HEAT KERNEL UPPER BOUNDS ON A COMPLETE
NON-COMPACT MANIFOLD

Alexander Grigor’yan

1. Introduction

Let M be a smooth connected non-compact geodesically complete Riemannian mani-
fold, A denote the Laplace operator associated with the Riemannian metric, n > 2 be a
dimension of M . Consider the heat equation on the manifold

ur —Au =0 (1.1)

where u = u(x,t),x € M,t > 0 . The heat kernel p(x,y,t) is by definition the smallest
positive fundamental solution to the heat equation which exists on any manifold (see [Ch]
“ID]).

The purpose of the present work is to obtain uniform upper bounds of p(z,y,t) which
would clarify the behaviour of the heat kernel as t — 0o and r = dist(z,y) — oo . In the
Euclidean space R™ the heat kernel is given by the following well known formula

p(x,y,t) = Wexp[—%] (1.2)

const
tn/Z

the Gaussian term exp(—%) . In the n -dimensional hyperbolic space H}} (of constant
curvature —k? < 0 ) the heat kernel is known as well. It takes the simplest form in the
case of the dimension 3:

so that it decreases as as t — oo and its behaviour for large r is determined by

kr r2

—— —k%t). 1.3
47t)3/2 sinh(kr) exp( 4t ) (1.3)

p(l‘,y,t) = (

Its the most significant difference from the Euclidean heat kernel is an exponential decay
in ¢ given by the factor exp(—k?t) .

The first question to be discussed here is which geometric properties of the manifold
ensure decreasing of the heat kernel as t — oo with a prescribed speed?” More precisely,
when the heat kernel satisfies the following estimate

p(z,y,t) < f(t) (1.4)

for all z,y € M,t > 0 where f(¢) is a monotonically decreasing function on the positive
real semi-axis. This kind of a heat kernel estimate is often referred to as an on-diagonal
estimate because (1.4) follows from the same inequality for x = y (see the Proposition
2.1 bellow). It is well known and due to Nash [N] (see also [CKS| ) that a heat kernel
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on-diagonal upper bound is deduced from a suitable isoperimetric inequality. Consider, for
example, a special case when f(t) = const¢~™/2 which takes place in the Euclidean space.
Then the corresponding inequality

p(x,y,t) < const t /2 (1.5)

can be proved whenever we know, that for any smooth function v with a compact support
the following Sobolev inequality holds

/M IVo]? > ¢ [/M |v|2n/(”_2)] ' (1.6)

(of course we have to assume here that n > 2 ). This inequality is close to the classi-
cal isoperimetric inequality between the volume of a bounded region and the area of its

boundary
Area (0Q) > ¢Vol (Q)(n—D/n

for any bounded domain 2 with a smooth boundary 02 . Namely, the isoperimetric
inequality above implies (1.6) (converse is not true - see [CL] ).

N.Varopoulos [V85] proved that the Sobolev inequality (1.6) is not only sufficient but
a necessary condition as well for the upper bound (1.5) to be valid. On the other hand,
Carlen, Kusuoka and Stroock [CKS]| found an alternative form of this phenomenon: the
upper bound (1.5) is equivalent to the Nash inequality

() e f o)

supposed to hold for any f € C2>°(M) . This theorem has the advantage that it does not
require the hypothesis n > 2 . Therefore, the upper estimate (1.5) is equivalent to either
Sobolev and Nash inequality.

The Gaussian factor in heat kernel upper bounds on Riemannian manifolds appeared
in the paper of Cheng, Li and Yau [ChLY] but they considered the heat kernel behaviour
only in a finite time interval. For the whole range of time the on-diagonal bound (1.5) was
shown by several authors to imply the following Gaussian off-diagonal correction

2
p(l’,y,t) < const t_n/2 eXp[_C%] . (17)

Apparently for the first time it was proved by Ushakov [U] in 1980. He derived (1.7)
from (1.5) by means of pure analytical tools without appealing to geometry. Although he
treated the case of unbounded regions in Euclidean space his proof can be carried over to
abstract manifolds too. Another proof was obtained by Davies and Pang [DP] ( see also
the preceding work [D87] ) who used a logarithmic Sobolev inequality which is equivalent
to both estimates (1.5) and (1.7) (where constant ¢ can be taken arbitrarily close to 1
). Thus, we have that each the of relations (1.5), (1.6), (1.6"), (1.7) is equivalent to the
others. The following questions arise:

1. to obtain an isoperimetric property which would be equivalent to estimate (1.4) for a
general function f without the polynomial or other restrictions on the behaviour of f
at infinity;
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2. to obtain the corresponding estimate with the Gaussian off-diagonal correction term.
If the function f has at least a polynomial decay (which means in this context that it
satisfies the condition

f(t) < const f(at)

for all ¢ > 0 and a € [1,2] ), for example

2t < 1
t) = £
f(t) = cons {t_m/Q,t21

then as was proved by Davies (see [D89] , [DP] ) (1.4) implies

2

p(z,y,t) < const . f(t) eXP[_ﬁ]

(where € > 0 is arbitrary). For example, this bound holds for the Riemannian product
M =K xR™ | K being a (n —m) -dimensional compact manifold.

There are some other works which treat the polynomial case. In a series of papers of
A.K.Gushchin (see , for example, [G] , [GMM] ) heat kernel bounds are proved for the case
of unbounded region in Euclidean space with the Neumann boundary condition provided
some isoperimetric inequality is valid. He obtained the exhaustive results but also for the
case when the heat kernel has a polynomial decay as t — oo .

At the same time there exist many important classes of manifolds whose heat kernel
decreases faster than polynomially as ¢ — oo . For hyperbolic space and for a wide class of
negatively curved manifolds the heat kernel has an exponential decay. There are examples
of manifolds - covering manifolds with a deck transformation group being a polycyclic one
- for which the heat kernel decreases as t — oo subexponentially but superpolynomially
(see [VI1] , [A] for discrete counterparts).

In the present paper we adduce a new approach of obtaining the heat kernel upper
bounds which enables us to cover all results mentioned above, and, moreover, to get the
corresponding estimates for a larger variety of manifolds.

The theorem to be formulated below establishes equivalence in a rather general situation
between the on-diagonal estimate (1.4), the corresponding Gaussian estimate and some
inequality of Faber-Krahn type which we use in place of the Sobolev and Nash inequalities
mentioned above.

Let A(v) be a positive continuous monotonically decreasing function on the positive real
semi-axis.

Definition 1.1 Let us say that a A-isoperimetric inequality is valid for a region Q@ C M
, if for any sub-region D C Q the first Dirichlet eigenvalue A\ (D) is controlled below by
A(Vol D) :

A1 (D) > A(Vol D). (1.8)

It is very natural to use A-isoperimetric inequality for evaluating the heat kernel. Indeed,
the heat kernel of a bounded region 2 C M decreases as t — 0o as const - exp(—A1(2)t) .
If \y(M) = limg_pr A1(©2) > 0 then one can hope that the heat kernel p(x,y,t) behaves
itself as const - exp(—A1 (M )t) for large t . Otherwise, if A\;(M) = 0 one may expect that
the order of decay of p as t — oo depends on the speed of convergence A1(£2) to 0 on
expanding of € .
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Note that the value A\ (M) is referred to as the spectral radius of the manifold M and
coincides with the bottom of the spectrum in L?(M) of —A .

A A-isoperimetric inequality can be easily deduced from the following inequality between
the volume and the area

Area (0D) > g(Vol D) (1.8")

with some function g . Namely, if g(v)/v is a decreasing function then (1.8") implies (1.8)
where A is expressed through g by

=3[

(

(this is a consequence of the well-known inequality of Cheeger - see the Proposition 2.4
below ). Conversely, at least for a polynomial function A(v) = constv™, v > 0 and
for a manifold of non-negative Ricci curvature the A-isoperimetric inequality implies the
isoperimetric inequality (1.8") with the function const g(v) - see [C] .

For example, in the Euclidean space we have

A(v) = cpo /" (1.9)
while for the hyperbolic space H}!
A(v) = max{c,v™ 2", \} (1.9)

where A = 1 (n — 1)2%k? .

For a class of covering manifolds Coulhon and Saloff-Coste [CS] proved the isoperimetric
inequality (1.8") which implies (1.8) with the following function A having an intermediate
magnitude

A(v) = const(logv)™" (1.10)

for large v where 10 is a positive constant.
Let us define a function V'(t) by means of the following relation

VO o
t:/o oL (1.11)

Of course, we have to suppose that the integral here converges at 0 . This is not a strong
restriction because for small values v the function A(v) is expected to be as in Euclidean
space. Obviously, V() is an increasing function on (0, +00) .

The following theorem is one of the main results to be presented here.

Theorem 1.1 Consider the following hypotheses

1. A-isoperimetric inequality holds on M , i.e. for any pre-compact region {2 C M we
have:
M) > A(9)

2. Vx,ye M,;t >0

(@t) € oo expf
PED0 = ey Pl D



3. Vee M,t >0

p(@,z,1) < V(ct)

4. for any pre-compact region () C M we have:

Ap(Q) > m[c%] Vk=1,2, ...,

and suppose that the function V' (t) is regular in some sense (see below). We claim that
l—=2=3=—4

where the constants c,C are positive and can be different in the different items; D > 4
can be taken arbitrarily close to 4 .

Let us note that the implication 2=-3 is obvious and included into the theorem for the
sake of completeness. This theorem means that A-isoperimetric inequality is equivalent to
either the on-diagonal bound and the off-diagonal Gaussian estimate up to the constant
multiples. Indeed, the item 4 of the Theorem 1.1 implies for £k = 1 the A-isoperimetric in-
equality which differs from that of the item 1 only by the multiples ¢, C' . As a consequence
we see that the isoperimetric inequality for the first eigenvalue implies the corresponding
inequalities for the higher eigenvalues.

