι, Τ),
where 0 < Τ{ < Τ, 0 < Ri < R. Set

= ί u\, H= ί[μ-θ)\, θ>0.
Ju Ju

~ CM

Η

Then

where δ — ηιϊη(Γι, (R — Ri)2) and C > 0 is an absolute constant.

Proof. In (3.11) we set η(χ, t) = η\{χ)ηι{1), where the function η\{χ) is equal to 1
in the ball Bz

RjrR ,,,2 and to zero outside the ball BZ

R, and is linear along the radius
in the layer BR\BZ

R+R ) / 2 ; the function ffeW is equal to 1 for t > Τι and equal
to t/Τχ for t < Τι. In (3.11) we also set ν = u+, and in place of Τ we take an
arbitrary time τ € [Γι, Γ ] . We obtain

(3.14) / u(x,T)2

+dx <5 ί ^+

We have here used the fact that \νη\2 < 4/(Λ-Λ,)2 < 4/δ and \ηη,\ < \/Tx < ί/δ .
We now apply (3.11) to the function ν = {u - θ)+ (where θ > 0); we set η\(χ)

equal to 1 in BR and to zero outside B?R+Ry2 > a n ^ take it to be linear between
these two balls, while the function r\2 remains as before. We then obtain

(3.15) j \ν(νη)\2 < ψ ί υ2.
Ju ° M

Since for each fixed t the function ν η has support in Dt, where D, = {x e
B(R+Ri)IT u(x' 0 > ^} » according to the variational property of the first eigenvalue,

(3.16) / |V(wi;)|2>A,(A) /
JBl JBI
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t ,

m
r/2

u

H/2 rK ft

0

FIGURE 4

For t e [Γ, , Τ] it follows from (3.14) that

(3.17) meas,,A < 7 Ϊ Τ
M+(X, t)dx <

257/

Using the isoperimetric inequality (3.1), from (3.15)—(3.17) we obtain

^ / ν2 > Α(25ΗΘ-2δ-χ) ί ί {νη)2 > Α{25ΗΘ'2δ-ι)Η.
° Jn JTX JB*R

Finally, noting that Jnv
2 < Η, we obtain (3.13) for C = 50.

We are now ready to proceed directly to the proof of Theorem 3.1. We consider
a sequence (Figure 4) of imbedded cylinders L^ = Bfk χ (tk , T), k = 0, 1, 2, . . . ,
where 0 = t0 < i, < t2 < • • • < T/2, R = r0 > r, > r2 > • •• > R/2, and,
moreover, {rk - rk+l)

2 = tk+i - tk = Sk . Let θ > 0. We set 6k = (2 - 2'k)Q and
Hk = Ji^iu - ek)\ . Obviously, the sequence {Hk} decreases monotonically. We
shall find θ for which Hk tends to 0 as k —> oo . Obviously, then,

Γ (u-
l.. JT/2

so that u(z, Τ) < 2Θ, i.e.

(3.18) u(z, T)2

+< 4Θ2 ,

whence (3.8) follows (for suitable Θ).
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Using Lemma 3.2 for the cylinders U& D LU+1 and the functions u - 6k and
u — 0£+i, we obtain

( 3 J 9 ) Hk+l ~

We shall show that for a suitable choice of the number θ and sequence {Sk} it is
possible to arrange that for all k = 0, 1,2,. . .

(3.20) Hk<H/l6k,

where Η = Jy M+ . For k = 0, (3.20) is obviously satisfied. Suppose for some k — m
that the numbers <5i, . . . , <5m_i have already been chosen so that (3.20) is satisfied
for k <m . We shall choose 5m so that

(3 21) - = —
SA(CS^l4-m+le2H) 16'

If we have succeeded in doing this, then from (3.19) and (3.21) we obtain Hm+\ <
Hm/l6 < H/l6m+l. We shall show that there actually exists dm for which (3.21) is
satisfied. We transform this equation to the form

16

whence, using the definition of the function ω given at the beginning of this section,
we obtain

