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Abstract. We prove, in the setting of a measure energy space (M,µ, (E ,F )), that if the smallest
eigenvalue λ1(Ω) of the generator of the Dirichlet form E in any precompact open set Ω ⊂ M
admits the estimate λ1(Ω) ≥ ν(Ω)−α where ν is a measure absolutely continuous with respect to µ
and α > 0 then a similar estimate holds for the kth smallest eigenvalue: λk(Ω) ≥ const (k/ν(Ω))α.
As an application, we obtain an upper estimate of the stability index of a minimal surface in R3 via
the total curvature.

1. Introduction. The classical theorem of Faber and Krahn says that, for
any bounded open region Ω ⊂ R

n,

λ1(Ω) ≥ λ1(Ω∗)

where λ1(Ω) denotes the first eigenvalue of the Dirichlet problem in Ω, and Ω∗ is
the ball of the same volume as Ω. Expressing λ1(Ω∗) via the volume |Ω∗| = |Ω|,
we obtain

λ1(Ω) ≥ cn|Ω|−2/n.(1.1)

Let λk(Ω) denote the kth smallest eigenvalue of the same Dirichlet problem
(counted with the multiplicity), k = 1, 2, 3, . . . . The Weyl’s asymptotic formula
says

λk(Ω) ∼ c′n

(
k
|Ω|

)2/n

, k →∞,(1.2)

where 0 < c′n < cn. On the other hand, it is known that

λk(Ω) ≥ c′′n

(
k
|Ω|

)2/n

,(1.3)
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where 0 < c′′n < c′n (see, for example, [17], [21], [24]; it is a long-standing
conjecture of Pólya that (1.3) should hold with c′′n = c′n).

The purpose of the present paper is to show that transition from (1.1) to (1.3)
(with some constant c′′n > 0) is more or less automatic, in a rather general setting.
For the sake of introduction, we restrict ourselves to the setting of Riemannian
manifolds. Given a Riemannian manifold M and a second order elliptic operator
L on M, consider the eigenvalue problem in a nonempty precompact open set
Ω ⊂ M: {

Lu + λu = 0,

u|∂Ω = 0.
(1.4)

If this problem, properly understood in a weak sense, has a real discrete spectrum
bounded from below, then denote the eigenvalues in the increasing order by
λk(Ω, L), k = 1, 2, . . . .

Let us specify the operator L as follows

Lu =
1
m

(div(A∇u)− Vu),(1.5)

where div and ∇ are respectively the divergence and the gradient associated
with the Riemannian metric, m, V are nonnegative continuous functions on M, m
being strictly positive, and A = A(x) is a positive definite symmetric operator in
TxM continuously depending on x. The operator L is symmetric with respect to
the measure µ such that dµ = mdµ0 where µ0 is the Riemannian measure, and
the spectrum of the boundary value problem (1.4) is discrete and positive. For
example, if m ≡ 1, A ≡ id, and V ≡ 0 then L = div∇ = ∆ is the Riemannian
Laplace operator.

The following theorem is a particular case of our main result—Theorem 3.1
in Section 3. Denote by O(M) the family of all non-empty precompact open
subsets of M.

THEOREM 1.1. Let L be an operator on a Riemannian manifold M defined by
(1.5), and ν be a Radon measure on M, absolutely continuous with respect to µ0.
Assume that for all Ω ∈ O(M),

λ1(Ω, L) ≥ bν(Ω)−α, provided ν(Ω) < ν0,(1.6)

with positive constants α, b, and ν0 ∈ (0, +∞]. Then, for any positive integer k and
all Ω ∈ O(M),

λk(Ω, L) ≥ c
(

k
ν(Ω)

)α

, provided ν(Ω) <
ν0

50
k,(1.7)

where c = c(α, b) > 0.
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Note that in the most general setting covered by Theorem 3.1, L is the gen-
erator of any regular Dirichlet form in L2(M,µ).

Let us emphasize that Theorem 1.1 provides nontrivial information about the
higher eigenvalues based only on the first eigenvalue. However, this is not so
surprising as it might look at first sight because when proving (1.7) for a large
k, one uses (1.6) for subsets of Ω of the measure ≈ ν(Ω)/k.

For the case when ν = µ = µ0 and L = ∆, Theorem 1.1 was proved in [17,
Corollary 2.2] (the case ν0 = ∞) and in [11, Theorem 3.1] (the case ν0 < ∞).
Our proof of Theorem 1.1 exploits a combination of ideas from [11], [17], and
[22]. It is worth mentioning that we make crucial use of the heat kernel of L.

In the particular case M = R
n, L = ∆, ν = µ0, and ν0 = ∞, Theorem 1.1

proves (1.3) assuming that (1.1) is known. Allowing an arbitrary measure ν
provides enough flexibility for applications. Denote by Nλ(Ω, L) the counting
function of the spectrum of (1.4), that is

Nλ(Ω, L) = max{k : λk(Ω, L) ≤ λ}.

In particular, N0(Ω, L) is the number of nonpositive eigenvalues.

THEOREM 1.2. Let µ be the Riemannian measure on a manifold M, and V be
any nonnegative continuous function on M. Assume that for all Ω ∈ O(M)

λ1(Ω, ∆) ≥ bµ(Ω)−1/p,(1.8)

where p > 1 and b > 0. Then for any Ω ∈ O(M)

N0(Ω, ∆ + V) ≤ C
∫

Ω
Vpdµ,(1.9)

where C = C(p, b).

The estimate (1.9) is a version of a theorem of Cwikel-Lieb-Rosenblum,
which provides a similar estimate for the number of negative eigenvalues of the
operator ∆ + V in R

n. In this generality, it can be extracted also from [20]. Our
proof uses Theorem 1.1 (or rather a more general Theorem 3.1) with the measure
ν having the density Vp with respect to µ, which clarifies the role of the integral
in (1.9). Note that there are many classes of manifolds where the Faber-Krahn
type inequality (1.8) holds—see for example [18].

The condition p > 1 in the above statement is essential. For example, in R
n

(1.8) holds with p = n/2, which implies the restriction n > 2. It is known that
(1.9) fails in R

2 (with p = 1) for a general V . However, in the case p = 1 it
is still possible to prove (1.9) for some potentials V , using Theorem 3.1—see
Theorems 4.4 and 4.7.

The following result dealing with the eigenvalues of ∆− V is also a conse-
quence of Theorem 3.1.
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THEOREM 1.3. Assume that on a manifold M the inequality (1.8) holds for all
Ω ∈ O(M) with some p > 0 and b > 0. Fix a non-negative continuous function V
on M and a constant q > 0. Then for all Ω ∈ O(M) and for all k = 1, 2, . . .

λk(Ω, ∆− V) ≥ c

(
k∫

Ω
dµ
Vq

) 1
p+q

,

where c = c(b, p, q) > 0.

Another interesting application of Theorem 1.1/3.1 is related to the stability
index of minimal surfaces. If M is a two-dimensional minimal surface in R

3

then its index ind (M) is the maximum number of linearly independent local
deformations of M, which decrease the area. More precisely, if Ω ∈ O(M) then
ind (Ω) is the number of negative eigenvalues of the Dirichlet problem (1.4) for
the stability operator L = ∆ − 2K, where K is the Gauss curvature of M; then
set ind (M) = supΩ ind (Ω) (cf. Section 4.4). If M is an area minimizer then
ind (M) = 0; however, for most interesting classes of minimal surfaces one has
ind (M) > 0 (see for example [19]).

THEOREM 1.4. For any two-dimensional immersed oriented minimal surface M
in R

3, we have

ind (M) ≤ C
∫

M
|K|dµ,(1.10)

where µ is the area on M induced from R
3, and C is an absolute constant.

The estimate (1.10) was previously known only if the minimal surface M is
geodesically complete, and in this case (1.10) was proved by Tysk [32] (see also
[26] for an optimal constant C). A search for the relation between the stability
index and the total curvature was motivated by a theorem of Fischer-Colbrie [15]
claiming that, for a complete minimal surface, ind (M) is finite if and only if
the total curvature is finite. The proofs in [32] and [26] use the completeness
in a crucial way via a theorem of Huber (see for example [28]) saying that a
complete minimal surface of a finite total curvature is conformally equivalent
to a complete Riemann surface with a finite number of points removed. Our
proof avoids structure results for minimal surfaces and hence does not need the
completeness. We obtain (1.10) applying Theorem 1.1/3.1 with measure ν having
the density |K| with respect to µ (see Theorem 4.9 in Section 4.4). An interesting
open problem is to obtain a lower bound of the index via the total curvature,
under appropriate assumptions.

The structure of the paper is as follows. In Section 2 we introduce the nec-
essary definitions related to the abstract notion of a measure-energy space. In
Section 3 we state and prove the main Theorem 3.1. The proof consists of sev-
eral steps of independent interest. In Section 3.1 we deduce a Nash type inequality
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from a Faber-Krahn inequality. In Section 3.4 we prove Lemma 3.5 providing
the crucial L1,∞ → L2,2 estimate of the heat semigroup. This estimate is used
twice—in Section 3.4 to prove the existence of the heat kernel (Theorem 3.9),
and in Section 3.5 where the proof of Theorem 3.1 is concluded. In Section 4
we discuss various applications of Theorem 3.1, in particular those mentioned
above. An important tool there is the Sobolev inequality proved in Section 3.2.
Theorems 1.2, 1.3, 1.4 are particular cases of Theorems 4.3, 4.6, 4.9, respectively.

Some of the results of this paper, in particular Theorem 3.9, are specific
to the abstract setting and are not needed if one is interested only in elliptic
differential operators on Riemannian manifolds. On the other hand, if one is
interested in abstract Markov operators, Theorem 3.9 guarantees the existence of
the heat kernel under rather weak hypotheses and may have applications outside
the scope of this paper.

Acknowledgments. This work was done during a series of visits of the first
author to Harvard University. He gratefully acknowledges the hospitality and the
financial support of that university.

2. Preliminaries.

2.1. Measure-energy space. If M is a topological space and Ω ⊂ M is an
open set then denote by C0(Ω) the space of all continuous functions on M whose
support is compact and lies in Ω. Denote by O(M) the family of all nonempty
precompact open subsets of M. Consider the following hypotheses:

(M0) M is a locally compact separable metric space, and µ is a Radon measure
on M with full support; that is µ is a Borel measure and 0 < µ(Ω) < ∞ for all
Ω ∈ O(M).

Note that we do not assume any relation between the measure µ and the
distance function on M. Observe also that by a standard approximation argument,
C0(Ω) is dense in L2(Ω,µ) for all Ω ∈ O(M).

(M1) E is a symmetric bilinear form defined on a subspace of C0(M), which
will be denoted by F0. Also, for any Ω ∈ O(M), the set

F0(Ω) := F0 ∩ C0(Ω)(2.1)

is dense in C0(Ω) with the sup-norm.

Clearly, F0(Ω) is a dense subspace of C0(Ω). We will write for simplicity
E[f ] := E( f , f ).
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(M2) For any Ω ∈ O(M), the form (E ,F0(Ω)) is semi-bounded below in
L2(Ω,µ); that is there exists a positive constant CΩ such that for all f ∈ F0(Ω)

E[f ] ≥ −CΩ

∫
f 2dµ(2.2)

(M2′) E is nonnegative definite, that is E[f ] ≥ 0 for all f ∈ F0.

Obviously, (M2′) implies (M2).

(M3) For any Ω ∈ O(M), the form (E ,F0(Ω)) is closable in L2(Ω,µ); that is
for any sequence {fn} ⊂ F0(Ω),

‖ fn‖L2(Ω,µ) −→ 0 and E[fn − fm] −→ 0 =⇒ E[fn] −→ 0

where n, m →∞.

The conditions (M0)–(M3) imply that the form (E ,F0(Ω)) has the minimal
closed extension in L2(Ω,µ) (Friedrichs’s extension). In other words, for a sub-
space F(Ω) ⊂ L2(Ω,µ) containing F0(Ω) the form E can be extended to F(Ω)
so that F(Ω) is a Hilbert space with respect to the following inner product:

( f , g)F (Ω) = C(f , g)L2(Ω,µ) + E(f , g),(2.3)

where C is any constant larger than CΩ (see [16]). By the construction, F0(Ω) is
dense in F(Ω) with respect to the norm ‖ f‖F (Ω).

