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Abstract

The goal of this paper is the spectral analysis of the Schrödinger type operator
H = L+V , the perturbation of the Taibleson-Vladimirov multiplier L = Dα by
a potential V . Assuming that V belonges to a certain class of potentials we show
that the discrete part of the spectrum of H may contain negative energies, it also
appears in the spectral gaps of L. We will split the spectrum of H in two parts:
high energy part containing eigenvalues which correspond to the eigenfunctions
located on the support of the potential V, and low energy part which lies in
the spectrum of certain bounded Schrödinger type operator acting on the Dyson
hierarchical lattice.

We pay special attention to the class of sparse potentials. In this case we
obtain precise spectral asymptotics for H provided the sequence of distances
between locations tends to infinity fast enough.

We also obtain certain results concerning localization theory for H subject
to (non-ergodic) random potential V . Examples illustrate our approach.
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1 Introduction

The spectral theory of nested fractals similar to the Sierpinski gasket, i.e. the spectral
theory of the corresponding Laplacians, is well understood. It has several important
features: Cantor-like structure of the essential spectrum and, as result, the large num-
ber of spectral gaps, presence of infinite number of eigenvalues each of which has infinite
multiplicity and compactly supported eigenstates, non-regularly varying at infinity heat
kernels which contain an oscillating in log t scale terms etc., see [16], [12] and [7].

The spectral properties mentioned above occur in the very precise form for the
Taibleson-Vladimirov Laplacian Dα, the operator of fractional derivative of order α.
This operator can be introduced in several different forms (say, as L2-multiplier in the
p-adic analysis setting, see [39]) but we select the geometric approach [13], [28], [27],
[3], [4], [5] and [6].

1.1 The Dyson hierarchical model

Let us fix an integer p ≥ 2 and consider the family {Πr : r ∈ Z} of partitions of the set
X = [0, +∞[ such that each Πr consists of all intervals I = [kpr, (k +1)pr[, k = 0, 1, ....
We call r the rank of the partition Πr (respectively, the rank of the interval I ∈ Πr).
Each interval of rank r is the union of p disjoint intervals of rank (r − 1). Each point
x ∈ X belongs to a certain interval Ir(x) of rank r, and intersection of all intervals
Ir(x) is {x}.

Definition 1.1 Let B be the family of all intervals [kpr, (k + 1)pr[. The hierarchical
distance d(x, y) is defined as the length |I| of the minimal interval I ∈ B which contains
both x and y.

It is easy to see that the function (x, y) → d(x, y) is non-degenerate, symmetric
and for arbitrary x, y and z,

d(x, y) ≤ max{d(x, z), d(z, y)},

i.e. d(x, y) is an ultrametric on X. It has the following properties:

• The ultrametric d(x, y) majorizes the Euclidean metric |x − y| but these two
metrics are not equivalent. Indeed, by the very definition, d(x, y) ≥ |x − y| for
all x, y ∈ X whereas d(1 − ε, 1) = p for all 0 < ε < 1.
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Figure 1: Comparison of two metrics: d (x, y) ≥ |x − y|

• (X, d) is a complete locally compact non-compact and separable metric space. In
this metric space the set of all open balls coincides with the set of all intervals
I ∈ B. Next property says that (X, d) is a totally disconnected metric space.1

• Each open ball B in (X, d) is a closed compact set, each point x of B can be
regarded as its center, any two balls either do not intersect or one is a subset of
another etc.

• The Borel σ-algebra generated by the ultrametric d(x, y) coincides with the clas-
sical Borel σ-algebra generated by the Euclidean metric.

Definition 1.2 Let us fix a parameter κ ∈]0, 1[. The hierarchical Laplacian L we
introduce following [30] as a linear combination of ”elementary Laplacians”

(Lf)(x) =
+∞∑

r=−∞

(1 − κ)κr−1




f(x) −

1

|Ir(x)|

∫

Ir(x)

fdm




 . (1.1)

The series in (1.1) diverges in general but it is finite and belongs to L2(X,m) for
any f ∈ L2(X,m) which takes constant values on intervals of any fixed rank r.

The operator L admits a complete system of compactly supported eigenfunctions.
Indeed, let I be an interval of rank r, and I1, I2, ..., Ip be its subintervals of rank r − 1.
Set λ(r) = κr−1 and consider p functions

fIi
=

1Ii

|Ii|
−

1I

|I|
, i = 1, 2, ..., p.

Each function fIi
belongs to the domain of the operator L and satisfies the equation

LfIi
= λ(r)fIi

.

1In particular, (X, d) is homeomorphic to the punctured Cantor set {0, 1}ℵ0\{o}, see a survey on
totally disconnected metric spaces in [5, Section 1].
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The eigenspace H(I) = span{fIi
} has dimension p − 1 because

∑
i fIi

= 0. The
eigenspaces H(I) and H(I ′) are orthogonal provided I 6= I ′, and

L2(X,m) =
⊕

r∈Z

(
⊕

I∈Πr

H(I)

)

.

In particular, L is an essentially self-adjoint operator having a pure point spectrum.
Clearly each eigenvalue λ(r) = κr−1 has infinite multiplicity, whence Spec(L) coincides
with its essential part Specess(L).

We shell see below that writing κ = p−α the operator L can be identified with
the Taibleson-Vladimirov operator Dα, the operator of fractional derivative of order α
defined as L2-multiplier in the p-adic analysis setting [41], [21].

According to [4] the operator L can be represented as a hypersingular integral
operator acting in L2(0,∞),

Lf(x) =

∞∫

0

(f(x) − f(y)) J(x, y)dy

where

J(x, y) =
κ−1 − 1

1 − κ/p
∙

1

d(x, y)1+α
.

The Markov semigroup (e−tL)t>0 is symmetric and admits a continuous heat kernel
p(t, x, y). 2 The function p(t, x, y) can be estimated as follows

p(t, x, y) �
t

[t1/α + d(x, y)]1+α
. 3 (1.2)

The function p(t) := p(t, x, x) does not depend on x. By [30, Proposition 2.3], it can
be represented in the form

p(t) = t−1/αA( logp t), (1.3)

where A(τ) is a continuous non-constant α-periodic function, see also an extended
version of this result in [7]. In particular, in contrary to the classical case (symmetric
stable densities), the function t → p(t) does not vary regularly.

There are already several publications on the hierarchical Laplacian acting on a
general ultrametric measure space (X, d,m), see [2], [1], [28], [27], [3], [4], [5], [6].
By the general theory developed in [3], [4] and [5], any hierarchical Laplacian L acts
in L2(X,m) as essentially self-adjoint operator having a pure point spectrum. This
operator can be represented in the form

Lf(x) =

∫

X

(f(x) − f(y))J(x, y)dm(y). (1.4)

2The function (x, y) → p(t, x, y) is continuous (and even locally Lipschitz continuous) w.r.t. the
ultrametric d(x, y) but it is discontinuous w.r.t. the Euclidean metric |x − y|

3 We write f � g if the ratio f/g is bounded from above and from below by positive constants for
a specified range of variables. We write f ∼ g if the ratio f/g tends to identity.
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The Markov semigroup (e−tL)t>0 admits with respect to m a continuous transition
density p(t, x, y). It turns out that in terms of certain (intrinsically related to L)
ultrametric d∗,

J(x, y) =

1/d∗(x,y)∫

0

N(x, τ )dτ, (1.5)

p(t, x, y) = t

1/d∗(x,y)∫

0

N(x, τ ) exp(−tτ )dτ, (1.6)

where N(x, τ ) is the so-called spectral function related to L (will be defined later).

1.2 Outline

Let us describe the main body of the paper. In Section 2 we introduce the notion of
homogeneous hierarchical Laplacian L and list its basic properties: the spectrum of
the operator L is pure point, all eigenvalues of L have infinite multiplicity and com-
pactly supported eigenfunctions, the heat kernel p(t, x, y) exists and it is a continuous
function having certain asymptotic properties etc. As a special example we consider
the case X = Qp, the ring of p-adic numbers endowed with its standard ultrametric
d(x, y) = |x − y|p and the normed Haar measure m. The hierarchical Laplacian L
in our example coincides with the Taibleson-Vladimirov operator Dα, the operator of
fractional derivative of order α, see [39], [41], and [21]. The most complete source for
the basic definitions and facts related to the p-adic analysis is [20] and [38].

The Schrödinger type operator H = L+V with hierarchical Laplacian L was studied
in [14], [28], [30], [31], [10], [25], [26] (the hierarchical lattice of Dyson) and in [41], [40],
[21] (the field of p-adic numbers). In the next sections we consider the Schrödinger type
operator acting on a homogeneous ultrametric space X. We assume that the potential

V is of the form V =
∑

σi1Bi
, where Bi are balls which belong to a fixed horocycle H

(i.e. all Bi have the same diameter). The main aim here is to study the set Spec(H).
Under certain assumptions on V (e.g. V (x) → 0 at infinity $ etc.) we conclude that
the set Spec(H) is pure point (with possibly infinite number of limit points). We split
the set Spec(H) in two disjoint parts: the first part consists of the point λ = 0 and the
eigenvalues of the operator L which correspond to the horocycle H (with compactly
supported eigenfunctions) and the second part is the closure of a countably infinite set
Ξ of eigenvalues of the operator H (with non-compactly supported eigenfunctions). In
the case of sparse potential V , i.e. when d(Bi, Bj) → ∞ fast enough we specify the
structure of the set Ξ. In this connection we would like to mention here pioneering
works of S. Molchanov [28], D. Krutikov [23], [24], and N. Kochubei [21].