The regularity conditions mentioned in the Theorem 1.1 are the following. The implica-
tion 1=—-2 is proved in the Theorem 5.1 in Section 5 under the hypothesis that for some

T €]0,+o0] the function t“;/(g)
constant. This hypothesis restricts, first, the behaviour of the function V(¢) as ¢t — 0 - it
may be equal to t“, v > 0 but may not be equal to e~ % , and, second, the function V(t)
may not have too flat parts on its graph if it grows superpolynomially as t — oo . For
example, for large ¢ the function V (¢) may be equal to (logt)“t? exp(t?) with the arbitrary
non-negative constants «, 3,7 .

The implication 3=4 requires that, first, the function V' (¢) is obtained by the trans-

formation (1.11) from a function A (see the Proposition 2.2 in Section 2 for the explicit
v
the sense mentioned in the discussion above. This condition holds, for example, provided
V(t) = t”, v > 0 for small ¢ and the derivatives V'(¢) makes no jumps for large t , for
instance, the function (logt)¥t% exp(t?) satisfies it.

We see that the regularity assumptions does not restrict the rate of increase of V()
as t — oo . Note that the function V(¢) defined from (1.11) cannot increase faster than
exponentially - the fastest growth corresponds to the case when A(v) = const > 0 for
large v . This conforms to the fact that the heat kernel cannot decrease in ¢ quicker than
exponentially that follows from the same property of the heat kernel in a bounded region.

Let us also note that the implication 1=-3 does not require any additional condition and
this is the reason why we distinguish this part of the Theorem 1.1 as a separate Theorem
2.1.

Examples. 1. Let us set

is increasing for ¢ > T and bounded for ¢ < 27T by some

conditions) and, second, its logarithmic derivative has at most a polynomial decay in

v_Q/”, v<l1

V. (1.12)

A(v) = const {

Y
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then by the Theorem 1.1 we have the following estimate

( t) < const . r2
x? ) = . X -
PR min(¢"/2, tm/2) Pl Dt

Taking here m = n we see that the heat kernel estimate (1.7) of a Euclidean type is
equivalent to the A-isoperimetric inequality (1.9). On the other hand as was mentioned
above (1.7) is equivalent to the Sobolev inequality (1.6). Hence, the Sobolev inequality
(1.6) and the A-isoperimetric inequality (1.9) are equivalent. Of course, that can be proved
directly too, see [C] .

2. If A is given by the formula (1.10) for large v (and is Euclidean one for small v ) then
by the Theorem 1.1 we have for large ¢

7“2

p(.fE,y,t) S const eXp[_CVtV;+1 - E] (113)

In particular, if v = 2 as it takes place on a covering manifold with a deck transformation
group of the exponential growth (see [CS] ), then the heat kernel decreases for large t at
least as fast as exp(—ct%) . This is a sharp order of the heat kernel decay as has been
shown in [A] .

3. Let A be the function (1.9") with some A\ > 0 as it holds on a simply connected
manifolds with a strictly negative curvature, then by the Theorem 1.1

2

p(a:,y,t) < Ct_n/Q eXp(—c)\t — g—t) A

This estimate will be improved in Section 5 for ¢ bounded away from 0 , for example ¢ > 1

P2y 12 r2
p(x,y,t) < const [1 + 7] exp(—At — 4_t> (1.14)
The coefficient A at the exponent is sharp as can be seen in the case of the hyperbolic
space. Note that the largest possible value of A here is the spectral radius of the manifold
A(M) .

A part of the Theorem 1.1 which relates to behaviour of the heat kernel in time variable
is proved in Section 2 below (see the Theorems 2.1 and 2.2 which treat the cases 1==-3 and
3=—>4 respectively). We apply A-isoperimetric inequality in order to derive some inequality
of Nash type which we use in place of the Sobolev inequality.

The main efforts are directed to get estimates containing the Gaussian factor. For
this purpose we consider some weighted integral of p? over the entire manifold (in place
of the usual integral of p? over an exterior of a ball - see Section 4 for details) which
happens to decrease in ¢ . This property simplifies considerably the proof and makes our
approach very flexible. To estimate this integral (Theorems 4.1 and 4.2 in Section 4) we
apply some mean-value type theorem which relies upon A-isoperimetric inequality and is
of independent interest (Theorems 3.1 and 3.2 in Section 3).

Having the integral estimates it is easy to pass to pointwise heat kernel upper bounds us-
ing the semigroup property of the heat kernel ( see Section 5 ). The Theorem 5.1 completes
the remaining part 1=—2 of the Theorem 1.1. The method of proving of the Theorem
5.1 enables us to get heat kernel estimates not only in the case when a A-isoperimetric
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inequality holds on the entire manifold but also when a A-isoperimetric inequality holds
with different functions A on different parts of the manifold. We consider two kinds of
such a situation.

1. Suppose that A-isoperimetric inequality is known to be true in any geodesic ball
but, possibly, with its own function A . Under this hypothesis we obtain a heat kernel
upper bound (see Theorem 5.2) which is applicable, for example, to an arbitrary manifold
and yields the estimate (1.14) above where the const has to depend on z,y . Another
example of applications of the Theorem 5.2 is the heat kernel estimate on a manifold of a
non-negative Ricci curvature

= )

P\T,Y,0) > e XPl 70|

Vol Bf/z (4+e)t

(where Bf, denotes the geodesic ball with the centre x € M and of the radius R ) obtained
first by P.Li and S.-T.Yau [LY] . A similar result of B.Davies [D88] for a manifold of a
bounded below Ricci curvature is covered by our approach too.

2. On the other hand we are able to get an extra information concerning the heat kernel
behaviour whenever in addition to a global A-isoperimetric inequality there is a stronger
isoperimetric inequality in a neighbourhood of infinity. The Theorem 5.3 appears to be
an example of such a statement and yields on a Cartan-Hadamard manifold the following
estimate

t 2
plo.) < oz o —eonst [~ w0t =) |

where —k?(R) denotes the supremum of the sectional curvature in the exterior of the ball
BY, . What is new here is the third term at the exponent

exp[ —const rk(r/2) )

which associates with the term .
.

sinh (kr)
in the case of the heat kernel (1.3) of the hyperbolic space. It can cause the heat kernel
to decrease as r — oo faster than predicted by the Gaussian term provided the curvature
—k?(R) outside the ball of the radius R approaches to —oco fast enough as R — oo .
The results of this paper were partially announced in [G87b| , [G87c] , [G8T7a] , [G88]
and [G91a] .

Notations

constg p,... - a positive constant, depending on a, b, ... ;

dist(z,y) - a geodesic distance between the points x,y € M,;

B% - an open geodesic ball of the radius R centered at the point x € M ;
measg A - k -dimensional Riemannian measure of set A;

meas, A, if AC M

|A| = Vol A = { .
meas,+1 4, if AC M xR

A () - the k -th eigenvalue of the Dirichlet boundary value problem in € .



2. Decay of the heat kernel in time

The heat kernel on a manifold can be constructed by means of the following process.
For any relatively compact subset {2 C M with a smooth boundary one can define the heat
kernel po(x,y,t) as Green function of mixed problem the for heat equation in Q2 x (0, c0)
with vanishing Dirichlet boundary values. Let us denote by ¢ (x) the k -th eigenfunction
of the Dirichlet boundary value problem in , k = 1,2,... , so that sequence {¢x} is an
orthonormal basis in space L?() , then the following eigenfunction expansion holds

pa(z,y,t) = 3 exp( Mt wr(@)or(y) (2.1)
k=1

A proof of this expansion as well as a justification of other properties of pg to be used in
this Section the reader can find in [D] and [Ch] .

Maximum principle implies that pq is non-negative and monotone in € : it increases on
expansion of €2 . At the same time the integral of the heat kernel remains bounded:

Q

which implies that pg has a finite limit as {2 — M where 2 — M denotes an exhaustion
of M by a sequence of relatively compact domains §2 . The limit

p(x,y,t) = Qll%m(:v, Y, 1)

is obviously the smallest positive fundamental solution to the heat equation i.e. the heat
kernel on M . The function p(z,y,t) inherits from pqo(z,y,t) the following properties:

1. p(x,y,t) > 0 for all z,y € M,t > 0 and satisfies the heat equation with respect to z,t
for any fixed y ;
2. p(z,y,t) — 0y(x) in sense of distributions as ¢t — 0 ;

3. symmetry: p(z,y,t) = p(y,,1)
4. boundedness of the entire heat flow
/ p(z,y,t)dy <1 (2.2)
M
5. semi-group property
| plai o,z 5)dy = plo it + ) (2.3)
M

6 ifve LP(M),1 <p < oo it follows that the following operator

ﬂwmzéf@%mmw (2.4)

defines a contraction semi-group in LP(M) and the function u(x,t) = Tiv(x) is a solution
to the Cauchy problem for the heat equation (1.1) with an initial function v(x) (the latter
means that

tim [[u(,2) = 0(2) | o ar) = 0



see [S] ).

It is standard now that to obtain pointwise upper bounds of the heat kernel one proves
first a suitable integral estimate and then applies semi-group property (2.3). In the simplest
setting this idea is illustrated by the following proposition.

Proposition 2.1 The following inequalities are equivalent for any fixedt > 0 :

L p(z,y,t) < f(t) Ye,ye M

2. p(z,x,t) < f(t) VeeM

3. [y PP(z,y, t)dy < f(2t) YeeM
This proposition is not a new one, nonetheless we shall prove it for convenience of the
reader.