Note that if the property (M3) holds for Ω = M then it is inherited by all
open subsets of M. However, we will need this property only for precompact
sets Ω.

Definition. A triple (M,µ, (E ,F0)) satisfying all the conditions (M0), (M1),
(M2), and (M3) is called a measure-energy space. The form E is called an energy
form.

For simplicity we will sometimes write (M,µ, E) assuming that the domain
F0 is built into the definition of E . Let (M,µ, E) be a measure-energy space, and
let Ω ∈ O(M). The energy form (E ,F(Ω)) is closed and hence has a generator
H = HΩ,µ,E which is a self-adjoint operator in L2(Ω,µ) such that

E(f , g) = −(Hf , g)L2(Ω,µ),(2.4)

for all f , g ∈ dom (H) ⊂ F(Ω); the domain dom (H) is dense in L2(Ω,µ) and −H
is semi-bounded below on dom (H) (cf. [14, Section 4.4]).
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2.2. The Markov property and Dirichlet forms.

Definition. A bilinear form E , defined on a functional linear space D, is said
to satisfy the Markov property, if for all 0 ≤ a ≤ b

f ∈ D =⇒ fa,b := ( min ( f , b)− a)+ ∈ D and E[ fa,b] ≤ E[f ].(2.5)

Let us make the following assumption:

(M4) The form (E ,F0) satisfies the Markov property.

Combining (M4) with the definition (2.1) of F0(Ω) we see that for all Ω ∈
O(M) the form (E ,F0(Ω)) also satisfies the Markov property: for all 0 ≤ a ≤ b

f ∈ F0(Ω) =⇒ fa,b ∈ F0(Ω) and E[ fa,b] ≤ E[f ].(2.6)

Definition. We say that (M,µ, (E ,F0)) is a Markov measure-energy space if
all the hypotheses (M0)–(M4) are satisfied, including (M2′).

Fix Ω ∈ O(M). By a definition from [16], a Dirichlet form in L2(Ω,µ) is any
symmetric, bilinear, non-negative definite form E whose domain D is dense in
L2(Ω,µ), which is closed and satisfies the Markov property. The Dirichlet form
(E ,D) is called regular if D∩C0(Ω) is dense both in D with respect to the inner
product

(f , g)D = (f , g)L2(Ω,µ) + E(f , g),

and in C0(Ω) with the sup-norm. The following two statements describe relations
between Markov measure-energy spaces and regular Dirichlet forms.

PROPOSITION 2.1. If (M,µ, (E ,F0)) is a Markov measure-energy space then, for
any Ω ∈ O(M), the form (E ,F(Ω)) is a regular Dirichlet form in L2(Ω,µ).

Proof. The domain F(Ω) is dense in L2(Ω,µ) as it contains F0(Ω) that is
dense in L2(Ω,µ) by (M1). The form (E ,F(Ω)) is closed by definition (cf. (M3)).
The Markov property for (E ,F(Ω)) follows by [16, Theorem 3.1.1] from the
Markov property for (E ,F0(Ω)). Finally, the form (E ,F(Ω)) is regular because
F(Ω) ∩ C0(Ω) contains F0(Ω) that is dense both in F(Ω) (by the construction)
and in C0(Ω) (by (M1)).

PROPOSITION 2.2. Let (M,µ) be a measure space satisfying (M0) and let (E ,D)
be a regular Dirichlet form in L2(M,µ). Set F0 := D∩C0(M). Then (M,µ, (E ,F0))
is a Markov measure-energy space.
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Proof. The hypotheses (M0) and (M2′) are obvious. Let us verify (M1), (M3),
and (M4). Note that for any Ω ∈ O(M) we have by (2.1)

F0(Ω) := F0 ∩ C0(Ω) = D ∩ C0(Ω).

Proof of (M1). By the definition of a regular Dirichlet form, F0 is dense in
C0(M). We need to show that F0(Ω) is dense in C0(Ω) for any Ω ∈ O(M). Since
C0(Ω) ⊂ C0(M), for any function f ∈ C0(Ω) there exists a sequence {fn} ∈ F0

such that fn ⇒ f . By [16, p. 6], there exists a function ψ ∈ F0(Ω) such that
ψ|supp f = 1. By [16, Theorem 1.4.2(ii)], F0 is an algebra; in particular, ψfn ∈ F0.
Obviously, we have also ψfn ∈ C0(Ω) whence we obtain ψfn ∈ F0(Ω). Since
ψfn ⇒ ψf = f as n →∞ we see that F0(Ω) is dense in C0(Ω).

Proof of (M3). Let {fn} ⊂ F0(Ω) be a sequence such that

‖ fn‖L2(Ω,µ) −→ 0 and E[fn − fm] −→ 0 as n, m →∞.(2.7)

Then also ‖ fn‖L2(M,µ) → 0, which implies E[fn] → 0 since the form (E ,D) is
closed in L2(M,µ). However, the fact that (2.7) implies E[fn] → 0 means exactly
that (E ,F0(Ω)) is closable in L2(Ω,µ).

Proof of (M4). Let 0 ≤ a ≤ b and f ∈ F0 = D ∩ C0(M). By the Markov
property of (E ,D), we have fa,b ∈ D and E[fa,b] ≤ E[f ]. It is obvious that
fa,b ∈ C0(M) whence fa,b ∈ F0. Hence, (E ,F0) also satisfies the Markov property.

2.3. Some examples.

Riemannian manifolds. Let M be a Riemannian manifold and µ0 be the Rie-
mannian volume on M. Let m, V be nonnegative continuous functions on M, m
being strictly positive, and A = A(x) be a positive definite symmetric operator in
TxM continuously depending on x. Define measure µ on M by

dµ = mdµ0,(2.8)

and the energy form by

E(f , g) =
∫
〈A∇f ,∇g〉 dµ0 +

∫
Vfg dµ0,(2.9)

where 〈·, ·〉 is the inner product in the tangent space induced by the Riemannian
structure. Let F0 = Lip0(M) be the set of all Lipschitz functions on M with
compact support. Then (M,µ, E) is a Markov measure-energy space, and, for any

set Ω ∈ O(M), F0(Ω) = Lip0(Ω) and F(Ω) =
o

H1 (Ω,µ0) (cf. [16, Section 1.2.1]).
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Assuming for simplicity that A(x) is smooth enough and integrating by parts
in (2.9), we obtain

E(f , g) =
∫

(− div (A∇f ) + Vf )gm−1 dµ,

for any two smooth functions f , g ∈ F0. Hence, the generator HΩ,µ,E coincides
on smooth functions with the differential operator

L =
1
m

(div (A∇)− V).(2.10)

The spectrum of −HΩ,µ,E is discrete, positive, and coincides with the spectrum
of the following (weak) eigenvalue problem in Ω:

{
div (A∇u)− Vu + λmu = 0,

u|∂Ω = 0.
(2.11)

Jumping measures. Let (M,µ) be a metric measure space satisfying the axiom
(M0). Fix a non-negative symmetric function j(x, y) ∈ L1

loc(M × M,µ × µ) and
define

E(f , g) =
∫
M

∫
M

(f (x)− f (y))(g(x)− g(y))j(x, y)dµ(x)dµ(y),

with the domain F0 = C0(M). Then (M,µ, E) is a Markov measure-energy space,
and for any set Ω ∈ O(M), F0(Ω) = C0(Ω) and F(Ω) = {f ∈ L2(Ω,µ) : E[f ]
<∞} (cf. [16, Section 1.2.1]).

In particular, if M is a locally finite graph, µ(x) is the degree of a point x ∈ M
(that is the number of edges adjacent to x), and j(x, y) = 1

µ(x)µ(y) or 0 depending
on whether x and y are connected by an edge or not, then the form E is associated
with the simple random walk on M.

Fractal sets. Let M be a fractal set. We do not give a precise definition of
that, referring to [2] where many examples of such sets are considered such as
Sierpinski gaskets, Sierpinski carpets, etc. Any fractal set is a subset of R

n and
hence inherits a metric structure from R

n. Also, any fractal set has a certain
Hausdorff dimension α; hence, it is natural to define measure µ on M as the
Hausdorff measure of dimension α.

The definition of an energy form E on M is highly nontrivial and depends on
a specific self-similarity property of M. Normally, M can be approximated by a
sequence of finite graphs; choosing an energy form on each graph as above and
passing to the limit with a proper scaling, one obtains an energy form on M, which
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happens to be a regular Dirichlet form in L2(M,µ). Then, by Proposition 2.2,
(M,µ, E) is a Markov measure-energy space.

3. The main result. For any quadratic form E in L2(Ω,µ) with the domain
F0(Ω) define λ1(Ω,µ, E) by

λ1(Ω,µ, E) := inf
{f∈F0(Ω), ‖ f‖2 
=0}

E[f ]
‖ f‖2

,(3.1)

where ‖ f‖2 = ‖ f‖L2(Ω,µ). If there is no function f ∈ F0(Ω) with ‖ f‖2 �= 0
then λ1(Ω,µ, E) = +∞. However, under the hypotheses (M0), (M1), and (M2),
λ1(Ω,µ, E) is always finite. Moreover, if (M,µ, E) is a measure-energy space then
λ1(Ω,µ, E) is the bottom of the spectrum of the operator −HΩ,µ,E . In this case,
the class F0(Ω) of test functions in (3.1) can be replaced by F(Ω).

If the spectrum of the operator −HΩ,µ,E is discrete then we denote its eigen-
values by λk(Ω,µ, E), k = 1, 2, . . . , in the increasing order, where each eigenvalue
is counted with its multiplicity. In this case, consider also the counting function

Nλ(Ω,µ, E) := max{k : λk(Ω,µ, E) ≤ λ}.(3.2)

Here is our main result.

THEOREM 3.1. Let (M,µ, E) be a Markov measure-energy space, and let ν be
a Radon measure on M, which is absolutely continuous with respect to µ and such
that the following inequality holds, for any Ω ∈ O(M),

λ1(Ω,µ, E) ≥ bν(Ω)−α, provided ν(Ω) < ν0,(3.3)

with positive constants α, b, and ν0 ∈ (0, +∞].
Then, for any Ω ∈ O(M), the operator HΩ,µ,E has discrete spectrum and, for

any positive integer k,

λk(Ω,µ, E) ≥ cb
(

k
ν(Ω)

)α

, provided ν(Ω) <
ν0

50
k,(3.4)

where c = c(α) = α
8 50−α.

Consequently, for any λ ≥ 0,

Nλ(Ω,µ, E) ≤
(

Cλ1/α +
50
ν0

)
ν(Ω),(3.5)

where C = (cb)−1/α = 50( 1
8αb)−1/α.

Remark. In the case ν0 = +∞ the restrictions on ν(Ω) in (3.3) and (3.4) are
void; also the term ν−1

0 vanishes in (3.5). The proof of Theorem 3.1 is easier if
ν0 = +∞ but the case ν0 <∞ has some interesting applications.
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Remark. The hypothesis that ν is absolutely continuous with respect to µ can
be dropped if one knows a priori that etHΩ,µ,E f is continuous for any f ∈ Cb(Ω)
and all t > 0 (for example, this is the case for second order elliptic operators on
Riemannian manifolds). However, we have preferred not to overload the paper
with the details of the proof in this setting as we do not have interesting examples
with a singular measure ν.

Observe that the finiteness of λ1(Ω,µ, E) implies that ν(Ω) > 0 for all Ω ∈
O(M); hence, ν must have full support.

Using the notation and assumptions of Section 2.3, consider an elliptic opera-
tor L on a Riemannian manifold M defined by (2.10), and denote by λk(Ω, L) the
k-th smallest eigenvalue of the following (weak) Dirichlet problem in Ω ∈ O(M){

Lu + λu = 0,

u|∂Ω = 0.