C

Sm

We now choose θ so that for all k = 0, 1, 2, . . . the inequalities tk < T/2 and
rk > R/2 are satisfied, or, equivalently,

oo oo

(3.23) Yjdk<T/2, Y^yfaKR/l.
k=0 k=0

From (3.22) it follows that

Γ 4-kQ~2Hdk^ l6C(4ke2H)
fί fi ω(4-Κθ-2Η) - Λ ω(4-^θ-2ΗΥ

Making the change ξ = 4~k6~2H in the integral and noting that In 4 > 1, we obtain

Θ~2Η

In exactly the same way

fc=O k=l

Thus, conditions (3.23) are clearly satisfied if

Jo ω(ξ)
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(where c < 1/32C, for example, c = 0.0001), i.e.,

θ~2Η<ν(Τ), e~2H<W{R).

We set

min(F(r) , W(R))'

from (3.18) we then obtain (3.8). Theorem 3.1 is proved.

§4. HARNACK'S INEQUALITY

We fix a point ζ € Μ and introduce the abbreviated notation

BR = BR, UR = BRx(0,R2).

Theorem 4.1. Suppose conditions (a) and (b') o/§l are satisfied on the manifold Μ.
Let u(x, t) be a positive solution of the heat equation in U&R which is smooth in
ΙΙ,8Λ and satisfies the Neumann condition for χ e dM (if dM is nonempty). Set
U, = BRx (3R2, 4R2), and suppose that sup^ u = 1. Then u(z, 64R2) > γ, where

γ = γ{Α, α, Ν) > 0 .

The scheme of proof of this theorem is close to Landis' scheme [13].
We shall first prove a number of lemmas, assuming everywhere that conditions (a)

and (b') are satisfied. All solutions of the heat equation are assumed to satisfy the
Neumann condition on dM.

Lemma 4.1. Let u be a positive solution of the heat equation in U2R which is smooth
in U,2R, and set

Η = {(χ, t) eUR:u(x, t) > 1}, ΰ Λ = BR χ (3R2, 4R2).

Then for any δ > 0 there exists ε = ε(δ, Α, a, Ν) > 0 such that if

(4.1) \Η\>δ\ηκ\,

then infj: u > ε.

Proof. We set ν = ln(l/w). Then, in IX2R , ν satisfies the equation (Figure 5)

(4.2) vt-Av = -\Vv\2

^ — —

FIGURE 5
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(and also the Neumann condition on dM). Moreover, obviously,

H = {(x,t)enR:v(x,t)<0},

and it suffices to prove that supg ν < C{S, A, a, N).

Let η(χ) e C$°(B2R) . We show that for any t e (0, 4R2)

(4.3) / (v+W<~[ \νυ+\2η2 + 2ί \νη\2.
JB2R

 Z JB1R JB2R

Indeed, multiplying (4.2) by η2 and integrating over the region

where θ > 0 is a regular value of the functions v(·, t) and v(·, i)|aM, we obtain

[η2Δν - \¥υ\2η2]

f

Jae
/

where ν is the outer normal with respect to Ωθ . The boundary δ(Ω.θ\8Μ) consists
of three parts lying, respectively, on the surfaces dB2R, {ν = Θ}, and dM. In a
neighborhood of dB2R we have η2 = 0, on {υ = Θ} we have dv/dv < 0, and on
dM we have dv/dv = 0. Thus, the integral over d{tle\dM) in (4.4) is nonpositive.
Applying the inequality — 2η(νν , V//) < j|Vu|2f/2 + 2|V//|2 to estimate the second
integral on the right side of (4.4) and letting θ —> 0, we obtain (4.3). Moreover, by
a limiting procedure (4.3) extends to all Lipschitz functions η with support in B2R .
We set η(χ) = (d(x)/2R)a/2, where d{x) is the distance from the point χ to dB2R ,
and a = a{A) is the constant of Theorem 1.2 (we can assume that it is sufficiently
large, for example, a > 2—we need this below). Then

a / 2 - '

whence it follows that

(4.5) /
JB1R

Let Ht = {(x, t) e BR:v(x, t) < 0}. According to Theorem 1.3,

(4.6) IB2R ^-\»2R\~ IJB2R

Here and below const denotes a positive constant depending only on A, a, and Ν.
Setting I{t) = $BIR ν+η2 , from (4.6), (4.5), and (4.3) we obtain