In the last section we consider the potential V of the form V =
∑

σi(ω)1Bi
, where

σi(ω), ω ∈ (Ω,z, P ), are i.i.d. random variables, and embark on the localization the-
ory. More precisely, we show that if the sequence of (non-random) distances d(Bi, Bj)
between locations tend to infinity fast enough then the spectrum of H is pure point
for P -a.a. ω ∈ Ω.

In the case when X is discrete, L is the Dyson Laplacian, Bi are singletons and V
is ergodic the localization theorem appeared first in the paper of Molchanov [28] (σi(ω)
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are Cauchy random variables) and later (under more general assumptions on σi(ω))
in the papers of Kritchevski [26] and [25]. The proof of this theorem is based on the
self-similarity of H. This approach is not applicable to the case of (random) sparse
potentials.

The proof of the localization theorem for (random) sparse potentials presented in
this paper is based on the abstract form of Simon-Wolff criterion [37] for pure point
spectrum, technique of fractional moments, decoupling lemma of Molchanov and Borel-
Cantelli type arguments, see [1], [27].

2 Preliminaries

2.1 Homogeneous ultrametric space

Let (X, d) be an ultrametric space. Recall that a metric d is called an ultrametric if it
satisfies the ultrametric inequality

d(x, y) ≤ max{d(x, z), d(z, y)},

that is stronger than the usual triangle inequality. Henceforth we assume that the
ultrametric space (X, d) is separable, non-compact and proper, that is, each d-ball is a
compact set.

For any x ∈ X and r ≥ 0 let Br (x) = {y ∈ X : d (x, y) ≤ r} be a closed ball. The
basic consequence of the ultrametric property is that Br (x) is an open set for any
r > 0. Moreover, each point y ∈ Br (x) can be regarded as its center, any two balls
of the same radius are either disjoint or identical etc. See a survey part in paper [5,
Section 1] and references therein.

To any ultrametric space (X, d) one can associate in a standard fashion a tree T .
The vertices of the tree are metric balls, the boundary ∂T can be identified with the
one-point compactification X ∪ {$}. We refer to [5, Section 1] for a treatment of the
association between ultrametric space (X, d) and the tree T of its metric balls.

Definition 2.1 Let m be a Radon measure on X. The triple (X, d,m) we call a homo-
geneous ultrametric measure space if the group of isometries of (X, d) acts transitively
on X and if the measure m is invariant w.r.t. the action of this group.

The following remarkable result is due to M. Del Muto and A. Figà-Talamanca, see
paper [11, Section 2].

Theorem 2.2 Any homogeneous ultrametric measure space (X, d,m) can be identified
with certain locally compact Abelian group G equipped with a translation invariant
ultrametric d and the Haar measure m.

For example, the set X = [0, +∞[ equipped with the ultrametric structure gener-
ated by p-adic intervals can be identified with Qp, the ring of p-adic numbers.

The identification in Theorem 2.2 is not unique. One possible way to define the
identification is to choose the sequence {an} of forward degrees associated with the tree
of balls T . This sequence is two-sided if X is non-compact and perfect, it is one-sided
if X is compact and perfect, or if X is discrete. In the 1st case we identify X with Ωa,
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the ring of a-adic numbers, in the 2nd case with Δa ⊂ Ωa, the ring of a-adic integers,
and in the 3rd case with the discrete group [Ωa : Δa] ' Za1 ⊕ Za2 ⊕ ..., the week sum
of cyclic groups Zan . We refer the reader to [17] for the comprehensive treatment of
special groups Ωa, Δa and Za1 ⊕ Za2 ⊕ ....

2.2 Homogeneous hierarchical Laplacian

Let (X, d,m) be a homogeneous ultrametric measure space. Let B be the set of all
open balls, B (x) ⊂ B the set of all balls centred at x, and C : B → (0,∞) a function
satisfying the following conditions

1. m(A) = m(B) ⇐⇒ C(A) = C(B),

2. λ(B) :=
∑

T∈B: B⊆T

C(T ) < ∞,

3. supB∈B(x) λ(B) = ∞ for any non-isolated x.

The class of functions C(B) satisfying these conditions is reach enough. For exam-
ple, let us fix α > 0 and for any two nearing neighboring balls B ⊂ B′ set

C(B) = m(B)−α − m(B′)−α,

then
λ(B) = m(B)−α.

Definition 2.3 Let C : B → (0,∞) be as above, we define the homogeneous hierar-
chical Laplacian L pointwise as

Lf(x) :=
∑

B∈B(x)

C(B)



f(x) −
1

m(B)

∫

B

fdm



 . (2.1)

Let D be the set of all compactly supported locally constant functions. 4 The series
in (2.1) diverges in general but for f ∈ D it belongs to C∞(X) ∩ L2(X,m). Moreover,
the operator L admits a complete in L2(X,m) system of eigenfunctions

fB =
1B

m(B)
−

1B′

m(B′)
, (2.2)

where the couple B ⊂ B′ runs over all nearest neighboring balls. The eigenvalue
corresponding to fB is the number λ(B′) defined at condition 2.

In particular, we conclude that L : D → L2(X,m) is an essentially self-adjoint
operator. Each eigenvalue λ(B) has infinite multiplicity so Spec(L) is pure point and
coincides with its essential part.

The intrinsic ultrametric d∗(x, y) is defined as follows

d∗(x, y) :=

{
0 when x = y

1/λ(xf y) when x 6= y
, (2.3)

4The set D is a dense subset in each of the Banach spaces C∞(X) and Lp(X,m), 1 ≤ p < ∞.
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where x f y is the minimal ball containing both x and y. In particular, for any open
ball B, we have

λ(B) =
1

diam∗(B)
. (2.4)

The spectral function τ → N(τ), see equation (1.5), is defined as a left-continuous
step-function having jumps at the points λ(B), and

N(λ(B)) = 1/m(B).

The volume function V (r) is defined by setting V (r) = m(B) where the ball B has
d∗-radius r. It is easy to see that

N(τ) = 1/V (1/τ ). (2.5)

The Markov semigroup Pt = e−tL admits a continuous density p(t, x, y) with respect to
m, we call it the heat kernel. The function p(t, x, y) can be represented in the form given
by equation (1.6). Respectively, the Markov generator L admits the representation
given by equations (1.4) and (1.5).

The resolvent operator (L + λI)−1, λ > 0, admits a continuous strictly positive
kernel R(λ, x, y) with respect to the measure m. The resolvent operator is well defined
for λ = 0, i.e. the Markov semigroup (Pt)t>0 is transient, if and only if for some
(equivalently, for all) x ∈ X the function τ → 1/V (τ) is integrable at ∞. Its kernel
R(x, y) := R(0, x, y), called also the Green function, is of the form

R(x, y) =

+∞∫

r

dτ

V (τ)
, r = d∗(x, y). (2.6)

Under certain Tauberian conditions equation (2.6) takes the form

R(x, y) �
r

V (r)
, r = d∗(x, y). (2.7)

For all these facts we refer the reader to [3], [4], and [5].

2.3 Subordination

Let Φ : R+ → R+ be an increasing homeomorphism. For any two nearest neighboring
balls B ⊂ B′ we define

C(B) = Φ (1/m(B)) − Φ (1/m(B′)) . (2.8)

The following properties hold true:

(i) λ(B) = Φ (1/m(B)). In particular, the hierarchical Laplacians LΦ and LId are
related by the equation LΦ = Φ(LId).

5

(ii) d∗(x, y) = 1/Φ (1/m(xf y)),

5In the case Φ(τ) is a Bernstein function the association LΦ = Φ(LId) has been studied in the
well-known Bochner’s subordination theory [15].
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(iii) V (r) ≤ 1/Φ−1(1/r). Moreover, V (r) � 1/Φ−1(1/r) whenever both Φ and Φ−1 are
doubling and m(B′) ≤ cm(B) for some c > 0 and all neighboring balls B ⊂ B′.
In turn, this yields the heat kernel estimates

p(t, x, y) � t ∙ min

{
1

t
Φ−1

(
1

t

)

,
1

m(xf y)
Φ

(
1

m(xf y)

)}

, (2.9)

2.4 L2-multipliers

As a special case of the general construction consider X = Qp, the ring of p-adic
numbers equipped with its standard ultrametric d(x, y) = |x − y|p. Remined that the
ultrametric space (Qp, d) and the ultrametric space ([0,∞), d) with non-Euclidean d
(the Dyson’s model) are isometric.

Let m be the normed Haar measure on the Abelian group Qp and F : f → f̂ the
Fourier transform acting in L2(Qp,m). It is known, see [38], [41], [21], that F : D → D
is a bijection.