COROLLARY 3.2. (=Theorem 1.1) Let ν be a Radon measure on the Riemannian
manifold M absolutely continuous with respect to the Riemannian measure µ0 and
such that for all Ω ∈ O(M),

λ1(Ω, L) ≥ bν(Ω)−α, provided ν(Ω) < ν0,

where α, b, ν0 are positive constants. Then, for any positive integer k and all Ω ∈
O(M),

λk(Ω, L) ≥ cb
(

k
ν(Ω)

)α

, provided ν(Ω) <
ν0

50
k,

where c = c(α) > 0.

Proof. As it was mentioned in Section 2.3, (M,µ, (E ,F0)) is a Markov
measure-energy space where µ and E are defined by (2.8) and (2.9), respectively,
and F0 = Lip0(M). Then λk(Ω, L) = λk(Ω,µ, E), and the claim of Corollary 3.2
follows from Theorem 3.1.

For many classes of fractal sets (see Section 2.3) the hypothesis (3.3) of
Theorem 3.1 holds with ν = µ (see for example, [3]). Hence, Theorem 3.1
applies and yields a lower bound for the higher eigenvalues.

The proof of Theorem 3.1 is preceded by a number of auxiliary results.

3.1. The Nash inequality.

Lemma 3.3. Let (M,µ, E) be a Markov measure-energy space, and ν be a
Radon measure on M such that for all Ω ∈ O(M)

λ1(Ω,µ, E) ≥ bν(Ω)−α, provided ν(Ω) < ν0,(3.6)
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whereα, b > 0 and ν0 ∈ (0, +∞]. Then, for all Ω ∈ O(M), nonnegative f ∈ F0(Ω),
and β ∈ (0, +∞),

CE[f ] + DJ[f ]β ≥
(∫

f 2dµ
)1+α/β

J[f ]−α(3.7)

where

J[f ] :=
(∫

f γdµ
)1/β (∫

f γdν
)

(3.8)

and γ = 2
β+1 , C = 41+α

2 +α
β b−1, D = (2 41/β

ν0
)α+β .

If in addition ν absolutely continuous with respect to µ then (3.7) holds also
for all nonnegative f ∈ F(Ω).

Remark. If measure ν is singular then
∫

f γdν makes a priori no sense for
f ∈ F(Ω) as f is an element of L2(Ω,µ), contrary to the case f ∈ F0(Ω) when f
is a continuous function.

Remark. For β = 1 we have also γ = 1, so that (3.7) takes the form

C0E[ f ] + D0

∫
f dµ

∫
f dν ≥

(∫
f 2dµ

)α+1 (∫
f dµ

∫
f dν

)−α

(3.9)

where

C0 = 42α+1b−1, D0 =
(

8
ν0

)α+1

.(3.10)

Remark. If ν0 = +∞ then D = 0 so that the second term in the left hand side
of (3.7) vanishes. If in addition ν = µ then (3.7) simplifies as follows

CE[f ] ≥
(∫

f 2dµ
)1+α/β (∫

f γdµ
)−α(1+1/β)

.(3.11)

The classical Nash inequality in R
n corresponds to the case α = 2/n, β = γ = 1.

Applying to (3.11) the Hölder inequality, one obtains the following inequality

CE[f ] ≥
(∫

f rdµ
)u (∫

f sdµ
)−v

,(3.12)

which is true for all u, v ≥ 0 and

0 < s < r ≤ 2(3.13)
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such that {
u− v = 1− α,

ru− sv = 2.
(3.14)

Obviously, the parameters r, s, u, v corresponding to (3.11) satisfy (3.13) and
(3.14).

Furthermore, the range of the parameters r, s for which (3.12) is true can be
extended as follows:

0 < s < r < +∞,(3.15)

provided (3.14) admits a nonnegative solution u, v. This powerful result was
proved in [1, Theorems 3.1–3.3] even for a more general notion of energy pro-
vided the energy form satisfies a certain truncation property, which is the case
here (see (3.30) in the proof of Lemma 3.4 below).

Proof of Lemma 3.3. If J[f ] = +∞ or if J[f ] < +∞ and

DJ[f ]α+β ≥
(∫

f 2dµ
)1+α/β

then (3.7) is obviously satisfied. Assume in the sequel the contrary, that is J[f ] <
+∞ and

2
41/β

ν0
J[f ] <

(∫
f 2dµ

)1/β

.(3.16)

Consider first the case f ∈ F0(Ω). Start with an elementary inequality

f 2 ≤ 2(f − s)2
+ + 2s2−γ f γ ,(3.17)

which is true for all f ≥ 0, s ≥ 0, 0 < γ < 2. Indeed, if f ≤ s then (3.17) follows
from f 2 ≤ s2−γ f γ . If f > s then (3.17) follows from f 2 ≤ 2(f − s)2 + 2s2 and
s2 ≤ s2−γ f γ .

Fix s > 0. By the Markov property (cf. (2.6)) (f − s)+ ∈ F0(Ω) and

E[(f − s)+] ≤ E[f ].(3.18)

Set

Ωs := {x ∈ Ω : f (x) > s}

(see Fig. 1) and note that supp (f − s)+ ⊂ Ωs ⊂ Ω.
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s

0

Ω

f(x)

Ωs Ωs
~

Figure 1. Set Ωs.

Let Ω̃s be any open neighborhood of Ωs, which lies in Ω. Since (f − s)+ ∈
C0(Ω̃s) and by (2.1)

F0(Ω̃s) = F0 ∩ C0(Ω̃s) = F0(Ω) ∩ C0(Ω̃s)

we obtain also (f−s)+ ∈ F0(Ω̃s). It follows from the definition (3.1) of λ1(Ω̃s,µ, E)
and from (3.18), that

∫
(f − s)2

+ dµ =
∫

Ω̃s

(f − s)2
+ dµ ≤ E[(f − s)+]

λ1(Ω̃s,µ, E)
≤ E[ f ]

λ1(Ω̃s,µ, E)
.(3.19)

Therefore, integrating (3.17) and using (3.19), we obtain

∫
f 2dµ− 2s2−γ

∫
f γdµ ≤ 2E[ f ]

λ1(Ω̃s,µ, E)
.(3.20)

Next, we apply the hypothesis (3.6) for the set Ω̃s. Since

ν(Ωs) ≤ s−γ
∫

f γdν,

the set Ω̃s can be chosen so that

ν(Ω̃s) ≤ 2s−γ
∫

f γdν.(3.21)

In particular, the condition ν(Ω̃s) < ν0 is satisfied provided

ν0 > 2s−γ
∫

f γdν.(3.22)
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Assuming that s is so big that (3.22) holds, we further obtain from (3.20), (3.6),
and (3.21)

∫
f 2dµ− 2s2−γ

∫
f γdµ ≤ 2b−1ν(Ω̃s)

αE[ f ](3.23)

≤ 21+αb−1s−αγ
(∫

f γdν
)α

E[ f ].

Let us choose s from the condition

s2−γ =
1
4

∫
f 2 dµ∫
f γ dµ

and observe that this s satisfies (3.22) by (3.16) (note that γ
2−γ = 1

β ). Substituting
this s into (3.24), we obtain

1
2

∫
f 2 dµ ≤ 21+αb−1

(
1
4

∫
f 2 dµ∫
f γdµ

)−α/β (∫
f γdν

)α

E[f ]

whence

(∫
f 2 dµ

)1+α/β

≤ 41+α
2 +α

β b−1
(∫

f γdµ
)α/β (∫

f γdν
)α

E[ f ],

and (3.7) follows.
Consider now a more general case f ∈ F(Ω)∩ L∞(Ω,µ), assuming that ν is

absolutely continuous with respect to µ. For any f ∈ F(Ω) there exists a sequence
{fn} ∈ F0(Ω) such that

‖ fn − f‖L2(Ω,µ) −→ 0 and E[fn − f ] −→ 0.(3.24)

For each fn, (3.7) holds by the previous argument, and all we need is to pass to
the limit in (3.7). In the view of (3.24), we have

∫
f 2
n dµ −→

∫
f 2 dµ and E[fn] −→ E[f ].

Since γ = 2
β+1 ≤ 2, by the Hölder inequality we have also

∫
f γn dµ −→

∫
f γdµ.
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We are left to verify that

lim inf
n→∞

∫
f γn dν ≤

∫
f γdν(3.25)

(note that Fatou’s lemma yields the opposite inequality). Since f is bounded, the
sequence {fn} can also be chosen uniformly bounded. Indeed, we can always
replace fn by φ( fn) ∈ F0(Ω) where φ(t) := min (t, m)+ and m = µ-ess sup f . Since
φ(0) = 0, |φ′| ≤ 1, and φ( f ) = f , we obtain by [16, Theorem 1.4.2(v)]

‖φ( fn)− f‖L2(Ω,µ) −→ 0 and E[φ( fn)− f ] −→ 0.

Hence, assume that {fn} is uniformly bounded and choose a subsequence {fni}
converging to f µ-a.s. Since ν is absolutely continuous with respect to µ, {fni}
converges to f also ν-a.s., and (3.25) follows by the dominated convergence
theorem.

Finally, consider the most general case f ∈ F(Ω). Set fn = min ( f , n) and
observe that (3.7) holds for fn as fn is bounded. By [16, Theorem 1.4.2(iii)],
E[fn] −→ E[f ] as n → ∞. Since fn converges to f monotonically, any Lp norm
of fn converges to the Lp norm of f by the monotone convergence theorem, and
we can pass to the limit in (3.7).

3.2. The Sobolev inequality. The following lemma will not be used in the
proof of Theorem 3.1. We will need it only in Sections 4.1, 4.2 but it is close in
the spirit to Lemma 3.3 so we prove it here.

Lemma 3.4. Let (M,µ, E) be a Markov measure-energy space, and assume
that for all Ω ∈ O(M)

λ1(Ω,µ, E) ≥ bµ(Ω)−α, provided µ(Ω) < ν0(3.26)

where 0 < α < 1, b > 0, and 0 < ν0 ≤ +∞. Then, for any Ω ∈ O(M) such that
µ(Ω) < ν0 and for any nonnegative f ∈ F(Ω),

E[ f ] ≥ cb
(∫

f
2

1−α dµ
)1−α

,(3.27)

where c = 2−
4

1−α .

Remark. The inequality (3.27) is a particular case of (3.12) for u = 1 − α,
v = 0, r = 2

1−α (see also [1, Theorem 10.1]). Here we give a short direct proof
of (3.27) using a truncation argument similar to that in [8] or [1]. Note that the
restriction 0 < α < 1 is essential. Recall that the classical Sobolev inequality
holds in R

n with α = 2/n, provided n > 2.
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Remark. If µ(Ω) ≥ ν0 then a standard argument (see, for example, [11,
Section 4]) yields

E[f ] ≥ c1

(∫
Ω

f
2

1−α dµ
)1−α

− c2

∫
f 2 dµ,(3.28)

where c1 = 1
4 cb and c2 = 4cb

ν0
µ(Ω)1−α.

Proof of Lemma 3.4. It suffices to prove (3.27) for f ∈ F0(Ω). Indeed, any
f ∈ F(Ω) can be approximated by a sequence {fn} ∈ F0(Ω) such that

‖ fn − f‖L2(Ω,µ) −→ 0 and E[fn − f ] −→ 0 as n →∞.

Choose a subsequence {fni} which converges µ-a.s. to f . If (3.27) holds for each
fni then we can pass to the limit and obtain (3.27) for f since by Fatou’s lemma

‖ f‖L p(Ω,µ) ≤ lim inf
i→∞

‖ fni‖L p(Ω,µ).

Given Ω ∈ O(M) and a nonnegative f ∈ F0(Ω), define for all k ∈ Z

Ωk := {x ∈ Ω : f (x) > 2k} and mk := µ(Ωk).