(4.7) ^-I(t) <-K{t)I(t)2 + D,

where K(t) = comt\Ht\/R2\B2R\2 and D = a2\B2R\/8R2.
W e d e d u c e f r o m (4.7) t h a t for all te[R2, 4R2]

(4.8) 7(0 < | Ι Κ(τ)άτ\ + Dt.
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If /(**) < Dt* for some t = t* < R2, then for t > t* because (d/dt)I < D we
obtain I(t) < Dt and hence also (4.8). Suppose I{t) > Dt for all t < R2. We set
j{t) = Ι(ή - Dt. From (4.7) it then follows that {d/dt)J < -KJ2. Dividing this
inequality by J2 (here we observe that / > 0) and integrating from 0 to R2 , we
obtain

J{R2) < | / K{x)dx\ .

Since for t > R2 we have I{t) < I(R2) + D{t - R2) = J(R2) + Dt, from this and the
preceding estimate for J(R2) we obtain (4.8).

Substituting into (4.8) the values of K(x) and D and noting that t < 4R, δ < 1,
and

rR2

\HT\dx = \H\ >δ\ηκ\ = dR2\BR\ > OR2A~l\B2R\,

we obtain
/ '
Jo

(4.9) 7(i) < const\B2R\/o

for all t e [R2, 4R2].
We integrate (4.3) with respect to t from R2 to 4R2

/ v+f\R

R < - / /
JB2R Ϊ JRI JBlB2R ^ JR* JB2R

aSR/lSince >72U5S/3 > 1/6α , from this and (4.9) we obtain

Λ4Λ 2

(4.10) /
>B2R

We set

v(t) = \B4R/3\-1 j v+(x,t).

From (4.9) it follows that v(t) < const/ί for t e [R2, 4R2]. Applying Theorem 1.2
(inequality (1.5)), we have

vl < 2 f U2 + 2 ί (v+ - v)2 < 2v2\B4R/3\ + constR2 ί
JB*RP JBAR/I ·>BS

\Vv+

Integrating this inequality with respect to / from R2 to 4R2 and using the estimate
for ν and (4.10), we obtain

(4-11) Γ Ί V2

+<C-^R2IB2R1.
JR> JB4RP

 d

Finally, we apply Theorem 3.1 to the function υ . For this we observe that by The-
orem 1.4 the estimate (1.19) holds for the first eigenvalue of the Dirichlet problem,
or, in terms of §3, in each ball an isoperimetric inequality with the function Λ of
(3.4) holds. Then by Theorem 3.1 the estimate (3.10) holds (see Example 3 of §3).
Applying it to the function ν (satisfying the inequality vt - Av < 0) in the cylinder
Βχ

κβ x(t- ( i?/3) 2 , t) c B4R/i χ (R2, 4R2) (where (x, t) e UR), we obtain

, , 2 const /"' f 2 const f
R \BR/3\ Jt-R^I9JBRp RZ\B2R\ JR

4R f 7

/ v\.
JR2 J
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By (4.11) it now follows that v(x, t) < const/<5, which was to be proved.

Lemma 4.Γ. Let u be a positive solution of the heat equation in UaR which is smooth
in U.2R' and set

H = {(x,t)eUR:u(x,t)<0}.

For any δ > 0 there exists ε = ε(δ, A, a, Ν) > 0 such that if \H\ > <S|UK| , then

(4.12) sup«> (l+e)u(z, 4R2).

Proof. If u(z, 4R2) < 0, then (4.12) is obvious. Otherwise we set ν = 1 - ul sup u.
Obviously, ν > 0, and

H = {(x,t)enR:v(x,t)>l}.

ByLemma4.1, |7/|><5|LU| implies inf~ ν>ε, υ(ζ, 4i?2)>e,and u(z, 4/?2)/supi/
< 1 - ε, whence (4.12) follows.