Let Φ : R+ → R+ be an increasing homeomorphism. The self-adjoint operator
Φ(D) we define as L2−multiplier, that is,

Φ̂(D)f(ξ) = Φ(|ξ|p)f̂(ξ), ξ ∈ Qp. (2.10)

By [4, Theorem 3.1], Φ(D) is a homogeneous hierarchical Laplacian. The eigenvalues
λ(B) of the operator Φ(D) are of the form

λ(B) = Φ

(
p

m(B)

)

. (2.11)

Let p(t, x, y) be the heat kernel associated with the operator Φ(D). Assume that
both Φ and Φ−1 are doubling, then equation (2.9) applies. Since for any x, y ∈ Qp,
m(xf y) = |x − y|p we obtain

p(t, x, y) � t ∙ min

{
1

t
Φ−1

(
1

t

)

,
1

|x − y|p
Φ

(
1

|x − y|p

)}

, (2.12)

The Taibleson-Vladimirov operator Dα is L2-multiplier, it can be written as a hyper-
singular integral operator

Dαf(x) =
1

Γp(−α)

∫

Qp

f(y) − f(x)

|y − x|1+α
p

dm(y), (2.13)

where Γp(z) = (1 − pz−1)(1 − p−z)−1 is the p-adic Gamma-function, see [41, VIII.2 ].
The heat kernel pα(t, x, y) of the operator Dα admits two-sided bounds

pα(t, x, y) �
t

(t1/α + |x − y|p)
1+α

. (2.14)

In particular, the Markov semigroup (e−tDα
)t>0 is transient if and only if α < 1. In the

transient case the Green function Rα(x, y) is of the form

Rα(x, y) =
1

Γp(α)

1

|x − y|1−α
p

. (2.15)

For all facts listed above we refer the reader to [3], [4] and [5].
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3 Schrödinger type operators

3.1 Preliminary results

Let (X, d,m) be a homogeneous ultrametric measure space and L a homogeneous
hierarchical Laplacian acting on (X, d,m). Identifying (X, d) with a locally compact
Abelian group (say, X = Qp) one can regard −L as a translation invariant isotropic
Markov generator. By (1.4), the operator L : D → L2(X,m) is of the form

Lf(x) =

∫

Qp

(f(x) − f(y))J(x − y)dm(y), (3.16)

or equivalently, in terms of the Fourier transform F : g → ĝ,

L̂f(θ) = L̂(θ) ∙ f̂(θ), θ ∈ Qp, (3.17)

where L̂(θ) is a negative definite function [9]. By the Lévy-Khinchin formula,

L̂(θ) =

∫

Qp

[1 − Re 〈h, θ〉]J(h)dm(h). (3.18)

Let V be a real measurable function. Consider the Schrödinger type operator

Hu = Lu + V ∙ u, u ∈ D. (3.19)

Our goal is to show that under certain mild conditions on V one may associate a
self-adjoint operator H with the equation (3.19).

Theorem 3.1 Assume that V is locally bounded. Then the following is true:
(i) The operator H = L + V is essentially self-adjoint.6

(ii) Assume that V (x) → +∞ as x → $. Then the operator H has a compact
resolvent. Consequently, the spectrum of H is discrete.

(iii) Assume that V (x) → 0 as x → $. Then the essential spectrum of H coincides
with the spectrum of L. Thus, the spectrum of H is pure point and the negative part of
the spectrum consists of isolated eigenvalues of finite multiplicity.

Proof. (i) As the potential V is locally bounded H : D → L2(X,m) is a well-defined
symmetric operator. Let us choose an open ball O which contains the neutral element
and write equation (3.16) in the form

Lf(x) =




∫

O

+

∫

Oc



 [f(x) − f(x + y)]J(y)dm(y)

= LOf(x) + LOcf(x).

We have Hf = LOf + LOcf + V f , where the operator V is the operator of mul-
tiplication by the function V (x). The operator LOcf = J(Oc)(f − a ∗ f), where

6Recall that, for the classical Schrödinger operator H = −Δ+ V in Rn, this statement is not true,
unless V satisfies a certain lower bound, see [8, Chapter II, Theorem 1.1 and Example 1.1].
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a(y) = J(y)1Oc(y)/J(Oc), is a bounded symmetric operator in L2(X,m) (as f → a ∗ f
is the operator of convolution with probability measure a(y)dm(y)) and thus does not
influence self-adjointness. As LO is minus Lévy generator it is essentially self-adjoint
(one more way to make this conclusion is that the matrix of the operator LO is diagonal
in the basis {fB} of eigenfunctions of the operator L, see [22]).

For any ball B which belongs to the same horocycle H as O we denote HB the
subspace of L2(X,m) which consists of all functions f having support in B. Since O
is a subgroup of the Abelian group X and each ball B ∈ H is a coset (i.e. belongs
to the quotient group [X : O]), we conclude that HB is an invariant subspace of the
symmetric operator HO = LO + V . Moreover, by symmetry HB reduces HO.

The ultrametric space X can be covered by a sequence of non-intersecting balls
Bn (recall that due to the ultrametric property two balls of the same diameter either
coincide or do not intersect). This leads to the orthogonal decomposition

L2(X,m) =
⊕

n

HBn

where each HBn reduces HO. The restriction of the essentially self-adjoint operator LO

to its invariant subspace HBn is an essentially self-adjoint operator, while the restriction
of the operator V is bounded. Thus HO is essentially self-adjoint as orthogonal sum of
essentially self-adjoint operators HO,n, the restriction of HO to HBn .

(ii) The proof is similar to the one for the Schrödinger operators given in [41,
Theorem X.3]; the main tools are boundedness from below of the operator H and the
Riesz-Rellich compactness criteria for subsets of L2(X,m).

(iii) Let us show that the operator V is L−compact. Then, by [18, Theorem
IV.5.35], the essential spectrums of the operators H and L coincide. Recall that
L−compactness means that if a sequence {un} is such that both {un} and {Lun}
are bounded then there exists a subsequence {u′

n} ⊂ {un} such that the sequence
{V u′

n} converges.
1. Denote vn = Lun + un. By assumption the sequence {vn} is bounded and

un = R1vn = r1 ∗ vn. It follows that the quantity

(∫
|un(x + h) − un(x)|2 dm(x)

)1/2

≤ ‖vn‖L2

∫
|r1(z + h) − r1(z)| dm(z)

tends to zero uniformly in n as h tends to the neutral element. Thus, the sequence
{un} consists of equicontinuous on the whole in L2(X,m) functions. The same is true
for the sequence {V un}. Indeed, for any ball B which contains the neutral element we
write (∫

|V (x + h)un(x + h) − V (x)un(x)|2 dm(x)

)1/2

≤ I + II + III,

where

I = ‖V ‖L∞

(∫
|un(x + h) − un(x)|2 dm(x)

)1/2

,

II = ‖un‖L2

(∫

B

|V (x + h) − V (x)|2 dm(x)

)1/2

,

III = ‖un‖L2 sup
x∈Bc

|V (x + h) − V (x)| .

11



Clearly I, II and III tend to zero uniformly in n as h tends to the neutral element
and B ↗ X.

2. The sequence {V un} consists of functions with equicontinuous L2(X,m) integrals
at infinity. Indeed, for any ball B which contains the neutral element we have

∫

Bc

|V un(x)|2 dm(x) ≤ ‖un‖L2 sup
x∈Bc

|V (x)| → 0

uniformly in n as B ↗ X.
Thus, the sequence {V un} is bounded in L2(X,m), consists of equicontinuous on

whole in L2(X,m) functions with equicontinuous L2(X,m) integrals at infinity. By
the Riesz-Kolmogorov criterion of compactness in L2(X,m), the set {V un} is compact,
whence it contains a convergent subsequence {V u′

n}, as claimed.
In the case when the ultrametric measure space (X, d,m) is countably infinite the

statement (ii) of Theorem 3.1 can be complemented as follows.

Theorem 3.2 Assume that (X, d,m) is countably infinite. Then the following state-
ments are equivalent:

(i) The operator H has a discrete spectrum.

(ii) |V (x)| tend to infinity as x → $.

Proof. (ii) =⇒ (i) : Since X is discrete L is a bounded symmetric operator, let us
set d := ‖L‖. Suppose that |V (x)| tend to infinity as x → $. Then for every given
interval I = [a, b] and its neighborhood I ′ = [a − d − 1, b + d + 1] there exist a finite
set A of points x such that V (x) ∈ I ′. Let us choose v /∈ I ′ and define the operator
H ′ = L + V ′ where

V ′(x) :=

{
V (x) if x /∈ A

v if x ∈ A
.

The resolvent of the operator V : u(x) → V (x)u(x) is analytic inside of I ′ and, as a
result, the resolvent of H ′ is analytic inside of I. Indeed, it is straightforward to show
that

∥
∥L(V ′ − λI)−1

∥
∥ =

∥
∥(V ′ − λI)−1L

∥
∥ ≤

d

d + 1
< 1,

for any λ ∈ I. It follows that the operator

H ′ − λI = (V ′ − λI)
(
E + L(V ′ − λI)−1

)

is invertible. This in turn implies that the operator H ′ has no spectrum inside the
interval I. But the difference H −H ′ is an operator of finite rank. Hence the operator
H has (in the same interval I) not more than finite number of eigenvalues, see Lemma
3.12 below. Thus we have already proved that the spectrum of H is discrete.

(i) =⇒ (ii) : Suppose that the operator H has a discrete spectrum. Then clearly
the spectrum of H2 is also discrete. Let E1 ≤ E2 ≤ ∙ ∙ ∙ be the eigenvalues of H2. Then
by Courant’s min−max principle

En = min
ψ1,...,ψn

max{(ψ,H2ψ) : ψ ∈ span(ψ1, . . . , ψn), ‖ψ‖ = 1}. (3.20)
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Assume that |V (x)| does not tend to +∞ as x → $. Then there exists a sequence
{xn} ⊂ X such that |V (xn)| ≤ C for some C > 0 and all n ≥ 1. It follows that

(ψ,H2ψ) ≤ 2(d2 + C2), ∀ψ ∈ span(δx1 , δx2 , δx3 , ...), ‖ψ‖ = 1. (3.21)

Equations (3.20) and (3.21) imply that the interval [0, 2(d2 + C2)] contains at list one
limit point of the sequence {En}, i.e. the essential spectrum of H2 (equivalently of H)
is not empty. This fact contradicts the discreetness of the spectrum of H2 (or H). This
proves the second part of the theorem.