Clearly, Ωk+1 ⊂ Ωk, and the union of all Ωk is the set {f > 0}. Hence, we have

∫
Ω

f
2

1−α dµ =
∑
k∈Z

∫
Ωk\Ωk+1

f
2

1−α dµ ≤
∑
k∈Z

4
k+1

1−α mk.(3.29)

For any k ∈ Z, consider the function

fk(x) := ( min ( f (x), 2k+1)− 2k)+ =


2k, x ∈ Ωk+1,

f (x)− 2k, x ∈ Ωk\Ωk+1,

0, x /∈ Ωk,

which belongs to F0(Ω) by the Markov property. By [1, Corollary 7.3] or [6,
Lemma 2.11], the Markov property of E implies

E[ f ] ≥
∑
k∈Z
E[ fk].(3.30)

Let Ω̃k be an open neighborhood of Ωk, which lies in Ω; choose Ω̃k so that
µ(Ω̃k) ≤ 2µ(Ωk). Clearly, we always have µ(Ω̃k) < ν0. Observing that fk ∈
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F0(Ω̃k) and applying the hypothesis (3.26) for Ω̃k, we obtain

E[ fk] ≥ b

µ(Ω̃k)α

∫
Ωk

f 2
k dµ ≥ b

(2mk)α
22kmk+1 =

b
2α+2

4k+1mk+1

mα
k

,

whence

E[f ] ≥ b
2α+2

∑
k∈Z

4k+1mk+1

mα
k

.(3.31)

For arbitrary sequences of positive numbers {xk}, {yk}, and p, q > 1 such that
1/p + 1/q = 1, we have by the Hölder inequality

∑ xk

yk
≥ (

∑
x1/p

k ) p

(
∑

yq/p
k ) p/q

≥
∑

xk

(
∑

yq/p
k ) p/q

.

Taking p = α + 1, q = α+1
α , and applying this inequality for

xk = 4
k+1

1−α mk+1, yk = 4
α(k+1)
1−α mα

k ,

we obtain

∑ 4k+1mk+1

mα
k

≥
∑

4
k+1

1−α mk+1

(
∑

4
k+1

1−α mk)α
=

4−
1

1−α
∑

4
k+1

1−α mk

(
∑

4
k+1

1−α mk)α
(3.32)

= 4−
1

1−α

(∑
4

k+1
1−α mk

)1−α

.

Finally, (3.27) follows from (3.31), (3.33), and (3.29).

3.3. Heat semigroup. Assuming that (M,µ, E) is a measure-energy space,
fix Ω ∈ O(M) and set H = HΩ,µ,E . Let us write for simplicity L p(Ω) = L p(Ω,µ),
‖ f‖p = ‖ f‖L p(Ω,µ), and (f , g) = (f , g)L2(Ω,µ). For any t ≥ 0 the operator etH in
L2(Ω) is defined in the sense of the spectral theory, that is

etH =
∫ ∞

−∞
e−tλdEλ

where Eλ is the projector measure of −H. Since −H is semi-bounded below,
etH is bounded and hence is defined on the whole space L2(Ω). The family of
operators {etH}t≥0 is a strongly continuous semigroup in L2(Ω), and the image
of etH is in dom (H) ⊂ F(Ω) for all t > 0.
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If E is non-negative then the spectrum of −H is non-negative, and the semi-
group etH is contracting. Indeed, for any f ∈ L2(Ω) we have

‖etHf‖2
2 = (e2tHf , f ) =

∫ ∞

0
e−2tλd(Eλf , f ) ≤

∫ ∞

0
d(Eλf , f ) = ‖ f‖2

2 ,(3.33)

whence the claim follows.
If E satisfies the Markov property then etHf ≥ 0 for any f ≥ 0, and etH1 ≤ 1

(see for example [16]). This implies that etH is a contraction also in L1(Ω),
that is

‖etHf‖1 ≤ ‖ f‖1,(3.34)

for any f ∈ L2(Ω) ⊂ L1(Ω). Indeed, assuming in addition f ≥ 0, we have

‖etHf‖1 = (etHf , 1) = (e
t
2 Hf , e

t
2 H1) ≤ (e

t
2 Hf , 1) = ‖e t

2 Hf‖1,

whence (3.34) follows by iterating this inequality.
Let us introduce the following space

L2,2(Ω) := L2(Ω×Ω,µ× µ),

with the norm

‖u‖2,2 :=
(∫

Ω

∫
Ω
|u(x, y)|2 dµ(x) dµ(y)

) 1
2

.

If u ∈ L2,2(Ω) then, for µ-almost all x, we have u(x, ·) ∈ L2(Ω). Therefore,
etHu(x, ·) makes sense as an element of L2(Ω). Integrating in x the inequality

‖etHu(x, ·)‖2
2 ≤ ‖u(x, ·)‖2

2

(cf. (3.33)) we obtain

‖etHu‖2,2 ≤ ‖u‖2,2.(3.35)

Consequently, etHu is defined as an element of L2,2(Ω).
For a µ× µ-measurable function u(x, y) on Ω×Ω, denote

‖u‖1,∞ := µ- ess sup
x∈Ω

∫
Ω
|u(x, y)| dµ(y) + µ- ess sup

y∈Ω

∫
Ω
|u(x, y)| dµ(x)

and introduce the following functional class on Ω×Ω:

L1,∞(Ω) = {u(x, y) : ‖u‖1,∞ <∞}.
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The next lemma will play the main role in the proof of Theorem 3.1.

Lemma 3.5. (The main lemma) Let (M,µ, E) be a Markov measure-energy
space, and let ν be a Radon measure on M absolutely continuous with respect
to µ and such that the hypothesis (3.3) holds. Then for any Ω ∈ O(M), for any
non-negative function u ∈ L2,2 ∩ L1,∞(Ω), and for any t > 0,

‖etHΩ,µ,E u‖2
2,2 ≤ max (C1, C2t−1/α)‖u‖2

1,∞,(3.36)

where

C1 = (2D0)
1

α+1 ν(Ω), C2 =
(

C0

α

)1/α

ν(Ω),(3.37)

and C0, D0 being the constants from (3.9).

Remark. Substituting the values of C0 and D0 from (3.10), we obtain

C1 ≤
16
ν0
ν(Ω), C2 = 16

(
4
αb

)1/α

ν(Ω).(3.38)

Proof. Without loss of generality, we can assume that ‖u‖1,∞ = 1. For any
t > 0, consider a function

ut(x, y) := etHu(x, y) ∈ L2,2(Ω)

and set

vt(x) :=
∫

Ω
u2

t (x, y) dµ(y) = ‖etHu(x, ·)‖2
2(3.39)

and

w(t) :=
∫

Ω
vt(x) dµ(x) =

∫
Ω

∫
Ω

u2
t (x, y) dµ(x) dµ(y) = ‖etHu‖2

2,2.(3.40)

Since E is a Dirichlet form, u ≥ 0 implies ut ≥ 0. For µ-almost all · ∈ Ω, we
have ∫

Ω
ut(x, ·) dµ(x) =

∫
Ω

etHu(x, ·) dµ(x) = etH
∫

Ω
u(x, ·) dµ(x)(3.41)

≤ etH‖u‖1,∞ ≤ 1.

The interchange of the integration and etH is justified as follows. It is obvious
if u(x, y) has a form f (x)g(y) or is a linear combination of such functions. For
a general u ∈ L2,2(Ω), one uses an approximation argument and the following
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observation: if un → u in L2,2(Ω) then

etHun
L2,2

−→ etHu

and ∫
un(x, ·) dµ(x) L2

−→
∫

u(x, ·) dµ(x).

It follows from (3.34) that∫
Ω

ut(x, y) dµ(y) = ‖etHu(x, ·)‖1 ≤ ‖u(x, ·)‖1 ≤ ‖u‖1,∞ = 1.(3.42)

On the other hand, differentiating vt in t and using (2.4), we obtain

∂vt

∂t
= 2(HetHu(x, ·), etHu(x, ·)) = −2E[etHu(x, ·)] = −2E[ut(x, ·)].(3.43)

The Nash inequality (3.9) applied to the function ut(x, ·) ∈ F(Ω), yields

∫
u2

t dµ ≤
(∫

ut dµ
∫

ut dν
) α

α+1
[
C0E[ut] + D0

∫
ut dµ

∫
ut dν

] 1
α+1

,

where the active variable is the second one (usually denoted by y or by a dot).
Substituting E from (3.43) and using (3.39) and (3.42), we obtain

vt(x) ≤
(∫

ut dν
) α

α+1
[
−C0

2
∂vt

∂t
+ D0

∫
ut dν

] 1
α+1

.(3.44)

As follows from (3.35) and (3.43), the function w(t) defined by (3.40) is
finite and decreasing in t. Integrating (3.44) against dµ(x) and using the Hölder
inequality ∫

F
α

α+1 G
1

α+1 dµ ≤
[∫

F dµ
] α

α+1
[∫

G dµ
] 1

α+1

,

we obtain

w(t) ≤
∫ [∫

ut dν
]

︸ ︷︷ ︸
F

α
α+1
[
−C0

2
∂vt

∂t
+ D0

∫
ut dν

]
︸ ︷︷ ︸

G

1
α+1

dµ(x)

≤
[∫ ∫

ut dν(y) dµ(x)
] α

α+1
[
−C0

2

∫
∂vt

∂t
dµ(x) + D0

∫ ∫
ut dν(y) dµ(x)

] 1
α+1

.
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Observe that (3.42) implies

∫ ∫
ut(x, y) dν(y) dµ(x) =

∫ (∫
ut(x, y) dµ(x)

)
dν(y) ≤

∫
Ω

dν = ν(Ω).(3.45)

In order to justify the last inequality in (3.45), we use the absolute continuity of
ν. Indeed, by (3.42) the inequality∫

ut(x, y) dµ(x) ≤ 1(3.46)

holds for µ-almost all y ∈ Ω. Hence, it holds also for ν-almost all y ∈ Ω so that
we can integrate (3.46) against ν, which was used in (3.45).

We conclude from the above that

w(t) ≤ ν(Ω)
α

α+1

(
−C0

2
dw
dt

+ D0ν(Ω)
) 1

α+1

,(3.47)

which can be rewritten as

− A
dw
dt
≥ wα+1(t)− B,(3.48)

where

A :=
C0

2
ν(Ω)α and B := D0ν(Ω)α+1.(3.49)

Recall that the function w(t) is decreasing in t. Denote

t0 := sup{t > 0 : wα+1(t) > 2B}(3.50)

(take t0 = 0 if the set of t in (3.50) is empty). In the range t ∈ (0, t0], the inequality
(3.48) implies

−A
dw
dt
≥ 1

2
wα+1(t)

whence, dividing by wα+1 and integrating in t, we obtain

w(t) ≤
(
α

2A
t
)−1/α

= C2t−1/α, for all t ∈ (0, t0].

In the range t ∈ (t0, +∞) we obtain from (3.50)

w(t) ≤ (2B)
1

α+1 = C1.



ISOPERIMETRIC PROPERTIES OF HIGHER EIGENVALUES OF ELLIPTIC OPERATORS 23

Therefore, for all t > 0 we have

w(t) ≤ max (C1, C2t−1/α),

which was to be proved.

3.4. Existence of the heat kernel. Fix Ω ∈ O(M) in a measure-energy
space (M,µ, E), and set H = HΩ,µ,E . By definition, the heat kernel of H is an one-
parameter family {pt}t>0 of functions pt ∈ L2,2(Ω) such that for any f ∈ L2(Ω),
for all t > 0, and for µ-almost all x ∈ Ω,

etHf (x) =
∫

Ω
pt(x, y)f (y) dµ(y).

If the heat kernel of H exists then it possesses the following properties (see
for example [13]):
• The symmetry:

pt(x, y) = pt(y, x)(3.51)

(follows from the fact that H is self-adjoint).
• The semigroup identity

pt+s(x, y) =
∫

Ω
pt(x, z)ps(z, y) dµ(z)(3.52)

(follows from e(t+s)H = etHesH).

If in addition E satisfies the Markov property then the heat kernel possesses
also the following properties:
• The positiveness: pt(x, y) ≥ 0 (follows from the positivity preserving of

etH)
• The total mass inequality: for all t > 0 and µ-almost all x∫

Ω
pt(x, y) dµ(y) ≤ 1(3.53)

(follows from etH1 ≤ 1).

