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Abstract

In this survey we study heat kernel estimates of self-similar type on metric mea-
sure spaces with regular volume growth. One of the main results is the dichotomy
phenomenon in such estimates: either they are sub-Gaussian like in the setting of dif-
fusions on fractals, or they have a polynomial tail as the symmetric stable processes in
Rn. Despite the probabilistic motivation, all the statements and proofs are completely
analytic.
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1 Introduction

The amount of research on heat kernels in geometric settings has increased dramatically in
the past decades. It is impossible to give in one article an overview of recent development
of the subject. The diversity of the problems related to heat kernels is well reflected in
recent collections [4], [36], [39].

Already in a first Analysis course, one sees a special role of the exponential function
t 7→ et. It is not surprising that a far reaching generalization of the exponential function -
an operator semigroup

{
e−tL

}
t≥0

, where L is a positive definite operator, plays similarly
an important role in Analysis, Geometry, Probability and other related fields. If operator
L acts in a function space then frequently the action of the semigroup e−tL is given by
an integral operator. The kernel of this operator is called the heat kernel of L. Needless
to say that any knowledge of the heat kernel, for example, upper and/or lower estimates,
can help in solving various problems related to the operator L (see, for example, [5],
[16]). If in addition the operator L is Markovian, that is, generates a Markov process (for
example, this is the case when L is a second order elliptic differential operator), then one
can use information about the heat kernel to answer questions about the process itself
(see, for example, [30] and references therein). A resolution of the Poincaré conjecture
by G.Perel’man can be viewed as a spectacular example of application of heat kernels in
Geometry.

In this survey we touch only one aspect of the study of heat kernels: what kind of
two sided estimates of self-similar type are possible for a heat kernel in a metric measure
space? This question will be stated more precisely below, after a series of examples, and
is largely motivated by a recent progress in Analysis on fractal spaces (see, for example,
[6], [40]). The results surveyed here were proved in [31], [32], [33]. The purpose of this
survey is to present a self-contained, streamlined account of these results with complete
proofs.
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1.1 Heat kernel in Rn

The classical Gauss-Weierstrass heat kernel is the following function

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x− y|2

4t

)

,

where x, y ∈ Rn and t > 0. This function is a fundamental solution of the heat equation

∂u

∂t
= ∆u,

where ∆ =
∑n

i=1
∂2

∂x2
i

is the Laplace operator. Moreover, if f is a continuous bounded

function on Rn then the function

u (t, x) =

∫

Rn
pt (x, y) f (y) dy

solves the Cauchy problem {
∂u
∂t = ∆u
u (0, x) = f (x)

.

In the modern terms, this also can be written in the form

u (t, ·) = exp (−tL) f ,

where L here is a self-adjoint extension of −∆ in L2 (Rn) and exp (−tL) is understood in
the sense of the functional calculus of self-adjoint operators. This means that pt (x, y) is
the integral kernel of the operator exp (−tL).

The function pt (x, y) has also a probabilistic meaning: it is the transition density of
the Brownian motion {Xt}t≥0 in Rn. The graph of pt (x, 0) as a function of x is shown on
Fig. 1.
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Figure 1: The Gauss-Weierstrass heat kernel at different values of t

The term |x−y|2

t determines the space/time scaling : if |x− y|2 ≤ Ct then pt (x, y) is
comparable with pt (y, y), that is, the probability density in the C

√
t-neighborhood of y is

nearly constant.
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1.2 Heat kernels on Riemannian manifolds

Let (M, g) be a connected Riemannian manifold, and ∆ be the Laplace-Beltrami operator
on M . Then the heat kernel pt (x, y) is can be defined as the integral kernel of the heat
semigroup {exp (−tL)}t≥0 where L is the Dirichlet Laplace operator, that is, the minimal

self-adjoint extension of −∆ in L2 (M,µ), and µ is the Riemannian volume. Alternatively,
pt (x, y) is the minimal positive fundamental solution of the heat equation

∂u

∂t
= ∆u.

The function pt (x, y) can be used to define the Brownian motion {Xt}t≥0 on M . Namely,
{Xt}t≥0 is a diffusion process (that is, a Markov process with continuous trajectories),
such that

Px (Xt ∈ A) =

∫

A

pt (x, y) dµ (y)

for any Borel set A ⊂M (see Fig. 2).

Xt

x

A

Figure 2: The Brownian motion Xt hits a set A

Let d (x, y) be the geodesic distance on M . It turns out that the Gaussian type

space/time scaling d2(x,y)
t appears in heat kernel estimates on general Riemannian mani-

folds:

1. (Varadhan [48]) For an arbitrary Riemannian manifold,

log pt (x, y) ∼ −
d2 (x, y)

4t
as t→ 0,

2. (Li & Yau [42]) If (M, g) is a complete manifold with Ric ≥ 0 then

pt (x, y) �
C

V
(
x,
√
t
) exp

(

−c
d2 (x, y)

t

)

,

where V (x, r) = µ (B (x, r)), B (x, r) being a geodesic ball, c, C are positive con-
stants, and the sign � means that both ≤ and ≥ take place, but possibly with
different values of C and c.

3. (Davies [21]) For an arbitrary manifold M , for any two measurable sets A,B ⊂M

∫

A

∫

B

pt (x, y) dµ (x) dµ (y) ≤
√
µ (A)µ (B) exp

(

−
d2 (A,B)

4t

)
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4. (Grigor’yan [26]) For an arbitrary manifold M , if for two points x, y ∈ M and all
t > 0

pt (x, x) ≤ f1 (t) and pt (y, y) ≤ f2 (t)

where f1 and f2 functions with some regularity properties then, for all t > 0,

pt (x, y) ≤ C
√
f1 (Ct) f2 (Ct) exp

(

−c
d2 (x, y)

t

)

.

Technically, all these results depend upon the following property of the geodesic dis-
tance: |∇d| ≤ 1.

It is natural to ask the following question:

Are there settings where the space/time scaling is different from Gaussian?

1.3 Heat kernels of fractional powers of Laplacian

Easy examples can be constructed using another operator instead of the Laplacian. As
above, let L be the Dirichlet Laplace operator on a Riemannian manifold M , and consider
the evolution equation

∂u

∂t
+ Lβ/2u = 0,

where β ∈ (0, 2). The operator Lβ/2 is understood in the sense of the functional calculus
in L2 (M,µ) . Let pt (x, y) be now the heat kernel of Lβ/2, that is, the integral kernel of
exp

(
−tLβ/2

)
.

The condition β < 2 leads to the fact that the semigroup exp
(
−tLβ/2

)
is Markovian,

which, in particular, means that pt (x, y) > 0 (if β > 2 then pt (x, y) may be signed). Using
the techniques of subordinators, developed in the theory of Markov processes, one obtains
the following estimate for the heat kernel of Lβ/2 in Rn (see [13] or Section 4.3 below):

pt (x, y) �
C

tn/β

(

1 +
|x− y|
t1/β

)−(n+β)

�
C

tn/β

(

1 +
|x− y|β

t

)−n+β
β

. (1.1)

The heat kernel of
√
L in Rn (that is, the case β = 1) is known explicitly:

pt(x, y) =
cn

tn

(

1 +
|x− y|2

t2

)−n+1
2

=
cnt

(
t2 + |x− y|2

)n+1
2

,

where cn = Γ
(
n+1

2

)
/π(n+1)/2 (which is nothing other but the Poisson kernel in the half-

space Rn+1
+ , or the density of the Cauchy distribution in Rn with the parameter t).

As we see, the space/time scaling is given by the term dβ(x,y)
t where β < 2. The heat

kernel of the operator Lβ/2 coincides with the transition density of a symmetric stable
process of index β, which belongs to the family of Levy processes. The trajectories of this
process are discontinuous, thus allowing jumps. The heat kernel pt (x, y) of such process
is nearly constant in a Ct1/β-neighborhood of y. If t is large then

t1/β � t1/2,

that is, this neighborhood is much larger than that for the diffusion process, which is not
surprising because of the presence of jumps. The space/time scaling with β < 2 is called
super-Gaussian.
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1.4 Heat kernels on fractal spaces

A rich family of heat kernels for diffusion processes has come from Analysis on fractals.
The notion of a fractal has appeared in Physics as a model for disordered media (cf. [43]).
Mathematically, fractals are sets in Rn with certain self-similarity properties. On Fig. 3,
the reader can see the first three steps of the construction procedure of a fractal set called
the Sierpinski gasket (SG), which is similar to the construction of the Cantor set:

Figure 3: Construction of the Sierpinski gasket: one starts with a triangle as a closed
subset of R2, then the open middle triangle is eliminated (shaded on the diagram), and
similar procedures repeat for the remaining triangles, etc.

Hence, SG is a compact connected subset of R2. Using a similar procedure for expand-
ing (see Fig. 4) one obtains the unbounded SG.

Figure 4: The unbounded SG is obtained from SG by merging the latter (at the left lower
corner of the diagram) with two shifted copies and then by repeating this procedure at
larger scales.

We refer the reader to [6], [23], [40] for the details of the construction of fractals.
Barlow and Perkins [12], Goldstein [25] and Kusuoka [41] have constructed by differ-

ent methods a natural diffusion process on SG that has the same self-similarity as SG.
Barlow and Perkins [12] considered random walks on the graph approximations of SG
and showed that, with an appropriate scaling, the random walks converge to a diffusion
process. Moreover, they proved that this process has a transition density pt (x, y) with
respect to a proper Hausdorff measure µ of SG, and that pt satisfies the following estimate:

6



pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

, (1.2)

where d (x, y) = |x− y| and

α = dimH SG =
log 3

log 2
, β =

log 5

log 2
> 2.

Similar estimates were proved by Barlow and Bass [8], [9], [10] for a large family of various
fractals, and the parameters α and β in (1.2) are determined by the intrinsic properties
of the fractal. In all cases, α is the Hausdorff dimension (which is also called the fractal
dimension). The parameter β, that is called the walk dimension, is larger than 2 in all
interesting examples.

In the case β > 2, the space/time scaling is called sub-Gaussian; the heat kernel
pt (x, ·) is nearly constant in Ct1/β-neighborhood of x and, for large t,

t1/β � t1/2.

The physicists call such a diffusion anomalous thus emphasizing that the estimates of the
kind (1.2) are features of very specific singular spaces. However, surprisingly enough, (1.2)
with β > 2 can occur on Riemannian manifolds, although for a restricted range of time t.
Indeed, consider the Sierpinski graph, which is obtained similarly to the Sierpinski gasket,
but using enlargement instead of shrinking (see Fig. 5).

Figure 5: The Sierpinski graph

It is not difficult to believe that the heat kernel pt (x, y) of the simple random walk on
this graph (where t is now an integer) admits the estimate (1.2) in the range

t ≥ max (1, d (x, y))

(see [35], [37]). Now make the Sierpinski graph into a manifold by blowing up the edges.
Then the heat kernel pt (x, y) for the Laplace-Beltrami operator on this manifold also
admit the sub-Gaussian estimate (1.2) for the above range of time. In the opposite case

t < max (1, d (x, y))

the heat kernel satisfies the Gaussian estimate (cf. [11]).
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1.5 Summary of examples

Observe now that in all the above examples, the heat kernel estimates can be unified in
one formula as follows:

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

, (1.3)

where α, β are positive parameters and Φ (s) is a positive decreasing function on [0,+∞).
For example, for the Gauss-Weierstrass function we have α = n, β = 2 and

Φ (s) = exp
(
−s2

)
.

For diffusions on fractals, we have β > 2 and

Φ (s) = exp
(
−s

β
β−1

)
.

For the symmetric stable process of the index β ∈ (0, 2) in Rn, we have

Φ (s) = (1 + s)−(α+β) ,

where α = n.
In this survey we focus on the following question:

What values of the parameters α, β and what functions Φ can actually occur in the
estimate (1.3)?

The answer (Theorem 6.7) will be given in the setting of metric measure spaces that
will be described in the next section.

2 Abstract heat kernels

Let (M,d) be a locally compact separable metric space and µ be a Radon measure on M

with full support. The triple (M,d, µ) will be called a metric measure space.

2.1 Basic definitions

Definition 2.1 A family {pt}t>0 of measurable functions pt(x, y) on M × M is called
a heat kernel if the following conditions are satisfied, for µ-almost all x, y ∈ M and all
s, t > 0:

(i) Positivity: pt (x, y) ≥ 0.

(ii) The total mass inequality:
∫

M

pt(x, y)dµ(y) ≤ 1. (2.1)

(iii) Symmetry: pt(x, y) = pt(y, x).

(iv) The semigroup property:

ps+t(x, y) =

∫

M

ps(x, z)pt(z, y)dµ(z). (2.2)

8



(v) Approximation of identity: for any f ∈ L2 := L2 (M,µ),
∫

M

pt(x, y)f(y)dµ(y)
L2

−→ f(x) as t→ 0 + . (2.3)

If in addition we have, for µ-a.a. x ∈M and all t > 0,
∫

M

pt(x, y)dµ(y) = 1 (2.4)

then the heat kernel pt is called stochastically complete (or conservative).
Any heat kernel gives rise to the heat semigroup {Pt}t≥0 where P0 = id and Pt for

t > 0 is the operator in L2 defined by

Ptf(x) =

∫

M

pt(x, y)f(y)dµ(y). (2.5)

It follows from (i)− (ii) that the operator Pt is Markovian, that is, f ≥ 0 implies Ptf ≥ 0
and f ≤ 1 implies Ptf ≤ 1. It follows that Pt is a bounded operator in L2 and, moreover,
is a contraction, that is, ‖Pt‖L2→L2 ≤ 1. The symmetry property (iii) implies that the
operator Pt is symmetric and, hence, self-adjoint. The semigroup property (iv) implies
that PtPs = Pt+s, that is, the family {Pt}t≥0 is a semigroup. It follows from (v) that

s- lim
t→0

Pt = id = P0

where s-lim stands for the strong limit. Hence, {Pt}t≥0 is a strongly continuous, symmet-

ric, Markovian semigroup in L2. Conversely, if {Pt} is such a semigroup and if it has the
integral kernel pt (x, y) then the latter is a heat kernel in the sense of Definition 2.1.