Lemma 4.2. Let u be a positive solution of the heat equation in UaR which is smooth
in U2R . Let U° = By

r χ (τ, τ + r2) c Ifc/2 • Let Η = {(χ, t) e U°:u(x, t) > 1}. //
\H\>d\U?\, then

U{Z,4R2)>C{\\\°\I\UR\)1,

where δ > 0 is arbitrary, the positive numbers c and I depend on A, a, and Ν,
and c further depends on δ.

Proof. We consider the cylinders (Figure 6)

Uk = B\kr χ (τ, τ + 4kr2), i f = B\kf χ (τ + 3 · 4kr2, τ + 4k+lr2),

where k = 0, 1, 2, ... . Applying Lemma 4.1 to the solution u in the cylinders

U} , U°, and U , we obtain inf~0 u > ε\ = ε(δ, Α, α, Ν). We consider the function

u/εχ in the cylinders U2,U} , and ΰ ' . Since M/CI|~O > 1 and |ΙΙ°| >

by Lemma 4.1
i n f κ / e , > e 2 = ε ( ( 4 Α ) ~ ι , Α , α , Ν ) .

1

α*

FIGURE 6
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2

Considering the function κ / ε ^ in the cylinders LI3, LI2, and II , we similarly
obtain inf~2 U/EIE2 > ε2 , etc. By induction we obtain

inf u > ε\ε2.

Let k be the largest index for which II* c IXR . The estimate we have obtained

is then satisfied also for k = k . It is not hard to see that 2k+lr > R/2, and hence

Applying again Lemma 4.1 to the function w/eie* in the cylinders U,2R, Hj?, and

ΙΙ Λ , we obtain infc: u > ε\ε.\ει > where £3 = ε((16Λ)~3, A, a, N). Since m 0 ^ * <

m F | < |UR| , it follows that k < log4(|LI«|/m0 |). Hence,

whence the required inequality follows.

Lemma 4.3. Let u be a positive solution of the heat equation in Hj? which is smooth
in JXR. Let Ε = {(χ, t) e UR: U(X , t) > 1}. Let u{z, R2) > 2. Then there exists
η{Α, a, N) > 0 such that \E\ < λ/|1Ι«| implies s u p ^ u > 4.

Proof. In Lemma 4.1 we set 5 = 1 / 2 and fix ε = ε(1/2, Α, α, Ν). We shall find
an integer m such that (1 + ε)"1 > 3 . We set r = R/2m and consider the function
u - 1 in the cylinders U°r = B2r x (R2 - 4r 2, R2) and H°r=Brx (R2 - 4r2 ,R2-3r2).
We choose η so small that |£" Π H?| < 51 LI? I · For this we note that, according to
Theorem 1.1,

\E\ <

so that it is possible to set η = ^ j " ' ( 2 m ) " 2 " 0 1 . Applying Lemma 4.1' to the
function u - 1 , we obtain

sup(« - l) > (l + e){u(z,R2) - 1) > (1 + ε).
Κ

We shall find a point (x\, t\) € l\2r at which u - 1 > 1 + ε. Applying Lemma
4.1' to the function u - 1 in the cylinders (Figure 7)

n2r = Κ x (Ί - 4r2 , tx), Ul= Β? χ (i, - 4r2 , tx - 3r2),

we obtain

sup(w - 1) > (1 + e)(u(xi, i,) - 1) > (1 + ε)2 ,
Κ

since as above we have \E Π LI |̂ < j\H}\ • We further find a point (x2, t2) € \\2r

at which u - 1 > (1 + ε)2 , etc. We obtain a sequence of points (xk , tk) at which
u(xk, tk)-l> (H-e)* ,and

d(xk,xk+i)<2r,
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FIGURE 7

FIGURE 8

Since 4r2m < R2 and 2rm — R, we can construct at least m such points. By the
choice of m we obtain s u p ^ w > (1 + e ) m + 1 > 3 + l = 4 . The lemma is proved.

We proceed directly to the proof of Theorem 4.1. Let

H = {(x,t)eUAR:u(x,t)>i}.