In particular, (3.51) and (3.53) imply that pt ∈ L1,∞(Ω) and ‖pt‖1,∞ ≤ 1, for
any t > 0.

The heat kernel plays an important role in the proof of Theorem 3.1. The
main result of this section is Theorem 3.9 that ensures the existence of the heat
kernel under the hypotheses of Theorem 3.1, which will enable us to conclude
the proof of Theorem 3.1 in the next section.
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The following was known before. Assume that the hypothesis (3.3) of The-
orem 3.1 holds for ν = µ and ν0 = +∞; that is, for all U ∈ O(M),

λ1(U,µ, E) ≥ bµ(U)−α.(3.54)

If in addition α < 1 then, by Lemma 3.4, (3.54) implies the Sobolev inequality
(3.27). Using the Nash method [27] (see for example [33]) one obtains from
(3.27) the following estimate of the heat semigroup: for any u ∈ L2(Ω)

‖etHu‖2
2 ≤ Ct−1/α‖u‖2

1 ,(3.55)

which means that etH is L1 → L2 ultracontractive. Then the well-known argument
(cf. [7], [13], [33]) shows the existence of the heat kernel and the estimate

‖pt‖∞,∞ := ess sup
x,y∈Ω

pt(x, y) ≤ Ct−1/α.(3.56)

However, in the case ν �= µ the above scheme does not work. Instead of (3.55),
we have a weaker L1,∞ → L2,2 ultracontractivity given by the estimate (3.36) of
Lemma 3.5. In what follows we will show that (3.36) still implies the existence
of the heat kernel, using an entirely different argument. In the course of the proof
of Theorem 3.1, we will deduce from (3.36) an upper bound for ‖pt‖2,2, which
is weaker than (3.56) but still enough for our purpose.

As a preparation for Theorem 3.9, we prove some lemmas where we for the
first time explicitly use the fact that M is a metric space.

Lemma 3.6. Let (M, dist) be a locally compact metric space and µ be a Radon
measure on M. Then for any x ∈ M, for any ε > 0 there exists an open neighborhood
W of x such that diam W < ε and µ(∂W) = 0.

Proof. Fix a point x ∈ M and set B(r) := {y ∈ M : dist(x, y) < r}; that is B(r)
is the open metric ball of radius r centered at x. Choose R ∈ (0, ε/2) so small
that the ball B(R) is precompact. Consider the family {∂B(r)} of the boundaries
of the balls as the radius r varies in the interval (0, R). This family is disjoint,
and its cardinal number is the continuum. If µ(∂B(r)) > 0 for all r ∈ (0, R) then
for some integer n > 0 we have µ(∂B(r)) > 1/n for infinitely many r ∈ (0, R).
However, this implies µ(B(R)) = ∞ contradicting to the fact that µ is a Radon
measure. Hence, there exists r ∈ (0, R) such that µ(∂B(r)) = 0, and we can set
W = B(r).

Lemma 3.7. (Decomposition of Ω into small cells) Let (M, dist) be a locally
compact metric space and µ be a Radon measure on M. Then for any Ω ∈ O(M)
and for any ε > 0 there exists a finite family {Uk}N

k=1 of non-empty open sets in Ω
such that:

(i) {Uk} are disjoint while the union of all {Uk} covers Ω;
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(ii) µ(∂Uk ∩Ω) = 0 for all k;
(iii) supk diam Uk ≤ ε.

Proof. For a given ε > 0 and any x ∈ Ω, let W = Wx be the set constructed
in Lemma 3.6. Since Ω is compact, there exists a finite number of the sets Wx

covering Ω, say W1, W2, . . . , Wn. For any subset W ⊂ M, introduce the notation

W (1) = W and W (0) = M\W.

Observe that all the sets of the following type

Ω ∩W (κ1)
1 ∩W (κ2)

2 ∩ · · · ∩W (κn)
n ,(3.57)

where κi = 1 or 0, are disjoint and their union is Ω\ ∪n
i=1 ∂Wi. We are left to

denote by U1, U2, . . . those sets of the type (3.57) that are nonempty (see Fig. 2).
Clearly, the family {Uk} satisfies (i), (ii), (iii) with N < 2n.

Assuming that (M,µ) satisfies the hypotheses of Lemma 3.7, fix some Ω ∈
O(M), ε > 0, and the sets U1, . . . , UN from this lemma. For any index k =
1, 2, . . . , N, choose a nonempty precompact open set Vk such that Vk ⊂ Uk and
µ(Uk\Vk) < ε/N. Since Ω is covered by the union of all Uk and µ(∂Uk∩Ω) = 0,
this implies

µ

(
Ω\

N⋃
k=1

Vk

)
< ε.(3.58)

Set Wi

Set Uk

Figure 2. The sets Wi and Uk .
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Denote by χk the indicator function of the set Vk, and define the function ϕε on
Ω×Ω by

ϕε(x, y) :=
N∑

k=1

1
µ(Vk)

χk(x)χk(y).(3.59)

Lemma 3.8. Let (M,µ) be a metric measure space satisfying (M0). Then the
function ϕε defined by (3.59) belongs to L2,2 ∩ L1,∞(Ω) and

‖ϕε‖1,∞ ≤ 1.(3.60)

Moreover, for any f ∈ L1(Ω), we have∫
ϕε(x, y)f (y) dµ(y)

L1(Ω)−→ f (x) as ε→ 0.(3.61)

Proof. The function ϕε is bounded and hence belongs to L2,2 ∩ L1,∞(Ω). We
have for all x ∈ Ω∫

ϕε(x, y) dµ(y) =
∑

k

χk(x)
1

µ(Vk)

∫
χk(y) dµ(y) =

∑
k

χk(x) ≤ 1(3.62)

as {Vk} are disjoint. Similarly,∫
ϕε(x, y) dµ(x) ≤ 1,

which together with (3.62) implies (3.60).
To prove (3.61), denote

fε(x) :=
∫
ϕε(x, y)f (y) dµ(y) =

∑
k

χk(x)
1

µ(Vk)

∫
Vk

f (y) dµ(y),

and consider first the case f ∈ C0(Ω). If x ∈ Vk for some k then

f (x)− fε(x) = f (x)− 1
µ(Vk)

∫
Vk

f (y) dµ(y) =
1

µ(Vk)

∫
Vk

(f (x)− f (y)) dµ(y)

whence

|f (x)− fε(x)| ≤osc
Vk

f

and ∫
Vk

|f (x)− fε(x)| dµ(x) ≤ µ(Vk)( osc
Vk

f ).(3.63)
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If x /∈ Vk for any k then fε(x) = 0. Therefore, we obtain from (3.58) and (3.63)

‖ f − fε‖1 =
∫

Ω\(∪Vk)
|f | dµ +

∑
k

∫
Vk

|f − fε| dµ(3.64)

≤ ε sup
Ω
|f | + µ(Ω)( sup

k
osc

Vk
f ).

Since the function f is uniformly continuous and diam Vk ≤ ε, we also obtain

sup
k

osc
Vk

f −→ 0 as ε→ 0,

which implies that the right-hand side in (3.64) goes to 0 and hence ‖ f−fε‖1 → 0.
Consider now the general case f ∈ L1(Ω). For any δ > 0 there exists a

function g ∈ C0(Ω) such that ‖ f − g‖1 < δ. For a small enough ε, we have by
the above ‖g− gε‖1 < δ. By (3.60) we have for all ε > 0

‖ fε − gε‖1 ≤
∫
ϕε(x, y)| f (y)− g(y)| dµ(y) dµ(x) ≤ ‖ϕε‖1,∞‖ f − g‖1 ≤ δ.

Finally, we obtain

‖ f − fε‖1 ≤ ‖ f − g‖1 + ‖g− gε‖1 + ‖ fε − gε‖ ≤ 3δ,

whence the claim follows.

THEOREM 3.9. Let (M,µ, E) be a Markov measure-energy space, and ν be a
Radon measure on M absolutely continuous with respect to µ and such that the
hypothesis (3.3) holds. Then for any Ω ∈ O(M), the generator HΩ,µ,E possesses
the heat kernel in L2,2(Ω).

Proof. The set Ω ∈ O(M) and the time t > 0 will be fixed throughout the
proof. Set H = HΩ,µ,E and

qε(x, y) := etHϕε(x, y)(3.65)

where ϕε(x, y) is the function defined by (3.59) and etH acts on the second vari-
able. We will show that qε ∈ L2,2(Ω) and that (a subsequence of) qε converges
weakly in L2,2(Ω) as ε→ 0 to a function q(x, y); the latter will be taken as pt(x, y).

By Lemmas 3.5, 3.8, we have

‖qε‖2,2 ≤ C‖ϕε‖1,∞ ≤ C(3.66)

uniformly in ε (note that C depends on Ω and t but both Ω and t are fixed). It
follows from (3.66) that the family {qε}ε>0 is uniformly bounded and hence is
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weakly compact in L2,2(Ω). Therefore, there exists a sequence εk → 0 such that

qεk

w-L2,2

−→ q ∈ L2,2(Ω),(3.67)

as k →∞. Define integral operators Qk and Q by

Qk f (x) =
∫

qεk (x, y)f (y) dµ(y) and Q f (x) =
∫

q(x, y)f (y) dµ(y).

Then (3.67) implies that for all f , g ∈ L2(Ω)

(Qk f , g) −→ (Q f , g).(3.68)

On the other hand, let us prove that for any f ∈ L2(Ω) ⊂ L1(Ω)

Qk f L1

−→ etHf .(3.69)

Indeed, we have

Qk f (x) = (qεk (x, ·), f ) = (etHϕεk (x, ·), f ) = (ϕεk (x, ·), etHf ).

Since etHf ∈ L1(Ω), we have by Lemma 3.8

(ϕεk (x, ·), etHf ) L1

−→ etHf (x),

whence (3.69) follows.
As a consequence of (3.69), we see that, for any g ∈ C0(Ω)

(Qk f , g) −→ (etHf , g).

Comparing with (3.68) we conclude that Q f = etHf for all f ∈ L2(Ω). Hence,
Q = etH , and q(x, y) is the heat kernel of H for the given t.

3.5. Proof of the main theorem. Here we prove Theorem 3.1. Fix Ω ∈
O(M) throughout the proof and set H = HΩ,µ,E . Observe first that (3.5) follows
from (3.4). Indeed, set k := Nλ(Ω,µ, E) and observe that if ν(Ω) ≥ ν0

50 k then (3.5)
is trivially satisfied. If ν(Ω) < ν0

50 k then we can apply (3.4). Since λ ≥ λk(Ω,µ, E),
we obtain from (3.4)

λ ≥ cb
(

k
ν(Ω)

)α

,

whence (3.5) follows.
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By Theorem 3.9, etH possesses the heat kernel pt(x, y) ∈ L2,2(Ω). Let us prove
that

trace (e2tH) = ‖pt‖2
2,2 <∞.(3.70)

If pt is a continuous function of x, y then we obtain, using the symmetry of the
heat kernel and the semigroup identity (3.52),

trace (e2tH) =
∫

Ω
p2t(x, x) dµ(x) =

∫
Ω

∫
Ω

p2
t (x, y) dµ(y) dµ(x) = ‖pt‖2

2,2.

However, in general the expression p2t(x, x) does not make sense, so we argue
differently. For any orthonormal basis {fk} in L2(Ω,µ), we have

trace (e2tH) =
∑

k

(e2tHfk, fk) =
∑

k

(etHfk, etHfk) =
∑

k

∫ (∫
pt(x, ·)fk dµ

)2

dµ(x)

=
∫ (∑

k

(pt(x, ·), fk)2

)
dµ(x) =

∫
‖pt(x, ·)‖2

2 dµ(x) = ‖pt‖2
2,2,

which proves (3.70).
Hence, the operator e2tH is of the trace class and, in particular, its spectrum

is discrete away from 0. By the spectral mapping theorem, if λ ∈ spec (H) then
e2tλ ∈ spec (e2tH). Since e2tλ > 0 is positive, it belongs to the discrete spectrum of
e2tH , whence we conclude that λ belongs to the discrete spectrum of H. Therefore,
all the spectrum of H is discrete.