Given a strongly continuous, symmetric, Markovian semigroup Pt in L2, define the
infinitesimal generator L of the semigroup by

Lf := lim
t→0

f − Ptf
t

, (2.6)

where the limit is understood in the L2-norm. The domain dom(L) of the generator
L is the space of functions f ∈ L2 for which the limit in (2.6) exists. By the Hille–
Yosida theorem, dom(L) is dense in L2. Furthermore, L is a self-adjoint, positive definite
operator, which immediately follows from the fact that the semigroup {Pt} is self-adjoint
and Markovian. Moreover, we have

Pt = exp (−tL) , (2.7)

where the right hand side is understood in the sense of spectral theory.

Heat kernels arise naturally from Markov processes. Let
(
{Xt}t≥0 , {Px}x∈M

)
be a

reversible Markov process on M , and assume that it has the transition density pt (x, y),
that is, a function such that, for all x ∈M , t > 0, and all Borel sets A ⊂M ,

Px (Xt ∈ A) =

∫

M

pt (x, y) dµ (y) .

Then pt (x, y) is a heat kernel in the sense of Definition 2.1. Furthermore, in this case all
the properties (i)− (iv) are satisfied for all x, y ∈M rather than for almost all.
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All examples of heat kernels considered in Introduction, satisfy Definition 2.1. Now
we can specify our main question as follows:

Let pt (x, y) be a heat kernel on a metric measure space (M,d, µ) and assume that it
satisfies for all t > 0 and µ-a.a. x, y ∈M the estimate

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

. (2.8)

What values of the parameters α, β and what function Φ can actually occur in this esti-
mate?

The answer will be given in Theorem 6.7. Before we embark on the study of this
problem, let us show some simple examples of stochastically complete heat kernels that
do not satisfy (2.8).

Example 2.2 (A frozen heat kernel) Let M be a countable set and let {xk}
∞
k=1 be the

sequence of all distinct points from M . Let {µk}
∞
k=1 be a sequence of reals and define

measure µ on M by µ ({xk}) = µk. Define a function pt (x, y) on M ×M by

pt (x, y) =

{ 1
µk
, x = y = xk

0, otherwise.

We claim that pt (x, y) is a stochastically complete heat kernel. We call it frozen because
it does not depend on time t. For example, let us check the approximation of identity: for
any function f ∈ L2 (M,µ), we have

Ptf (x) =

∫

M

pt (x, y) f (y) dµ (y) = pt (x, x) f (x)µ ({x}) = f (x) ,

whence the claim follows.
The Markov process associated with the frozen heat kernel is very simple: Xt = X0

for all t ≥ 0 so that it is a frozen diffusion.

Example 2.3 (The heat kernel in H3) The heat kernel of the Laplace-Beltrami operator
on the 3-dimensional hyperbolic space H3 is given by the formula

pt(x, y) =
1

(4πt)3/2

r

sinh r
exp

(

−
r2

4t
− t

)

, (2.9)

where r = d (x, y) is the geodesic distance between x, y. See [15], [20], [29].

Example 2.4 (The Mehler heat kernel) Let M = R, measure µ be defined by

dµ = ex
2
dx,

and the operator L be given by

L = −e−x
2 d

dx

(

ex
2 d

dx

)

= −
d2

dx2
− 2x

d

dx
.

Then the heat kernel of L is given by the formula

pt (x, y) =
1

(2π sinh 2t)1/2
exp

(
2xye−2t − x2 − y2

1− e−4t
− t

)

(2.10)
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Similarly, for the measure
dµ = e−x

2
dx

and for the operator

L = ex
2 d

dx

(

e−x
2 d

dx

)

= −
d2

dx2
+ 2x

d

dx
,

we have

pt (x, y) =
1

(2π sinh 2t)1/2
exp

(
2xye−2t −

(
x2 + y2

)
e−4t

1− e−4t
+ t

)

.

See [19, p.181] and [29].

2.2 The Dirichlet form

Given a heat kernel {pt} on a metric measure space (M,d, µ), define for any t > 0 a
quadratic form Et on L2 by

Et [u] :=

(
u− Ptu

t
, u

)

, (2.11)

where (·, ·) is the inner product in L2. An easy computation shows that Et can be equiva-
lently defined by

Et [u] =
1

2t

∫

M

∫

M

|u(x)− u(y)|2 pt(x, y)dµ(y)dµ(x)

+
1

t

∫

M

(1− Pt1(x))u2(x)dµ(x). (2.12)

Indeed, by (2.5) we have

u(x)− Ptu(x) = u (x)Pt1 (x)− Ptu (x) + (1− Pt1(x))u (x)

=

∫

M

(u(x)− u(y)) pt(x, y)dµ(y) + (1− Pt1(x))u (x)

whence by (2.11)

Et [u] =
1

t

∫

M

∫

M

(u(x)− u(y))u(x)pt(x, y)dµ(y)dµ(x)

+
1

t

∫

M

(1− Pt1(x))u2(x)dµ(x). (2.13)

Interchanging the variables x and y in the first integral and using the symmetry of the
heat kernel, we obtain also

Et [u] =
1

t

∫

M

∫

M

(u(y)− u(x))u(y)pt(x, y)dµ(y)dµ(x)

+
1

t

∫

M

(1− Pt1(x))u2(x)dµ(x), (2.14)

and (2.12) follows by adding up (2.13) and (2.14).
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Note that by (2.1) Pt1 ≤ 1 so that the second term in the right hand side of (2.12)
is non-negative. If the heat kernel is stochastically complete, that is, Pt1 = 1, then that
term vanishes and we obtain

Et [u] =
1

2t

∫

M

∫

M

|u(x)− u(y)|2 pt(x, y)dµ(y)dµ(x). (2.15)

In terms of the spectral resolution {Eλ} of the generator L, Et can be expressed as
follows

Et [u] =

∫ ∞

0

1− e−tλ

t
d‖Eλu‖

2
2,

which implies that Et [u] is decreasing in t (indeed, this is an elementary exercise to show

that the function t 7→ 1−e−tλ
t is decreasing).

Let us define a quadratic form E by

E [u] := lim
t→0+

Et [u] =

∫ ∞

0
λd‖Eλu‖

2
2 (2.16)

(where the limit may be +∞ since E [u] ≥ Et [u]) and its domain F = dom (E) by

F : = {u ∈ L2 : E [u] <∞}.

It is clear from (2.12) and (2.16) that Et and E are positive definite.
It is easy to see from (2.16) that F = dom(L1/2). It will be convenient for us to use

the following notation:
domE(L) := F = dom(L1/2). (2.17)

The domain F is dense in L2 because F contains dom(L). Indeed, if u ∈ dom(L) then
using (2.6) and (2.11), we obtain

E [u] = lim
t→0
Et [u] = (Lu, u) <∞. (2.18)

The quadratic form E [u] extends to a bilinear form E (u, v) by the polarization identity

E (u, v) =
1

2
(E [u+ v]− E [u− v]) .

It follows from (2.18) that E(u, v) = (Lu, v) for all u, v ∈ dom(L).
The space F is naturally endowed with the inner product

E1 (u, v) := (u, v) + E (u, v) . (2.19)

It is possible to show that the form E is closed, that is, the space F is Hilbert.
The fact that Pt is Markovian implies that the form E satisfies the Markov property : if

u ∈ F then ũ := min(u+, 1) ∈ F and E [ũ] ≤ E [u]. Hence, E is a Dirichlet form (see [24]).

Definition 2.5 The form (E ,F) is called local if E (u, v) = 0 whenever the functions
u, v ∈ F have compact disjoint supports. The form (E ,F) is called strongly local if
E (u, v) = 0 whenever the functions u, v ∈ F have compact supports and u ≡ const in an
open neighborhood of supp v.

12



For example, if pt (x, y) is the heat kernel of the Laplace-Beltrami operator on a com-
plete Riemannian manifold then

E (u, v) =

∫

M

(∇u,∇v) dµ

and F is the Sobolev space W 1
2 (M). Note that this Dirichlet form is strongly local because

u = const on supp v implies ∇u = 0 on suppu and, hence, E (u, v) = 0.

If pt (x, y) is the heat kernel of the symmetric stable process of index β in Rn, that is,

L = (−∆)β/2, then

E (u, v) = cn,β

∫

Rn

∫

Rn

(u (x)− u (y)) (v (x)− v (y))

|x− y|n+β
dxdy,

and F is the Besov space B
β/2
2,2 (Rn). This form is non-local.

Denote by C0 (M) the space of continuous functions on M with compact supports,
endowed with sup-norm.

Definition 2.6 The form (E ,F) is called regular if F ∩C0 (M) is dense both in F and in
C0 (M).

All the Dirichlet forms in the above examples are regular.

2.3 Identifying Φ in the non-local case

Fix two positive parameters α and β and a monotone decreasing function Φ : [0,+∞)→
[0,+∞).

Lemma 2.7 ([33]) Assume that {pt} is a heat kernel on (M,d, µ) such that, for all t > 0
and almost all x, y ∈M ,

pt (x, y) ≤
1

tα/β
Φ

(
d (x, y)

t1/β

)

. (2.20)

Then either the associated Dirichlet form E is local or

Φ (s) ≥ c (1 + s)−(α+β) (2.21)

for all s > 0 and some c > 0.

Proof. Consider the bilinear form Et on L2 (M,µ), which is given by

Et (u, v) =
1

2t

∫

M

∫

M

(u(x)− u(y)) (v (x)− v (y)) pt(x, y)dµ(y)dµ(x) (2.22)

+
1

t

∫

M

(1− Pt1(x))u(x)v(x)dµ(x) (2.23)

(cf. (2.12)). Let u, v ∈ L2 (M,µ) be two non-negative functions with compact disjoint
supports A = suppu and B = supp v, and set

r = d (A,B) > 0

13



A Br

Figure 6: Functions u and v with disjoint supports

(see Fig. 6).
The integral (2.23) is clearly equal to 0. The integrand in (2.22) vanishes if either both

x, y are outside A or both x, y are outside B. Hence, we can restrict the integration to the
domain where one of the variables x, y is in A and the other is in B. Hence, we obtain,
using the symmetry of the heat kernel,

Et (u, v) = −
1

2t

∫

A

∫

B

u(x)v (y) pt(x, y)dµ(y)dµ(x)

−
1

2t

∫

B

∫

A

u(y)v (x) pt(x, y)dµ(y)dµ(x)

= −
1

t

∫

A

∫

B

u(x)v (y) pt(x, y)dµ(y)dµ(x). (2.24)

If x ∈ A and y ∈ B then d (x, y) ≥ r. Therefore, for almost all x ∈ A and y ∈ B,

pt (x, y) ≤
1

tα/β
Φ
( r

t1/β

)
,

which together with (2.24) implies

|Et (u, v)| ≤
1

t1+α/β
Φ
( r

t1/β

)
‖u‖L1‖v‖L1 (2.25)

(note that ‖u‖L1 ≤ µ (A)1/2 ‖u‖L2 < ∞ and the same holds for v). If (2.21) fails then
there exists a sequence {sk} → ∞ such that

s
α+β
k Φ (sk)→ 0 as k →∞.

Define a sequence {tk} from the condition

sk =
r

t
1/β
k

.

Then

s
α+β
k Φ (sk) =

rα+β

t
1+α/β
k

Φ

(
r

t
1/β
k

)

→ 0 as k →∞,

and (2.25) implies that
Etk (u, v)→ 0 as k →∞. (2.26)

14



If in addition u, v ∈ F then, by (2.16) and (2.26),

E (u, v) = lim
k→∞

Etk (u, v) = 0,

whence the locality of E follows.

Lemma 2.8 ([33]) Assume that {pt} is a heat kernel on (M,d, µ) such that, for all t > 0
and almost all x, y ∈M ,

pt (x, y) ≥
1

tα/β
Φ

(
d (x, y)

t1/β

)

. (2.27)

Then
Φ (s) ≤ C (1 + s)−(α+β) (2.28)

for all s > 0 and some C > 0.

Proof. Let u be a non-constant function from L2 (M,µ). Choose a ball Q ⊂M where
u is non-constant and let a > b be two real values such that the sets

A = {x ∈ Q : u (x) ≥ a} and B = {x ∈ Q : u (x) ≤ b}

have positive measures (see Fig. 7).

{ }

{ }

Figure 7: Sets A and B

If R = diamQ then, by (2.27), we have, for almost all x, y ∈ Q,

pt (x, y) ≥
1

tα/β
Φ

(
R

t1/β

)

,

whence by (2.12)

E [u] ≥ Et [u] ≥
1

2t

∫

A

∫

B

(u(x)− u (y))2 pt(x, y)dµ(y)dµ(x)

≥ (a− b)2 µ (A)µ (B)
1

2t1+α/β
Φ

(
R

t1/β

)

=
c′

t1+α/β
Φ

(
R

t1/β

)

, (2.29)
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where c′ > 0. If (2.28) fails then there exists a sequence {sk} → ∞ such that

s
α+β
k Φ (sk)→∞ as k →∞. (2.30)

Define a sequence {tk} from the condition

sk =
R

t
1/β
k

.

Then
1

t
1+α/β
k

Φ

(
R

t
1/β
k

)

= R−(α+β)s
α+β
k Φ (sk)→∞ as k →∞,

and (2.29) yields E (u, u) =∞.
Hence, we have arrived at the conclusion that the domain of the form E contains

only constants. Since F is dense in L2 (M,µ), it follows that L2 (M,µ) consists only of
constants. Hence, there is a point x ∈M with a positive mass, that is, µ ({x}) > 0. Then
(2.1) implies that, for all t > 0,

pt (x, x) ≤
1

µ ({x})
. (2.31)

On the other hand, (2.30) implies Φ (0) > 0, whence by (2.27) pt(x, x) → ∞ as t → 0,
which contradicts (2.31).

Remark 2.9 The last argument in the above proof can be stated as follows. If (2.27)
holds with a function Φ such that Φ (0) > 0, then µ ({x}) = 0 for all x ∈M . This simple
observation will also be used below.

Corollary 2.10 Assume that the following estimate holds for all t > 0 and almost all
x, y ∈M :

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

. (2.32)

Then either the Dirichlet form E is local or

Φ (s) ' (1 + s)−(α+β) . (2.33)

Proof. Indeed, if E is non-local then, by Lemmas 2.7 and 2.8, the function Φ must
satisfy (2.21) and (2.28), whence (2.33) follows.

2.4 Volume of balls

Let
B(x, r) := {y ∈M : d(x, y) < r}

be the metric ball in (M,d) of radius r centered at the point x ∈M .