The class K In the continuous case the situation is not so obvious. Let us consider
a class class K of potentials V of the form

V =
∑

B∈H

σ(B)1B,

where H is any fixed horocycle in the tree of balls. For a potential V ∈ K let us select
the following Hilbert subspaces of L2(X,m) :

• L+ = span{1B : B ∈ H}

• LB = span{fT : T  B}

• L− = L2(X,m) 	 L+ =
⊕

B∈H

LB

The following three lemmas can be proved by inspection.

Lemma 3.3 The linear spaces L+, LB and L− are invariant subspaces for both oper-
ators H and L. Let H+, HB and H−(resp. L+, LB and L−) be the restriction of the
operator H (resp. L) to L+, LB and L− respectively. The following properties hold
true:

(i) H = H+ ⊕ H−,

(ii) HB = LB + σ(B),

(iii) H− =
⊕

B∈H

(LB + σ(B)).

Remind that LfB = λ(B′)fB for any open ball B. As B converges to a single-
ton λ(B′) → +∞ whence LB has discrete spectrum. By the homogeneity property
Spec(LA) is the same for all A ∈ H. Let us set

• SH := Spec(LA),

• RV : =Range(V ).

Lemma 3.4 In the introduced notation

Spec(H−) = SH +RV .

In particular, the operator H− has a pure point (not necessary discrete) spectrum.
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Let us choose in each ball B ∈ H an element aB and consider a discrete ultrametric
space (X ′,m′, d′) with X ′ = {aB : B ∈ H} induced by (X,m, d).

Lemma 3.5 The operator L+ can be identified with certain hierarchical Laplacian
L′ acting on (X ′,m′, d′), respectively the operator H+ can be identified with certain
Schrödinger type operator H ′ = L′ + V ′ with potential V ′ =

∑
a∈X′ V (a)δa.

Theorem 3.6 For a potential V ∈ K the statements (i) and (ii) of Theorem 3.2 are
related by the implication (i) =⇒ (ii). The inverse implication (ii) =⇒ (i) holds true
if and only if the set SH +RV has no accumulating points.

Proof. If we assume that Spec(H) is discrete, then the operator H+ (whence the op-
erator H ′) has a discrete spectrum. Applying Theorem 3.2 we conclude that |V (x)| →
+∞, i.e. (i) =⇒ (ii) as claimed.

If the sequence {σ(B) : B ∈ H} contains a subsequence σ(Bk) → −∞ then it may
well happen that the set Spec(H−) = SH+RV will contain a number of accumulating
points, i.e. Spec(H) in this case is not discrete. In particular, (ii) =⇒ (i) if and only
if the set SH+RV has no accumulating points.

3.2 Rank one perturbations

In this section we assume that the homogeneous ultrametric measure space (X, d,m) is
countably infinite. In this case X can be identified with a countable Abelian group G
equipped with an increasing sequence {Gn}n∈N of finite subgroups such that ∩Gn = {0}
and ∪Gn = G. Each ball in G is a set of the form g + Gn for some g and n.

As an example one can consider the group G = Z(p1)⊕ Z(p2) ⊕ . . ., the weak sum
of cyclic groups, equipped with the sequence of its subgroups

Gn = Z(p1) ⊕ Z(p2) ⊕ . . . ⊕ Z(pn) ⊕ {0} ⊕ ....

Let L be a homogeneous hierarchical Laplacian. We study spectral properties of
the Schrödinger type operator H = L + V with potential V (x) = −σδa(x), σ > 0.
Clearly H can be written in the form

Hf(x) = Lf(x) − σ(f, δa)δa(x),

that is, H can be regarded as a rank one perturbation of the operator L. In this
connection let us recall an abstract form of the Simon-Wolff theorem [37, Theorems 2
and 2’] about pure point spectrum of rank one perturbations.

The Simon-Wolff criterion Let A be a self-adjoint operator with simple spectrum
on a Hilbert space H, and let ϕ be a cyclic vector for A, that is, {(A−λ)−1ϕ | Im λ >0}
is a total set for H. By the spectral theorem, H is unitary equivalent to L2(R, μ0) in
such a way that A is multiplication by x with cyclic vector ϕ ≡ 1. Here μ0 is the
spectral measure of ϕ for A. Let H = A + σ(ϕ, ∙)ϕ be a rank one perturbation of the
operator A. Set

F (x) :=

∫
(x − y)−2dμ0(y) = lim

ε→0

∥
∥(A − (x + iε)I)−1ϕ

∥
∥2

.
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Theorem 3.7 Fix an open interval ]a, b[. The following are equivalent:
(i) For a.e. σ, H has only pure point spectrum in ]a, b[.
(ii) For a.e. x ∈]a, b[, F (x) < ∞.

In general, if H0 is the closed subspace generated by vectors {(A−λI)−1ϕ |Im λ >0},
then its orthogonal complement (H0)

⊥ is an invariant space for H and H = A on (H0)
⊥.

Thus, the extension from the cyclic to general case is clear.
The function ϕ = δa is not a cyclic vector for L because the operator L has many

compactly supported eigenfunctions φ having support outside of a. Indeed, for any
such φ, for all λ ∈ C with Im λ >0 and for some eigenvalue λk we will have

((L − λI)−1δa, φ) = (δa, (L − λI)−1φ) = (δa, (λk − λ)−1φ) = 0.

We use the Krein type identity below to show that the spectrum of the operator
H = L − σδa is pure point for all σ. Let ψ(x) = R(λ, x, y) be the solution of the
equation

Lψ(x) − λψ(x) = δy(x).

Let ψV (x) = RV (λ, x, y) be the solution of the equation

HψV (x) − λψV (x) = δy(x).

Notice that L and H are symmetric operators whence both (x, y) → R(λ, x, y) and
(x, y) → RV (λ, x, y) are symmetric functions.

Theorem 3.8 In the notation introduced above

RV (λ, x, y) = R(λ, x, y) +
σR(λ, x, a)R(λ, a, y)

1 − σR(λ, a, a)
, (3.22)

RV (λ, a, y) =
R(λ, a, y)

1 − σR(λ, a, a)
(3.23)

and

RV (λ, a, a) =
R(λ, a, a)

1 − σR(λ, a, a)
. (3.24)

Proof. We have

LψV (x) − λψV (x) = δy(x) + σδa(x)ψV (x)

= δy(x) + σδa(x)ψV (a).

It follows that
ψV (x) = R(λ, x, y) + σψV (a)R(λ, x, a). (3.25)

Setting x = a in the above equation we obtain

ψV (a) = R(λ, a, y) + σψV (a)R(λ, a, a)

or
ψV (a)(1 − σR(λ, a, a)) = R(λ, a, y).

Since ψV (a) = RV (λ, a, y) we obtain equation (3.24). In turn, equations (3.24) and
(3.25) imply (3.22) and (3.23).
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Theorem 3.9 The operator H = L −σδa has a pure point spectrum which consists of
at most one negative eigenvalue and countably many positive eigenvalues with accumu-
lating point 0.

The operator H has precisely one negative eigenvalue λσ
− if and only if σ > 0 and

one of the following two conditions holds: (i) the semigroup (e−tL)t>0 is recurrent,
(ii) the semigroup (e−tL)t>0 is transient and R(0, a, a) > 1/σ. If it is the case, then
Spec(H) consists of numbers

λσ
− < 0 < ... < λk+1 < λσ

k < λk < ... < λ2 < λσ
1 < λ1.

Otherwise Spec(H) consists of numbers

0 < ... < λk+1 < λσ
k < λk < ... < λ2 < λσ

1 < λ1.

If σ < 0, then Spec(H) consists of numbers

0 < ... < λk+1 < λσ
k < λk < ... < λ2 < λσ

1 < λ1 < λσ
+.

The eigenvalues λk are at the same time eigenvalues of the operator L. All λk have
infinite multiplicity and compactly supported eigenfunctions, the eigenfunctions of the
operator L, whose supports do not contain a.

The eigenvalue λσ
k (resp. λσ

−, λσ
+) is the unique solution of the equation

R(λ, a, a) = 1/σ

in the interval ]λk+1, λk[ (resp. ] − ∞, 0[, ]λ1, +∞[). Each λσ
k (resp. λσ

−, λσ
+) has

multiplicity one and non-compactly supported eigenfunction ψk(x) = R(λσ
k , x, a) (resp.

ψ−(x) = R(λσ
−, x, a), ψ+(x) = R(λσ

+, x, a)).

Figure 2: The roots {λσ
∗} of the equation R (λ, a, a) = 1/σ. The dashed graph corre-

sponds to a recurrent case, the solid graph – to the transient case.
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Proof. Let Υ(X) be the tree of balls associated with the ultrametric space (X, d).
Consider in Υ(X) the infinite geodesic path from a to $ : {a} = B0  B1  ...  Bk  
... . The series below converges uniformly and in L2,

δa =

(
1B0

m(B0)
−

1B1

m(B1)

)

+

(
1B1

m(B1)
−

1B2

m(B2)

)

+ ... =
∞∑

k=0

fBk
. (3.26)

Notice that all fBk
are eigenfunctions of the operator L, i.e. LfBk

= λ(Bk+1)fBk
=

λk+1fBk
. By definition R(λ, x, y) = (L − λ)−1δy(x) whence we obtain

R(λ, a, a) =
1

λ1 − λ
fB0(a) +

1

λ2 − λ
fB1(a) + ...