Let {ϕk}∞k=1 be a sequence of eigenfunctions of H, which form an orthonormal
basis in L2(Ω), and the corresponding sequence {λk} of the eigenvalues is in an
increasing order. Then we have also

trace (e2tH) =
∞∑
k=1

e−2λkt.(3.71)

For any s > 0 we have ps(x, y) ∈ L2,2 ∩ L1,∞(Ω) and ‖ps‖1,∞ ≤ 1. Applying
Lemma 3.5 to the function u = ps, we obtain

‖etHps‖2
2,2 ≤ max (C1, C2t−1/α),(3.72)

where C1, C2 can be determined from (3.38). Using the definition of the action
of etH in L2,2(Ω), the semigroup identity, and the symmetry of the heat kernel,
we obtain

etHps(x, ·) =
∫

Ω
pt(·, y)ps(x, y) dµ(y) = pt+s(x, ·),(3.73)
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that is etHps = pt+s. Substituting this into (3.72) and letting s → 0+ we conclude

‖pt‖2
2,2 ≤ max (C1, C2t−1/α).

On the other hand, the comparison of (3.70) and (3.71) yields

‖pt‖2
2,2 =

∞∑
k=1

e−2λkt.

For any index k, this implies

‖pt‖2
2,2 ≥ ke−2λkt

whence

λk ≥
1
2t

log
k

‖pt‖2
2,2
≥ 1

2t
log

k

max (C1, C2t−1/α)
.(3.74)

Choose t here from the equation k = 3C2t−1/α, that is

t =
(

3C2

k

)α

.(3.75)

Using the hypothesis ν(Ω) < ν0
50 k and (3.38), we obtain

C1 ≤
16
ν0
ν(Ω) <

k
3

= C2t−1/α

so that the max in (3.74) is attained at the second term. Combining together
(3.74), (3.75) and (3.38), we obtain

λk >
1
2t

=
1
2

(
k

3C2

)α

>
αb
8

50−α
(

k
ν(Ω)

)α

,

which was to be proved.

4. Applications and examples.

4.1. Changing the measure.

THEOREM 4.1. Let (M,µ, E) be a Markov measure-energy space. Assume that,
for all Ω ∈ O(M)

λ1(Ω,µ, E) ≥ bµ(Ω)−
1
p ,(4.1)
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where b > 0 and p > 1. Let µ̃ be a Radon measure on M such that µ and µ̃ are

absolutely continuous each with respect to the other. Set ρ := dµ̃
dµ and assume that

for any Ω ∈ O(M)

ν(Ω) :=
∫

Ω
ρ pdµ <∞.(4.2)

Then (M, µ̃, E) is also a Markov measure-energy space. Moreover, for any Ω ∈
O(M) the operator HΩ,µ̃,E has a discrete spectrum, and for all positive integers k

λk(Ω, µ̃, E) ≥ cb
(

k
ν(Ω)

) 1
p

,(4.3)

where c = c(p) > 0. Also, for any Ω ∈ O(M) and all λ ≥ 0,

Nλ(Ω, µ̃, E) ≤ Cλpν(Ω),(4.4)

where C = (cb)−p.

Remark. This theorem can be deduced from [20]. Indeed, by Lemma 3.4,
the Faber-Krahn inequality (4.1) implies the Sobolev inequality (3.27); the latter
implies (4.4) by [20, Theorem 1.1]. The proof below is to illustrate how this
result can be obtained from Theorem 3.1.

Proof. Measure µ̃ has full support since it is equivalent to µ; therefore, (M0)
holds for (M, µ̃, E). The properties (M1), (M2′), (M4) depend only on (E ,F0(Ω))
and hence are true also for (M, µ̃, E). The property (M3), the closability of
(E ,F0(Ω)) in L2(Ω, µ̃), is implied by [16, Theorem 3.1.5, p. 103] using the fol-
lowing two facts: the strict positivity of λ1(Ω,µ, E) and the equivalence of µ and
µ̃. (Note that the condition λ1(Ω,µ, E) > 0 can be dropped if µ-ess infΩ ρ > 0.
Indeed, assuming the latter, the closability of (E ,F0(Ω)) in L2(Ω, µ̃) follows di-
rectly by definition (M3)). Hence, (M, µ̃, E) is a Markov measure-energy space.

Let us first prove (4.3) for k = 1, that is

λ1(Ω, µ̃, E) ≥ cbν(Ω)−
1
p .(4.5)

By the Sobolev inequality (3.27) of Lemma 3.4, we have for any nonnegative
f ∈ F0(Ω)

E[ f ] ≥ cb
(∫

f
2p

p−1 dµ
)1− 1

p
(4.6)
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where c = c(p) > 0. Using the Hölder inequality and definition of ν, we obtain

∫
f 2dµ̃ =

∫
Ω

f 2ρdµ ≤
(∫

Ω
f

2p
p−1 dµ

)1− 1
p
(∫

Ω
ρ pdµ

) 1
p

=
(∫

f
2p

p−1 dµ
)1− 1

p
ν(Ω)

1
p .

Together with (4.6), this implies

E[ f ]∫
f 2dµ̃

≥ cbν(Ω)−
1
p(4.7)

whence (4.5) follows.
Finally, (4.5) implies (4.3) by Theorem 3.1 applied to the space (M, µ̃, E),

and (4.4) obviously follows from (4.3) (cf. the proof of Theorem 3.1).

4.2. Perturbing the energy form. A signed Radon measure σ on a measure-
energy space (M,µ, E) can be considered as a bilinear form on L2(M,σ) defined
by

σ(f , g) =
∫

fg dσ.

Then a new bilinear form E + σ can be defined on F0 by

(E + σ)(f , g) = E(f , g) + σ(f , g),

because F0 ⊂ C0(M) ⊂ L2(M,σ).

Lemma 4.2. Let (M,µ, E) be a measure-energy space and σ be a nonnegative
Radon measure on M absolutely continuous with respect to µ. Then E +σ is also an
energy form, and (M,µ, E + σ) is a measure-energy space. If in addition (M,µ, E)
satisfies the Markov property then so does (M,µ, E + σ).

Remark. The requirement that σ is absolutely continuous can be relaxed—see
[16, Lemma 6.1.1].

Proof. Let us first observe that the closability of E and E + Cµ are equivalent,
for any real C, as follows from the definition (M3). Since E is semi-bounded
below, it suffices to assume E ≥ 0. Fix Ω ∈ O(M). If a sequence {fn} ⊂ F0(Ω)
is such that

‖ fn‖L2(Ω,µ) −→ 0 and (E + σ)[fn − fm] −→ 0 as n, m →∞

then also E[fn − fm] → 0. Hence, the closability of E implies E[fn] −→ 0. Since
also σ[fn − fm] → 0, the sequence {fn} converges in L2(Ω,σ) to a function f ∈
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L2(Ω,σ). On the other hand, {fn} converges to 0 in L2(M,µ). Since σ is absolutely
continuous with respect to µ, we conclude f = 0. Therefore, (E+σ)[fn] → 0, which
was to be proved.

The Markov property for E + σ is trivial since for the function fa,b defined in
(2.5) we have σ[fa,b] ≤ σ[f ].

To prove a similar statement for a negative perturbation of E , some additional
restrictions should be imposed as below.

Negative eigenvalues. Denote by |σ| the total variation of a signed measure σ,
and set σ± = |σ|±σ

2 so that σ = σ+ − σ−.

THEOREM 4.3. Let (M,µ, E) be a Markov measure-energy space, and assume
that for all Ω ∈ O(M)

λ1(Ω,µ, E) ≥ bµ(Ω)−1/p,(4.8)

where b > 0 and p > 1. Let σ be a signed Radon measure on M absolutely
continuous with respect to µ. Set

ρ :=
dσ+

dµ

and assume that for any Ω ∈ O(M),

ν(Ω) :=
∫

Ω
ρ pdµ <∞.(4.9)

Then (M,µ, E −σ) is a measure-energy space, and for all Ω ∈ O(M) the spectrum
of HΩ,µ,E−σ is discrete and satisfies for any λ ≥ 0

Nλ(Ω,µ, E − σ) ≤ C(λpµ(Ω) + ν(Ω)),(4.10)

where C = C(p, b).

Remark. Taking λ = 0, we obtain

N0(Ω,µ, E − σ) ≤ Cν(Ω).(4.11)

By an approximation argument, (4.11) extends to the whole space M as follows:
if ν(M) < ∞ then the negative spectrum of −HM,µ,E−σ is discrete and has
at most Cν(M) negative eigenvalues. (Note that if M is noncompact then the
multiplicity of the spectrum of HM,µ,E−σ at 0 cannot be controlled—see [9] or
[30, Section 4.3]. The authors thank L. Saloff-Coste for drawing their attention
to this phenomenon.) This is a celebrated theorem of Cwikel-Lieb-Rosenblum
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proved for M = R
n, n > 2, in [12], [23], [29]. Using the method of [21], this

theorem was extended in [20] to an abstract setting similar to ours, under the
assumption that the Sobolev inequality (3.27) holds. Since by Lemma 3.4 (4.8)
implies (3.27), the estimate (4.11) in full generality follows from [20]. The point
of our proof is to show how it follows from Theorem 3.1. Observe also that
(4.11) implies back (4.10) if one applies (4.11) to measure σ + λµ instead of σ.

Proof. It suffices to treat the case of nonnegative σ. Indeed, if (M,µ, E − σ+)
is a measure-energy space then by Lemma 4.2 so is (M,µ, E − σ) as E − σ =
(E − σ+) + σ−. It is obvious then that

Nλ(Ω,µ, E − σ) ≤ Nλ(Ω,µ, E − σ+).

Hence, we can assume in the sequel that σ ≥ 0.
The fact that (M,µ, E − σ) satisfies the conditions (M0) and (M1) follows

trivially from the same conditions for (M,µ, E) since E and E−σ have a common
domain F0(Ω).

It suffices to treat the case λ > 0 as the case λ = 0 follows by passing to the
limit as λ→ 0+. Fix λ > 0 and introduce a new measure

µ̃ = λµ + σ.(4.12)

It suffices to prove (M2) and (M3) for the form E − µ̃. Indeed, if E − µ̃ is an
energy form in L2(Ω,µ) then by Lemma 4.2 so is E − σ = (E − µ̃) + λµ. Since
the measures µ̃ and µ are equivalent, and for any Ω ∈ O(M)

∫
Ω

(
dµ̃
dµ

)p

dµ =
∫

Ω
(λ + ρ)pdµ ≤ 2p[λpµ(Ω) + ν(Ω)] <∞.(4.13)

Theorem 4.1 yields that (M, µ̃, E) is a measure-energy space, and −HΩ,µ̃,E has a

strictly positive discrete spectrum. Consequently, the inverse H−1
Ω,µ̃,E exists and is

compact. Let us apply the Birman-Schwinger principle (see [4], [5, Section 1],
[20, Proposition 2.1]), which in our setting says the following: if E is a densely de-
fined, non-negative definite, closable quadratic form both in L2(Ω,µ) and L2(Ω, µ̃)
such that the inverse H−1

Ω,µ̃,E exists and is compact, then the form E − µ̃ is semi-

bounded below and closable in L2(Ω,µ); in particular, (M,µ, E− µ̃) is a measure-
energy space. Moreover, we have

N0(Ω,µ, E − µ̃) = N1(Ω, µ̃, E).(4.14)
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Indeed, N1(Ω, µ̃, E) is equal to the maximal dimension of a subspace V of F(Ω)
such that, for any f ∈ V\{0},

E[f ]∫
f 2 dµ̃

≤ 1.

This inequality is equivalent to

(E − µ̃)[f ] = E[f ]−
∫

f 2 dµ̃ ≤ 0,

whence (4.14) follows.
From (4.12) and (4.14) we obtain

Nλ(Ω,µ, E − σ) = N0(Ω,µ, E − µ̃) = N1(Ω, µ̃, E).(4.15)

Theorem 4.1 and (4.13) yield the estimate

N1(Ω, µ̃, E) ≤ C[λpµ(Ω) + ν(Ω)],(4.16)

which together with (4.15) implies (4.10).