If \H\ > S\UAR\ (where δ > 0 , depending only on A, a, and ./V, will be chosen
later), then, by Lemma 4.1, u{z, 64R2) > ^ε(δ, Α, α, Ν), and everything is proved.

Suppose now that \H\ < 5\\1AR\ • Let {xo , to) be a maximum point of the function

u in the closure of the cylinder U,, i.e., M(X0 > *o) = 1 · F ° r a n y f > 0 we consider the
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cylinder U? = Β? χ (t0 - r2, tQ) and the set E° = {{x, t) e U°: u(x, i) > 1/2} . If r
is sufficiently small, then the ratio |i?°|/m°| can be arbitrarily close to 1. If r = R/2,
t h e n | £ Γ

ο | / | Ι ί ? | < d\lUR\/\U°R/2\ < δ • 64AtS
a' . W e set δ = η(Α,α, Ν)/(64Α^),

where η is the constant of Lemma 4.3. Then there exists r^ < R/2 such that
\Ε,0\ = »/|U?J · By Lemma 4.3 we have supuo u > 2 . Let (JCI , t\) be a maximum

point of the function u in LL0; in particular, M(XI , ti) >2. We consider the cylinder
Ul = Br' χ (h -r2,ti) and the set E) = {(x, t) e U|: M(X, t) > 1} . As above, there
exists r\ < R/2 such that 1 ^ | = ^U}ri \, and by Lemma 4.3 we have supui u > 4.

Continuing this process, we find a sequence of points (x^, t^) for which M(X^ > h) >
2* , cylinders Ll^ = 5 ^ χ (ifc - r\, tk) (where rk < R/2), and sets £* = {(χ, t) e

^ : M ( X , /) > 2*-'}, where | £ * | = f/|U* | , s u p ^ Μ > 2*+' , and (xk+l, tk+l) e lf t

(Figure 8). We consider those k for which L̂ , c Q Ξ 5 2 Λ Χ (2/?2, 4R2). The set

of such k is finite, since sup u < oo. Let A: be the largest such index. Since the

cylinder U^J does not lie in LI, it follows that TQ + r\ + • •• + r-^ > R. Since

rk < R/2 , it follows that r0 + rx + • • • + /- > R/2 > (1 + 1 /22 + 1 /3 2 + 1/42 + · • • )R/4.

Therefore, there exists k < k such that rk > (k + \)~2R/4. We fix this k and apply

Lemma 4.2 to the function u/2k~l in the cylinders 1$ c UJ.R and

Γ-1

Since | ^ | / | 1 ^ Λ | > A-\rk/R)^+2 > const(A: + 1 ) 2 Q I + 4 , it follows that

u(z, 64R2) > c - c o n s t ( f e +

2

1 ) ( 2 ' a | + 4 ) / > γ(Α, α, Ν) > 0,

because the infimum over k of the fraction in this expression is a positive constant
depending on α ι and /, i.e., in the final analysis on A, a, and Ν . The theorem is
proved.

§5. NECESSARY CONDITIONS FOR HARNACK'S INEQUALITY

Theorem 5.1. Suppose that on a Riemannian manifold Μ Harnack's inequality is
satisfied in the form in Theorem 4.1 with a constant γ > 0 not depending on R.
Then:

1) For any χ £ Μ and R>0

(5.1) \BfR\<A\Bx

R\,

where A = Α(γ).
2) For any ball By

R and any domain Ω, £lc By

R,

where b, β > 0 depend on γ.

For the proof of Theorem 5.1 we use the Green function G(x, y, t) of the heat
equation. By definition, this is the smallest positive fundamental solution of the
heat equation (with the Neumann condition on dM if the boundary is nonempty).
It is known (see [1]) that the Green function exists on any manifold. It can be
constructed as the limit Ω —» Μ (we thus denote the exhaustion of the manifold
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Μ by precompact open sets Ω) of the Green functions GQ{X , y, t) of the mixed
problem

(5.3) ut -Au = 0 ΐ η Ω χ ( 0 , + ο ο ) ,

(5.4) u\t=0 = f,

(where / is the initial function; we assume that / e Ο^°(Ω)). In the case where
the domain Ω has a smooth boundary dΩ transversal to dM (and we may assume
that this is so), the Green function of this problem exists in the classical sense and
has the following properties:

(a) Ga(x ,y,t)>0, Ga(x, y, t) = Ga(y, χ, t), and <7Ω(χ, y, t) satisfies equa-
tion (5.3) both in χ and y, along with the boundary conditions (5.5).