1=— 2. Evident.
2= 3. According to semi-group property (2.3) we have for z = z

/ PPy, )y = ple, 2, 28) < F(21)
M

This argument implies, in particular, that function p(z, y, ) as a function of y lies in L?(M)

3= 1. According to the symmetry property of the heat kernel and by the Cauchy-
Schwarz inequality we have

pant) = [ plo€ 5ple e

(SIS
|

([ reega) ( | e ) L st = 10

O
Let us note that , in addition, each of conditions 1-3 is equivalent to each of the following
hypotheses

4.
1Tl < f@) Wil ary Vo € LH(M):;
5.
1Tl < £28) [0l p2cary Vo € LAH(M);
Next we shall assume that A-isoperimetric inequality holds on the manifold under consid-
eration, function A(v) being positive, continuous and monotonically decreasing on (0, +00)
. In addition, we suppose that function A satisfies the condition

dv
/0+ vA(v) < o0 (2.5)

This relation holds, for example, when A(v) = const v™" for small values of v where v > 0
, as it takes place in Euclidean space.
Let us denote the set of such functions A(v) by £ . For any A € £ we define a function

V(t) as follows
V(t) d'U
t = 2.6
[ a (26)
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Equivalently, V'(t) is a positive solution to the Cauchy problem

V() =VAV), V(0)=0 (2.7)
Since fooo % = 00 due to decreasing of function A it follows that function V (¢) is defined

on the entire interval (0, 400) .

A class of functions V' (t) obtained by (2.6) (or (2.7)) will be denoted by V . More explicit
description of this class will be given below. The mapping from £ onto V given by (2.6)
will be referred to as V— transformation .

Theorem 2.1 If A-isoperimetric inequality holds on manifold M with a function A € L
then for all x,y € M,t > 0 the following heat kernel estimate is valid:

2

p(z,y,t) < F(ED] (2.8)

where § > 0 is arbitrary.

Note that this theorem contains the part 1 = 3 of the Theorem 1.1.

Proof. Let Q) be an open pre-compact subset of M with a smooth boundary. It suffices
to proof that for ally € Q, t >0, 6 € (0,1)

/Qp?z(:c,y,t)d:c < m (2.8")

Indeed, the integral in (2.8") is equal to pa(y, y, 2t) . Passing to the limit as Q — M we get
from (2.8') a similar inequality for p(y, y, 2t) which implies, in its turn, pointwise estimate
(2.8) as it follows from the Proposition 2.1.

The proof of (2.8") relies upon the following lemma.

Lemma 2.1 For any non-negative function v(z) € C2°(Q2) and for any § > 0 the following
inequality is valid

247 ] (2.9)

/Q Vol > (1 - 5)BA[E

A:/v, B:/qﬂ
Q Q

Proof of the lemma. The proof follows the arguments of A.K.Gushchin [G] . For any
positive 7 the following inequality is evidently true

where

v < (v—7)% +270v. (2.10)

Integrating (2.10) over 2 we get

/QUQS/{U>T}(U—T)2+27'/QU (2.11)
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By the minimax property of the first eigenvalue in the region {v > 7} and according to
the A-isoperimetric inequality we have

fQ |Vv|2
f{y>7-}(v - 7—)2

> M({v> 7)) > A(Vol{v > T}] .

Since

1 A
Vol{v>7‘}§—/v:—
T

Q T

v — 7)2 fQ|VU|2
/{v>r}< FETE

it follows that

Substituting it into (2.11) we get

2
B < L}J(VAQ;‘ +27A

and

/Q|w2 > (B 2r A (D).

T

Taking here 7 = g—ﬁ we obtain (2.9). O

To proceed with the proof of the Theorem 2.1 let us fix some y € M and introduce the
notations

u(z,t) = palz,y,t), I(t)= /Qu(:c,t)de .

Taking into account that fQ u(x,t)dr <1 and applying the Lemma 2.1 we obtain

IVul® > (1 —68)I(t)A Ii (2.12)
Q oI(t)

Note that although the function wu(-,t) is not in C°(Q2) as required by the Lemma 2.1
this Lemma is nonetheless applicable because u vanishes on 9} and, thereby, can be
approximated in W12(Q2) by an element of C°() .

On the other hand differentiating I(¢) with respect to ¢t we get

I’(t):2/utu:2/uAu:—2/ Vul® .
Q Q Q

Substituting it into (2.12) we obtain a differential inequality:

() < —2(1 5)1@)/\[%@)] . (2.13)

Integrating this inequality we have

I(t) d[ t
/ A §—2(1—5)/ dt = —2(1 — 8)(t — to)
1) IA( %) to
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where t > tg > 0 . Changing a variable v = 5—21 we get

2 2

SIh  dv SIH du
/() UA(’U) = / 2 UA(U) = 2(1 - 6><t - tO) : (214)

3I(tg)

Letting here ty — 0 and applying the definition of the function V' (¢) we finally obtain

which is equivalent to (2.8') O

Now we are going to show that a A-isoperimetric inequality is also a necessary condition
for the heat kernel upper bounds of kind p(z,y,t) < f(t) . Let us start with the following
observation.

Proposition 2.2 Class V contains all positive functions V (t) € C*(0, +o0) such that

1. V'(t) > 0
2. V(0)=0, V(x)=o
3. YW monotonically decreasing.

V(t)
There are no other functions in V.

Indeed, the fact that any function from V satisfies 1-3 is a simple consequence of the
definition (2.7). For example, the property 3 follows from the monotone decreasing of A
. Inversely, let V(t) be a function satisfying 1-3, then we can define A(v) by means of the
relation

AV (1)) = “//'((tt)) (2.15)

which is nothing but transformed (2.7). Since the function V(¢) is a bijection byl-3 it
follows that (2.15) determines a unique function A € £ . O

Thus, the V' -transformation has an inverse one define by (2.15) which will be referred
to as a A -transformation.

Definition 2.1 A positive function f(t) defined on (0, +00) is said to be of a polynomial
decay if for some positive constant « the following inequality holds for all t > 0, a € [1, 2]

flat) = af (t) (2.16)

Note that any monotone increasing function as well as a decreasing function f(t) = ¢t=

satisfies this definition. It is easy to see that the condition (2.16) holds whenever we have
the following differential inequality

f(t) > i (2.16')

where oo = 2= .
The next theorem is converse in some sense to the Theorem 2.1.

Theorem 2.2 Let V (t) € V and suppose that

/

the function (log V(t)] is of polynomial decay (2.17)
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Suppose that for all x € M and t > 0 we have the estimate:

plx,z,t) < — (2.18)

1
V()

then for any precompact open set {2 C M

Q
A (92) > constaA[%] , k=1,2,3,... (2.19)

where function the A is the A -transformation of V .

Remark. The condition (2.17) does not restrict the rate of increase of V(t) as t — oo .
In any case such standard functions as

V(t) =exp(t’), t“, (logt)”, (loglogt)”, etc.

where v > 0 , satisfy (2.17). Let us notice also that the Theorem 2.2 coincides with the
part 3 = 4 of the main Theorem 1.1.

Corollary 2.1 Suppose that under the hypotheses of the Theorem 2.1 the following esti-
mate holds in place of (2.18):

C
t) < 2.18
then we have instead of (2.19)
2] :
Ak (£2) > constycA C? , k=1,2,3,... (2.19")

Indeed, this is a simple consequence of the following proposition which, in turn, follows
obviously from the definition of the V' -transformation.

Proposition 2.3 Suppose that a function V (t) is the V -transformation of A € L , then
the function bA(av) has the V -transformation a1V (bt) , where a, b are arbitrary positive
numbers.

Corollary 2.2 Let a A-isoperimetric inequality hold on the manifold where A € L and its
V' -transformation V (t) satisfies the condition (2.17), then for any pre-compact open set
QCcM

Q
() > constowA[fy%] , k=1,2,3.... (2.20)

where v > 2 can be chosen arbitrarily.
Indeed, by the Theorem 2.1 we have

1

p(x,z,t) < m
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Since the A -transformation of the function $V((1 — )t) is the function (1 — §)A(2v) (see
the Proposition 2.3) it follows from the Theorem 2.2 that

A (2) > consty (1 — (5)A[ (25 |§€2| ]

which implies (2.20) with v =2/0 .

It would be interesting find out to what extent the constants vy and const, ~ in (2.20)
can be optimized.

Finally, concluding the discussion around the Theorem 2.2 let us notice that property
(2.17) of function V' can be derived from the following one of function A

AD?A > N7Y(DA)? (2.21)

where D = d/d(logv)

Proof of Theorem 2.2.  An idea behind the proof is close to that of [ChL] . Let {¢x(z)} be
an orthonormal basis consisting of eigenfunctions of the Dirichlet boundary value problem
in Q@ C M . According to the eigenfunction expansion (2.1) we have for z =y

po(x,z,t) = Zexp[—)\k(Q)t) or(x)?
Integrating over {2 we obtain

/pg(m x,t)dx = Zexp( )\k(Q)t) (2.22)

k=1

On the other hand as it follows from (2.18)

Q
/ng(a:,x,t)d:c m

Combining this with (2.22) and noting that for any k > 1

> exp(=Am(Q)t) > kexp(—Ax(Q)1)
we get
Fexp(— (1) < %
A (Q2) > % log kT;(f) (2.23)

This inequality is true for all ¢ > 0 and we can choose t arbitrarily. Let us denote for
the sake of simplicity v = || /k , find 7 from equation V(7) = v and take t = 27 . For
this ¢ we get from (2.23):

M(9) > o (log V(2r) ~log V(r)) = 5 £(6)

1
2T



15

where f(t) = LlogV(t), 0 € (r,27) being a mean value. Since function f has a polyno-
mial decay it follows that

f(0) = af(r)
Hence, A\ (€2) > 5 f(7) . Since

it follows that

a (]9
M(9) > S A[ ! ]
which was to be proved. O
In the conclusion of this Section we present a sufficient condition for the transience
property of the Brownian motion on M which follows from the arguments of the proof of
the Theorem 2.1. The Brownian motion is transient if for some (and hence for all) pairs
of distinct points =,y € M

/ p(z,y,t)dt < oo (2.24)
0

which means that there exists a positive fundamental solution E (:U, y) of the Laplace equa-
tion which is just given by the integral F(x,y) fo (z,y,t)dt . Of course, one can take
the integral in (2.24) from some positive ¢y rather than from O because for x # y function
p(z,y,t) is bounded on any bounded time interval. Since p(z,y,t) < \/p(x,z,t)p(y,y,t)
(see the proof of the Proposition 2.1) it follows that the Brownian motion is transient
provided for some ¢y > 0 and any y € M

/ p(y,y,t)dt < oo (2.247)

to

As soon as we have an upper estimate for the heat kernel we can check whether (2.24")
holds. In fact we need for this purpose an upper bound only for large ¢t . That leads us to
the following theorem.