THEOREM 4.4. Let (M,µ, E) be a Markov measure-energy space. Assume that
for some α > 0 and for any D ∈ O(M) there exists cD > 0 such that for any open
set Ω ⊂ D,

λ1(Ω,µ, E) ≥ cDµ(Ω)−α.(4.17)

Let ν, σ be Radon measures on M absolutely continuous with respect to µ, ν being
nonnegative, and σ being signed. Assume that for any Ω ∈ O(M)

λ1(Ω,σ+, E) ≥ bν (Ω)−α provided ν(Ω) < ν0,(4.18)

where b > 0 and 0 < ν0 ≤ +∞. Then (M,µ, E − σ) is a measure-energy space,
and for all Ω ∈ O(M)

N0(Ω,µ, E − σ) ≤ Cν (Ω),(4.19)

where C = C(α, b, ν0) = 50((αb/16)−1/α + ν−1
0 ).

Remark. The condition (4.17) is a local property of the space (M,µ, E) (for
example, it holds on any Riemannian manifold) as opposed to (4.18) which is a
global restriction. If the constant cD in (4.17) does not depend on D then (4.17)
becomes also a global property. In this case (4.17) coincides with the hypotheses
(4.1) and (4.8) of Theorems 4.1 and 4.3, respectively (with p = 1/α). As was
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shown in the proof of Theorem 4.1, if α < 1 then the global version of (4.17)
implies

λ1(Ω,σ, E) ≥ const ν(Ω)−α,

where ν is defined by

dν
dµ

=
(

dσ
dµ

)1/α

.(4.20)

Thus, for this ν the hypothesis (4.18) is automatically satisfied and hence can
be dropped. We see that in this case Theorems 4.4 and 4.3 coincide. However,
Theorem 4.4 can be applied to some situations when Theorem 4.3 does not work,
for example, if ν is different from (4.20) or if α ≤ 1 (cf. Theorem 4.7 below).

Remark. Unlike the previous occurrences of hypotheses like (4.18), we do not
assume here that (M,σ+, E) is a measure-energy space. In particular, the possibility
λ1(Ω,σ+, E) = +∞ is not excluded; respectively, it is allowed that ν(Ω) = 0. If
(M,σ+, E) is a measure-energy space, and ν is absolutely continuous with respect
to σ+ then by Theorem 3.1 the hypothesis (4.18) implies N1(Ω,σ+, E) ≤ Cν(Ω),
and (4.19) follows by (4.14) (with µ̃ replaced by σ+). Hence, in this case the
hypothesis (4.17) is not used. As we will see in the proof below, the hypothesis
(4.17) is used in the general case to regularize measure σ by adding to the latter
a small multiple of µ.

Proof. Similarly to the proof of Theorem 4.3, we can assume that σ is non-
negative. Fix some D ∈ O(M) and prove (4.19) for all Ω ∈ O(D) with a constant
C independent of D. If Ω ∈ O(D) and ν(Ω) < ν0 then we have by (4.18) for any
f ∈ F0(Ω)

ν(Ω)σE[f ] ≥ b
∫

f 2 dσ.(4.21)

Also, (4.17) implies

µ(Ω)αE[f ] ≥ cD

∫
f 2 dµ.

Multiplying this inequality by εb/cD where ε > 0 and adding to (4.21), we obtain(
ν(Ω)α +

εb
cD
µ(Ω)α

)
E[f ] ≥ b

∫
f 2d(σ + εµ).(4.22)

Let us set

ν(ε) = ν +
(
εb
cD

)1/α

µ and µ(ε) = σ + εµ,
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and rewrite (4.22) as follows:

λ1(Ω,µ(ε), E) ≥ b
2
ν(ε)(Ω)−α, provided ν(ε)(Ω) < ν0.

Since (D,µ(ε), E) is a Markov measure-energy space (indeed, since µ(ε) ≥ εµ, all
axioms (M0)–(M4) for (D,µ(ε), E) are trivial consequences of those for (M,µ, E))
and ν(ε) is absolutely continuous with respect to µ(ε), we can apply Theorem 3.1.
On the one hand, Theorem 3.1 implies that the spectrum of −HΩ,µ(ε),E is strictly
positive and discrete; hence by the Birman-Schwinger principle (see the proof of
Theorem 4.3), the form E −µ(ε) is semi-bounded below and closable in L2(Ω,µ);
in particular, (D,µ, E − µ(ε)) is a measure-energy space. Then, by Lemma 4.2
(D,µ, E − σ) is also a measure-energy space. Moreover, by (4.14)

N0(Ω,µ, E − σ) ≤ N0(Ω,µ, E − µ(ε)) = N1(Ω,µ(ε), E).(4.23)

On the other hand, Theorem 3.1 yields, for any Ω ∈ O(D),

N1(Ω,µ(ε), E) ≤ Cν(ε)(Ω),

where C = C(α, b, ν0). Combining this with (4.23) and letting ε→ 0, we obtain
(4.19).

Lower bounds for perturbed eigenvalues. The following statement comple-
ments Theorem 4.3 by providing a lower bound for λ1(Ω,µ, E + σ) that may be
negative.

THEOREM 4.5. Let (M,µ, E) be a Markov measure-energy space, and assume
that, for all Ω ∈ O(M)

λ1(Ω,µ, E) ≥ bµ(Ω)−
1
p ,

where b > 0 and p > 0. Let σ be a signed Borel measure on M. Then the following
estimate holds for all Ω ∈ O(M)

λ1(Ω,µ, E − σ) ≥ −c
∫

Ω

(
dσ+

dµ

)p+1

dµ,(4.24)

where c = c(p, b) > 0.

Remark. In the case M = R
n, the estimate (4.24) with p = n/2 was proved in

[25], assuming n > 2, that is p > 1. Our argument below is similar to that of [25]
apart from the fact that we avoid using the Sobolev inequality, which enables us
to include all p > 0. In particular, (4.24) holds in R

n for all n ≥ 1.
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Observe also that in Theorem 4.5 we do not claim that (M,µ, E − σ) is a
measure-energy space, nor we assume that the integral in the right hand side of
(4.24) is finite.

Proof. For any nonnegative function f ∈ F0(Ω) we have by the Nash in-
equality (3.12) with α = 1/p, u = 1, v = 1/p, r = 2 p+1

p , s = 2,

E[f ] ≥ c
(∫

f 2 p+1
p dµ

)(∫
f 2dµ

)−1/p

(4.25)

where c = c(p, b). On the other hand, denoting ρ = dσ+
dµ we obtain

∫
f 2 dσ+ =

∫
f 2ρ dµ ≤

∫
(cf 2 p+1

p + c−pρp+1) dµ(4.26)

Assuming for simplicity
∫

f 2dµ = 1, (4.25) and (4.26) imply

(E − σ)[f ] ≥ E[f ]−
∫

f 2dσ+

≥ c
∫

f 2 p+1
p dµ−

∫
(cf 2 p+1

p + c−pρp+1) dµ

= −c−p
∫
ρ p+1dµ,

whence (4.24) follows.

In the next statement, we consider positive perturbations of the energy form.

THEOREM 4.6. Let (M,µ, E) be a Markov measure-energy space, and assume
that, for all Ω ∈ O(M)

λ1(Ω,µ, E) ≥ bµ(Ω)−
1
p ,(4.27)

where b > 0 and p > 0. Let σ be a non-negative Radon measure on M absolutely
continuous with respect to µ. Set

ρ :=
dσ
dµ

and assume that for some q > 0 and all Ω ∈ O(M),

ν(Ω) :=
∫

Ω
ρ−qdµ <∞.
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Then for all Ω ∈ O(M)

λ1(Ω,µ, E + σ) ≥ c0b
p

p+q ν(Ω)−
1

p+q ,(4.28)

where c0 = 2−
1

p+q−2. Furthermore, for all positive integer k,

λk(Ω,µ, E + σ) ≥ cb
p

p+q

(
k

ν(Ω)

) 1
p+q

,(4.29)

where c = c(p, q) = (32(p + q)100
1

p+q )−1.

Proof. Note that (M,µ, E + σ) is a Markov measure-energy space by Lem-
ma 4.2. It suffices to prove (4.28) as (4.29) will follow from (4.28) by Theorem 3.1
with α = 1

p+q .
We have for any nonnegative f ∈ F0(Ω)

(E + σ)[f ] = E[f ] +
∫

f 2ρ dµ ≥ E[f ]
p

p+q

(∫
f 2ρ dµ

) q
p+q

.(4.30)

By the Hölder inequality, we have for γ = 2q
q+1

∫
f γdµ ≤

[∫
(f γρ

q
q+1 )

q+1
q dµ

] q
q+1
[∫

(ρ−
q

q+1 )q+1dµ
] 1

q+1

=
[∫

f 2ρ dµ
] q

q+1
[∫

ρ−qdµ
] 1

q+1

whence (∫
f 2ρ dµ

)q

≥
(∫

f γdµ
)q+1 (∫

ρ−qdµ
)−1

.(4.31)

The estimate (3.11) of Lemma 3.3 yields (for α = 1/p and β = 1/q)

E[f ]p ≥ 4−p−q−1/2b p
(∫

f 2dµ
)p+q (∫

f γdµ
)−(q+1)

.(4.32)

Combining (4.30), (4.31) and (4.32), we obtain

(E + σ)[f ] ≥ c0b
p

p+q

(∫
f 2dµ

)(∫
f γdµ

)− q+1
p+q
(∫

f γdµ
) q+1

p+q
(∫

ρ−qdµ
)− 1

p+q
,

whence (4.28) follows.
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4.3. Two-dimensional manifolds. Let M be a two-dimensional Riemannian
manifold and V be a nonnegative continuous function on M. We will be interested
in estimating the number N0(Ω, ∆ + V) of nonpositive Dirichlet eigenvalues of
the operator ∆ + V in Ω ∈ O(M).

Let µ be the Riemannian measure on M and E be the Riemannian energy
form, that is

E[f ] =
∫
|∇f |2 dµ, f ∈ F0 := Lip0 (M).(4.33)

Define another measure µV on M by

dµV = V dµ.(4.34)

Let l denote the Riemannian length of a curve on M; define a new length lV by

dlV =
√

Vdl.(4.35)

If V is strictly positive then (M,µV , E) is a measure-energy space. In this case
(4.35) can be considered as a conformal change of the Riemannian metric, and
MV := (M, dlV ) is a Lipschitz Riemannian manifold. The Riemannian measure on
MV coincides with µV whereas the Riemannian energy form EV on MV is equal
to E (since dim M = 2).

THEOREM 4.7. Let M be a two-dimensional Riemannian manifold and V be a
nonnegative continuous function on M. Assume that for all Ω ∈ O(M) with smooth
boundary,

lV (∂Ω) ≥ cµV (Ω)1/2, provided µV (Ω) < ε,(4.36)

where c > 0 and ε > 0. Then for any Ω ∈ O(M)

N0(Ω, ∆ + V) ≤ CµV (Ω),(4.37)

where C = C(c, ε) = 50(64c−2 + ε−1).

Remark. If V is strictly positive then (4.36) means that the isoperimetric
inequality holds on MV similarly to R

2, although only for small enough Ω.

Proof. Let us apply the standard Cheeger argument to show that (4.36) im-
plies, for any Ω ∈ O(M) and f ∈ Lip0 (Ω),

µV (Ω)E[f ] ≥ c2

4

∫
f 2dµV , provided µV (Ω) < ε.(4.38)
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Indeed, we first show that if µV (Ω) < ε and f ∈ Lip0(Ω) is nonnegative then

µV (Ω)1/2
∫
|∇f |

√
Vdµ ≥ c

∫
f V dµ.(4.39)

It suffices to prove it for f ∈ C∞
0 (Ω). Denoting Ωt = {x ∈ Ω : f (x) > t} and using

the coarea formula and (4.36), we obtain

∫
|∇f |

√
Vdµ =

∫ ∞

0

(∫
∂Ωt

√
Vdl

)
dt =

∫ ∞

0
lV (∂Ωt) dt ≥ c

∫ ∞

0
µV (Ωt)

1/2 dt.