(b) The function

u(x,t)= f Gil{x,y,t)f{y)dy
Ja

is the solution of problem (5.3)—(5.5);
(c) If (pic and Xk are the kth eigenfunction and corresponding eigenvalue of the

Dirichlet problem (1.18) in the domain Ω, and the functions φ^ have unit Li(Q.)-
norm, then for any χ, y e Ω and t > 0

(5.6) Ga(x, y, t) = Σ exp(-kkt)9k(x)9k(y).
k=\

From the maximum principle it follows, first of all, that

GQ(x,y,t)dy< 1,
Ω

and, second, on expansion of Ω the function Ga(x, y, t) increases. Hence the limit

G{x,y,t)= lim Ga{x, y, t),
Ω—*M

which is the Green function of the heat equation on Μ, exists. It is important for us
that G(x, y, t) is positive, symmetric in χ and y, and satisfies the heat equation
(and also the Neumann condition on a nonempty boundary dM) so that for any
locally summable function / > 0 the formula

(5.7) u(x,t)= [ G(x,y,t)f(y)dy
JM

defines the smallest positive solution of the Cauchy problem

ut — ΔΜ = 0 in Μ χ (0, +oo),

— = 0

(more precisely, a positive solution of the Cauchy problem exists if and only if the
integral in (5.7) converges, and in this case the smallest positive solution is given by
(5.7)), and, finally,

(5.8) f G(x,y,t)dy<l.
JM

The reader can find a detailed justification of this construction in [1].
Proceeding directly to the proof of the theorem, we use the following lemma.
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Lemma 5.1. Under the conditions ofTheorem 5.1, for any positive solution u(x, t) of
the heat equation in Μ χ (0, +οο), for any x,y G Μ and τ > t > 0,

where r = d(x, y) and C = C(y) > 0.

The proof of this lemma (under the condition that Harnack's inequality is satisfied)
is well known; see [5], [6], and [10].

1) We fix a point ζ e Μ and set BZ

R = BR and u(x, t) = G(x, ζ, t). Since for
any τ > 0

/ u(x, x)dx < 1,
JM

for any R > 0 there exists a point y e BR such that

u(y,r)<l/\BR\.

We set τ = 2t and R = 2\β, and by Lemma 5.1 we obtain

(5.9) u(z, t) < \B2sft\~l exp(6C).

We seek a lower bound for u(z, t). We first prove that for all χ 6 Μ and t > 0

/ u(x,t/2)dx>y.
JBy,

For this we consider the function

w{y, τ) Ξ / G(x,y, x)dx

and continue it by one for τ < 0. Then w(y, τ) is a positive solution of the heat
equation in the cylinder B^ χ (-oo, +oo). Applying Harnack's inequality to this
function in the cylinder B^-t χ (-t/2, t/2), we obtain

u{x, t/2) dx = w(z, t/2) > γ.

Hence, there exists a point χ e B^-t such that

u(x,t/2)>y/\Bv-t\.

Applying again Lemma 5.1, we obtain

u(x,t/2)<u(z,t)exp(4C).

Comparing with (5.9), we get

Redenoting \ft by R , we obtain the desired result.
2) We rewrite (5.9) in other notation, setting ζ = χ

G(x,x,t)<c/\BXJ,
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where c = exp(6C). Since Ga < G, for χ e Ω for all t > 0 we have

Ga(x,x,t)<c/\BXJ.

Integrating (5.6) for χ = y over Ω and noting that / Ω φ\ = 1, we obtain

/
oo

/ Ga(x, x, t)dx =

Hence,

(5.10) cjf _^£_>exp(-A,0.