Theorem 2.3 Suppose that for any open pre-compact region D C M with the volume
Vol D > V, (where Vy is some positive number) the isoperimetric inequality (1.8) holds
with an arbitrary continuous decreasing function A , then the Brownian motion is transient

provided
< dv
VTA(0) < 00. (2.25)

Proof. Let us extend the function A(v) into the interval (0, Vp) as a constant: A(v) =
A(Vp) . Since Ai(D) decreases on expansion D we can claim that the A-isoperimetric
inequality is valid now for all domains D . We cannot apply directly the Theorem 2.1
because A ¢ L but we can apply the formula (2.14) obtained in the course of the proof of the
Theorem 2.1 without using A € £ . Putting there § = % and noting that I(t) = pa(y, y, 2t)
we obtain that for any region 2 and for any y € Q, t > tg

4
ro (y,y,2t) dv

vA(v)

>t—t. (2.14')

4
o (y,y,2tg)
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Let us introduce the function v(¢) from the relation

v(t) dU
t—tg = / (2.26)
Vo UA(U>

. As it follows from ( 2.14")

_ 4
where v = P (¥,9,2t0)

4 4
———— > v(t) , paly,y,2t) < —

Hence, in order to estimate the integral (2.24) from above it suffices to obtain a uniform
in  bound of [, tzo Tlt)dt . Changing a variable in the integral we have

> 1 1
/ —dt:/ Tdt
(1) ve VU

> 1 > 1
— - dv = ——d
/vo v2A(v) v u v2A(v) v

r(y,y,2tg)

Thus, collecting all these relations together, we obtain

o0 oo 1
2t)dt < 4 ————d
/to pQ(y7 Y, ) = / 4 UQA(’U) v

rQ (y,y,2t0)

Letting 2 — M we see that the integral (2.24') is finite, which was to be proved. O

Let us compare this result with a similar one obtained earlier in [G85] . Namely, the
theorem of [G85] establishes transience provided the following isoperimetric inequality
holds for any bounded region D C M with a smooth boundary:

Area (0D) > g(Vol D) (2.27)

and the function g satisfies the inequality

/Oo W (2.28)

g(v)?

Recall first that as was mentioned already in Section 1 inequality (2.27) implies some
A-isoperimetric inequality . Indeed, the following is true.

Proposition 2.4 Suppose that for any bounded region D with a smooth boundary such
that D C Q the inequality (2.27) holds, where ) is an arbitrary Riemannian manifold and
the function g is such that g(v)/v is a decreasing one, then the A-isoperimetric inequal-
ity holds in ) where A is given by the relation

Aw) = i[@] 2 (2.29)

(%
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Indeed, let w be some sub-region in {2 and the closure of D lie inside w . By the hypothesis
(2.27)

Avea (9D) 2 (D) = D] S50 > b 2D

Thus, the Cheeger’s isoperimetric constant (see [Chr] )

. . Area(0D)
e = ok =
satisfies the following estimate
) > 20D
|w]
By the Cheeger’s theorem we have
1 2
M(w) 2 Jhiw)

which implies (2.29). O
We are left to notice that (2.25) is transformed to (2.28) when substituting g from (2.29).

3. Mean-value type theorem

In this Section we deal with a mean-value type theorem. We call so a theorem which
establishes a relation between a value which a solution of heat equation takes at some point
and an integral of the solution over some neighbourhood of this point. This theorem will
enable us to obtain a dependence on distance function when estimating the heat kernel.
In fact, the theorem is already proved in its the most important part in [G91] . Here we
are going to simplify the final result.

Let us introduce the following notations. Let A be a function of class £ . Since the
function £ is strictly monotone on (0, 4+00) and has a range (0,+00) it follows that it

is invertible. Let us denote the inverse function by w and define the functions V (¢), W(r)
for t > 0, r > 0 as follows

B v(t)ﬁ B W (r) d¢
t_/o o(€) T_/o € () (31)

The following theorem was proved in [G91] .

Theorem 3.1 Suppose that the A-isoperimetric inequality holds in some ball B} where

the function A is such that the integrals in (3.1) converge at zero and the functions V, W
are defined on [0,+o00][ . Let C = B} x (0,T), T > 0 and suppose that a function

u(x,t) € C(C) satisfies in C the inequality
uy — Au <0, (3.2)

then

2 4 2
ue T = mm[V(cT),W(cR)) /cu+ (33)
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where ¢ > 0 is an absolute constant, for example, ¢ = 0.0001 .

Examples. 1. If A = av=2/" then

V(t) = (n>an/2t(n+2)/2, W(T) _ 02(n>an/2rn+2

and (3.3) acquires the form

t?’L —TL/Q
u(z, T)2 < ——omf / u? (3.4)
min(\/T, R] c

In the Euclidean space R"™ this inequality was proved by Moser [M] .
2. If A = max(av=2/", A), A >0, then

=~ (n+2)

V(t) < a™?min(t, A7Y) T exp(cAt)

(n+2)

W(r) = a™?min(r?, A1) "7 exp(cVAr)

where < means ”is in finite ratio with” and the constants bounding the ratio of the right-
and left-hand sides in these relations depend only on n .
3. Let us set

b (VolB%\"?
A(v):ﬁ[ UR]

with some positive constants b, 5 . The A-isoperimetric inequality with this function A
holds in any ball Bf on a manifold with a non-negative Ricci curvature with the constants
B =2, b= const, (see [GI1] for the proof). This A-isoperimetric inequality is in some
sense a natural one when obtaining the heat kernel upper bound of the following kind:

p(z,y,t) < V‘;‘i‘gi - see the Section 5 below for details. But when staying inside the
Vi

ball B}, the A-isoperimetric inequality in question is essentially the same as that of the

B
Example 1 provided we take a = % [Vol Bf%) . Substituting into (3.4) and noting that
TVol B3 = VolC , we obtain

const 1
u(z,T) < = /u2 (3.5)
i min( (T/R2)1/9, R2/T) VeIC Je *

If T = R? then the first fraction in front of the integral in (3.5) does not depend on T and
R at all and (3.5) means that the value of the function u at the top point is estimated
from above by the L? -norm of u over the cylinder C . This is why we call the Theorem
3.1 as a mean-value type theorem. o

The purpose of this Section is to replace the functions V,W from the statement of
the Theorem 3.1 by other functions which are more convenient for applications. Next we
assume that the function A under consideration lies in the class £ and, moreover, v/A is also
in £ , then we can consider the functions V' (t) and W (r) , being the V — transformations
of A and /A respectively. The latter means that W (r) is defined by the following relation

Wi(r) dv

0 vy/A(v)

r =

(3.6)
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Proposition 3.1 If A and /A belong to L it follows that the functions V(t) and W(r)
defined from (3.1) exist for allt > 0, r > 0 and satisfy the estimates

V() > itV(it) (3.7)
W) > 6i4r2w<%r> (3.8)

Remark. The inequalities of the opposite direction are valid too:

V) <tv(e), W) < irQW(r)

but we do not use them.
First we prove the following lemma.

i i 1 1
Lemma 3.1 Under the assumptions made above the functions %O) and o) are convex.

Proof. Consider first the former of these functions. It suffices to prove that ¢ as a function
of the argument % is convex. Let us consider the derivative

dt V?2 V

d& V' A(V)

where we have applied that V/ = VA(V) . When 1/V is increasing V is decreasing, A(V)

increasing, % decreasing. Hence, dd—i is increasing and t as a function of % is convex.
\%

Similarly one can prove that r as a function of \/LW is convex because

dr B W
dA= A(W)

w(§)
£ = 3.9
A@(©) 39
According to (3.1) we have
,_ /V“) e /“@ 1ds /w@ 1 Adw — wdA
—Jo w() Jo dew_ 0 w A?
W) 1 dw AW(V)) gA
- /O wAW) /OO Az
w(V) 1

t= / o 1 (3.10)

o wAW)  Aw(V))
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This implies, in particular, that the integral in the definition (3.1) of the function 1%

converges at 0 . Moreover, since A(w) is a monotone decreasing function it follows that
fooo w/C\l(ij) = oo which means that the function V(¢) is defined for all positive ¢ . Let us
consider two cases. Let first the integral on the right-hand side of (3.10) be at least as

large as the second summand, then
t / w(V) dw
- <
27 Jo wA(w)

whence w(V(t)) > V(t/2) follows. Together with (3.9) and (2.7) this implies

> V(t/2) _ V(t/2)

\% = 3.11
= AMven) V2 34y

We are left to show that for all 7 > 0
“;((:)) > %TV(%T) (3.12)