Theorem 2.11 ([32]) Let pt be a heat kernel on a metric measure space (M,d, µ). Let
α, β be positive constants and Φ1,Φ2 be monotone decreasing functions from [0,+∞) to
[0,+∞) such that Φ1 (s) > 0 for some s > 0, and

∫ ∞

0
sαΦ2 (s)

ds

s
<∞. (2.34)
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(a) If for µ-almost all x, y ∈M and all t > 0

pt (x, y) ≥
1

tα/β
Φ1

(
d(x, y)

t1/β

)

(2.35)

then, for all x ∈M and r > 0,

µ(B(x, r)) ≤ Crα. (2.36)

(b) If pt (x, y) is stochastically complete and, for µ-almost all x, y ∈M and all t > 0,

1

tα/β
Φ1

(
d(x, y)

t1/β

)

≤ pt (x, y) ≤
1

tα/β
Φ2

(
d(x, y)

t1/β

)

(2.37)

then, for all x ∈M and r > 0,

µ(B(x, r)) ' rα. (2.38)

Proof. (a) Fix r, t > 0 and consider the following integral

∫

B(x,r)
pt(x, y) dµ(y) :=

∫

M

pt (x, y) 1B(x,r) (y) dµ (y) .

This definition is not entirely trivial as it requires the following justification. Indeed,
the function F (x, y) = pt (x, y) 1B(x,r) (y) is measurable jointly in x, y so that by Fubini’s
theorem the integral

∫
M F (x, y) dµ (y) is well-defined for µ-a.a. x ∈M and is a measurable

function of x.
For a fixed t > 0 (the value of t = t (r) will be specified below), choose a pointwise

version of pt (x, y) as a function of x, y. By Fubini’s theorem, there is a subset X ⊂M of
a full measure such, that, for any x ∈ X, the following is true:

1. the function pt (x, y) is measurable in y;

2. the following inequality is satisfied

∫

B(x,r)
pt(x, y)dµ(y) ≤ 1, (2.39)

which follows from (2.1);

3. the inequality (2.35) is satisfied for µ-a.a. y ∈M .

It follows from (2.39) that, for any x ∈ X,

µ(B(x, r)) ≤

(

essinf
y∈B(x,r)

pt(x, y)

)−1

.

Choose ε > 0 so that Φ1 (ε) > 0. Applying (2.35) and choosing t from the identity
r = εt1/β we obtain

essinf
y∈B(x,r)

pt(x, y) ≥
1

tα/β
Φ1

( r

t1/β

)
= r−αεαΦ1 (ε) ,
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whence (2.36) follows with C = (εαΦ1 (ε))−1. Finally, having proved (2.38) for all x ∈ X,
we obtain (2.38) for all x ∈M because X is dense in M .

(b) We first show that the upper bound in (2.37) and (2.36) imply that, for µ-a.a.
x ∈M , 0 < t ≤ εrβ , ∫

M\B(x,r)
pt(x, y)dµ(y) ≤

1

2
, (2.40)

provided ε > 0 is sufficiently small (the measurability issues are handled in the same way
as in part (a) so we skip the details). Setting rk = 2kr and using the monotonicity of Φ2

and (2.36) we obtain

∫

M\B(x,r)
pt(x, y)dµ(y) =

∞∑

k=0

∫

B(x,rk+1)\B(x,rk)
pt (x, y) dµ(y)

≤
∞∑

k=0

∫

B(x,rk+1)\B(x,rk)
t−α/βΦ2

( rk

t1/β

)
dµ(y)

≤
∞∑

k=0

Crαk+1t
−α/βΦ2

( rk

t1/β

)

= C ′
∞∑

k=0

(
2kr

t1/β

)α
Φ2

(
2kr

t1/β

)

≤ C ′
∫ ∞

1
2
r/t1/β

sαΦ2(s)
ds

s
. (2.41)

Since by hypothesis (2.34) the integral in (2.41) is convergent, its value can be made
arbitrarily small provided rβ/t is large enough, whence (2.40) follows.

From (2.4) (which is true by the stochastic completeness of the heat kernel) and (2.40),
we conclude that the condition 0 < t ≤ εrβ implies

∫

B(x,r)
pt(x, y)dµ(y) ≥

1

2
, (2.42)

whence

µ(B(x, r) ≥
1

2

(

esssup
y∈B(x,r)

pt(x, y)

)−1

.

Finally, choosing t = εrβ and using the upper bound

pt(x, y) ≤ t−α/βΦ2(0) = r−αε−α/βΦ2 (0) ,

we obtain
µ (B (x, r)) ≥ crα, (2.43)

where c = 1
2ε
α/β (Φ2 (0))−1. Combining (2.36) and (2.43), we finish the proof.

Corollary 2.12 Let a heat kernel pt (x, y) be stochastically complete and satisfy the two-
sided estimate

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

, (2.44)

where Φ is a monotone decreasing function from [0,+∞) to [0,+∞). Then for all x ∈M
and r > 0,

µ(B(x, r)) ' rα. (2.45)

18



Proof. Observe first that Φ (0) > 0 because otherwise pt (x, y) = 0 for almost all
x, y ∈ M , which contradicts the stochastic completeness. Let us show that Φ (s) > 0 for
some s > 0. Indeed, assuming the contrary, we obtain that pt (x, y) = 0 for µ-almost all
x 6= y. The stochastic completeness of pt (x, y) then implies

∫

{x}
pt (x, y) dµ (y) = 1 (2.46)

for µ-a.a. x ∈ M , which implies that there is a point x ∈ M with a positive mass, that
is, µ ({x}) > 0. However, by Remark 2.9, this is impossible in the presence of the lower
bound in (2.44).

Hence, Φ (s) > 0 for some s > 0. By Lemma 2.8, we obtain

Φ (s) ≤ C (1 + s)−(α+β) . (2.47)

In particular, Φ satisfies the condition (2.34) of Theorem 2.11. Hence, (2.45) follows from
Theorem 2.11(b).

Lemma 2.13 Assume that, for all x ∈M and r ∈ (0, r0)

µ (B (x, r)) ' rα,

where α, r0 > 0. Then, for any non-empty open set Ω ⊂M ,

dimH Ω = α.

Moreover, for all Borel sets A ⊂M ,

µ (A) ' Hα (A) ,

where Hα is the Hausdorff measure of the dimension α in M .

Proof. Recall that the Hausdorff measure Hs of a Borel subset A ⊂M is defined by

Hs (A) = lim
ε→0+

Hs
ε (A) (2.48)

where

Hs
ε (A) = inf

{
∑

i

rsi : A ⊂
⋃

i

B (xi, ri) , xi ∈M, ri < ε

}

. (2.49)

Note that Hs
ε (A) increases as ε decreases so that limε→0 in (2.48) can be replaced by

supε>0.
It follows from the definition that Hs (A) decreases as s increases. This allows to

defined the Hausdorff dimension of A by

dimH A = sup {s : Hs (A) > 0} .

In fact, if there is α such that 0 < Hα (A) <∞ then α = dimH A. Indeed, it follows from
(2.49) that if s > α then

Hs
ε (A) ≤ εs−αHα

ε (A) ≤ εs−αHα (A)

whence Hs (A) = 0.
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Let Ω now be a bounded non-empty open subset of M and let us prove that 0 <

Hα (Ω) <∞. In fact, it is suffices to prove that

Hα (Ω) ' µ (Ω)

(note that Ω contains a ball and is contained in a ball so that 0 < µ (Ω) <∞).
If {B (xi, ri)} is any finite or countable sequence of balls covering Ω and ri < r0 then

µ (Ω) ≤
∑

i

µ (B (xi, ri)) ≤ C
∑

i

rαi .

Taking inf over all such sequences with ri < ε, where ε < r0, we obtain

µ (Ω) ≤ CHα
ε (Ω) ≤ CHα (Ω) .

To prove the opposite inequality, it suffices to show that, for any ε ∈ (0, r0) there is a
covering of Ω by a sequence of ball {B (xi, ri)} such that ri < ε and

µ (Ω) ≥ c
∑

i

rαi

where the constant c > 0 is the same for all sets Ω and for all ε ∈ (0, r0). For any point
x ∈ Ω, there is rx ∈ (0, ε) such that the B (x, rx) ⊂ Ω. Using the ball covering argument
(see, for example, [17, Lemma 2.6]), it is possible to select a finite or countable sequence
{xi} of points from Ω such that the balls B (xi, ri) cover Ω while the balls B

(
xi,

1
4ri
)

are
disjoint (where ri = rxi). Then

µ (Ω) ≥
∑

i

µ
(
B
(
xi,

1
4ri
))
≥ c

∑

i

rαi ,

which was to be proved.
Finally, let Ω be an arbitrary non-empty open set. Then it can be represented as the

union of a sequence {Ωi}
∞
i=1 of bounded open sets. Since Hα (Ω) ≥ Hα (Ωi) > 0 it follows

that dimH (Ω) ≥ α. On the other hand, if s > α then Hs (Ωi) = 0 which implies that
Hs (Ω) = 0 and, hence, dimH (Ω) ≤ α. We conclude that dimH (Ω) = α, which finishes
the proof.

The above argument yields also that the relation

Hα (A) ' µ (A) (2.50)

holds for any bounded open set A ⊂M . Since Borel sets in a metric space can be obtained
from bounded open sets by applying the operation of a monotone limit, which preserves
(2.50), it follows that (2.50) holds for all Borel sets.

Combining Theorem 2.11(b) or Corollary 2.12 with Lemma 2.13, we obtain the follow-
ing statement.

Corollary 2.14 Assume that either the hypotheses of Theorem 2.11(b) or those of Corol-
lary 2.12 are satisfied. Then

α = dimHM and µ ' Hα.

Consequently, the parameter α is the invariant of the metric space (M,d), and measure µ
is determined (up to a factor ' 1) by the metric space (M,d) alone.
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3 Besov spaces

3.1 Besov spaces in Rn

Recall that the Sobolev space W 1
p (Rn), where p ∈ [1,+∞], consists of functions u ∈ Lp(Rn)

such that ∂u
∂xi
∈ Lp(Rn) for all i = 1, 2, ..., n, where ∂u

∂xi
is the distributional derivative of

u. It is known that if p ∈ (1,+∞] then a function u ∈ Lp(Rn) belongs to W 1
p (Rn) if and

only if

sup
z∈Rn\{0}

‖u(x+ z)− u(x)‖p
|z|

<∞

(see [22, pp.277, 279]). Fix p ∈ [1,+∞], σ ∈ (0, 1) and consider a more general Besov-
Nikol’skii space Bσ

p,∞ (Rn) that consists of functions u ∈ Lp (Rn) such that

sup
z∈Rn,0<|z|≤1

‖u (x+ z)− u (x) ‖p
|z|σ

<∞, (3.1)

and the norm in Bσ
p,∞ is the sum of ‖u‖p and the left hand side of (3.1).

A more general family Bσ
p,q (Rn) of Besov spaces is defined for any 1 ≤ q ≤ ∞ but

alongside the case q = ∞ considered above, we will need only the case q = p < +∞. In
this case, u ∈ Bσ

p,p (Rn) if u ∈ Lp (Rn) and
∫ ∫

Rn Rn

|u(x+ z)− u(x)|p

|z|n+pσ dx dz <∞, (3.2)

with the obvious definition of the norm in Bσ
p,p. Here are some well known facts about

Besov and Sobolev spaces, where we assume 1 < p < +∞ (see for example [3]).

1. u ∈ Bσ
p,∞ (Rn) if and only if u ∈ Lp (Rn) and

sup
0<r≤1

Dp (u, r)

rn+pσ
<∞,

where

Dp (u, r) :=

∫ ∫

{x,y∈Rn:|x−y|<r}

|u(y)− u(x)|p dx dy =

∫

|z|<r
‖u (·+ z)− u‖pp dµ (z) .

2. u ∈ Bσ
p,p (Rn) if and only if u ∈ Lp (Rn) and

∫ ∞

0

Dp (u, r)

rn+pσ

dr

r
<∞.

Indeed, assuming for simplicity that u is a smooth function with compact support,
we obtain

∫ ∫

Rn Rn

|u(x+ z)− u(x)|p

|z|n+pσ dx dz =

∫

Rn

‖u (·+ z)− u‖p

|z|n+pσ dz

=

∫ ∞

0

∫

z∈Sr

‖u (·+ z)− u‖p

|z|n+pσ dSrdr

=

∫ ∞

0

∂rDp (u, r)

rn+pσ
dr

= (n+ pσ)

∫ ∞

0

Dp (u, r)

rn+pσ

dr

r
,
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where Sr = {z ∈ Rn : |z| = r} and we have used that

Dp (u, r) = O
(
rn+p

)
= o

(
rn+pσ

)
as r → 0

Dp (u, r) = O (1) = o
(
rn+pσ

)
as r →∞.

3. For any 0 < σ < 1 the following relations take place

W 1
2 (Rn) ⊂ Bσ

2,2 (Rn) ⊂ Bσ
2,∞ (Rn)

‖ ‖
domE (−∆) ⊂ domE (−∆)σ

(3.3)

3.2 Besov spaces in a metric measure space

Fix α > 0, σ > 0, p ∈ [1,+∞) and introduce the following functionals on Lp = Lp (M,µ):

Dp (u, r) =

∫ ∫

{x,y∈M :d(x,y)<r}

|u(x)− u(y)|p dµ(x)dµ(y), (3.4)

and

Nα,σ
p,∞ (u) = sup

0<r≤1

Dp (u, r)

rα+pσ
. (3.5)

Furthermore, for any q ∈ [1,+∞) set

Nα,σ
p,q (u) =

(∫ ∞

0

(
Dp (u, r)

rα+pσ

)q/p dr
r

)p/q

. (3.6)

We will need only particular case of (3.6) when p = q. In this case, we have

Nα,σ
p,p (u) =

∫ ∞

0

Dp (u, r)

rα+pσ

dr

r
. (3.7)

For all 1 ≤ p < +∞ and 1 ≤ q ≤ +∞ define the space

Λα,σp,q =
{
u ∈ Lp : Nα,σ

p,q (u) <∞
}

and the norm in this space by

‖u‖p
Λα,σp,q

= ‖u‖pp +Nα,σ
p,q (u).

The space Λα,σp,q was denoted by Lip (σ, p, q) in [38] and by Λp,qσ in [47]; the space Λα,σp,∞ was
denoted by W σ,p in [32].