=
1

λ1 − λ

(
1

m(B0)
−

1

m(B1)

)

+
1

λ2 − λ

(
1

m(B1)
−

1

m(B2)

)

+ ... ,

or in the final form

R(λ, a, a) =
∞∑

k=1

Ak

λk − λ
, Ak =

(
1

m(Bk−1)
−

1

m(Bk)

)

. (3.27)

Since λ → R(λ, a, a) is an increasing function, the equation

1 − σR(λ, a, a) = 0, σ 6= 0, (3.28)

has precisely one solution λσ
k lying in each open interval ]λk+1, λk[ ,

λk+1 < λσ
k < λk, k = 1, 2, ... .

Claim 1 All numbers λσ
k are eigenvalues of the operator H. Indeed, the function

ψ(x) = R(λ, x, a) with λ = λσ
k satisfies the equation

Hψ(x) − λψ(x) = Lψ(x) − λψ(x) − σδa(x)ψ(x)

= Lψ(x) − λψ(x) − σδa(x)ψ(a)

= Lψ(x) − λψ(x) − δa(x) = 0.

Claim 2 All numbers λk are eigenvalues of the operator H. Indeed, for any ball B
which does not contain a but belongs to the horocycle Hk−1 we have

HfB = LfB = λkfB.

When σ > 0 there may exist one more eigenvalue λσ
− < 0, a solution of the equation

(3.28). Indeed, λ → R(λ, a, a) is an increasing function, continuous on the interval
] − ∞, 0]. Since R(λ, a, a) → 0 as λ → −∞ and R(λ, a, a) → R(0, a, a) ≤ +∞ as
λ → −0, equation (3.28) has unique solution λ = λσ

− < 0 in the cases (i) and (ii).The
proof of the theorem is finished.
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Example 3.10 The Dyson’s Laplacian. Consider the set X={0, 1, 2, ...} equipped with
the counting measure m and with the set of partitions {Πr : r = 0, 1, ...} each of which
consists of all rank r intervals Ir = {x ∈ X : kpr ≤ x < (k+1)pr}. The set of partitions
{Πr} generates the ultrametric structure on X and the hierarchical Laplacian

Dαf(x) =
+∞∑

r=1

(1 − κ)κr−1




f(x) −

1

m(Ir(x))

∫

Ir(x)

fdm




 , κ = p−α,

where the sum is taken over all rank r intervals Ir(x) containing x.
The operator Dα admits a complete system of compactly supported eigenfunctions.

Indeed, let I be an interval of rank r, and I1, I2, ..., Ip be its subintervals of rank r − 1.
Let us consider p functions

fIi
=

1Ii

m(Ii)
−

1I

m(I)
, i = 1, 2, ..., p.

Each function fIi
belongs to the domain of the operator Dα and

DαfIi
= κr−1fIi

.

When I runs over the set all p-adic intervals the set of eigenfunctions fIi
forms a

complete system in L2(X,m). In particular, Dα is essentially self-adjoint operator
having pure point spectrum

Spec(Dα) = {0} ∪ {κr−1 : r ∈ N}.

Clearly each eigenvalue λr = κr−1 has infinite multiplicity. Let us compute the value
R(λ) := R(λ, 0, 0) of the resolvent kernel for Dα. By equation (3.27), we have

R(λ) =
∑

k≥1

Ak

λk − λ
= (p − 1)

∑

k≥1

1

pk(λk − λ)
.

In particular, R(0) = +∞ if and only if α ≥ 1, otherwise

R(0) =
p − 1

p

∑

k≥0

1

pk(1−α)
=

p − 1

p − pα
.

Consider the operator H = Dα − σδ0, σ > 0. Let us compute the number Neg(H)
of negative eigenvalues of the operator H counted with their multiplicity. By Theorem
3.9, the operator H has at most one negative eigenvalue. It has exactly one negative
eigenvalue if and only if either α ≥ 1 or 0 < α < 1 and σ > (p − pα)(p − 1)−1. If we
denote the set of pairs (α, σ) which satisfy the above conditions by Ω and by Ω0 = R2

+\Ω
its complement, we obtain

Neg(H) =

{
1 if (α, σ) ∈ Ω
0 if (α, σ) ∈ Ω0

which is shown on the picture below.
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Figure 3: Sets Ω0 and Ω

3.3 Finite rank perturbations

As in the previous section the ultrametric measure space (X, d,m) is countably infinite
and homogeneous. For convenience, we assume that m(B) = diam(B) for any non-
singleton ball B.

Let L be a homogeneous hierarchical Laplacian. We study spectral properties of the
Schrödinger type operator H = L + V with potential V (x) = −

∑N
i=1 σiδai

(x), σi > 0.
Clearly H can be written in the form

Hf(x) = Lf(x) −
N∑

i=1

σi(f, δai
)δai

(x),

that is, H can be regarded as rank N perturbation of the operator L. Throughout this
section we use the following notation

• R(λ, x, y) is the solution of the equation Lψ(x) − λψ(x) = δy(x). We set
R(λ, x,−→a ) := (R(λ, x, ai))

N
i=1, and R(λ,−→a ,−→a ) := (R(λ, aj , ai))

N
i,j=1.

• RV (λ, x, y) is the solution of the equation Hψ(x) − λψ(x) = δy(x). We set
RV (λ, x,−→a ) := (RV (λ, x, ai))

N
i=1, and RV (λ,−→a ,−→a ) := (RV (λ, aj , ai))

N
i,j=1.

• Σ := diag(σi : i = 1, ..., N ).

Theorem 3.11 The following properties hold true:

1. The set Spec(H) is pure point, its essential part Specess(H) coincides with the set
Spec(L) = {0} ∪ {λk}, its discrete part Specd(H) in each open interval lying in
the complement of Spec(L) consists of at most N distinct points, solutions of the
equation

det(Σ−1 −R(λ,−→a ,−→a )) = 0. (3.29)
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2. For each k ∈ N there exists δ > 1 such that mini 6=j d(ai, aj) > δ implies that the
operator H has precisely N distinct eigenvalues in each open interval (λs+1, λs):
1 ≤ s ≤ k. Moreover, there exists precisely N distinct negative eigenvalues of the
operator H provided one of the following two conditions is satisfied:

(2.1) The semigroup (e−tL)t>0 is recurrent.

(2.2) The semigroup (e−tL)t>0 is transient and all 1/σi < R(0, a, a). 7

The proof of the first part of Theorem 3.11 is based on the Weyl’s theorem on
the essential spectrum of compactly perturbed symmetric operators, see [18, Theorem
IV.5.35], and on the following lemma.

Lemma 3.12 Let A and B be two symmetric bounded operators and H = A + B.
Assume that B is of rank N operator. Let (a, b) be an interval lying in the complement
of the set Spec(A). Then the set Spec(H)∩ (a, b) consists of at most N distinct points.

Proof. By the Weyl’s essential spectrum theorem Specess(H) coincides with the set
Specess(L) = {0}∪{λk}. Hence the set Spec(H)∩(a, b) may contain only finite number
of eigenvalues each of which has finite multiplicity. Consider the case N = 1, that is,
the operator B is of the form

Bf = σ1(f, f1)f1.

Let λ ∈ (a, b) and let f be a non-trivial solution of the equation Hf − λf = 0. Then
f can be written in the form

f = −σ1(f, f1)Rλf1 (3.30)

where Rλ = (A − λ)−1 is the resolvent operator. It follows that (f, f1) 6= 0 and

(f, f1) = −σ1(f, f1)(Rλf1, f1),

or
σ1(Rλf1, f1) + 1 = 0. (3.31)

The function φ(λ) = (Rλf1, f1) is strictly increasing on the interval (a, b). Indeed,
applying the resolvent identity we get

dφ(λ)

dλ
= (R2

λf1, f1) = ‖Rλf1‖
2 > 0.

It follows that equation (3.31) has at most one solution lying in the interval (a, b).
Assume that equation (3.31) has a solution, denote it λ∗. Then (3.30) implies that the
vector f∗ := Rλ∗f1/ ‖Rλ∗f1‖ satisfies the equation

Hf∗ − λ∗f∗ = 0.

Thus the operator H has at most one eigenvalue in the interval (a, b).
Without loss of generality we may provide the induction from N = 1 to N = 2.

Thus assuming that the perturbation operator B is of the form

Bf = σ1(f, f1)f1 + σ2(f, f2)f2

7Thanks to the homogenuity assumption R(λ, a, a) does not depend on a
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we set
A′f := Af + σ1(f, f1)f1

and
Hf := A′f + σ2(f, f2)f2.

Observe that the operator A′ may have in the interval (a, b) at most one eigen-
value λ∗. The corresponding eigenspace is one-dimensional, call it 〈f∗〉, where f∗ :=
Rλ∗f1/ ‖Rλ∗f1‖. Let us consider two cases.

First case: Assume that f2 ⊥ f∗. Then Hf∗ = A′f∗ = λ∗f∗, i.e. λ∗ is an eigenvalue
of the operator H. It follows that the orthogonal complement 〈f∗〉

⊥ is a joint invariant
subspace of the operators H and A′ and that these operators being restricted to 〈f∗〉

⊥,
call them H⊥ and A′

⊥, satisfy

H⊥f = A′
⊥f + σ2(f, f2)f2.

The operator A′
⊥ has no eigenvalues in the interval (a, b). Hence, by what we have

already shown in the first part of the proof, the operator H⊥ has at most one eigenvalue
in the interval (a, b). It follows that the operator H has at most two eigenvalues in the
interval (a, b).