(it is evident that (3.12) for 7 = ¢/2 and (3.11) imply (3.7)).
In order to prove (3.12) consider the function v(7) = ﬁ . Due to the Lemma 3.1 this
function is a convex one which means, in particular, that

o(r) —u(r/2) | _v(7/2)
T/2 = T/2

V' (1) >

Substituting here v = 1/V we obtain (3.12).
Consider now the second case when the former summand on the right-hand side of (3.12)
is less than the latter, then

Since the range of the function A covers the interval [A(w(V)), +oo[ it follows that 2/t
lands into the range of A . Denote by w(t) the smallest number u for which A(u) =2/t ,

then A(u) > A(w(V)) and, hence, u(t) < w(V(t)) . Using (3.9) we get

V) > — = (3.13)

It follows from (2.6) that

AT VI dy we 1
: _/0 vA(w) /m)/g vA(v) = VIOAV(0/2) ~ 2A(V(D/2)

Replacing here ¢ by t/4 we obtain
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which coincides with (3.7).
The inequality (3.8) is proved in the same way. Let us sketch briefly the main points of

the proof. It follows from the definition (3.1) of the function W that

r:/w(ﬁ/) v 2 (3.14)

Suppose first that the integral on the right-hand side of (3.14) is greater than or equal

—~

to the second summand, then w(W) > W(r/2) which implies together with (3.9) and

W' =W/A(W) that

oo W)

Wr)> ——+= . 3.15
W) 1
Next we use the facts that the function v(r) = \/WL—() is by the Lemma 3.1 a convex one
and for such a function )
?}/(T> > _U(T/ )
7/2
Hence, we obtain
W3/2(r) 1

i = a\VvET

Taking here 7 = /2 and substituting into (3.15) we obtain (3.8).
Suppose now the integral in (3.13) is smaller than the second summand, then we have

AT <22 (i) > ulr) Wi > )
6

(3.16)

where the function u(r) is defined from the relation A(u(r)) =15 .

On the other hand (3.6) yields '
1

2 /AW (r)/2)

r >

or, replacing r by r/8
1 1 16

Al Zwi= -
[ 2 w( 8r> ] -
which implies 2W (r/8) < u(r) . Collecting all these inequalities together we obtain finally
(3.8). O

Now the Theorem 3.1 can be reformulated as follows.

Theorem 3.2 Suppose that the A-isoperimetric inequality holds in some ball Bf, C M
with the function A(v) such that VA € £ . Let C = B% x (0,T), T > 0 and suppose that

a function u(z,t) € C°°(C) satisfies in C the inequality

ur — Au <0,
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then

9 const 9
u(z,T)3 < min(TV(cT), R2W<CR)] /Cu+ (3.17)

where ¢ > 0, const are absolute constants.

4. Integral estimates with Gaussian term

We start this Section with some auxiliary properties of the A— transformation which

are going to be used in obtaining upper bounds of the heat kernel containing the factor
2

exp(—c’-) . Let us assume that A is a function of class £ and, moreover, VA € L. Let

V(t) and W (r) be V— transformations of A and v/A respectively. Let us denote by R(t)

the function W1 oV i.e.
V(t) dv
R(t) = (4.1)

0 vy/A(v)

Lemma 4.1 For all t, > t1 > 0 the inequality holds

(R(t2) — R(t1))? V(t2)
<lo 4.2
th—t; P V(h) (42)
Proof. Let V; = V(t;) , then (4.1) implies
2
LCI V2 o V2 du Vs
R(t) - R = ([ —F=) < [T [T (- ) log
w oVA® ) =l AW Sy o v
whence (4.2) follows.
Proposition 4.1 Let T'> 0 and § € (0,1) be given.
(1) If the function
V()
— 4.
V() (43)

is bounded above by a constant N for t < T (where T may be equal to co ) then for any
t<7T
R2(t)

< consty,s - (4.4)

(1) Suppose that the function ‘/‘Q%tg) is monotonically increasing for t > T , then for any

t > T the inequality holds

R2(t) V(t)

V(1)

< constg log + constr s (4.5)

where consts = ﬁ .
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Proof of (1). Let us consider a sequence
tr =t6%, k=0,1,2,.... (4.6)

By the Lemma 4.1 we have

N=

V{t) ] (4.7)

R(tk) — Ritk+1) < v/ (s — tk“)[bg V(thy1)

or, taking into account the hypothesis (1)

R(tp) — Rtprr) < 6°/2/(1 = 6)tlog N .

Adding these inequalities over all £ we obtain
R(t) < consty sV

which coincides with (4.4).

Proof of (u1). Consider again the sequence (4.6). Denote by K the biggest integer for
which tx > T is still valid. This means in particular, that tx € [T,T/d] . Let us denote
for the sake of brevity V; = V(¢;), r; = R(t;) and consider the sequence

2
& k=0,1,2,..K . (4.8)
e

Suppose first that this sequence is a monotone increasing one, then we have

RA(t) _ R2(r

= t 4.9
- [ S S, T T eonstrs (4.9)

IN
w
=
e

which implies, of course, (4.5).
Consider now the second case when there is a term of the sequence (4.8), say, t,, such
that

2 2
Imo Imtl (4.10)
tm tm—i—l

We may assume that m is the smallest number for which (4.10) is true. It follows from
(4.10) that

Tmt1 < Tm\/g .
Applying the Lemma 4.1 we obtain

(rm — rm\/g)Q Vitm)
A=), = 85, °

(4.11)

Since the function % is increasing it follows that

Vitn) _\ V(Y

V(otn) = 2V(et)

log
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Due to the choice of m we have

<

2 2
R(t><—m.
t T tm

Substituting these relations into (4.11) we obtain finally

722(15)S 1-6 V(t)

RCNGE

whence (4.5) follows. O
The following lemma reduces the question whether the function
potheses of the Proposition 4.1 to a simpler one.

Lemma 4.2 Suppose that § € (0,1) oo >T1">T/6>0.
(1) If the function

V(1)
V(st)

satisfies the hy-

dlogV(t)

4.12
dlogt ( )

is bounded by a constant N for t €]T,T'] , then the function ‘Y(%tt)) is bounded by the
constant 6~ on |T/5,T'] .
(11) If the function (4.12) is monotone increasing on |T,T"’] it follows that the function

‘Y(%tt)) is monotone increasing on |T/6,T'] .

Proof. 'We have for t €]T,T']

log & =log V (t) — log V (dt) = /logt dlLV(T)

dl 4.13
V(6t) logot dlogT 087 ( )

Note that the integral is taken over an interval of a constant length —logd lying in
|logT, logT’] . If the function to be integrated is bounded by N then the left-hand
side in (4.13) does not exceed N logd . Else if the function is increasing then the left-hand
side of (4.13) is increasing too because the interval of integration is moving to right as ¢ is
getting larger. O

Now we proceed to our main estimates of some integrals of the heat kernel. The next
theorem does not still make use of the foregoing properties of the A— transformation -
they will simplify the further applications of this theorem.

Theorem 4.1 Let the A-isoperimetric inequality hold in some ball B}, , VA being a
function of class £ . Let V(t) and W (r) be V — transformations of A and v/A respectively,
then for all p € (0, R] and 0 < 7 <t the inequality holds

2 dQ(SC) const
/Mp (z,2,t) exp[ o ] dzx < min[V(CT), ﬁW(cp)] (4.14)

T

where d(z) = dist(z, B;) = (dist(z,2) — p)+ and c, const are some absolute positive
constants (c is the same as in the Theorem 3.2).

Remark. Of course, one could replace in the statement 7 by ¢ and p by R - that would
simplify the formulating, but, generally speaking, these are not the optimal choice of 7, p
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Proof. The idea behind the proof is similar to that of [G87c| . Let p(z) € C°(M) be an

arbitrary but fixed function and 2 C M be an arbitrary pre-compact region with a smooth
boundary containing supp ¢ and B% . Set

ug(,£) = / pal(@, g, )o(y)dy

and apply to this function the Theorem 3.2 in the cylinder B} x (t,t —7) :

t
ug(z,t)% < K/ / u?(x, s)dxds
t—1 ;

where
const

min[TV(CT), pQW(cp))
Note that the function being integrated here can be multiplied by the following term

e’q’[ B 22 (_”T)@ ]

K =

which is equal identically to 1 in the ball B} and, besides, the domain of integrating can
be extended to the entire region €2 . Thus, we obtain

ua(z,t)? < K /; /Q w3 (z, 5) exp[—2?:<_xl)] dxds . (4.15)

Next we need the following lemma.

Lemma 4.3 (integral maximum principle) Let ) be some pre-compact region in M with a
smooth boundary and w(x, s) be a solution to the heat equation ws—Aw = 0 in QO x (Ty, T)
vanishing on the boundary 02 x (Ty,T) . Suppose that £(x,s) is a Lipschitz function in
Q x (Ty,T') such that

1
&+ 5 IVEl <0, (4.16)

then the following integral
I(s) = / w?(x, 5)ef @) dy (4.17)
Q

is a decreasing function in s € (Tp,T) . Moreover, if 0 < A\ < A\(R2) it follows that the
function
I(s) exp(2As)

decreases in s as well.

Remark. We use the derivatives of the function £(z, s) although it may be not differen-
tiable. But this function is assumed to be Lipschitz and, thereby, is locally differentiable
in a weak sense. The inequality (4.16) is also understood in the sense of distributions.
The proof of the first part of this Lemma is well-known (see , for example, [ChLY] , [PE]
) and consists of checking that I’(s) < 0 . The expression on the left-hand side of (4.16)
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appears as a discriminant of some quadratic polynomial which is to be non-negative. For
the second part including the exponential decay of I(s) , see [G92] .