Comparing the equivalent definitions of the Besov spaces in Rn and Λα,σp,q , we obtain
the following identities:

Λn,σp,q (Rn) = Bσ
p,q (Rn) , 0 < σ < 1,

Λn,1p,p (Rn) = {0} ,

Λn,1p,∞ (Rn) = W 1
p (Rn) ,

Λn,σp,q (Rn) = {0} , σ > 1.
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The definitions of Λn,σ
p,q and Bσ

p,q match only for σ < 1. For σ ≥ 1 the definition of Bσ
p,q

becomes more involved whereas the above definition of Λα,σ
p,q is valid for all σ > 0 even if

the space Λα,σp,q degenerates to {0} for sufficiently large σ. With some abuse of terminology,
we refer to Λα,σp,q as a Besov space, too.

The fact that Dp (u, r) is increasing in r implies that, for any r > 0,

Dp (u, r)

rα+pσ
≤ 2α+pσ

∫ 2r

r

Dp (u, ρ)

ρα+pσ

dρ

ρ

whence Nα,σ
p,∞ (u) ≤ CNα,σ

p,p (u) and

Λα,σp,p ↪→ Λα,σp,∞. (3.8)

It is clear from (3.5) that Nα,σ
p,∞ (u) is monotone increasing in σ, which means that the

space Λα,σp,∞ shrinks when σ increases. Let us show the same holds also for the spaces Λα,σ
p,q

with q <∞, provided the parameter α satisfies the following property:

µ (B(x, r)) ≤ Crα for all x ∈M and r > 0. (3.9)

Indeed, using (3.9) we obtain, for any u ∈ Lp,

Dp (u, r) ≤ 2p−1

∫ ∫

{d(x,y)<r}

(|u (x)|p + |u (y)|p) dµ (x) dµ (y)

= 2p
∫ ∫

{d(x,y)<r}

|u (y)|p dµ (x) dµ (y)

= 2p
∫

M

|u (y)|p µ (B (y, r)) dµ (y)

≤ Crα‖u‖pp.

Therefore, the integral (3.6) converges at ∞ for all u ∈ Lp and σ > 0, and the condition
N
α,σ
p,q (u) < ∞ amounts to the convergence of the integral at 0. This implies the above

claim that the space Λα,σ
p,q shrinks when σ increases.

3.3 Embedding of Besov spaces into Hölder spaces

Let us define a Hölder space Cλ = Cλ(M,d, µ) as follows: u ∈ Cλ if1

‖u‖Cλ := ‖u‖∞ + esssup
x, y ∈ M

0 < d(x, y) ≤ 1/3

|u(x)− u(y)|
d(x, y)λ

<∞. (3.10)

Theorem 3.1 ([32]) Let (M,d, µ) satisfy

µ (B (x, r)) ' rα (3.11)

for all x ∈M and r > 0. Then, for any σ > α/2 and all u ∈ L2,

‖u‖Cλ ≤ C‖u‖Λα,σ2,∞
, (3.12)

1The restriction d(x, y) ≤ 1/3 in (3.10) is related to the restriction r ≤ 1 in definition (3.5). If (M,d)
satisfies the chain condition (see Definition 5.5 below) then the 1/3 can be replaced by any other positive
constant.
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where
λ = σ − α/2.

Consequently, we have the embedding

Λα,σ2,∞ ↪→ Cλ.

Remark 3.2 From (3.8) it follows that also Λα,σ
2,2 ↪→ Cλ.

Proof. For any x ∈M and r > 0, set

ur(x) :=
1

µ(B(x, r))

∫

B(x,r)
u(ξ)dµ(ξ). (3.13)

We claim that for any u ∈ L2, any 0 < r ≤ 1/3, and all x, y ∈ M such that d(x, y) ≤ r,
the following inequality holds:

|ur(x)− ur(y)| ≤ C rλNα,σ
2,∞(u)1/2. (3.14)

Indeed, setting B1 = B(x, r), B2 = B(y, r), we have

ur(x) =
1

µ(B1)

∫

B1

u(ξ)dµ(ξ) =
1

µ(B1)µ(B2)

∫

B1

∫

B2

u(ξ)dµ(η)dµ(ξ),

and similarly

ur(y) =
1

µ(B1)µ(B2)

∫

B1

∫

B2

u(η)dµ(η)dµ(ξ).

Applying the Cauchy-Schwarz inequality, (3.11) and (3.5), we obtain

|ur(x)− ur(y)|2 =

(
1

µ(B1)µ(B2)

∫

B1

∫

B2

(u(ξ)− u(η)) dµ(η)dµ(ξ)

)2

≤
1

µ(B1)µ(B2)

∫

B1

∫

B2

|u(ξ)− u(η)|2 dµ(η)dµ(ξ)

≤ C r−2α

∫ ∫

{ξ,η∈M :d(ξ,η)<3r}

|u(ξ)− u(η)|2 dµ(η)dµ(ξ)

= Cr−2αD2 (u, 3r)

≤ C r2σ−αN
α,σ
2,∞(u),

thus proving (3.14).
Similarly, one proves that, for any 0 < r ≤ 1/3 and x ∈M ,

|u2r(x)− ur(x)| ≤ C rλNα,σ
2,∞(u)1/2. (3.15)

By the Lebesgue theorem, we have

ur (x)→ u (x) as r → 0, for µ-a.a. x ∈M (3.16)
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(this theorem requires the doubling property of the measure, which is true by (3.11)).
Setting rk = 2−kr for any k = 0, 1, 2, ... we obtain from (3.15) and (3.16), for µ-a.a.
x ∈M ,

|u(x)− ur(x)| ≤
∞∑

k=0

|urk(x)− urk+1
(x)|

≤ C

(
∞∑

k=0

rλk

)

Nα,σ
2,∞(u)1/2

≤ C rλN
α,σ
2,∞(u)1/2. (3.17)

Applying the Cauchy-Schwarz inequality

|ur(x)| ≤ C r−α/2‖u‖2

and using (3.17) to some fixed value of r, say r = 1/4, we obtain

|u(x)| ≤ |u(x)− ur(x)|+ |ur(x)| ≤ C
(
‖u‖2 +N

α,σ
2,∞(u)1/2

)
,

whence
‖u‖∞ ≤ C ‖u‖Λα,σ2,∞

. (3.18)

Using (3.14) and (3.17), we obtain, for µ-a.a. x, y ∈M such that r := d(x, y) < 1/3,

|u(x)− u(y)| ≤ |u(x)− ur(x)|+ |ur(x)− ur(y)|+ |ur(y)− u(y)| ≤ C rλNα,σ
2,∞(u)1/2.

Hence,
|u(x)− u(y)|
d(x, y)λ

≤ C Nα,σ
2,∞(u)1/2,

which together with (3.18) yields (3.12).

4 The energy domain

Recall that a heat kernel pt on a metric measure space (M,d, µ) has the associated energy
form E and the generator L.

4.1 A local case

The following theorem identifies the domain F of the energy form in terms of Besov spaces.

Theorem 4.1 ([32]) Let pt be a heat kernel on (M,d, µ), α, β be positive constants, and
Φ1 and Φ2 be monotone decreasing functions from [0,+∞) to [0,+∞).

(a) If the heat kernel satisfies the lower bound

pt (x, y) ≥
1

tα/β
Φ1

(
d (x, y)

t1/β

)

where Φ1 (s) > 0 for some s > 0, then, for any u ∈ L2 (M,µ),

E [u] ≥ cNα,β/2
2,∞ (u)
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and, consequently, F ⊂ Λ
α,β/2
2,∞ .

(b) If the heat kernel is stochastically complete and satisfies the upper bound

pt (x, y) ≤
1

tα/β
Φ2

(
d (x, y)

t1/β

)

where ∫ ∞
sα+βΦ2(s)

ds

s
<∞, (4.1)

then, for any u ∈ L2 (M,µ),

E [u] ≤ CNα,β/2
2,∞ (u)

and, consequently, F ⊃ Λ
α,β/2
2,∞ .

Corollary 4.2 If the heat kernel is stochastically complete and satisfies the two-sided
estimate (2.37) with functions Φ1 and Φ2 as in Theorem 4.1 then, for any u ∈ L2 (M,µ),

E [u] ' Nα,β/2
2,∞ (u), (4.2)

and, consequently, F = Λ
α,β/2
2,∞ .

The identity F = Λ
α,β/2
2,∞ was obtained in different setting by Jonsson [38, Theorem 1],

Pietruska-Paluba [44, Theorem 1], and [32, Theorem 4.2].
Let us show the sharpness of the condition (4.1). If 0 < σ < 1 then the heat kernel of

the operator (−∆)σ in Rn satisfies (2.37) with the function Φ2 (s) = C (1 + s)−(α+β), where
α = n and β = 2σ (see Introduction or Lemma 4.4 below). For this function, the condition

(4.1) breaks just on the borderline, and the identity F = Λ
α,β/2
2,∞ is not valid either. Indeed,

in Rn by (3.3) domE (−∆)σ = Bσ
2,2 that is strictly smaller than Bσ

2,∞ = Λ
n,β/2
2,∞ . This case

will be covered by Theorem 4.3 below.
As we will see in the proof below (cf. (4.5) and (4.7)), under hypothesis (4.1) we have

in fact

E [u] ' lim sup
r→0

r−(α+β)

∫ ∫

{d(x,y)<r}

|u(x)− u(y)|2dµ(y)dµ(x). (4.3)

In particular, this implies that the energy form is strongly local, that is for all functions
u, v ∈ F with compact supports, if u ≡ const in an open neighborhood of the support of v
then E (u, v) = 0 (note that the locality of E follows also from Lemma 2.7). The operator
(−∆)σ is not local for 0 < σ < 1, and this explains why Theorem 4.1 does not apply to
this operator.

Proof of Theorem 4.1. (a) For a function u ∈ L2, we have by (3.4) and (3.5)

N
α,β/2
2,∞ (u) = sup

0<r≤1

D2(u, r)

rα+β
,

where

D2(u, r) =

∫ ∫

{d(x,y)<r}

(u(x)− u(y))2 dµ(y)dµ(x). (4.4)

It suffices to prove that, for some c > 0 and for all r > 0,

E [u] ≥ c
D2 (u, r)

rα+β
,
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which would then imply

E [u] ≥ c sup
0<r<∞

D2 (u, r)

rα+β
≥ cNα,β/2

2,∞ (u) . (4.5)

Chose ε > 0 such that Φ1 (ε) > 0. Let r, t > 0 be such that r = εt1/β . Using the lower
bound of pt (x, y) and the monotonicity of Φ1, we obtain from (2.12) that

E [u] ≥ Et [u] ≥
1

2t

∫ ∫

{d(x,y)<r}

(u(x)− u(y))2pt(x, y)dµ(y)dµ(x)

≥
1

2

1

tα/β+1
Φ1

( r

t1/β

) ∫ ∫

{d(x,y)<r}

(u(x)− u(y))2dµ(y)dµ(x)

=
1

2

εα+β

rα+β
Φ1 (ε)D2 (u, r) ,

which was to be proved.
(b) Let us prove that, for any r > 0,

E [u] ≤ C sup
0<ρ≤r

D2 (u, ρ)

ρα+β
, (4.6)

which would imply

E [u] ≤ C lim sup
r→0+

D2 (u, r)

rα+β
≤ C Nα,β/2

2,∞ (u) . (4.7)

For any positive t, r, we have by (2.15)

Et [u] =
1

2t

∫

M

∫

M

(u(x)− u(y))2pt(x, y)dµ(y)dµ(x) = A(t) +B(t) (4.8)

where

A(t) =
1

2t

∫

M

∫

M\B(x,r)
(u(x)− u(y))2pt(x, y)dµ(y)dµ(x), (4.9)

B(t) =
1

2t

∫

M

∫

B(x,r)
(u(x)− u(y))2pt(x, y)dµ(y)dµ(x). (4.10)

To estimate A(t) let us observe that by (2.41)

∫

M\B(x,r)
pt(x, y)dµ(y) ≤ C

∫ ∞

1
2
rt−1/β

sαΦ2(s)
ds

s

≤ C
t

rβ

∫ ∞

1
2
rt−1/β

sα+βΦ2(s)
ds

s
, (4.11)

whence by (4.1)

1

t

∫

M\B(x,r)
pt(x, y)dµ(y) = o (t) as t→ 0 + uniformly in x ∈M. (4.12)
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Therefore, applying the elementary inequality (a − b)2 ≤ 2(a2 + b2) in (4.9) and using
(4.12), we obtain that for t→ 0

A(t) ≤
1

t

∫ ∫

{x,y:d(x,y)≥r}

(u(x)2 + u(y)2)pt(x, y)dµ(y)dµ(x)

=
2

t

∫

M

u(x)2

(∫

M\B(x,r)
pt(x, y)dµ(y)

)

dµ(x)

= o(1)‖u‖22,

whence
lim
t→0+

A(t) = 0. (4.13)

The quantity B(t) is estimated as follows using the upper bound of the heat kernel, (4.4),
(4.1), and setting rk = 2−kr:

B(t) =
1

2t

∞∑

k=0

∫

M

∫

B(x,rk)\B(x,rk+1)
(u(x)− u(y))2pt(x, y)dµ(y)dµ(x)

≤
1

2

∞∑

k=0

1

t1+α/β
Φ2

(rk+1

t1/β

)∫

M

∫

B(x,rk)
(u(x)− u(y))2dµ(y)dµ(x)

≤ C

∞∑

k=0

(rk+1

t1/β

)α+β
Φ2

(rk+1

t1/β

) D2(u, rk)

r
α+β
k

(4.14)

≤ C sup
0<ρ≤r

D2(u, ρ)

ρα+β

∫ ∞

0
sα+βΦ2(s)

ds

s

≤ C sup
0<ρ≤r

D2(u, ρ)

ρα+β
. (4.15)

Finally, (4.6) follows from (4.8), (4.13) and (4.15) by letting t→ 0.
The stochastic completeness in the hypotheses of Theorem 4.1(b) and in Corollary 4.2

is essential. Indeed, consider in Rn, n > 2, the operator L = −∆ + c (x) where c (x) is a
non-negative continuous function in Rn such that

sup
x∈Rn

∫

Rn

c (y)

|x− y|n−2 dy <∞. (4.16)

It is possible to show (see [29]) that the heat kernel of L satisfies the Gaussian estimate

pt (x, y) �
C

tn/2
exp

(

−c
|x− y|2

t

)

,

while the domain of the Dirichlet form is

F =

{

u ∈ L2 (Rn) :

∫

Rn

(
|∇u|2 + c (x)u2

)
dx <∞

}

.