By hypothesis, Qc BR. By Theorem 1.1, (whose condition is satisfied according to
part 1) of the present theorem, we have

for y/i < R and

for y/t > R (where Aiy2, a\,i > 0 depend on γ).
These two inequalities can be combined in a single relation valid for all t > 0

where A3 = m i n ^ j " 1 , A2)

Substituting this in (5.10), we obtain

We choose t from the condition

Aft/R) = 2A-\

Then
l/oi

ir 'c) 1 / Q 2

J*5I
(here we have used the following property of the function / : if a > 1 and b < 1 ,
then f{ab) > aa2ba' ; it is obviously satisfied for αϊ > a2, and we may always
consider αχ arbitrarily large and a2 arbitrarily close to 0). Substituting the value of
t into (5.11), we obtain (5.2).

CONCLUSION

As we know, Harnack's inequality for the heat equation implies two-sided esti-
mates of the Green function (see, for example, [10] and [6]). These estimates have
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the form

r / »·2\ r / r2\
(5 12) cxp ( ci I < (JQC y f) < — — exp I -Ci —- )

where r = d{x, y), C\ > 0 may be any number < 1/4, Ci j 2 , c2 > 0 depend on the
constant y in Harnack's inequality, and C\ depends also on C\. For a certain class
of unbounded domains in R" satisfying conditions close to (a) and (b) an analogous
upper bound for the Green function was obtained by Gushchin and his coauthors in
[14] and [15].

From (5.12) by integration with respect to t we obtain the following estimate of
the Green function g(x, y) (i.e., the least positive fundamental solution) for the
Laplace equation:

(5-13) C2 γ^τ < g(x , y) < Q
Jr \nlI Jr B*\>

where C\, 2 > 0 depend on γ .
For manifolds of nonnegative Ricci curvature the estimates (5.13) were first ob-

tained by Varopoulos [11] by elliptic methods. The parabolic estimates (5.12) on
these same manifolds were obtained by Li and Yau [6]. Since, as shown in §2, on
manifolds of nonnegative Ricci curvature conditions (a) and (b') are satisfied, all
these estimates follow from our results. Moreover, it is easy to see that conditions
(a) and (b') are invariant relative to quasi-isoperimetric transformations (i.e., dif-
feomorphisms of the manifold Μ changing distances by no more than a constant).
From this it follows that if these conditions are satisfied then Harnack's inequality
(and with it (5.12) and (5.13)) holds for solutions of the equation

ut — Lu = 0,

where L is a uniformly elliptic operator on Μ going over into the Laplacian under
a quasi-isometry. By the way, it is possible from the very beginning to consider the
still more general parabolic equation

p(x)ut - div(A(x, t)Vu) = 0,

where A(x, t) is a linear operator in TXM. All our proofs (except those in §5) go
through also for this equation.

It would be interesting to see if condition (b') is necessary for Harnack's inequal-
ity. We have only been able to show that the isoperimetric inequality (5.2), weaker
than (b'), is necessary. It would also be interesting to know (in the case of a neg-
ative answer to the preceding question) if Harnack's inequality is preserved under
quasi-isometric transformations of the manifold.

There is an example of a manifold of dimension η > 3 on which condition (a)
is satisfied, while condition (b') is satisfied in a weakened form: in place of the
factor \/R2 in (1.2) there is l/R2 \nr(R + 2), where γ > 2/(n - 3), and Harnack's
inequality for the Laplace and heat equations is not satisfied. Unfortunately, this
example is too cumbersome to be presented here.

We further note a curious fact: the elliptic Harnack inequality is not only log-
ically but actually weaker than the parabolic inequality. Indeed, as shown above,
the parabolic Harnack inequality implies condition (a), while in the case of a two-
dimensional manifold Μ for the validity of Harnack's inequality for the Laplace
equation it suffices that for some Λ: € Μ as R —» oo we have | 5 ^ | < const/?2 (see
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[17]). It is clear that this condition does not imply (a). In this connection all the
questions formulated above are of interest also for the elliptic Harnack inequality.
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