Let us apply this Lemma to the functions ug and £(z,s) = _Qﬁ(_mg) . The distance

function d(x) is evidently Lipschitz and |Vd| < 1 whence the validity of (4.16) follows. We
obtain that the integral over € in (4.15) does not exceed that for s = 0 . Therefore

02 (x) exp[ _&(@) ] da

2t

ug(z,t)? < KT/

Q

Letting here 2 — M we deduce that the same estimate is valid for the function

) = Jim walat) = [ pley O

which implies

u(z,t)? < KT/

: 0 () exp[ _&@) ] d (4.18)

2t

Consider now a mapping ® : L?(M) — R given by the rule

B(n) = /M p(z, 2, 1) exp[dz(tm)] n(z)da (4.19)

t being fixed. Let us first explain why this mapping is defined i.e. the integral converges.
For a function 7 of the form ¢(z) exp(—d?(z)/4t) , where ¢ € C°(M) we have

MW=AM%MM@M

This integral here coincides with u(z,t) and by (4.18) we have

0 (x) exp[ —dQQ(f) ] de = Kt /M 72 (z)dz

@@ngj/

M

whence an estimate follows
2
(n)* < K70l -

Thus, the mapping ® is bounded on the set of functions 7 of the form under consideration.
Since this set is dense in L?(M) it follows that

|®)* < K7 (4.20)

On the other hand the definition (4.19) of ® implies that

10| = /MpQ(m, 2 1) exp[dz(;c)] dz |

Combining this with (4.20) we get (4.14) which was to be proved. O
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Corollary 4.1 Under hypotheses of the Theorem 4.1 the following estimate is valid for
any D > 2

const ~exp[ (D”_ZQ)t)

(4.21)

2

min( V(er), W (cp) )

T

2
Ep(z,t) E/ p?(z, 2, 1) exp[r—] dr <
u Dt

where r = dist(z, 2) .

Proof. 1t is easy to check that for any D > 2 a quadratic inequality holds

which implies together with (4.14) inequality (4.21) . O
Remark. For D = 2 one cannot hope to estimate E'p because Fs can be equal to oo as
happens in the Euclidean space.

The expression Ep(z,t) is of much importance for us. As we have seen it is estimated
above via an isoperimetric property of a manifold. On the other hand, it will enable us to
obtain pointwise estimates of the heat kernel in the next section. The following property
of Ep is also very useful.

Proposition 4.2 On an arbitrary manifold M for any D > 2 the quantity Ep(z,t) is
finite for all x € M and t > 0 ; moreover, the function

Ep(x,t)exp(2At) (4.22)

is decreasing in t provided 0 < A < A\ (M) .

Proof. For any point € M there exists a small positive R such that the ball Bf is
diffeomorphic to a Euclidean one and the Euclidean metric is finite proportional to the
Riemannian one i.e. the ball B is quasi-isometric to the Euclidean one. We claim that
in the ball B a A-isoperimetric inequality holds with a Euclidean function i.e. for any
region {} C B

A1(€2) > const (Vol Q)~2/™

Indeed, the first Dirichlet eigenvalue A1(€2) is defined as the infimum of the ratio of the
integrals [, |[Vi|” and [, ¢* over all test functions ¢ € C2°(Q) . Either integral is altered
under a quasi-isometric transformation at most by a constant factor and, thereby, the same
is happening with their ratio. Hence, the first eigenvalue is changed at most by a constant
multiple too and the relationship between it and the volume of €2 remains as that in the
Fuclidean space up to a constant multiple.

The fact of the presence of a local A-isoperimetric inequality allows us to apply the
corollary 4.1 which ensures the finiteness of Ep(x,t) .

To prove the second assertion let us fix some x € M and consider a pre-compact region
Q) C M, x € with a smooth boundary, then by the Lemma 4.3 the function

T2
exp(2\) /Q exp[ﬁt] P2 (., v, £)dy (4.23)
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decreases in t whenever 0 < X\ < A\;(M) (note that A\ (M) < A\ () ). Let @ — M then
function (4.23) tends to exp(2At)Ep(z,t) whence the decreasing of the function (4.22)
follows. O

Our next step is to simplify the right-hand side of (4.21) . For this purpose we have to
impose some restriction on function the V'(¢) which, however, will not affect the rate of
increase of V(t) as t — oo . Namely, suppose that for some 7" €]0, +00] and N > 0

dlogt

{ Aoz V) s increasing for t > T (4.24)
4.24

%‘ggw < Nfort <2T
This condition needs some comments. For all reasonable applications of the Theorem 4.1
we have for small values of ¢ that V(¢) = const - t¥, v > 0 . Therefore for small ¢ the
function d?lgoggt) is bounded above. If this function remains bounded at oo then (4.24)
is satisfied for 7' = oo . Otherwise the function in question is unbounded and we may
assume it to be increasing at a neighbourhood of 0o (this restriction causes no troubles for
applications). If this is the case then condition (4.24) is satisfied for some finite value of
T . Let us note that the first case (i.e. T' = 0o ) takes place for a polynomial function V()
whereas the second one (when 7' is finite) holds for a function V() of superpolynomial
growth.

Theorem 4.2 Suppose that as in the Theorem 4.1 the A-isoperimetric inequality holds
in some ball B and that v/A € L . Let V(t) and W(r) be as above V — transformations

of A and v/A respectively and, in addition, suppose V (t) satisfies the condition (4.24) .
Suppose also that for some T > 0

7<t, T<R? R(ct)<cR (4.25)

where R(-) is defined by (4.1), then for any D > 2

const
Ep(zt) < NI

< ) (4.26)

where ¢ = ¢*/12, § = min(D — 2,6/c) and c is the same as in the Theorem 4.1.

Proof. Let us first observe that for D > 6/c the right-hand side of (4.26) does not depend
on D while the left-hand side (i.e. the quantity Ep ) is decreasing with respect to D .
Hence, the estimate (4.26) for D > 6/c will follow from that of D = 6/c . This is why
we assume from now on that D < 6/c and, thereby, 6 = D — 2 . Similarly, due to the
monotone decreasing of Ep(z,t) in ¢ it suffices to consider the case t = 7 . Let us apply
the Corollary 4.1 for 7 =t and for

p = max(Vet, ¢ 'R(ect)) (4.27)

where € < 1 is to be chosen later, then according to (4.27) and (4.25) p < R and by (4.21)
we have

const - exp[ g—j )
min(V(ct), %W(cm]

Ep(z,t) < (4.28)
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Since p?/t > ¢ and W (cp) > W(R(ect) = V (ect) it follows that the denominator in (4.28)
is at least as large as eV (ect) . To estimate the numerator first note that due to (4.24) and
the Lemma 4.2 (applied for § = 1 - this is not the § from the Theorem 4.2 !) the function
V(t)/V(3t) is bounded above by consty in ]0,277] and increasing in [27, c0[ . Therefore,
by the Proposition 4.1 we have for all ¢ > 0

RA(t) V(t)
——= <6log ———~+C

c VAN T
where C'= C(N,T) . Replacing here t by ect we obtain

R2(ect) V(ect)

<61 C
et =008 V(sect) *
. (" R(eet))? (et
¢ Rlect (5 Viect
< —1 —C'.
5t b BV (Leet) T 5"
Let us take
o

and note that the hypothesis D < 2+ 6/c implies 6 < 6/c and ¢ < 1. We obtain thereby

(1 R(ect))? V(ect)
<] C.
ot =08 V(5ect) *
Since
(vet)? _e_c
&t 676
it follows from (4.27) that
2
p V(ect) c
— <1 C+ -
5t =V (Tea) TG
whence we obtain
ex [p—Q] < const M
Pt ) = N V(zect)

This is a desired estimation of the numerator in (4.28) . Substituting it into (4.28) together
with the obtained above estimate of the denominator we get finally

consty r V(ect) const y 1
E t < 9 — 9
p(zt) < eVi(ect) V(iect) oV (cot)

as was to be proved. O

Corollary 4.2 Suppose that in addition to the hypotheses of the Theorem 4.2 the function
A(v) has a polynomial decay (see definition 2.1), in particular

A(2v) > aA(v) (4.29)
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for some o > 0 and in place of the condition (4.25) we have
T<t, Rct)<c1R (4.30)

where ¢; = c¢1(«) , then the estimate (4.26) continues to hold.

Remark. If the function A(v) is obtained from the relation (2.29) of the Proposition 2.4
then it satisfies (4.29) automatically with & = 1 because the function g(v) in (2.29) is
increasing. That means that the hypothesis (4.29) holds in all reasonable cases whenever
a A-isoperimetric inequality takes place.

Proof of corollary. As in the proof of the Theorem 4.2 we can take 7 =t . The constant
c1 is to be chosen in the course of the proof. First impose the restriction ¢; < ¢ . Then
(4.30) implies R(ct) < ct so we have the second half of condition (4.25) . To obtain its
first half it suffices to prove that for all ¢ > 0

R(t) > V't (4.31)
where = B(a) > 0 . Indeed, as soon as we have proved (4.31) we obtain from (4.30)
2
t< [ —] R
B
whence the first of inequalities (4.25) follows provided ¢; < . Thus, we can take
¢1 = min(e, ) and apply the Theorem 4.2.

To prove (4.31) let us use definition (4.1) of R(¢) and definition (2.6) of V(¢) . The
inequality (4.31) is transformed to the form

[/OV vdix/%] | 2 & /OV v/(\izjw (4.32)

1 =0,1,2,... , then

Consider a sequence of points V; = 21,

1
>Z/z+1 U\/A H—l Zlogv \/A(Vi-i-l) -

= a
> Z log 2
= VAW

A(V;) . Applying a simple inequality

1
a

where we have used A(V; 1) <

ERp



we obtain

On the other hand

Finally we get

and 0 = +v/alog2 . O

5. Pointwise estimates with the Gaussian term

The following statement plays the main role in obtaining pointwise estimates of the heat
kernel from the integral estimates. As in the previous Section we shall use the notation

T2

Eo(e.t) = [ x| 1 | 00y (5.1
M
where r = dist(z, y) .