Second case: Assume that f2 and f∗ are not orthogonal. Let Rλ := (H −λI)−1 and
R′

λ := (A′ − λI)−1 be the resolvent operators. The following identity holds true

(Rλf, g) = (R′
λf, g) −

σ2(R
′
λf, f2)(R

′
λf2, g)

1 + σ2(R′
λf2, f2)

(3.32)

for any f, g and λ 6= λ∗ lying in (a, b). Using the spectral resolution formula for the
operator A′, the fact that its spectral function Eλ in (a, b) has the only jump at λ = λ∗

and that the value of the jump ΔEλ∗ is the operator of orthogonal projection on the
subspace 〈f∗〉 we get

(R′
λf, f) =

(f∗, f)2

λ − λ∗
+ O1(1) (3.33)

and

(R′
λf, f2) =

(f∗, f)(f∗, f2)

λ − λ∗
+ O2(1) (3.34)

where Oi(1) are analytic functions. Substituting asymptotic equations (3.33) and (3.34)
in equation (3.32) we get analyticity of the function λ → (Rλf, f) at λ = λ∗. In
particular, this shows that λ = λ∗ is not an eigenvalue of H.

On the other hand λ∗ splits the interval (a, b) in two parts (a, λ∗) and (λ∗, b) each
of which does not contain eigenvalues of the operator A′. Then, as we have already
shown, each of these intervals contains at most one eigenvalue of the operator H. Since
λ∗ is not an eigenvalue of the operator H, the number of distinct eigenvalues of H in
the interval (a, b) is at most two. The proof of the lemma is finished.

Proof of Theorem 3.11 (second part): Let λ ∈ Specd(H) and let ψ(x) be the
corresponding eigenfunction, i.e.

Hψ(x) − λψ(x) = 0.
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We have

Lψ(x) − λψ(x) =
N∑

i=1

σiψ(ai)δai
(x)

or applying to this equation the resolvent operator (L − λ)−1 we get

ψ(x) =
N∑

i=1

σiψ(ai)R(λ, x, ai). (3.35)

Taking consequently x = a1, a2, ..., aN in equation (3.35) we obtain a homogeneous
system of N linear equations with N variables

ψ(aj) =
N∑

i=1

σiψ(ai)R(λ, aj , ai) (3.36)

or in the vector form
Ψ = R(λ,−→a ,−→a )ΣΨ, (3.37)

where Ψ = (ψ(ai) : i = 1, ..., N ). The system (3.37) has a non-trivial solution if and
only if

det(Σ−1 −R(λ,−→a ,−→a ) = 0. (3.38)

Observe that the variable z := R(λ, ai, ai) does not depend on ai, and its range is
the whole interval ] − ∞,∞[ when λ takes values in each of open interval ]λk+1, λk[.
Equation (3.38) can be written as characteristic equation

det(A− zI) = 0 (3.39)

where A = (aij)
N
i,j=1 is symmetric N × N matrix with entries

aij =

{
1/σi for i = j

−R(λ, ai, aj) for i 6= j
. (3.40)

Let us compute R(λ, ai, aj). For any two neighboring balls B ⊂ B′ let us denote

A(B) =
1

m(B)
−

1

m(B′)
.

Remember that we normalize m so that m(B) = diam(B) for any non-singleton ball
B whence for such B,

A(B) =
1

diam(B)
−

1

diam(B′)
. (3.41)

Let aif aj be the minimal ball which contains both ai and aj . Following the same line
of reasons as in the proof of equation (3.27) we obtain

R(λ, ai, ai) =
∑

B: ai∈B

A(B)

λ(B) − λ
. (3.42)

Similarly, for all i 6= j we get

R(λ, ai, aj) = −
d(ai, aj)

−1

λ(ai f aj) − λ
+

∑

B: aifaj⊂B

A(B)

λ(B) − λ
. (3.43)
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Let λ > λ(aif aj). Equations (3.41), (3.43) and the fact S ⊂ T ⇒ λ(S) > λ(T ) imply
that

R(λ, ai, aj) =
d(ai, aj)

−1

λ − λ(ai f aj)
−

∑

B: aifaj⊂B

A(B)

λ − λ(B)

>
d(ai, aj)

−1

λ − λ(ai f aj)
−

1

λ − λ(ai f aj)

∑

B: aifaj⊂B

A(B)

=
1

λ − λ(ai f aj)

(
1

d(ai, aj)
−

1

diam(ai f aj)′

)

> 0.

Hence for λ > λ(ai f aj) we obtain

0 < R(λ, ai, aj) <
d(ai, aj)

−1

λ − λ(ai f aj)
. (3.44)

Notice that λ(B) → 0 as diam(B) → ∞. Let us fix k and let us consider λ > λk+1.
Let us choose δ > 1 such that if mini 6=j d(ai, aj) ≥ δ then λ(ai f aj) < λk/2. Then for
all i 6= j we get λ − λ(ai f aj) > λk/2 and thus

|R(λ, ai, aj)| <
2

δλk

:=
ε(δ)

N
. (3.45)

Let us increase if necessary δ so that the intervals

{s : |1/σi − s| ≤ ε(δ)}, i = 1, 2, ..., N,

do not intersect. By Gershgorin Circle Theorem the matrix A admits N different
eigenvalues ai each of which lies in the corresponding open interval

{s : |1/σi − s| < ε(δ)}, i = 1, 2, ..., N.

The eigenvalues ai, i = 1, 2, ..., N, are analytic functions of λ in each open interval
(λs+1, λs), 1 ≤ s ≤ k, see [34, Theorem XII.1]. Whence in each interval (λs+1, λs)
the number of different solutions of the equations ai = R(λ, ai, ai) is at least N . By
Lemma 3.12 the number of different solutions is at most N . Thus the number of
different solutions is precisely N as claimed.

Theorem 3.13 The set Specd(H) coincides with the set of solutions of equation (3.29).
Each eigenfunction ψλ(x) corresponding to λ ∈ Specd(H) can be represented as linear
combination of functions R(λ, x, ai), that is,

ψλ(x) =
N∑

i=1

ζiR(λ, x, ai).

Thus, support of ψλ is the whole space X whereas the eigenfunctions fB corresponding
to the eigenvalues λ(B) ∈ Specess(H) are compactly supported.

Proof. The proof is straightforward: we apply equations (3.35) and (3.36) to get the
result, see the first part of the proof of Theorem 3.11 (second statement).
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Theorem 3.14 For λ /∈ Spec(H) the following identities hold true:

RV (λ, x, y) = R(λ, x, y) + R(λ, x,−→a )(Σ−1 −R(λ,−→a ,−→a ))−1R(λ,−→a , y), 8 (3.46)

ΣRV (λ,−→a , y) = (Σ−1 −R(λ,−→a ,−→a ))−1R(λ,−→a , y) (3.47)

and
ΣRV (λ,−→a ,−→a ) = (Σ−1 −R(λ,−→a ,−→a ))−1R(λ,−→a ,−→a ). (3.48)

In particular, the operator T (λ) := (H − λI)−1 − (L − λI)−1 is of finite rank N . Its
operator norm can be estimated as follows

‖T (λ)‖ ≤
∥
∥(Σ−1 −R(λ,−→a ,−→a ))−1

∥
∥
∥
∥(L − λI)−1

∥
∥2

. (3.49)

Proof. Recall that Spec(H) coincides with the union of two sets: Spec(L) and the
set of those λ ∈ R for which det(Σ−1 −R(λ,−→a ,−→a )) = 0. The proof of the theorem is
similar to its one-dimensional version Theorem 3.8. Clearly we can write the following
equation

LRV (λ, x, y) − λRV (λ, x, y) = δy(x) +
N∑

i=1

σjδaj
(x)RV (λ, x, y)

= δy(x) +
N∑

j=1

σjRV (λ, aj , y)δaj
(x),

or equivalently

RV (λ, x, y) = R(λ, x, y) +
N∑

j=1

σjRV (λ, aj , y)R(λ, x, aj). (3.50)

Substituting consequently x = a1, a2, ..., aN we obtain system of N linear equations
with N variables

RV (λ, ai, y) = R(λ, ai, y) +
N∑

j=1

σjR(λ, ai, aj)RV (λ, aj , y)

or in the vector form

(I −R(λ,−→a ,−→a )Σ)RV (λ,−→a , y) = R(λ,−→a , y). (3.51)

Assuming that λ /∈ Spec(H), in particular det(I −R(λ,−→a ,−→a )Σ) 6= 0, we get

RV (λ,−→a , y) = (I −R(λ,−→a ,−→a )Σ)−1R(λ,−→a , y) (3.52)

Evidently equations (3.50) and (3.52) imply equations (3.46), (3.47) and (3.48).

8For a matrix A and vectors ξ and η we write ξAη :=
∑

i,j aijξiηj .
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Equation T (λ) = (H −λI)−1(L−H)(L−λI)−1 applies that T (λ)) is of rank N . Fi-
nally, equation (3.49) follows from equation (3.46). Indeed, for f ∈ L2(X,m) we intro-
duce (finite-dimensional) vectors R(λ, f,−→a ) :=

∑
x f(x)R(λ, x,−→a ) and R(λ,−→a , f) :=∑

y f(x)R(λ,−→a , y), then

(T (λ)f, f) =
∑

x,y

f(x)R(λ, x,−→a )(Σ−1 −R(λ,−→a ,−→a ))−1R(λ,−→a , y)f(y)

= R(λ, f,−→a )(Σ−1 −R(λ,−→a ,−→a ))−1R(λ,−→a , f).