Clearly, F is strictly smaller than

Λn,12,∞ =W 1
2 =

{

u ∈ L2 (Rn) :

∫

Rn
|∇u|2 dx <∞

}

,
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provided function c (x) is unbounded. It is easy to see that there exists an unbounded
function c (x) that satisfies (4.16). Indeed, let c0 (x) be any non-zero non-negative function
from C∞0 (Rn); any such function clearly satisfies (4.16). Choose a sequence {xk}

∞
k=1 in

Rn such that xk →∞ as k →∞ and set

c (x) =
∞∑

k=1

kδc0 (k (x− xk)) ,

where δ ∈ (0, 1). Then we have

sup
x∈Rn

∫

Rn

c (y)

|x− y|n−2dy ≤
∞∑

k=1

kδ sup
x∈Rn

∫

Rn

c0 (k (y − xk))

|x− y|n−2 dy

=
∞∑

k=1

kδ sup
x∈Rn

∫

Rn

c0 (ky)

|x− y|n−2 dy

=
∞∑

k=1

kδ sup
x∈Rn

k−n
∫

Rn

c0 (z)

|x− z/k|n−2 dz

=
∞∑

k=1

kδ sup
x∈Rn

k−nkn−2

∫

Rn

c0 (z)

|x− z|n−2 dz

=
∞∑

k=1

kδ−2 sup
x∈Rn

∫

Rn

c0 (z)

|x− z|n−2 dz

< ∞.

4.2 Non-local case

The following theorem identifies the domain F in the case of non-local form.

Theorem 4.3 ([27]) Let pt be a stochastically complete heat kernel on (M,d, µ) satisfying
estimate (2.37) with functions Φ1 and Φ2 such that

Φ1 (s) ' s−(α+β) for s > 1 and Φ2 (s) ≤ Cs−(α+β) for s > 0. (4.17)

Then, for any u ∈ L2 (M,µ) ,

E [u] ' Nα,β/2
2,2 (u) (4.18)

and, consequently, F = Λ
α,β/2
2,2 .

The hypotheses (4.17) are satisfied provided the heat kernel admits the estimate

pt (x, y) '
1

tα/β

(

1 +
d (x, y)

t1/β

)−(α+β)

. (4.19)

In the next Section 4.3, a class of heat kernels satisfying (4.19) will be described.
Proof. The proof is similar to that of Theorem 4.1. Fix a decreasing geometric

sequence {rk}k∈Z and observe that by (3.7)

N
α,β/2
2,2 (u) '

∑

k∈Z

D2 (u, rk)

r
α+β
k

.
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Using (2.15) and the upper bounds in (2.37) and (4.17) we obtain

2Et[u] =
1

t

∑

k∈Z

∫

M

∫

B(x,rk)\B(x,rk+1)
(u(x)− u(y))2pt(x, y)dµ(y)dµ(x)

≤
∑

k∈Z

1

t1+α/β
Φ2

(rk+1

t1/β

)∫

M

∫

B(x,rk)\B(x,rk+1)
(u(x)− u(y))2dµ(y)dµ(x)

≤
∑

k∈Z

1

t1+α/β
Φ2

(rk+1

t1/β

)
D2 (u, rk)

≤ C
∑

k∈Z

D2 (u, rk)

r
α+β
k

≤ CN
α,β/2
2,∞ (u) ,

whence
E [u] = lim

t→0
Et [u] ≤ CNα,β/2

2,2 (u) . (4.20)

Similarly, using the lower bound in (2.37), we obtain

2Et [u] ≥
∑

k∈Z

1

t1+α/β
Φ1

(rk+1

t1/β

)∫

M

∫

B(x,rk)\B(x,rk+1)
(u(x)− u(y))2dµ(y)dµ(x)

=
∑

k∈Z

1

t1+α/β
Φ1

(rk+1

t1/β

)
(D2 (u, rk)−D2 (u, rk+1))

=
∑

k∈Z

1

t1+α/β

(
Φ1

(rk+1

t1/β

)
− Φ1

( rk

t1/β

))
D2 (u, rk) . (4.21)

The first part of the hypothesis (4.17) implies that there exists a large enough number a
such that

Φ1

(s
a

)
≥ 2Φ1 (s) ∀s > a.

Setting rk = a−k, we obtain from (4.21) and (4.17)

Et [u] ≥
1

2

∑

{k:rk>at1/β}

1

t1+α/β
Φ1

( rk

t1/β

)
D2 (u, rk) ≥ c

∑

{k:rk>at1/β}

D2 (u, rk)

r
α+β
k

.

Letting t→ 0, we conclude

E [u] = lim
t→0
Et[u] ≥ c

∑

k∈Z

D2 (u, rk)

r
α+β
k

' Nα,β/2
2,2 (u) ,

which together with (4.20) finishes the proof.

4.3 Subordinated heat kernel

Let ϕ be a non-negative continuous function on [0,+∞) such that ϕ (0) = 0, and let
{ηt}t>0 be a family of non-negative continuous functions on (0,+∞) such that for all
t > 0 and λ ≥ 0

exp (−tϕ (λ)) =

∫ ∞

0
ηt (s) e−sλds. (4.22)
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Then, for any heat kernel pt on a metric measure space (M,d, µ), the following expression

qt (x, y) :=

∫ ∞

0
ηt (s) ps (x, y) ds (4.23)

defines a new heat kernel {qt}t>0 on M , which is called a subordinated heat kernel to pt
(and ηt is called a subordinator). Indeed, applying (4.22) to the generator L of pt we
obtain

exp (−tϕ (L)) =

∫ ∞

0
ηt (s)Ps ds.

Comparing to (4.23) we see that qt is the integral kernel of the semigroup
{
e−tϕ(L)

}
t>0

generated by the operator ϕ (L). Since
{
e−tϕ(L)

}
t>0

is a self-adjoint strongly continuous

contraction semigroup in L2, the family {qt}t>0 satisfies the properties (iii)− (v) of Defi-
nition 2.1. Let us show that qt satisfies also (i) and (ii). Indeed, the positivity of qt follows
from ηt ≥ 0, and the total mass inequality from

∫

M

qt (x, y) dµ (y) =

∫ ∞

0
ηt (s)

(∫

M

ps (x, y) dµ (y)

)

ds ≤
∫ ∞

0
ηt (s) ds = 1, (4.24)

where the last identity is obtained from (4.22) by taking λ = 0. Hence, {qt}t>0 is a
heat kernel. It follows from (4.24) that qt is stochastically complete if and only if pt is
stochastically complete.

For example, it follows from the definition of the gamma-function that, for all t > 0
and λ ≥ 0,

exp (−t log (1 + λ)) = (1 + λ)−t =
1

Γ (t)

∫ ∞

0
st−1e−s(1+λ)ds,

which takes the form (4.22) for ϕ (λ) = log (1 + λ) and ηt (s) = st−1e−s

Γ(t) . Therefore, the

operator log (I + L), that generates the semigroup
{

(I + L)−t
}
t≥0

, has the heat kernel

qt (x, y) =
1

Γ (t)

∫ ∞

0
st−1e−sps (x, y) ds.

It is well known that for any δ ∈ (0, 1) there exists a subordinator ηt = η
(δ)
t such that

(4.22) takes place with ϕ (λ) = λδ. In this case, (4.23) defines the heat kernel qt of the
operator Lδ.

For example, if δ = 1
2 then

η
(1/2)
t (s) =

t
√

4πs3
exp

(

−
t2

4s

)

.

For any 0 < δ < 1, the function η
(δ)
t (s) possesses the scaling property

η
(δ)
t (s) =

1

t1/δ
η

(δ)
1

( s

t1/δ

)
,

and satisfies the estimates

η
(δ)
t (s) ≤ C

t

s1+δ
∀s, t > 0, (4.25)

η
(δ)
t (s) '

t

s1+δ
∀s ≥ t1/δ > 0. (4.26)
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As s→ 0+, η
(δ)
1 (s) goes to 0 exponentially fast so that for any γ > 0

∫ ∞

0
s−γη

(δ)
1 (s) ds <∞ (4.27)

(see [50] and [14]).

Lemma 4.4 ([27]) Let a heat kernel pt satisfy the estimate (2.37) where Φ1 (ξ) > 0 for
some ξ > 0 and Φ2 satisfies the condition

∫ ∞

0
ξα+β′Φ2 (ξ)

dξ

ξ
<∞, (4.28)

where β′ = δβ, 0 < δ < 1. Then the heat kernel qt (x, y) of operator Lδ satisfies the
estimate

qt (x, y) '
1

tα/β
′

(

1 +
d (x, y)

t1/β
′

)−(α+β′)

' min

(

t−α/β
′
,

t

d (x, y)α+β′

)

, (4.29)

for µ-a.a. x, y ∈M and t > 0.

Proof. Chose ε > 0 such that Φ1 (ε) > 0. Using (4.23), (2.37), (4.26) and setting
r = d (x, y), we obtain the lower bound in (4.29) as follows:

qt (x, y) ≥
∫ ∞

max(t1/δ ,(r/ε)β)

1

sα/β
Φ1

( r

s1/β

)
η

(δ)
t (s) ds

≥ cΦ1 (ε)

∫ ∞

max(t1/δ ,(r/ε)β)

1

sα/β
t

s1+δ
ds

= ctmax
(
t1/δ, (r/ε)β

)−(α/β+δ)

≥ c′min
(
t−α/β

′
, tr−(α+β′)

)
.

Similarly, using (4.23), (2.37), (4.25), we obtain

qt (x, y) ≤
∫ ∞

0

1

sα/β
Φ2

( r

s1/β

)
η

(δ)
t (s) ds

≤ C

∫ ∞

0

1

sα/β
Φ2

( r

s1/β

) t

s1+δ
ds

= C
t

rα+βδ

∫ ∞

0
ξα+βδΦ2 (ξ)

dξ

ξ
.

By (4.28) the above integral converges, whence

qt (x, y) ≤ C
t

rα+β′
. (4.30)

On the other hand, using the upper bound ps (x, y) ≤ Cs−α/β and the change τ = s/t1/δ

we obtain

qt (x, y) ≤ C
∫ ∞

0

1

sα/β
η

(δ)
t (s) ds = t−α/(βδ)

∫ ∞

0

1

τα/β
η

(δ)
1 (τ) dτ ≤ Ct−α/β

′
, (4.31)

where the last inequality follows from (4.27). Combining (4.30) and (4.31) we obtain the
upper bound in (4.29).
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Corollary 4.5 ([27], [46]) If pt (x, y) is a stochastically complete heat kernel that satisfies
the hypotheses of Lemma 4.4, then

domE(L
δ) = Λ

α,β′/2
2,2 . (4.32)

Proof. By Lemma 4.4, the heat kernel qt of the operator Lδ satisfies the estimate

qt (x, y) '
1

tα/β
′Φ

(
d (x, y)

t1/β
′

)

,

where
Φ (s) = (1 + s)−(α+β′) .

Since qt is stochastically complete, Applying Theorem 4.3 to the heat kernel qt and its
generator Lδ we obtain (4.32).

4.4 Bessel potential spaces

Let pt be a heat kernel on a metric measure space (M,d, µ) and let L be its generator.
Since L is positive definite, the operator (I + L)−s is a bounded operator in L2 for any
s ≥ 0. This operator is called the Bessel potential.

Fix β > 0, and for any σ > 0 define the Bessel potential space Hσ as the image of
(I + L)−σ/β , that is

Hσ := (I + L)−σ/β (L2) = dom (I + L)σ/β ,

with the norm
‖u‖Hσ := ‖ (I + L)σ/β u‖2.

This definition of Hσ depends on the parameter β. A priori the value of β is arbitrary
but normally β is taken the same as in (2.37) assuming that (2.37) holds. For example,
for the Gauss-Weierstrass kernel in Rn we take β = 2. In this case L = −∆ and it is easy
to see that Hσ (Rn) consists of functions u ∈ L2 (Rn) such that

∫

Rn
|ũ (ξ)|2

(
1 + |ξ|2

)σ/2
dξ <∞,

where ũ is the Fourier transform of u. Of course, this coincides with the classical definition
of the fractional Sobolev space Hσ(Rn).

The purpose of this section is to prove an embedding theorem for the space Hσ in a
special case when α < β.

Lemma 4.6 For any σ > 0 we have Hσ = dom(Lσ/β).

Proof. Indeed, let {Eλ}λ∈R be the spectral resolution of the operator L. Setting
s = σ/β, we have

Hσ = dom(I + L)s =

{

u ∈ L2 :

∫ ∞

0
(1 + λ)2s d‖Eλu‖

2 <∞

}

=

{

u ∈ L2 :

∫ ∞

0
λ2s d‖Eλu‖

2 <∞

}

= dom(Ls),

which was to be proved.
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Theorem 4.7 ([32]) Assume that a heat kernel pt is stochastically complete and satisfies
the two sided estimates (2.37) where α < β, function Φ1 is such that Φ1 (s) > 0 for some
s > 0, and Φ2 satisfies the condition

∫ ∞

0
sα+βΦ2 (s)

ds

s
<∞.

Then, for any σ > α/2 we have

Hσ ↪→ Cλ where λ = min (σ, β/2)− α/2. (4.33)

Proof. Note that Hσ↪→ Hσ′ wherever σ ≥ σ′. Therefore, it suffices to prove the
embedding (4.33) for σ ≤ β/2, which will be assumed below.

By Corollary 4.2 we have domE (L) = Λ
α,β/2
2,∞ , and by Corollary 4.5 domE(Lδ) = Λ

α,δβ/2
2,2

provided δ ∈ (0, 1). Using Lemma 4.6, we obtain that if σ = β/2 then

Hσ = dom
(
L1/2

)
= domE(L) = Λ

α,β/2
2,∞ = Λα,σ2,∞,

and if σ < β/2 then

Hσ = dom
(
Lσ/β

)
= domE(L

2σ/β) = Λα,σ2,2 .

If σ > α/2 then the both spaces Λα,σ
2,∞ and Λα,σ2,2 embed into Cλ (see Theorem 3.1 and

Remark 3.2), which finishes the proof.
For further results of this type see [18, Theorem 4.1], [27], [47, Theorem 3.13(a)], [49].

5 The walk dimension

5.1 Intrinsic characterization of the walk dimension

Definition 5.1 Fix α > 0 and set

β∗ := sup
{
β > 0 : Λ

α,β/2
2,∞ is dense in L2 (M,µ)

}
. (5.1)

The number β∗ ∈ [0,+∞] is called the critical exponent of the family
{

Λ
α,β/2
2,∞

}

β>0
of

Besov spaces.

Note that the value of β∗ is an intrinsic property of the space (M,d, µ), which is defined
independently of any heat kernel. For example, for Rn with α = n we have β∗ = 2.