Proposition 5.1 On an arbitrary manifold M the following inequality holds for all x,y €
M, t>0and D > 2

72 \/ t t
< S - - .
p(l’,y,t) _exp[ 2Dt] ED($72>ED(y72> (5 2)
where r = dist(zx,y) , and, besides
(z,y,1) < Y (At )\/E (@, 2V Ep(y, 10 (5.3)
p\Z,y,t) = exp 2D1 EXP{Alo D\, B D\Y, 9 .

provided t > tg >0, 0 <A<\ (M) .

Proof. Let us denote by ry, 5 the distances from an arbitrary point z € M to z, y .
Applying the semi-group property of the heat kernel and an elementary inequality r$+7r3 >
r2/2 we obtain

P@%%Z/P@%mmwﬁﬂﬁ
M

< r (2, 2,1) i (2,9,1) dz <
= exXp 1D1 Mp T, z, exp 2Dt P\Z, Y, exp 9Dt PN
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< - / 25, 2, 1) exp 1L d / 2(y, 2, 8) exp 12 :
exp| —— exp —- exp —

> exp 1Dt Mp L, z,1)exXp Dt z Mp Y,z,1)€xp Dt z
whence (5.2) follows.

In order to prove (5.3) note that as it follows from the Proposition 4.2

Nf=

t t t t
exp(2Mto) Ep (z, §O)ED (v, 50) > exp(2At) Ep (=, Q)ED (v, 5)
whence
to to ¢ ¢
exp(—A(t — to))\/ED (z, §)ED (v, 5) > \/ED (z, i)ED (v, 5)

which together with (5.2) imply (5.3) . O

Theorem 5.1 Suppose that the A-isoperimetric inequality holds on the manifold with a
function A € L . Assume also that its V— transformation V(t) satisfies the condition
(4.24) with some constants T, N , then for all z,y € M, t > 0 and any D > 2

constp N1 r?
t) < —————— e 5.4

where ¢ = ¢(D) = min(D — 2, 6/c)c?/24 and c is the constant from the Theorem 3.2.

Indeed, by the Proposition 5.1 we have the inequality (5.2) whence we obtain (5.4) by
estimating the quantities Ep applying the Theorem 4.2 for R=occand 7=t . O

Examples. In all the following examples the function A(v) is equal to const - v~
for small values v , say, for v < vg , so that V(t) = const - t*/? for t < ty and by the
Theorem 5.1 for these values of ¢t we have the estimate

2/n

constp r?
p(r,y,t) < iz eXP[—ﬁ] (5.5)

Consider now different possibilities of behaviour of the function A(v) for large values of the
argument v . Note that the following identity is useful for checking the condition (4.24)
which is satisfied in all the following examples:

dlogV'(t) V()
dlogt t O tA(V(t)) (5.6)

1. Let for v > vy
A(v) =const-v™", v >0,

then for t > ¢g
V(t) > const - t*/¥

and by the Theorem 5.1

const p r2
P,y 1) < Wexp[—Q—Dt] | (5.7
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2. Suppose that for large v
A(v) = const(logv)™"
then for large values of ¢t we get
V(t) > const - exp[const T ]

and the corresponding estimate

1 7“2
p(x,y,t) < const - exp| —const - tv+1 — 507 | (5.8)

3. Let A(v) = XA = const > 0 for v > vy that is the manifold has a positive spectral
radius. The Theorem 5.1 yields

2
t) < t - — t AN — —— 5.9
p(x,y,t) < cons exp[ cons 2Dt] (5.9)

In the situation with a positive spectral radius one can obtain a sharper information about
the rate of decay of the heat kernel as t — oo . Namely, const in front of At is a superfluous
term. The following theorem treats this case.

Theorem 5.2 Suppose that in any ball BE of a fixed radius R > 0 the A-isoperimetric
inequality holds with the function A = A, r defined as follows

Ay r(v) =a(z, R)v™" (5.10)

where a(z, R) > 0, v > 0, then for all x,y € M, t >ty > 0,

1

v

1
const,,[l + é] exp[ —% — )\t] exp(Ato)
min(to, R?)'/* (a (2, R) a (y, R))'"/*

p(z,y,t) < (5.11)

where A = A\ (M), r = dist(z,y) .

Remark. Note that the isoperimetric inequality (5.10) takes place on any complete
manifold for v = 2/n which follows from compactness arguments. Therefore, the estimate
(5.11) holds also on any manifold and gives the precise speed of decay of the heat kernel as
t — oo . If, in addition, one knows that all the coefficients a(z, R) are uniformly bounded
away from 0 , then the estimate (5.11) takes the following form

P2 v 2
p(z,y,t) < const -[1+7] eXp[—E —At] (5.12)

provided t > tg .

A similar inequality (without the term —\t ) is obtained in [D92] under the hypothesis
of "weak bounded geometry” which is stronger than our uniform local A-isoperimetric
inequality .
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Proof of Theorem 5.2. Computing the V' — transformations of A, r and /A, r one ob-
tains

V(t) = (vat)v,  W(r) = (iﬂar?)l/v (5.13)

whence it follows that
R(t) =2v/t/v

Let us note also that the function tA(V(t)) = L is bounded. Applying the Theorem 4.2
for 7 = min(¢, const,R?) and D € (2,2 + 6/c) we get

Ep(a,t) < : const,,
S va(x, R)Y/Y min(t, R2)1/v

which together with (5.3) implies

( < const,, r2
X eX s
PRGIE =55 P T2 o

- )\t] A (5.14)

where
exp(Ato)

(a(z, R)a(y, R))/2¥ min(t, R2)1/v

A=

and 6 = D — 2 < 6/c . Taking here § = min[ s, T%] and noting that for this &

r2 r2 or?

o — <
2 (240t 2240t —

we obtain finally (5.11) . O

The Theorem 5.2 can give a non-trivial information also in the case A\; (M) = 0. Next we
suppose that the A-isoperimetric inequality holds in any ball Bf, € M with the following
function A = A, g

3o

b
Ay r(v) = ﬁ[\/ol Bﬁ) v™2" b= const >0 . (5.15)

Here n is the dimension of the manifold M but formally this is not necessarily: n may be
any positive number. For example, this is true with n = dim M for a manifold M of a
non-negative Ricci curvature (see [G91] for the proof).

Proposition 5.2 Under the hypothesis above the heat kernel admits the following estimate
for all x,y € M and t > 0

3 r?
2 ] antl exp[—ﬂ]

< nb| 1+ — 1
p(z,y,t) < const ,b[ + ; Vol B (5.16)
Vit
Besides, for any two balls By, and BY C Bf, we have
Vol B RY"
< tno| — . 1
Vol BY = cons ’b[ P ] (5.17)



35

Inversely, suppose that a manifold M is known to have the heat kernel satisfying the
inequality
const
)< —n— 5.18
Ple 2, t) < o (5.18)
NG
for all x € M and t > 0 and assume in addition that for any couple of concentric balls

B3, Bj where p < R we have

Vol B% RY"
< t| — 5.19
Vol B: < cons [,0] , (5.19)

then in any ball the A-isoperimetric inequality holds with the function A = A, r defined
by (5.15) .

Remark. The statement of the theorem means that the A-isoperimetric inequality in
any ball given by (5.15) is simply equivalent to the conjuncture of the heat kernel estimate
(5.16) and the volume ratio estimate (5.17) . On a manifold with a non-negative Ricci
curvature a similar estimate of the heat kernel was proved first by Li and Yau [LY] . In the
view of the sharp results of B.Davies (see [D88] , [DP] ) the order 3n+1 of the polynomial
correction term in (5.16) seems not to be optimal. The advantage of our approach is
that the result is stable under a quasi-isometric transformation of the Riemannian metric.
Indeed, it is easy to see that the A-isoperimetric inequality in question is a quasi-isometric
invariant. It can be considered as a replacement of the notion of a non-negative Ricci
curvature when dealing with a manifold whose metric is not smooth enough to have a
curvature at all.

Proof. Let us prove first (5.17) applying the result of Carron [C] that a A-isoperimetric
inequality implies some lower bounds for the volume of a geodesic ball. Indeed, the Propo-
sition 2.4 from [C] states the following:

if the A-isoperimetric inequality holds in a region 2 C M with the function A(v) =

av~2/" | then any ball BY C Q admits the following volume estimate:

Vol BY > const,a™?p" .
Applying this result to the set ) = B% and taking a = % (Vol Bﬁ] " we get (5.17) .
To prove the heat kernel estimate (5.16) let us apply the Theorem 5.2 with the function

a(z,R) = %[VOIB}”%) " and with ¢ty = ¢, R =/t . We obtain:

2) 511 2
constn[1+%] exp[—Z—t]

(5.20)
[V013

p(ZC » Yy t) < 1
T Yy 2
vVol B, )

The expression on the right-hand side of (5.20) is going to be simplified to get rid of
Vol Bil/i . It is known how to do that on a non-negatively curved manifold (see [LY] ): one
should estimate the ratio of the volumes Vol BT/Z and Vol B?/E via the distance r between
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points z, y using the volume comparison theorem for such a manifold. Here we apply the
inequality (5.17) in place of the comparison theorem. Namely, we have

. r+vi)”
Vol B < Vol Bi!+\/i < ConStn,b[T] Vol B?/E
r2 n/2
< constnvb[l + 7] Vol Bi’/z ) (5.21)

Replacing the volume Vol B\y/z in (5.20) by its lower bound from (5.21) we get (5.16) .