By symmetry R(λ,−→a , f) = R(λ, f,−→a ), whence

|(T (λ)f, f)| ≤
∥
∥(Σ−1 −R(λ,−→a ,−→a ))−1

∥
∥ ‖R(λ,−→a , f)‖2

≤
∥
∥(Σ−1 −R(λ,−→a ,−→a ))−1

∥
∥
∥
∥(L − λI)−1f

∥
∥2

≤
∥
∥(Σ−1 −R(λ,−→a ,−→a ))−1

∥
∥
∥
∥(L − λI)−1

∥
∥2

‖f‖2

as desired. The proof of the theorem is finished.

3.4 Sparse potentials

We assume that the ultrametric measure space (X, d,m) is countably infinite and ho-
mogeneous. Our analysis of finite rank potentials V = −

∑N
i=1 σiδai

indicates that in
the case of increasing distances between locations {ai} of the bumps Vi = −σiδai

their
contributions to the spectrum of H = L+V is close to the union of the contributions of
the individual bumps Vi (each bump contributes one eigenvalue in each gap (λm+1, λm)
of the spectrum of the operator L).

The development of this idea leads to consideration of the class of sparse potentials
V = −

∑∞
i=1 σiδai

where distances between locations {ai : i = 1, 2, ...} form a fast
increasing sequence. In the classical theory this idea goes back to D. B. Pearson [32],
see also S. Molchanov [29] and A. Kiselev, J. Last, and B. Simon [19].

Throughout this section we will assume that the sequence min i,j:≥n, i 6=j d(ai, aj) tend
to infinity with certain rate which will be specified later9. We will also assume that
α < σi < β for all i and for some α, β > 0. For λ /∈ Spec(L) we define the following
infinite vectors and matrices:

• R(λ, x,−→a ) := (R(λ, x, ai) : i = 1, 2, ...).

• R(λ,−→a ,−→a ) := (R(λ, ai, aj) : i, j = 1, 2, ...).

• Σ := diag(σi : i = 1, 2, ...), Σ−1 := diag(1/σi : i = 1, 2, ...).

Theorem 3.15 The following properties hold true:

(i) R(λ, x,−→a ) ∈ l2.

(ii) R(λ,−→a ,−→a ), Σ and Σ−1 act in l2 as bounded symmetric operators.

9We choose the ultrametric d(x, y) such that it coinsides with the measure m(B) of the minimal
ball B which contains both x and y, see e.g. (3.41).

25



(iii) If the operator B(λ) = Σ−1 −R(λ,−→a ,−→a ) has a bounded inverse, then

RV (λ, x, y) = R(λ, x, y) + R(λ, x,−→a )B(λ)−1R(λ,−→a , y). (3.53)

Proof. Let ξ = (ξi) ∈ l2 has finite number non-zero coordinates. Define function
f =

∑
ξiδai

. Evidently f ∈ L2 = L2(X,m) and ‖f‖ = ‖ξ‖. Let Rλ = (L − λI)−1,
λ /∈ Spec(L), be the resolvent. Then

R(λ, x,−→a )ξ =

∫
R(λ, x, y)f(y)dm(y) = Rλf(x)

whence
|R(λ, x,−→a )ξ| ≤ ‖Rλ‖ ‖f‖ = ‖Rλ‖ ‖ξ‖

which clearly proves (i).To prove (ii) we write

ξR(λ,−→a ,−→a )ξ =

∫ ∫
f(x)R(λ, x, y)f(y)dm(y)dm(x)

= (f,Rλf) ≤ ‖Rλ‖ ‖f‖
2 = ‖Rλ‖ ‖ξ‖

2

which clearly proves boundedness of the symmetric operator R(λ,−→a ,−→a ) : l2 → l2.
Since {σi} ∈ (α, β) for all i and some α, β > 0, boundedness of the operators Σ and
Σ−1 follows.

(iii) Assume that λ is such that the self-adjoint operator B(λ) has a bounded in-
verse, then equation (3.53) follows from its finite dimensional version (3.46) by passage
to limit.

Theorem 3.16 Spec(L) ⊂ Specess(H).

Proof. Let V ′ be the sum of all but finite number of bumps Vi and H ′ = L + V ′.
By Weyl’s essential spectrum theorem Specess(H) = Specess(H

′). It follows that
without loss of generality we may assume that the sequence of distances Δn =
mini,j:≥n, i 6=j d(ai, aj) strictly increases to ∞. Having this in mind we can choose for any
given τ from the range of the distance function an infinite sequence {Bn} of disjoint
balls of diameter τ such that Bn ∩ {ai} = ∅ for all n. Thanks to our choice we obtain

HfT = LfT = λ(T ′)fT

for any ball T ⊂ Bn and for all n. In particular, each λ = λ(T ), such that T ⊆ Bn

for some n, is an eigenvalue of the operator H having infinite multiplicity, whence it
belongs to Specess(H).

Theorem 3.17 Let σ∗ be a limit point of the sequence {σi}. Fix m ∈ N and let
λ∗m ∈ (λm+1, λm) be the unique solution of the equation

1

σ∗
= R(λ, a, a). 10 (3.54)

Then λ∗m belongs to the set Specess(H).

10Recall that the function λ → R(λ, a, a) does not depend on a.
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Before we embark on the proof of Theorem 3.17 let us state the Weyl’s character-
ization of the essential spectrum Specess(A) of a self-adjoint operator A, see [42] and
[35, Ch. IX, Sect. 2(133)].

Lemma 3.18 A real number λ belongs to the set Specess(A) if and only if there exists
a normed sequence {xi} ⊂ dom(A) such that xi → 0 weakly and Axi−λxi → 0 strongly.

Proof of Theorem 3.17. To show that λ∗m ∈ Specess(H) we construct a λ∗m-
sequence {fim} via Lemma 3.18. Let λim ∈ (λm+1, λm) be the unique solution of
the equation 1/σi = R(λ, ai, ai). Let ψim(x) = R(λim, x, ai)/ ‖R(λim, ∙, ai)‖2 be the
normed solution of the equation Hiψ = λimψ where Hi := L − σiδai

is a one-bump
perturbation of L. Clearly λim → λ∗m.

Passing if necessary to a subsequence of {σi} we can assume that d(ai, 0) → ∞
monotonically. Let us put fim := ψim ∙ 1Bi

where Bi is the maximal ball centred at ai

which does not contains ai−1 and ai+1. Thanks to our choice fim → 0 weakly and

‖fim‖
2
2 =

∫

Bi

|ψim|
2 dm → 1.

Thus what is left is to show that Hfim − λ∗mfim → 0 strongly. We have

‖Hfim − λ∗mfim‖2 ≤ ‖Hfim − λimfim‖2 + ‖fim‖2 |λim − λ∗m|

≤ ‖Hfim − λimfim‖2 + |λim − λ∗m|

= ‖Hfim − λimfim‖2 + o(1),

‖Hfim − λimfim‖2 ≤ ‖Hψim − λimψim‖2 + ‖(H − λimI)(fim − ψim)‖2

≤ ‖Hψim − λimψim‖2 + ‖(H − λimI)|| ||(fim − ψim)‖2

= ‖Hψim − λimψim‖2 + o(1),

‖Hψim − λimψim‖2 ≤ ‖Hiψim − λimψim‖2 +

∥
∥
∥
∥
∥

∑

j 6=i

σjδaj
ψim

∥
∥
∥
∥
∥

2

and ∥
∥
∥
∥
∥

∑

j 6=i

σjδaj
ψim

∥
∥
∥
∥
∥

2

=

√∑

j 6=i

σ2
j |ψim(aj)|2 ≤ sup{σ2

j}

√∫

X\Bi

|ψim|2dm.

The right-hand side of this inequality tends to zero as i → ∞ and we finally conclude
that {fim} is the desired λ∗m-sequence in the sense of Lemma 3.18. The proof is
finished.

Let us introduce the following notation

• Σ∗ is the set of limit points of the sequence {σi}

• 1/Σ∗ := {1/σ∗ : σ∗ ∈ Σ∗}

• R−1(1/Σ∗) := {λ : R(λ, a, a) ∈ 1/Σ∗}
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Theorem 3.19 Assume that the following condition holds

lim
N→∞

sup
i≥N

∑

j≥N : j 6=i

1

d(ai, aj)
= 0, (3.55)

then
Specess(H) = Spec(L) ∪R−1(1/Σ∗). (3.56)

Proof. That Spec(L) and R−1(1/Σ∗) are subsets of Specess(H) follows from Theorem
3.16 and Theorem 3.17. We are left to prove that

Specess(H) ⊂ Spec(L) ∪R−1(1/Σ∗).

Let us fix m ∈ N and choose a closed interval I from the spectral gap (λm+1, λm). We
claim that

I ∩ Specess(H) = ∅.

Indeed, since R(λ) := R(λ, a, a) is strictly increasing and continuous in the interval
(λm+1, λm), closed sets R(I) and 1/Σ∗ do not intersect. Hence there exists only a finite
number of σi such that 1/σi ∈ R(I). Let us choose N big enough so that the sets
{1/σi : i > N} and R(I) do not intersect. Let us write H = H ′ + V ′ where V ′ is a
finite number of bumps −σiδai

, i ≤ N . By Weyl’s essential spectrum theorem

Specess(H) = Specess(H
′).