Theorem 5.2 ([32]) Let pt be a heat kernel on a metric measure space (M,d, µ).

(a) If the heat kernel satisfies the lower bound

pt (x, y) ≥
1

tα/β
Φ1

(
d (x, y)

t1/β

)

,

where Φ1 (s) > 0 for some s > 0, then Λ
α,β/2
2,∞ is dense in L2 (M,µ); consequently,

β ≤ β∗.
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(b) If the heat kernel is stochastically complete and satisfies (2.37), where Φ1 is as above
and Φ2 satisfies ∫ ∞

sα+β+εΦ2(s)
ds

s
<∞, (5.2)

for some ε > 0, then β = β∗.

If pt is the heat kernel of the operator (−∆)β/2 in Rn, 0 < β < 2, then by (1.1) it does
not satisfy (5.2). In this case, the conclusion of Theorem 5.2(b) is not true either, because
β is strictly smaller than β∗ = 2.

Proof. (a) By Theorem 4.1(a), we have the inclusion F ⊂ Λ
α,β/2
2,∞ . Since F is always

dense in L2, the conclusion follows.

(b) It suffices to prove that, for any β′ > β, the space Λ
α,β′/2
2,∞ is not dense in L2. It

suffices to assume that β′ − β is sufficiently small so that the condition (5.2) holds with
ε = β′ − β.

Firstly, let us show that u ∈ Λ
α,β′/2
2,∞ implies E [u] = 0. We use again the decomposition

Et [u] = A(t) + B(t), where A(t) and B(t) are defined in (4.9) and (4.10) where we set

r = 1. Estimating B(t) similarly to (4.14) but using N
α,β′/2
2,∞ instead of N

α,β/2
2,∞ and (5.2),

we obtain

B(t) ≤ C

∞∑

k=0

r
α+β′

k+1

t1+α/β
Φ2

(rk+1

t1/β

) D2(u, rk)

r
α+β′

k

= Ctδ
∞∑

k=0

(rk+1

t1/β

)α+β′

Φ2

(rk+1

t1/β

) D2(u, rk)

r
α+β′

k

≤ Ctδ
∫ ∞

0
sα+β′Φ2(s)

ds

s

(

sup
0<ρ≤1

D2(u, ρ)

ρα+β′

)

≤ CtδN
α,β′/2
2,∞ (u) , (5.3)

where δ is found from the identity

1 +
α

β
=
α+ β′

β
− δ,

that is,

δ =
β′

β
− 1 > 0.

Putting together (4.8), (4.13), and (5.3), we obtain

Et[u] ≤ A(t) + CtδN
α,β′/2
2,∞ (u)→ 0 as t→ 0,

whence
E [u] = lim

t→0
Et [u] = 0.

Since Et [u] ≤ E [u], this implies back that Et [u] ≡ 0 for all t > 0.
On the other hand, choose s > 0 so that Φ1 (s) > 0. Then it follows from (2.15) and

the lower bound in (2.37) that

Et [u] ≥
1

2tα/β+1
Φ1(s)

∫ ∫

{d(x,y)≤st1/β}

(u(x)− u(y))2dµ(y)dµ(x),
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which yields u(x) = u(y) for µ-almost all x, y such that d(x, y) ≤ st1/β . Since t is arbitrary,
we conclude that u is a constant function.

Hence, we have shown that the space Λ
α,β′/2
2,∞ consists of constants. However, as it was

shown in the proof of Lemma 2.8, the constant functions are not dense in L2 (M,µ), which
finishes the proof.

Corollary 5.3 If the heat kernel pt satisfies the hypotheses of Theorem 5.2(b) then the
values of the parameters α and β are the invariants of the metric space (M,d) alone.
Moreover, we have

µ ' Hα and E ' Nα,β/2
2,∞ . (5.4)

Consequently, both measure µ and the energy form E are determined (up to a factor ' 1)
by the metric space (M,d) alone.

Proof. By Corollary 2.14, α is the Hausdorff dimension of M and, hence, is the
invariants of (M,d). Furthermore, measure µ is comparable with the Hausdorff measure
Hα so that measure µ in the definition of the Besov spaces can be replaced by Hα. Hence,
the critical exponent β∗ of the family of the Besov spaces is the invariant of the metric space
(M,d) alone. By Theorem 5.2(b), we have β = β∗, which implies that β is determined by
(M,d) as well.

The relations (5.4) follow from Corollaries 2.14 and 4.2. Finally, since measure µ in

the definition of the seminorm N
α,β/2
2,∞ can be replaced by the Hausdorff measure Ha, the

seminorm N
α,β/2
2,∞ is determined by the metric space structure alone, whence the same

holds for the energy E .

Assume that there are two heat kernels p
(i)
t (x, y), i = 1, 2, on a metric measure spaces(

M,d, µ(i)
)

where the underlying metric space (M,d) is the same but measures µ(1) and

µ(2) may be different. Let E(i), i = 1, 2, be the corresponding energy forms. Assume

that each heat kernel p
(i)
t satisfies the hypotheses of Theorem 5.2(b) with parameters α(i)

and β(i), respectively. Then it follows from Corollary 5.3 that α(1) = α(2), β(1) = β(2),
µ(1) ' µ(2), and E(1) ' E (2). Let us show an example of application of this result.

Example 5.4 Consider in Rn the Gauss-Weierstrass heat kernel

pt (x, y) =
1

(4πt)n/2
exp

(

−
|x− y|2

4t

)

and its generator L = −∆ in L2 (Rn) with the Lebesgue measure. Then α = n, β = 2,
and

E [u] =

∫

Rn
|∇u|2 dx.

Consider now another elliptic operator in Rn:

L = −
1

m (x)

n∑

i,j=1

∂

∂xi

(

aij (x)
∂

∂xj

)

, (5.5)

where m (x) and aij (x) are continuous functions, m (x) > 0 and the matrix (aij (x)) is
positive definite. The operator L is symmetric with respect to measure

dµ = m (x) dx,

36



and its energy form is

E [u] =

∫

Rn
aij (x)

∂u

∂xi

∂u

∂xj
dx.

Let d (x, y) = |x− y| and assume that the heat kernel pt (x, y) of L satisfies the conditions
of Theorem 5.2(b). Then we conclude by Corollary 5.3 that α and β must be the same
as for the Gauss-Weierstrass heat kernel, that is, α = n and β = 2; moreover, measure µ
must be comparable to the Lebesgue measure, which implies that m ' 1, and the energy
form must admit the estimate

E [u] '
∫

Rn
|∇u|2 dx,

which implies that the matrix (aij (x)) is uniformly elliptic. Hence, the operator L is
uniformly elliptic. By Aronson’s theorem (see [1], [45]), we obtain that the heat kernel of
L satisfies the estimate

pt (x, y) '
C

tn/2
exp

(

−c
|x− y|2

t

)

. (5.6)

The conclusion is that the estimate (5.6) for the operator (5.5) holds if and only if m ' 1
and (aij (x)) is uniformly elliptic (assuming that L is stochastically complete). As far as
we know, the necessity part of this statement is a new result.

5.2 Inequalities for the walk dimension

Definition 5.5 We say that a metric space (M,d) satisfies the chain condition if there
exists a (large) constant C such that for any two points x, y ∈ M and for any positive
integer n there exists a sequence {xi}

n
i=0 of points in M such that x0 = x, xn = y, and

d(xi, xi+1) ≤ C
d(x, y)

n
, for all i = 0, 1, ..., n− 1. (5.7)

The sequence {xi}
n
i=0 is referred to as a chain connecting x and y.

For example, the chain condition is satisfied if (M,d) is a length space, that is if the
distance d(x, y) is defined as the infimum of the length of all continuous curves connecting
x and y, with a proper definition of length. On the other hand, the chain condition is not
satisfied if M is a locally finite graph, and d is the graph distance.

Recall that the critical exponent β∗ = β∗(M,d, µ) of the family of Besov spaces Λα,σ
2,∞

was defined by (5.1).

Theorem 5.6 ([32]) Let (M,d, µ) be a metric measure space.

(a) If 0 < µ (B (x, r)) <∞ for all x ∈M and r > 0, and

µ(B(x, r)) ≤ Crα (5.8)

for all x ∈M and 0 < r ≤ 1 then

β∗ ≥ 2. (5.9)
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(b) If the space (M,d) satisfies the chain condition and

µ(B(x, r)) ' rα (5.10)

for all x ∈M and 0 < r ≤ 1 then

β∗ ≤ α+ 1. (5.11)

Observe that the chain condition is essential for the inequality β∗ ≤ α+ 1 to be true.
Indeed, assume for a moment that the claim of Theorem 5.6(b) holds without the chain
condition, and consider a new metric d′ on M given by d′ = d1/γ where γ > 1. Let us mark
by a dash all notions related to the space (M,d′, µ) as opposed to those of (M,d, µ).
It is easy to see that α′ = αγ and N ′σγ = Nσ; in particular, the latter implies β∗′ = β∗γ.
Hence, if Theorem 5.6 could be applied to the space (M,d′, µ) it would yield β∗γ ≤ αγ+1
which implies β∗ ≤ α because γ may be taken arbitrarily large. However, there are spaces
with β∗ > α, for example SG.

Clearly, the metric d′ does not satisfy the chain condition; indeed the inequality (5.7)
implies

d′(xi, xi+1) ≤ C
d′(x, y)

n1/γ
, (5.12)

which is not good enough. Note that if in the inequality (5.7) we replace n by n1/γ then
the proof below will give β∗ ≤ α+ γ instead of β∗ ≤ α+ 1.

Corollary 5.7 Let pt be a stochastically complete heat kernel on a metric measure space
(M,d, µ) that satisfies the estimate (2.37) where Φ1 (s) > 0 for some s > 0.

(a) If for some ε > 0 ∫ ∞

0
sα+β+εΦ2 (s)

ds

s
<∞ (5.13)

then β ≥ 2.

(b) If (M,d) satisfies the chain condition and
∫ ∞

0
sαΦ2 (s)

ds

s
<∞ (5.14)

then β ≤ α+ 1.

(c) If (M,d) satisfies the chain condition and for some ε > 0
∫ ∞

0
s2α+1+εΦ2 (s)

ds

s
<∞ (5.15)

then
2 ≤ β ≤ α+ 1. (5.16)

Note that by Lemma 2.7, the condition (5.15) can occur only for a local Dirichlet form
E . The set of couples (α, β) satisfying (5.16) is shaded on Fig. 8.

By [7], any couple of α, β satisfying (5.16) can be realized for the heat kernel estimate

pt (x, y) �
C

tα/β
exp

(

−c

(
dβ(x, y)

t

) 1
β−1

)

, (5.17)
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α

2

β

1

1 2 3 4

Figure 8: The set 2 ≤ β ≤ α+ 1

with a local Dirichlet form.
In the case of a non-local form, we can only claim by Corollary 5.7(b) that

0 < β ≤ α+ 1.

In fact, any couple α, β in the range 0 < β < α+ 1 can be realized for the estimate

pt (x, y) '
1

tα/β

(

1 +
d (x, y)

t1/β

)−(α+β)

.

Indeed, if L is the generator of a diffusion with parameters α and β satisfying (5.17) then
the operator Lδ, δ ∈ (0, 1), generates a jump process with the walk dimension β′ = δβ

and the same α (cf. Lemma 4.4). Clearly, β′ can take any value from (0, α+ 1). We do
not know whether the walk dimension for a non-local form can be equal to α+ 1.

Proof of Corollary 5.7. (a) By Theorems 2.11(a) and 5.6(a) we have β∗ ≥ 2, and
by Theorem 5.2(b) we have β = β∗, whence β ≥ 2.

(b) By Theorems 2.11(b) and 5.6(b) we have β∗ ≤ α + 1, and by Theorem 5.2(a) we
have β ≤ β∗, whence β ≤ α+ 1.

(c) By part (b), we have β ≤ α + 1. Therefore, (5.15) implies (5.13), and by part (a)
we obtain β ≥ 2.

Corollary 5.8 Let (M,d) satisfy the chain condition and pt be a stochastically complete
heat kernel on (M,d, µ) such that

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

. (5.18)

Then β ≤ α+ 1.

Proof. As in the proof of Corollary 2.12, the estimate (5.18) implies that function Φ
satisfies (5.14) and Φ (s) > 0 for some s > 0, whence the claim follows by Corollary 5.7(b).
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Proof of Theorem 5.6(a). It suffices to show that Λα,12,∞ is dense in L2 = L2 (M,µ).
Let u be a Lipschitz function with a bounded support A. Let Ar be the closed r-
neighborhood of A. If L is the Lipschitz constant of u then, for any r ∈ (0, 1],

D2(u, r) =

∫

M

∫

B(x,r)
|u(x)− u(y)|2dµ(y)dµ(x)

≤
∫

Ar

∫

B(x,r)
Lr2dµ(y)dµ(x)

≤ Crα+2µ (Ar) .

It follows that

sup
0<r≤1

D2(u, r)

rα+2
<∞,

whence we conclude that u ∈ Λα,12,∞.
Let now A be any bounded closed subset of M . For any positive integer n, consider

the function on M

fn (x) = (1− nd (x,A))+ ,

which is Lipschitz and is supported in A1/n. Hence, fn ∈ Λα,12,∞. Clearly, fn → 1A in L2 as

n → ∞, whence it follows that 1A ∈ Λα,12,∞, where the bar means closure in L2. Since the
linear combinations of the indicator functions of bounded closed sets form a dense subset
in L2, it follows that Λα,12,∞ = L2, which was to be proved.

We precede the proof of Theorem 5.6(b) by a lemma.

Lemma 5.9 Let {xi}
n
i=0 be a sequence of points in a metric space (M,d) such that for

some ρ > 0 we have d(x0, xn) > 2ρ and

d(xi, xi+1) < ρ for all i = 0, 1, ..., n− 1. (5.19)

Then there exists a subsequence {xik}
l
k=0 such that

(a) 0 = i0 < i1 < ... < il = n;

(b) d(xik , xik+1
) < 5ρ for all k = 0, 1, ..., l − 1;

(c) d(xik , xij ) ≥ 2ρ for all distinct k, j = 0, 1, ..., l.

The significance of conditions (a) , (b) , (c) is that a sequence {xik}
l
k=0 satisfying them

gives rise to a chain of balls B(xik , 5ρ) connecting the points x0 and xn in a way that each
ball contains the center of the next one whereas the balls B(xik , ρ) are disjoint. This is
similar to the classical ball covering argument, but additional difficulties arise from the
necessity to maintain a proper order in the set of balls.