Let us turn to the proof of the converse statement. The idea is the same as in the
Theorem 2.2 but first we observe that the hypothesis (5.19) implies that for any two
intersecting balls Bf, and BY such that p < R the following holds:

RY™ Vol B% RY"
const[—] < © 1;” < const[—] (5.22)
p Vol B, p

where n; > 0 depends on n and on the const in (5.19) .

This is proved in [G91] , see the Theorem 1.1 there. We only mention that the right
inequality in (5.22) follows evidently from (5.19) whereas the left one exploits (5.19) as
well as the non-compactness of the manifold under consideration.

Hence, we can claim that for any two intersecting ball By, and B} the following relation
holds without any restriction on the radii R, p :

Vol B%
Vol B}

< const f(%) (5.23)

where
g, <1

£, £=>1

Indeed, if R > p then right inequality (5.22) is applicable. Otherwise we apply the left
inequality (5.22) exchanging R and p .

To prove the A-isoperimetric inequality in a given ball B% with the function (5.15) let us
apply the eigenfunction expansion as was done in the course of the proof of the Theorem
2.2 and obtain for any region 2 lying in a ball Bf and for any value of time ¢t > 0 the
estimate:

76 = { (5.24)

dy

-
VolB\/z

exp(—A1(Q)t) < /

p(%y,t)dy < COl’lSt/
Q Q

We have according to (5.23) that

Vol Bf

Yy
VolB\/z

< const f (

)

=

which implies
R | Vol

%)VolB;g '

exp(—A1 (Q)t) < const f(
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Now we choose the time ¢ in order to get at most e~! on the right-hand side above:

R Vol B%
) — .2
\/Z) Vol Q (5.25)

const - ef(

whence it follows that

1
() = 7

(5.26)

We can evaluate ¢ using (5.25) and the following property of the function f which reflects
its polynomial nature and follows obviously from the definition (5.24) : for any v > 0 there
exists a positive constant ¢, such that for all £ >0

1f(€) < fey€) -

Therefore, taking here v = const - e we have

vf(%) < f(

R

Cv%)

which together with (5.25) yields

R Vol B%
—)> R
f(C’Y\/Z)— VOIQ

Let us note that the ratio on the right-hand side here is at least as much as 1 whence it
follows that

R _ ( Vol B L/m
i —[ Vol Q) ] '
Evaluating t from this inequality and substituting into (5.26) we get finally the desired
A-isoperimetric inequality . O

A similar heat kernel estimate can be obtained on a manifold of a Ricci curvature
bounded from below by some constant —K . For such a manifold it was proved in [V89]

that there is some small positive constant p = p(K) such that in any ball BY of radius p
A-isoperimetric inequality is satisfied with the function

2/n
Ay (v) = constK[Vol B;f) 2

Applying the Theorem 5.2 for R = p, to = p? we obtain

142
[14—?) 2exp[—%—)\t]

(Vo BVol BE ) *

p(.fC, Y, t) S ConStK,n,)\ (527)

provided ¢t > p?, A=\ (M) .
In all the foregoing examples the heat kernel bounds contain two main multiples: a

r?
t

which, in fact, controls a decay of the heat kernel when r — oo although the Gaussian factor

multiple which is responsible for behaviour of heat kernel in time and the term exp[ —c
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appears on a non-geometric ground. The rest of this Section is devoted to a situation when
one more factor emerges depending on r . This term is expected on a quickly expanding
manifold for the following reason. As it was mentioned in Section 2, we have always

/ p(z,y,t)dy <1 (5.28)
M

If the volume of a ball of the radius R is growing up faster than exp(CR?) as R — oo
then the heat kernel p(z,y,t) has to decrease, generally speaking, faster than exp(—Cr?)
so that the integral (5.28) is balanced. This is why one more factor is expected with a
quick decay as r — oo

Let us fix some point z € M and consider the function

A(R) =\ (M \ BR) (5.29)

where the exterior of the ball is regarded as a submanifold and R € [0, +0c) . Obviously,
A(R) is an increasing function of R and A(0) is nothing but the spectral radius A (M) .

For example, if M is a Cartan-Hadamard manifold (i.e. its sectional curvature is non-
positive and it is simply connected) then

AMR) > i(n —1)%k(R)? (5.30)

where —k?(R) is equal to sup of sectional curvature in exterior of ball B% .

Theorem 5.3 Suppose that the A-isoperimetric inequality holds on the manifold with the
function

A(v) = av™ /" (5.31)
with some a > 0 , then for all x € M such that r = dist(z, z) > v/t the inequality is valid

consty, p,

r? _
p(z,2,1) < 2 eXP[—’YIt —A(0)t —er /\(’W)] (5.32)

where 0 < v < 1 is arbitrary, ¢=¢(y) >0 .

Remark. For small values of r and even for all z, z € M, t > 0 we have by the Theorem
5.2 the estimate (5.11) for R = oo, a(z, R) = a or by the Theorem 5.1 the estimate (5.5)

The Theorem 5.3 is applicable for a Cartan-Hadamard manifold because the Euclidean
isoperimetric inequality holds for such a manifold. The third term exp(—cry/A(yr)) ac-
quires on a Cartan-Hadamard manifold the form

exp[—é1 (n— 1)k(’yr)r] : (5.33)

\V)

Let us compare the estimate (5.32) in this setting with the exact formula (1.3) of the heat
kernel of H3 . The multiple (5.33) corresponds to the term

__kr
sinh(kr)
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whose decay is similar to that of (5.33) up to the constant ¢ .
Of course, if the curvature —k*(R) is growing (to the negative side) fast enough then
the term (5.33) can play the main role in the heat kernel behaviour as r — oo .

Proof of theorem. In the exterior of any ball B} the A-isoperimetric inequality holds with
the function
Ag(v) = max(av™2/", A\(R)) . (5.34)

Let us denote by Vz(t) and Wr(r) V— transformations of A and v/A respectively. One
can compute that

1
Vr(t) > consty ,t"/? exp[ §A(R)t] (5.35)
and .
Wr(t) > constg ,r" exp[ 3 )\(R)r] (5.36)
Of course, % in the exponent is too rough but all the same we will apply further the

Theorem 3.2 which does not give a sharp constant at the corresponding place.

Let us fix some ball By of radius p < r = dist(x, z) and put R =7 — p . Since the ball
B lies in the exterior of By, it follows that the A-isoperimetric inequality holds in By with
the function A = Ar . Applying the Theorem 3.2 to the function p(-, z,-) in the cylinder
BY x (t/2,t) we get

¢ t
N | [ Puesmas G
m1n(§VR(c§), pQWR(Cp)) 3 /Bj

On the other hand by the Theorem 4.2 we have for D > 2

/ pQ(y,z,S)dyS/ p*(y, 2, s)dy
T M

; \Bg
R? 9 r? constp 4 n R?
< eXP[—E] /MP (y,2,5) eXP[ E] dy < T2 eXP[—E]
Substituting into (5.37) and noting that ¢/2 < s <t we obtain

RZ
constp q,n €Xp — D1

tn/2 min[VR(c%), I/I/'R(cp)p?2 )

p2(w, 2,t) <

or, estimating Vz and Wg from (5.35) and (5.36) respectively,

constp q.n

t"™ min <1, ﬁ)

pA(z,2,t) < T exp[—g—t - icmin(A(R)t, p\/)\(R))] (5.38)

T
Now we apply the following elementary inequality

K2X? —26XY + Y min(X,Y) >0
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which is valid for all X,Y >0 and 0 < < 1 . Taking here X = py/A(R), Y = A\(R)t we

have
min( py/AR), A(R)t) = 2np/A(R) — 525

Therefore (5.38) implies

t R 1
p(z,2,t) < COND,an ex p[—— - —cmp\/ ) + cr? ]

n+1
t™ min <1, %)

Let us set R = ~r and, correspondingly, p = (1 — )r where 0 < v < 1 . Since by the
2
hypothesis 7 > v/t it follows that 2 > const, . Taking x small enough and increasing a

bit D we get rid of the summand cx? ik

p*(w, 2,t) <

constp g n,~ y [_72702 1
Dt 2

o — —yKe\/ A(yr)r ] (5.39)
Finally we apply estimate (5.11) which yields for tg = (1 — )t

constp q,n,~ r?
p(x, z,t) < T Xp[_Z—Dt —A(0)¢ ] (5.40)
Multiplying (5.40) and (5.39) to powers y and 1_77 respectively and taking D being close
enough to 2 we obtain (5.32) (one has to replace ¥? by « in the final expression). O

Corollary 5.1 If the A-isoperimetric inequality holds on a manifold with the function
A(v) = av=2/™ a >0 then for all z € M

1

lim sup — suplog p(z, z,t) < —const [ A (M) + / Aess( ) (5.41)
r—oo I t>0

where r = dist(z, 2), Aess(M) is the bottom of the essential spectrum of —A in L?(M)

const > 0 is an absolute constant.

First note that for » > 1 we can give up the factor /2 in (5.32) . Indeed, if ¢ > 1 this is
evident, otherwise this term is majorized by exp(const %) . Thus, taking v = 3 in (5.32)
we have for r > 1

2

logp(x, z,t) < —const [ % + A0)t +r )\(r/2)] + constg y, -

Since
2

% FA0) > 2/ A0)
it follows that

sup log p(z, z,t) < —const (r\/)\(O) + r\/)\(r/2)) + constg y, -
>0

Dividing this inequality by r and passing to limit as r — oo we get (5.41) because
A(0) = A\ (M) and
lm A(r) = Aess(M)

T—00

(see [DL] ) O
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