Multiplying this by µV (Ω)1/2 and noticing that µV (Ω) ≥ µV (Ωt), we obtain

µV (Ω)1/2
∫
|∇f |

√
Vdµ ≥ c

∫
µV (Ωt) dt = c

∫
f dµV ,

that is (4.39).
Given any function f ∈ Lip0 (Ω), applying (4.39) to f 2 and using the Cauchy-

Schwarz inequality, we obtain

4µV (Ω)
∫
|∇f |2dµ

∫
f 2V dµ ≥ c2

(∫
f 2V dµ

)2

.

whence (4.38) follows.
Since M is two-dimensional, we have by the compactness argument, that for

any D ∈ O(M) there exists cD > 0 such that for any open set Ω ⊂ D,

λ1(Ω,µ, E) ≥ cDµ(Ω)−1.(4.40)

By (4.40) and (4.38), the hypotheses (4.17) and (4.18) of Theorem 4.4 are satisfied
with α = 1, b = c2/4, and σ = ν = µV . By Theorem 4.4, we conclude

N0(Ω,µ, E − µV ) ≤ CµV (Ω).

Since the generator of the energy form E − µV in L2(Ω,µ) is the operator ∆ + V ,
we see that

N0(Ω, ∆ + V) = N0(Ω,µ, E − µV ),

whence (4.37) follows.

Definition. A Riemannian manifold is said to have a bounded geometry if
there is a positive number r such that all geodesic balls of radius r on this
manifold are uniformly quasi-isometric to a Euclidean ball of the same radius.
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COROLLARY 4.8. In the above notation, assume that V is strictly positive and
that the two-dimensional Lipschitz manifold MV has a bounded geometry. Then
(4.37) holds for any Ω ∈ O(M).

Proof. Indeed, the hypothesis of bounded geometry of MV implies (4.36) (see
[18, Theorem 7.7]). The rest follows by Theorem 4.7.

Example. Let M = R
2\{o} where o is the origin in R

2, and denote by Cr the
circle of radius r centered at o. Let V(x) = |x|−2. The lV -distance from x to o is
equal to ∫ |x|

0
s−1ds = ∞,

and similarly the lV -distance from x to ∞ is infinite. The lV -length of the circle
Cr is r−12πr = 2π. Hence, MV is a bidirectional cylinder; consequently, MV

has a bounded geometry. Corollary 4.8 implies that, for any precompact region
Ω ⊂ R

2\{o},

N0(Ω, ∆ + |x|−2) ≤ C
∫

Ω
|x|−2dµ(x).

For example, if Ar,R is the annulus between Cr and CR, 0 < r < R, then

N0(Ar,R, ∆ + |x|−2) ≤ C log
R
r

.

Example. On the same manifold as above set V(x) = |x|−2γ where 0 < γ < 1.
The lV -distance from x to o is equal to

rV =
∫ r

0
s−γds =

r1−γ

1− γ ,

where r = |x|. The lV -length of Cr is equal to

r−γ2πr = 2π(1− γ)rV .

Hence, MV is a cone with the pole at o, and MV has a bounded geometry. By
Corollary 4.8, we have

N0(Ω, ∆ + |x|−2γ) ≤ C
∫

Ω
|x|−2γdµ(x).

In particular, for the annulus we obtain

N0(Ar,R, ∆ + |x|−2γ) ≤ C(R2−2γ − r2−2γ).
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4.4. Minimal surfaces. Let M be a two-dimensional manifold immersed in
R

3 as an oriented minimal surface. The Riemannian metric on M is induced by
the Euclidean structure of R

3. Denote by µ the Riemannian measure on M and
by E the Riemannian energy form (4.33).

For any function f ∈ C∞
0 (M) and a real parameter ε, consider a deformation

of M given by the mapping x !→ x + εf (x)N(x) where N is the unit normal vector
field on M compatible with the orientation. Since M is a minimal surface, the
first variation δµ( f ) of the area functional vanishes. For the second variation, the
following formula is known (see for example [31]):

δ2µ( f ) =
∫

M
(|∇f |2 + 2Kf 2) dµ,(4.41)

where K = K(x) is the Gauss curvature of M at the point x ∈ M (since M is
minimal, K(x) ≤ 0). If δ2µ( f ) ≥ 0 for all f then the minimal surface M is called
stable. In particular, all area minimizers are stable. However, in general a minimal
surface is not necessarily stable. By definition, the stability index ind(M) is the
maximal dimension of a linear subspace V of C∞

0 (M) such that δ2µ( f ) < 0 for
any f ∈ V\{0}.

The following equivalent definition is more convenient for applications.

Definition. For any Ω ∈ O(M), ind(Ω) is the number of the negative Dirichlet
eigenvalues of the operator ∆− 2K in Ω. The index of M is defined by

ind (M) = sup
Ω∈O(M)

ind (Ω).

Here is our main result for minimal surfaces.

THEOREM 4.9. For any immersed oriented minimal surface M in R
3, we have

ind (M) ≤ C
∫

M
|K| dµ,(4.42)

where C is an absolute constant.

Remark. For geodesically complete minimal surfaces, the estimate (4.42) was
first proved by Tysk [32]. If M is geodesically complete and has a finite total
curvature then M can be closed into a compact Riemann surface; let g be its
genus. In this case, Micallef [26] proved the following sharp estimate:

ind (M) ≤ 1
π

∫
M
|K| dµ + 2g− 2,

provided M is not a plane.
The constant C in (4.42) that comes from our proof is 1650/π, which is by

far not optimal.
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Proof. Set V = −2K. It suffices to prove that, for any Ω ∈ O(M),

N0(Ω, ∆ + V) ≤ C
∫

Ω
V dµ.(4.43)

By Theorem 4.7, this will follow the isoperimetric inequality (4.36), that is from

lV (∂Ω) ≥ cµV (Ω)1/2, provided µV (Ω) < ε(4.44)

(see (4.34) and (4.35) for the notation). Note that if (4.44) holds for some V then
it will remain true if one replaces V by aV where a is any positive constant, with
the same c and with ε replaced by aε. Hence, let us take in the sequel V = −K
and prove (4.44) with ε = 2π.

Consider the Gauss map N: M → S
2. By the definition of the Gauss cur-

vature, the measure µV on M coincides with the N-pullback of the standard
Riemannian measure on S

2. By the minimality of M, the map N is conformal,
and the scalar factor of dN is equal to ( dµV

dµ )1/2 =
√
−K. This means that the

N-pullback of the standard Riemannian length on S
2 coincides with lV . Hence,

N provides a local isometry of (M, dlV ) and S
2. Note also that

K(x) = 0 ⇐⇒ det dN(x) = 0 ⇐⇒ dN(x) = 0.

Let Ω ∈ O(M) have a smooth boundary and µV (Ω) < 2π. Consider first the
case when K(x) �= 0 in Ω. By slightly perturbing Ω, we can assume that the curve
N(∂Ω) self-intersects transversely and at isolated points. In the next argument,
we restrict the domain of N to Ω. Denote D = N(Ω) and introduce the following
subsets of D:

Dk = {y ∈ D : N−1(y) contains at least k points in Ω},

where k = 1, 2, . . . (see Fig. 3).

N

D1

D2

N( )

Figure 3. Domains D1 and D2.
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Clearly, D1 = D, Dk+1 ⊂ Dk, and all Dk are open sets. We claim that

∂Dk ⊂ N(∂Ω),(4.45)

for all k = 1, 2, . . . . If we assume the contrary then there exists a point y ∈
∂Dk\N(∂Ω). For this y we have N−1(y) ⊂ Ω. Let us show that N−1(y) consists
of a finite number of points. Indeed, if the set N−1(y) is infinite then it has a
condensation point x ∈ Ω, which implies that dN degenerates at x, contradicting
the assumption K(x) �= 0. Denote by x1, x2, . . . , xn all the points of N−1(y). Since
det dN(xi) �= 0, the map N is a diffeomorphism in a small neighborhood of any
xi. Therefore, in a small neighborhood of y, any point has exactly n pre-images
in Ω, which implies that y cannot belong to the boundary of any Dk.

Since the curve N(∂Ω) self-intersects only at isolated points, the boundaries
∂Dk may overlap for different k only at isolated points. From this and (4.45) we
obtain

lV (∂Ω) = length (N(∂Ω)) ≥
∑

k

length (∂Dk);

also we have

µV (Ω) =
∑

k

area (Dk),

where “length” and “area” refer to the standard metric of S
2. Since the area of

each Dk is at most 2π and hence does not exceed the half of the full area of S
2,

we obtain by the spherical isoperimetric inequality

length (∂Dk) ≥ c area(Dk)1/2,

where c =
√

2π. Summing up over all k and using the elementary inequality

∑
a1/2

k ≥
(∑

ak

)1/2
,

we conclude the proof of (4.44) for this Ω.
Consider now the general case when K(x) may vanish in Ω. Recall that

K(x) = 0 is equivalent to dN(x) = 0, and the latter may happen either identically
or at isolated points, because the mapping N: M → S

2 is conformal and hence
holomorphic. In the first case, both (4.43) and (4.44) are trivially satisfied. Con-
sider the second case and denote S := {x ∈ M : K(x) = 0}. Clearly, the set Ω\S
can be approximated from inside by a sequence of open sets {Ωn} with smooth
boundaries such that

lV (∂Ωn) → lV (∂Ω) and µV (Ωn) → µV (Ω) as n →∞

(see Fig. 4).
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All the shaded area is

Set S = { x : K(x) = 0 }

Ω

nΩ

Figure 4. Set Ωn is an approximation of Ω\S from inside.

Since K(x) �= 0 in Ωn, the isoperimetric inequality (4.44) holds for Ωn. Passing
to the limit, we obtain (4.44) for Ω.

Remark. The hypothesis that the minimal surface M is oriented can be
dropped if one replaces the sphere S

2 as the target for the Gauss map by the
projective plane P

2.

4.5. Minimal submanifolds. Let M be a n-dimensional Riemannian mani-
fold immersed as an oriented minimal submanifold in R

n+1. Let A be the operator
of the second fundamental form of M, and set ‖A‖2 = trace (AA∗). Similarly to
(4.41), the second variation of the Riemannian volume µ on M is given by

δ2µ( f ) =
∫

M
(|∇f |2 − ‖A‖2f 2) dµ

(see [31]).
For any precompact open set Ω ⊂ M, the index ind(Ω) is defined as the

number of negative eigenvalues of the energy form δ2µ in L2(Ω,µ). Alternatively,
ind(Ω) is the number of negative Dirichlet eigenvalues of the operator ∆ + ‖A‖2

in Ω. Then set

ind (M) = sup
Ω∈O(M)

ind (Ω).

THEOREM 4.10. If M is a n-dimensional immersed oriented minimal submani-
fold in R

n+1, n > 2, then

ind (M) ≤ C
∫

M
‖A‖ndµ,(4.46)

where C = C(n).
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Remark. This theorem is a higher-dimensional analogue of Theorem 4.9,
because in the case n = 2 we have ‖A‖2 = −2K. However, the proof in the case
n > 2 is much simpler because one can use Theorem 4.3.

Proof. Let E be the Riemannian energy form on M defined by (4.33). By [10,
Corollary 4], (M,µ, E) admits the Faber-Krahn inequality

λ1(Ω,µ, E) ≥ bµ(Ω)−2/n,

where b = b(n) > 0. Since n > 2, we obtain by Theorem 4.3 that for any measure
σ absolutely continuous with respect to µ and for any Ω ∈ O(M)

N0(Ω,µ, E − σ) ≤ C
∫

Ω

(
dσ
dµ

)n/2

dµ.(4.47)

Defining σ by

dσ = ‖A‖2dµ,

we see that δ2µ = E − σ, and (4.46) follows from (4.47).
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