Proof. Let us say that a sequence of indices {ik}
l
k=0 is good if the following conditions

are satisfied:

(a′) 0 = i0 < i1 < ... < il ;

(b′) d(xik , xik+1
) < 3ρ for all k = 0, 1, ..., l − 1;

(c′) d(xik , xij ) ≥ 2ρ for all distinct k, j = 0, 1, ..., l.
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Note that a good sequence does not necessarily have il = n as required in condition (a).
We start with a good sequence that consists of a single index i0 = 0, and will successively
redefine it to increase at each step the value of il. A terminal good sequence will be used
to construct a sequence satisfying (a), (b), (c).

Assuming that {ik}
l
k=0 is a good sequence, define the following set of indices

S := {s : il < s ≤ n and d(xs, xik) ≥ 2ρ for all k ≤ l} ,

and consider two cases.
Set S is non-empty. In this case we will redefine {ik} to increase il. Let m be the

minimal index in S. Therefore, m− 1 is not in S, whence we have either m− 1 ≤ il or

d(xm−1, xik) < 2ρ for some k ≤ l (5.20)

(see Fig. 9). In the first case, we have in fact m − 1 = il so that (5.20) also holds (with
k = l).

ikx

ilx

xm-1xmy=xn

x=x0

<ρ

<2ρ<3ρ

Figure 9: Illustration to the proof of Lemma 5.9

By (5.20) and (b′) we obtain, for the same k as in (5.20),

d(xm, xik) ≤ d(xm, xm−1) + d(xm−1, xik) < 3ρ.

Now we modify the sequence {ij} as follows: keep i0, i1, ..., ik as before, forget the previ-
ously selected indices ik+1, ..., il, and set ik+1 := m and l := k + 1.

Clearly, the new sequence {ik}
l
k=0 is also good, and the value of il has increased

(although l may have decreased). Therefore, this construction can be repeated only a
finite number of times.

Set S is empty. In this case, we will use the existing good sequence to construct a
sequence satisfying conditions (a) , (b), (c). The set S can be empty for two reasons:

• either il = n

• or il < n and for any index s such that il < s ≤ n there exists k ≤ l such that
d(xs, xik) < 2ρ.

In the first case the sequence {ik}
l
k=0 already satisfies (a) , (b) , (c), and the proof is

finished. In the second case, choose the minimal k ≤ l such that d(xn, xik) < 2ρ (see Fig.
10).
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ikx

ilx

y=xn

<2ρ

<3ρ

<5ρ

ik-1
xx=x0

Figure 10: Illustration to the proof of Lemma 5.9

The hypothesis d(xn, x0) ≥ 2ρ implies k ≥ 1, and we obtain from (b′)

d(xn, xik−1
) ≤ d(xn, xik) + d(xik , xik−1

) < 5ρ.

By the minimality of k, we have also d(xn, xij ) ≥ 2ρ for all j < k. Hence, we define the
final sequence {ij} as follows: keep i0, i1, ..., ik−1 as before, forget ik, ..., il, and set ik := n

and l := k. Then this sequence satisfies (a) , (b) , (c) .
Let A be a subset of M of finite measure, that is µ(A) <∞. Then any function u ∈ L2

is integrable on A, and let us set

uA :=
1

µ(A)

∫

A

u dµ.

For any two measurable sets A,B ⊂M of finite measure, the following identity takes place
∫

A

∫

B

|u(x)− u(y)|2 dµ(x)dµ(y) (5.21)

= µ(A)

∫

B

|u− uB|
2 dµ+ µ(B)

∫

A

|u− uA|
2 dµ+ µ(A)µ(B) |uA − uB|

2 ,

which is proved by a straightforward computation.
Proof of Theorem 5.6(b). The hypothesis (5.10) implies that the space L2 (M,µ)

is∞-dimensional. The inequality β∗ ≤ α+1 will follow from (5.1) if we show that, for any
σ > α+1

2 , the space Λα,σ2,∞ contains only constants, that is, Nα,σ
2,∞(u) <∞ implies u ≡ const.

By definition (3.5) of Nα,σ
2,∞ and (5.10) we have, for any 0 < r ≤ 1,

N
α,σ
2,∞ (u) ≥ cr−2σ−α

∫ ∫

{ d(x,y)<r}

|u(x)− u(y)|2dµ(y)dµ(x). (5.22)

Fix some 0 < r ≤ 1 and assume that we have a sequence of disjoint balls {Bk}
l
k=0 of the

same radius 0 < ρ < 1, such that for all k = 0, 1, ..., l − 1

x ∈ Bk and y ∈ Bk+1 =⇒ d(x, y) < r. (5.23)

Then (5.22), (5.21), and (5.10) imply

N
α,σ
2,∞ (u) ≥ cr−2σ−α

l−1∑

k=0

∫

Bk

∫

Bk+1

|u(x)− u(y)|2 dµ(y)dµ(x)

≥ cr−2σ−αρ2α
l−1∑

k=0

∣
∣uBk − uBk+1

∣
∣2 . (5.24)
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By the chain condition, for any two distinct points x, y ∈ M and for any positive integer
n there exists a sequence of points {xi}

n
i=0 such that x0 = x, xn = y, and

d(xi, xi+1) < C
d(x, y)

n
:= ρ, for all 0 ≤ i < n.

Assuming that n is large enough so that d(x, y) > 2ρ and ρ < 1/7, we obtain by Lemma
5.9 that there exists a subsequence {xik}

l
k=0 (where of course l ≤ n) such that xi0 = x,

xil = y, the balls {B (xik , ρ)} are disjoint, and

d(xik , xik+1
) < 5ρ, (5.25)

for all k = 0, 1, ..., l − 1.
Applying (5.24) to the balls Bk := B (xik , ρ) and setting r = 7ρ < 1 (which together

with (5.25) ensures (5.23)) we obtain

N
α,σ
2,∞ (u) ≥ cρ−2σ+α

l−1∑

k=0

∣
∣uBk − uBk+1

∣
∣2

≥ cρ−2σ+α 1

l

(
l−1∑

k=0

∣
∣uBk − uBk+1

∣
∣

)2

≥ cρ−2σ+α 1

n
|uB0 − uBl |

2

≥ cρ−2σ+α+1

∣
∣uB(x,ρ) − uB(y,ρ)

∣
∣2

d(x, y)
. (5.26)

By the Lebesgue theorem, we have, for µ-almost all x ∈M ,

lim
ρ→0

uB(x,ρ) = u(x), (5.27)

It follows from (5.26) and (5.27) as n → ∞ (that is, as ρ → 0) that, for µ-almost all
x, y ∈M ,

|u(x)− u(y)|2

d(x, y)
≤ C Nα,σ

2,∞(u) lim
ρ→0

ρ2σ−α−1.

Since 2σ > α+ 1 and N
α,σ
2,∞(u) <∞, the above limit is equal to 0 whence u ≡ const.

6 Two-sided estimates in the local case

6.1 The Dirichlet form in subsets

Let (E ,F) be a Dirichlet form in a metric measure space (M,d, µ). Let L be the generator
of E and consider the corresponding heat semigroup Pt = e−tL, t ≥ 0. Denote by Rλ,
λ > 0, the resolvent operator of L, that is,

Rλ = (L+ λI)−1 .

For any open subset Ω ⊂M , let F0 (Ω) be the set of functions from F whose support
is compact and is contained in Ω. Then define F (Ω) as the closure of F0 (Ω) in F with
respect to the E1-norm. It follows that any function from F (Ω) vanishes in Ωc and, hence,
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can be identified as an element of L2 (Ω). If F (Ω) is dense in L2 (Ω) then (E ,F (Ω)) is a
Dirichlet form in L2 (Ω). In this case, denote by LΩ, PΩ

t , RΩ
λ respectively the generator, the

heat semigroup, and the resolvent of (E ,F (Ω)). If f ∈ L2 (M) then set PΩ
t f := PΩ

t (f |Ω)
and RΩ

λ f := RΩ
λ (f |Ω).

In general F (Ω) need not be dense in L2 (Ω). However, if the Dirichlet form (E ,F) is
regular, that is, C0 (M)∩F is dense both in F and C0 (M) then F0 (Ω) is obviously dense
in L2 (Ω). In this case, F (Ω) coincides with the closure of F ∩C0 (Ω) in F , and (E ,F (Ω))
is also a regular Dirichlet form (see [24, Corollary 2.3.1, p.95 and Theorem 4.4.2, p.154]).

6.2 Maximum principles

We cite here two lemmas referring to [31, Appendix] for their proofs.
We say that a function w ∈ F satisfies the inequality Lw ≤ f weakly in an open set

Ω ⊂M where f ∈ L2 (Ω), if, for any non-negative function ϕ ∈ F (Ω)

E (w,ϕ) ≤ (f, ϕ)L2 .

Similar one defines the opposite inequality and equality. For example, if f ∈ L2 (M) and
w = Rλf then w satisfies the equation

Lw + λw = f

weakly in any open set Ω ⊂M.

Lemma 6.1 Let (E ,F) be a local regular the Dirichlet form in (M,d, µ). Let Ω ⊂ M be
a precompact open set and λ > 0. If a function w ∈ F ∩ L∞ (M) is such that 0 ≤ w ≤ 1
in Ω and w satisfies weakly in Ω the inequality

Lw + λw ≤ 0, (6.1)

then
w ≤ 1− λRΩ

λ1Ω in Ω. (6.2)

Lemma 6.2 Let (E ,F) be a regular Dirichlet form in (M,d, µ). For any open subset
U ⊂ M , for any compact set K ⊂ U , for any non-negative function f ∈ L2 (M), for all
t > 0, and for µ-almost all x ∈M , we have

0 ≤ Ptf(x)− PUt f(x) ≤ sup
s∈[0,t]

essup
Kc

Psf. (6.3)

6.3 A tail estimate

If B = B (x, r) then we use αB as a shorthand for B (x, αr).

Theorem 6.3 ([28], [31])Assume that (E ,F) is a regular conservative Dirichlet form in
L2(M,µ) and let all metric balls in M be precompact. Fix β > 0. The following conditions
are equivalent:

(i) For any ε ∈ (0, 1) there exists K > 0 such that, for any t > 0 and any ball B =
B(x0, r) with r ≥ Kt1/β,

Pt1Bc ≤ ε a.e. in
1

4
B. (6.4)
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(ii) For any ε ∈ (0, 1) there exists K > 0 such that, for any t > 0 and any ball B =
B(x0, r) with r ≥ Kt1/β,

PBt 1B ≥ 1− ε a.e. in
1

4
B. (6.5)

(iii) For any ε ∈ (0, 1) there exists K > 0 such that, for any λ > 0 and any ball B =
B(x0, r) with r ≥ Kλ−1/β,

λRBλ 1B ≥ 1− ε a.e. in
1

4
B. (6.6)

Remark 6.4 If the heat semigroup Pt possesses the heat kernel pt (x, y) then the condition
(i) can be equivalently stated as follows: for any ε ∈ (0, 1) there exists K > 0 such that,
for all t > 0, r ≥ Kt1/β , and almost all x ∈M ,

∫

B(x,r)c
pt (x, y) dµ (y) ≤ ε. (6.7)

Indeed, for any ball B (x0, r) and for almost all x ∈ B (x0, r/4) (or even x ∈ B (x0, r/2)),
we have

Pt1B(x0,r)
c (x) =

∫

B(x0,r)
c
pt (x, y) dµ (y) ≤

∫

B(x,r/2)c
pt (x, y) dµ (y) ,

so that (6.7) implies (6.4) (with K being replaced by 2K). Similarly, for almost all
x ∈ B (x0, r/2),

∫

B(x,r)c
pt (x, y) dµ (y) ≤

∫

B(x0,r/2)c
pt (x, y) dµ (y) = Pt1B(x0,r/2)c (x) ,

so that (6.4) implies (6.7), for almost all x ∈ B (x0, r/8). Covering M by a countable
family of balls of radius r/8, we obtain that (6.7) holds for almost all x ∈M .

Proof of Theorem 6.3. (i) ⇒ (ii). Applying the estimate (6.3) of Lemma 6.2 to
function f = 1 1

2
B, we obtain that

PBt 1 1
2
B(x) ≥ Pt1 1

2
B(x)− sup

s∈[0,t]
essup
( 3

4
B)

c
Ps1 1

2
B, (6.8)

for all t > 0 and a.e. x ∈M . For any x ∈ 1
4B, we have that B(x, r/4) ⊂ 1

2B (see Fig. 11).
Using (6.4) and the identity Pt1 = 1 a.e., we obtain, for any x ∈ 1

4B,

Pt1 1
2
B = 1− Pt1( 1

2
B)

c ≥ 1− Pt1B(x,r/4)c .

Applying the hypothesis (i) for the ball B (x, r/4), we obtain that

Pt1B(x,r/4)c ≤ ε a.e. in B (x, r/16) ,

provided
r

4
≥ Kt1/β (6.9)
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x0

y

1/4 B

B=B(x0,r)

1/2 B

x

3/4 B

B(y, 1/4 r)

B(x, 1/4 r)

B(y,1/16 r)

B(x,1/16 r)

Figure 11: Illustration to the proof of (i)⇒ (ii)

with sufficiently large K. It follows that, for any x ∈ 1
4B,

Pt1 1
2
B ≥ 1− ε a.e. in B (x, r/16) ,

whence

Pt1 1
2
B ≥ 1− ε a.e. in

1

4
B. (6.10)

On the other hand, for any y ∈
(

3
4B
)c

, we have 1
2B ⊂ B (y, r/4)c (see Fig. 11)),

whence
Ps1 1

2
B ≤ Ps1B(y,r/4)c .

Applying the hypothesis (i) for the ball B (y, r/4) at time s, we obtain that if (6.9) holds
for sufficiently large K then, for all 0 < s ≤ t,

Ps1B(y,r/4)c ≤ ε a.e. in B (y, r/16) .

It follows that, for any y ∈
(

3
4B
)c

,

Ps1 1
2
B ≤ ε a.e. in B (y, r/16) ,

whence

Ps1 1
2
B ≤ ε a.e. in

(
3

4
B

)c
. (6.11)

Combining (6.8), (6.10) and (6.11), we obtain that, under the condition (6.9),

PBt 1B ≥ P
B
t 1 1

2
B ≥ 1− 2ε a.e. in

1

4
B, (6.12)
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which is equivalent to (6.5).
(ii)⇒ (iii). By (ii), we have (6.5) provided t ≤ (r/K)β whence

λRBλ 1B = λ

∫ ∞

0
e−λt PBt 1Bdt ≥ λ

∫ (r/K)β

0
e−λt PBt 1Bdt ≥ (1− ε)

(
1− e−λ(r/K)β

)
,

which holds almost everywhere in 1
4B. If

λ
( r
K

)β
≥ log

1

ε
(6.13)

then we obtain

λRBλ 1B ≥ (1− ε)2 a.e. in
1

4
B,

which is equivalent to (6.6). The condition (6.13) is equivalent to

r ≥ K

(
log 1

ε

λ

)1/β

, (6.14)

which can be assumed to be true by the hypothesis of (iii).
(iii)⇒ (i). Let us first show that, for all t, λ > 0,

PBt 1B ≥ 1− eλt
(
1− λRBλ 1B

)
. (6.15)

Indeed, using the facts that PBs 1B ≤ 1B and

PBs+t1B = PBt
(
PBs 1B

)
≤ PBt 1B,

we obtain that

λRBλ 1B = λ

∫ ∞

0
e−λsPBs 1B ds

= λ

∫ t

0
e−λsPBs 1B ds+ λ

∫ ∞

t

e−λsPBs 1B ds

≤
(

1− e−λt
)

+ λ

∫ ∞

0
e−λ(s+t)PBs+t1B ds

≤ 1− e−λt + e−λtPBt 1B,

thus giving (6.15).
Given ε ∈ (0, 1), t > 0 and r ≥ Kt1/β (where K is defined by the hypothesis (iii)),

choose λ from the condition r = Kλ−1/β . Then it follows from (6.6) and (6.15) that

Pt1B ≥ P
B
t 1B ≥ 1− εeλt a.e. in

1

4
B.

Using Pt1 ≤ 1 and observing that

λt ≤ λ
( r
K

)β
= 1,

we obtain

Pt1Bc = 1− Pt1B ≤ εe
λt ≤ εe a.e. in

1

4
B,

which is equivalent to (6.4).
The following statement is an extension of Theorem 6.3 in the case of a local Dirichlet

form.
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Theorem 6.5 ([28], [31]) Assume that all the hypotheses of Theorem 6.3 hold, and in
addition that the Dirichlet form (E ,F) is local. Then each of the conditions (i), (ii), (iii)
of Theorem 6.3 is equivalent to the following:

(iv) There are c, C > 0 such that, for all λ, t > 0 and any ball B = B(x0, r),

essup
1
2
B

Pt1Bc ≤ C exp
(
λt− crλ1/β

)
. (6.16)

Remark 6.6 If in addition the heat semigroup Pt possesses the heat kernel pt (x, y) then
the condition (iv) can be equivalently stated as follows: for all λ, t, r > 0 and for almost
all x ∈M , ∫

B(x,r)c
pt (x, y) dµ (y) ≤ C exp

(
λt− crλ1/β

)
(6.17)

(cf. Remark 6.4). If β > 1 then taking λ =
(
cr
2t

) β
β−1 , we obtain from (6.17)

∫

B(x,r)c
pt (x, y) dµ (y) ≤ C exp

(

−c

(
rβ

t

) 1
β−1

)

.

Proof of Theorem 6.5. Let us first prove that (iv)⇒ (i). Assuming that r ≥ Kt1/β

and setting λ = 1/t, we obtain

λt− crλ1/β = 1− cK.

Hence, the right hand side of (6.16) can be made arbitrarily small, provided K is big
enough, which yields (6.4).

Now we prove the main implication (iii)⇒ (iv). This proof is rather long and will be
split into five steps.

Step 1. We claim that, for any ε > 0, there exists K > 0 with the following property:
if a function w ∈ F∩L∞ (M) is such that 0 ≤ w ≤ 1 in a ball B = B (x0, r) and w satisfies
weakly in B the equation

Lw + λw = 0,

where λ > 0 and r are related by
r ≥ Kλ−1/β ,

then

w ≤ ε a.e. in
1

4
B.

Indeed, since the Dirichlet form E is local and the ball is precompact, we have by Lemma
6.1 that

w ≤ 1− λRBλ 1B a.e. in B.

By (iii), we have

λRBλ 1B ≥ 1− ε a.e. in
1

4
B,

provided r ≥ Kλ−1/β , where K is now defined by the condition (iii). Combining the
above two lines, we finish the proof of the claim.
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Step 2. Let us show that there exists c > 0 such that, for any ball B = B (x0, r) and
any λ > 0,

essup
B(x0,δ)

(λRλ1Bc) ≤ exp
(
−crλ1/β + 1

)
, (6.18)

where δ = δ (λ) > 0. Choose some R > 4r and consider the functions

φ = 1B(x0,R)\B(x0,r)

and
u = λRλφ. (6.19)

It suffices to prove that

essup
B(x0,δ)

u ≤ exp
(
−crλ1/β + 1

)
, (6.20)

and then let R → ∞. Since 0 ≤ ϕ ≤ 1 and φ ∈ L2 (M), we have 0 ≤ u ≤ 1 on M ,
u ∈ domL ⊂ F , and u satisfies in M the equation

Lu+ λu = λφ. (6.21)

It suffices to assume that
cr ≥ λ−1/β , (6.22)

(where c > 0 is to be specified later) because otherwise (6.20) is trivially satisfied due to
u ≤ 1.

Let n ≥ 2 be an integer to be determined later on. For any 1 ≤ i ≤ n, set ri = ir
n ,

bi = essup
B(x0,ri)

u,

and, for 1 ≤ i < n,

wi(x) =
u(x)

bi+1
.

Clearly, wi ∈ F ∩ L∞ (M). Since φ = 0 in B (x0, r), it follows from (6.21) that

Lwi + λwi = 0 weakly in B (x0, r) .

By definition of bi+1, we have 0 ≤ wi ≤ 1 in B (x0, ri+1). In particular, the same inequality
holds in any ball B (x, r1) for any x ∈ B (x0, ri) (see Fig. 12).

Therefore, by Step 1 with ε = e−1, we have that

wi ≤ e
−1 a.e. in B

(

x,
1

4
r1

)

,

provided
r1 ≥ Kλ

−1/β , (6.23)

for an appropriate constant K. It follows that

essup
B(x0,ri)

wi ≤ e
−1,

that is,
bi ≤ e

−1bi+1. (6.24)
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B(x0,r)

B(x, r1)

B(x,1/4r1)B(x0,r1)

B(x0,ri)

B(x0,ri+1)

x

Figure 12: Balls B (x0, ri) and B (x0, ri+1)

Before we proceed further, let us make sure that the condition (6.23) is satisfied. Since
r1 = r/n, it is equivalent to

n ≤
rλ1/β

K
,

so that we can choose

n =

[
rλ1/β

K

]

.

Choosing in (6.22) c = 1
2K , we obtain that n ≥ 2. Note also that

n ≥ 2crλ1/β − 1.

Now, iterating (6.24) and using the fact that bn ≤ 1, we obtain

b1 ≤ e
−(n−1)bn ≤ e

−n/2 ≤ exp
(
−crλ1/β + 1

)
.

Clearly, this implies (6.20), where δ can be anything ≤ r1 = r
n ; for example, set δ =

Kλ−1/β .

Let us note that the iteration argument in this part of the proof is motivated by that
in [34] for the setting of infinite graphs.

Step 3. Let us show that there is K ≥ 1 such that for any ball B = B (x0, r) with

r ≥ Kλ−1/β , (6.25)

we have

essinf
(2B)c

(λRλ1Bc) ≥
1

2
. (6.26)

Indeed, for any x ∈ (2B)c, we have B(x, r) ⊂ Bc, whence by the condition (iii),

λRλ1Bc ≥ λRλ1B(x,r) ≥
1

2
a.e. in B

(

x,
1

4
r

)

.
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provided (6.25) is satisfied with an appropriate K. Hence, (6.26) follows.
Step 4. Let us show that, for any non-negative function f ∈ L∞ (M), the function

u = λRλf satisfies the inequality

Ptu ≤ e
λtu in M. (6.27)

for arbitrary t, λ > 0. Indeed, we have

Ptu = λ

∫ ∞

0
e−λsPt+sf ds

= λ

∫ ∞

t

e−λ(s−t)Psf ds

= eλtλ

∫ ∞

t

e−λsPsf ds ≤ e
λtu.

Step 5. Finally, let us prove (6.16). Let c be the same as in (6.18) (Step 2), so that
for any λ > 0 and for u = λRλ1Bc ,

essup
B(x0,δ)

u ≤ exp
(
−crλ1/β + 1

)
. (6.28)

Let λ > 0 be such that (6.25) is satisfied. Then it follows from (6.26) that

u ≥
1

2
1(2B)c in M.

Applying Pt to the both sides of this inequality and using (6.27), we obtain

1

2
Pt1(2B)c ≤ Ptu ≤ e

λtu, (6.29)

which together with (6.28) yields

essup
B(x0,δ)

Pt1(2B)c ≤ C exp
(
λt− crλ1/β

)
, (6.30)

where C = 2e.
If λ is such that (6.25) fails, that is, r < Kλ−1/β then (6.30) holds trivially with

C = ecK . Hence, (6.30) holds for all λ > 0, which is equivalent to (6.16).

6.4 Identifying Φ in the local case

Now we can state and prove the main result.

Theorem 6.7 ([33]) Assume that the metric space (M,d) satisfies the chain condition and
all metric balls are precompact. Let pt (x, y) be a stochastically complete heat kernel in a
metric measure space (M,d, µ). Assume that the associated Dirichlet form E is regular,
and the following estimate holds with some α, β > 0 and Φ : [0,+∞)→ [0,+∞):

pt (x, y) �
C

tα/β
Φ

(

c
d (x, y)

t1/β

)

. (6.31)

Then the following dichotomy holds:
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• either the Dirichlet form E is local, 2 ≤ β ≤ α+ 1, and Φ (s) � C exp
(
−cs

β
β−1

)
.

• or the Dirichlet form E is non-local, β ≤ α+ 1, and Φ (s) ' (1 + s)−(α+β).

Proof. By Corollary 5.8, we have β ≤ α + 1. If the form E is non-local, then, by
Corollary 2.10, Φ satisfies (2.33), which finishes the proof in this case.

Assume now that the form E is local. By Lemma 2.8, the lower bound in (6.31) implies
that (2.28), that is,

Φ (s) ≤ C (1 + s)−(α+β) . (6.32)

By Corollary 2.11, we have for all balls

µ (B (x, r)) ' rα. (6.33)

Let us show that, for any ε > 0 there is K > 0 such that, for all t > 0, r ≥ Kt1/β and
almost all x ∈M , ∫

B(x,r)c
pt (x, y) dµ (y) ≤ ε. (6.34)

Indeed, using (6.31) and (6.33), we obtain as in the proof of Theorem 2.11(b)

∫

B(x,r)c
pt (x, y) dµ (y) ≤ C

∫ ∞

1
2
r/t1/β

sαΦ(s)
ds

s
. (6.35)

Since by (6.32) the integral in the right hand side of (6.35) converges, we see that the
integral can be made smaller than ε provided r/t1/β is large enough, which was claimed.

The heat semigroup {Pt} satisfies all the hypotheses of Theorems 6.3 and 6.5. Since
the condition (i) of Theorem 6.3 is satisfied by (6.34), we conclude by Theorem 6.5 that,
for all t, r, λ > 0 and for µ-a.a. x ∈M ,

∫

B(x,r)c
pt (x, y) dµ (y) ≤ C exp

(
λt− crλ1/β

)
. (6.36)

If β < 1 then letting in (6.36) λ → ∞, we obtain that the right hand side in (6.36) goes
to 0. Letting then r → 0, we obtain that, for almost all x ∈M ,

∫

M\{x}
pt (x, y) dµ (y) = 0.

Together with stochastic completeness, this implies that there is a point x ∈ M of a
positive mass, which is impossible by Remark 2.9. This contradiction proves that β ≥ 1.

Setting in (6.36)

λ =






(cr
2t

) β
β−1

, if β > 1,

t−1, if β = 1

we obtain that, for all positive r, t and almost all x ∈M ,

∫

B(x,r)c
pt (x, y) dµ (y) ≤





C exp

(

−c
(
rβ

t

) 1
β−1

)

, if β > 1

C exp
(
−c rt

)
, if β = 1

(6.37)
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(where the constants c, C may be different from those of (6.36)).
By (2.2), we have, for all t > 0, almost all x, y ∈M , and r := 1

2d (x, y),

pt (x, y) =

∫

M

p t
2

(x, z) p t
2

(z, y) dµ(z)

≤

(∫

B(x,r)c
+

∫

B(y,r)c

)

p t
2

(x, z) p t
2

(z, y) dµ(z)

≤ esssup
z∈M

p t
2

(z, y)

∫

B(x,r)c
p t

2
(x, z) dµ(z)

+ esssup
z∈M

p t
2

(x, z)

∫

B(y,r)c
p t

2
(y, z) dµ(z).

Since by (6.31) esssup pt ≤ Ct−α/β , combining this with (6.37) we obtain, for almost all
x, y ∈M ,

pt (x, y) ≤






C

tα/β
exp

(

−c

(
dβ (x, y)

t

) 1
β−1

)

, if β > 1

C

tα
exp

(
−c

r

t

)
, if β = 1

(6.38)

Now we use Corollary 5.7(a). By (6.31) and (6.38), the heat kernel satisfies the two-sided
estimates (2.37) with the following functions:

Φ1 (s) := CΦ (cs)

and

Φ2 (s) :=

{
C exp

(
−cs

β
β−1

)
, if β > 1,

C exp (−cs) , if β = 1.

As was mentioned above, the heat kernel cannot identically vanish off the diagonal, which
implies that Φ1 (s) > 0 for some s > 0. Function Φ2 clearly satisfies the hypothesis (5.13)
of Corollary 5.7(a). Hence, we conclude by Corollary 5.7(a) that β ≥ 2.

If β ≥ 2 (in fact, β > 1 is enough), then the standard chaining argument using the
chain condition (cf. [2], [32, Corollary 3.5]) shows that the lower bound in (6.31) implies
the lower bounds

pt (x, y) ≥
C

tα/β
exp

(

−c

(
dβ (x, y)

t

) 1
β−1

)

. (6.39)

Combining (6.38) and (6.39) with (6.31), we obtain

Φ (s) � C exp
(
−cs

β
β−1

)
,

which finishes the proof.
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