Notice however that the sets Specd(H) and Specd(H
′), discrete parts of Spec(H) and

Spec(H ′), may well be quite different. Observe that for the operators H and H ′ the
sets of limit points, the function R, the set of gaps etc are the same. Thus in all our
further considerations we may assume that {1/σi} ∩ R(I) = ∅.

Making this assumption consider now the operator B(λ) = Σ−1 − R(λ,−→a ,−→a ),
λ ∈ I. According to identity (3.53), if B(λ) has a bounded inverse then λ /∈ Spec(H).
Let us write

B(λ) = Σ−1 −R(λ,−→a ,−→a ) :=
[
Σ−1 −R(λ)I

]
− R̃(λ).

Since we assume that the closed bounded sets {1/σi} and R(I) do not intersect, the
operator A(λ) := Σ−1 − R(λ)I has a bounded inverse A(λ)−1 for all λ ∈ I. Clearly
the norm

∥
∥A(λ)−1

∥
∥ can be estimated by the reciprocal of the distance between sets

{1/σi} and R(I), denote it by C1. Thus writing for λ ∈ I the identity

B(λ) = A(λ)(I −A(λ)−1R̃(λ)) (3.57)

we get ∥
∥
∥A(λ)−1R̃(λ))

∥
∥
∥ ≤ C1

∥
∥
∥R̃(λ))

∥
∥
∥ . (3.58)

Writing again H as H ′ + V ′ where V ′consists of a finite number, say N , of bumps and
applying inequality (3.44) for the operator H ′ :

|R(λ, ai, aj)| <
1

d(ai, aj)

1

λ − λ(ai f aj)
, i 6= j, i, j ≥ N,
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we will get, thanks to our assumption (3.55), the following inequality

∥
∥
∥R̃(λ))

∥
∥
∥ ≤ C2 sup

i≥N

∑

j: j 6=i,j≥N

1

d(ai, aj)
<

1

2C1

(3.59)

for some constant C2 > 0 which depends only on I, and for N chosen big enough.
Clearly inequalities (3.58) and (3.59) imply the fact that the operator I −A(λ)−1R̃(λ)
has bounded inverse for all λ ∈ I,

(
I −A(λ)−1R̃(λ)

)−1

=
∑

k≥0

(
A(λ)−1R̃(λ)

)k

.

This fact, in turn, implies that the operator B(λ) given by equation (3.57) has bounded
inverse for all λ ∈ I therefore I ∩ Spec(H ′) = ∅. In particular, since Specess(H

′) =
Specess(H) by Weyl’s essential spectrum theorem, we finally get

I ∩ Specess(H) = ∅

as desired. The proof is finished.

Remark 3.20 Theorem 3.19 does not contain information about sets Specac(H) and
Specsc(H), the absolutely continuous and singular continuous parts of Spec(H). In
the next section we will show that under more restrictive assumption Specac(H) and
Specsc(H) are indeed empty sets, that is, Spec(H) is pure point. Moreover, the eigen-
functions of H decay exponentially in certain metric at infinity. This is the so called
localization property.

3.5 Localization

As in the previous section the ultrametric measure space (X, d,m) is countably infinite
and homogeneous. We consider the operator H = L + V where L, the deterministic
part of H, is a hierarchical Laplacian and

V = −
∑

a∈I

σ(a, ω)δa, ω ∈ (Ω,F , P ),

is a random potential defined by a family of locations I = {ai} and a family σ(ai, ω)
of i.i.d. random variables. Henceforth, we assume that the probability distribution
of σ(ai, ω) is absolutely continuous with respect to the Lebesgues measure and has a
bounded density supported by a finite interval [α, β].

In the case when X is the Dyson lattice and L =Dα, the Dyson Laplacian (see
Example 3.10), the perturbed operator

H = Dα −
∑

a∈X

σ(a, ω)δa

has a pure point spectrum for P−a.s. ω. This statement (the localization theorem)
appeared first in the paper of Molchanov [28] (σ(a, ω) is the Cauchy random variable)
and later in a more general form in the papers of Kritchevski [26] and [25]. The proof
of this statement is based on the self-similarity property of the operator H.
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The localization theorem 3.23 below concerns the case where the family of locations
I does not coincide with the whole space X, whence the operator H is not self-similar.
The technique developed in [28], [26] and [25] does not apply here to prove Theorem
3.23.

Our approach is based on the different technique: the abstract form of the Aizenman-
Molchanov criterion for pure point spectrum, the Krein type identity from the previous
section, technique of fractional moments, decoupling lemma of Molchanov and Borel-
Cantelli type arguments, see papers [1], [27].

The Aizenman-Molchanov Criterion Let H = H0 + V be a self-adjoint oper-
ator in l2(Γ) (Γ is a countable set of sites) with H0 a bounded operator and V =
−
∑

a∈Γ σ(a, ω)δa. Assume that the collection of random variables {σ(a, ω) : a ∈ Γ}
has the property that for each site a the conditional probability distribution of σ(a, ω)
(conditioned on the values of the potential at all other sites) is absolutely continu-
ous with respect to the Lebesgues measure (in particular, this assumption holds if
{σ(a, ω) : a ∈ Γ} are mutually independent random variables having absolutely con-
tinuous w.r.t. the Lebesgues measure l probability distributions).

Let H =
∫

λdEλ be the spectral resolution of symmetric operator H. Let G(λ, x, y)
be the integral kernel of the operator (H − λI)−1. Then for any fixed x, τ and ε 6= 0,

∑

y∈Γ

|G(τ + iε, x, y)|2 =
∥
∥(H − (τ + iε)I)−1δx

∥
∥2

=

∫
d(Eλδx, δx)

(λ − τ)2 + ε2
(3.60)

As the left-hand side of equation (3.60) (as a function of ε) decreases on the interval
]0, +∞[, the limit (finite or infinite) in equation (3.60) exists and equals

lim
ε↓0

∑

y∈Γ

|G(τ + iε, x, y)|2 =

∫
d(Eλδx, δx)

(λ − τ)2
.

Theorem 3.21 If for any x ∈ Γ, and Lebesgues a.a. τ ∈ [a, b]:

lim
ε↓0

∑

y∈Γ

|G(τ + iε, x, y)|2 < ∞, (3.61)

for a.e. realizations of {σ(x, ∙)}, then almost surely the operator H has only pure point
spectrum in the interval [a, b]. Furthermore, if under condition (3.61), the integral
kernel

G(τ + i0, x, y) := lim
ε↓0

G(τ + iε, x, y)

(which exists a.e. τ) decays exponentially at infinity (in some metric ρ(x, y) on Γ),
then do the eigenfunctions ϕτ (y), for τ ∈ [a, b] 11.

Proof. The first part of the statement follows from Simon-Wolff theorem 3.7. For
completeness of exposition we comment on the proof. To prove the second part one
needs an ad hoc argument and we refer to the cited above paper [1, Theorems 3.1 and
3.3 in Sec. 3]).

11An even more versatile version can be found in [1, Theorems 3.1 and 3.3 in Sec. 3].
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Note that in the case of the Dyson-Vladimirov Laplacian Dα and H = Dα −∑
σi(ai, ω)δa one can use the metric ρ(x, y) = ln(1+d(x, y)) where d(x, y) is the ultra-

metric generated by p-adic intervals as in example 3.10. In this case the exponential
decay of eigenfunctions in ρ−metric follows directly from two facts: (1) each eigen-
function ϕτ (y) of H can be represented as a linear combination of functions R(τ, ai, y),
where R(λ, x, y) is the resolvent kernel of Dα, see Theorem 3.13, and (2) R(λ, x, y) has
an exponential decay because the heat kernel p(t, x, y) does, see equation (1.2).

By the spectral theory, one can represent l2(Γ) as the direct sum of three H-invariant
subspaces:

l2(Γ) = Hac ⊕Hsc ⊕Hpp,

where Hac (resp. Hsc, Hpp) is the set of all functions f ∈ l2(Γ) such that the spectral
measure

σf (A) =

∫
1A(λ)d(Eλf, f)

is absolutely continuous (resp. singular continuous, pure point) with respect to the
Lebesgues measure. By Theorem 3.7, condition (3.61) implies that for any x ∈ Γ the
probability measure

σx(A) =

∫
1A(λ)d(Eλδx, δx)

is pure point, that is, σx(A) = σx(A ∩ Sx) for any open set A and some at most
countable set Sx. Set S := ∪x∈ΓSx, then for any f ∈ l2(Γ) and measurable set A,

σf (A) =

∫
1A(λ)d(Eλf, f) = ‖1A(H)f‖2

=
∑

x∈Γ

|f(x)|2 |(1A(H)f, δx)|
2

and, if A lies in the complement of S,

|(1A(H)f, δx)|
2 ≤ |(1A(H)f, f)| |(1A(H)δx, δx)|

= ‖1A(H)f‖2 σx(A) = 0.

Thus for any f ∈ l2(Γ) the spectral measure σf is pure point, that is, f ∈ Hpp. That
means that the operator H has a pure point spectrum.

Remark 3.22 The function z → G(z, x, y), analytic in the domain C+, is represented
by the Borel-Stieltjes transform of a signed measure of finite variation

G(z, x, y) =

∫
d(Eλδx, δy)

λ − z
.

It follows that the limit G(τ + i0, x, y) exists and takes finite values for Lebesgues a.e.
τ , see e.g. [36, Theorem 1.4]. Moreover, the limit G(τ + i0, x, y) exists even in a more
restrictive sense, as the non-tangential limit, see [33, Ch. III, Sec. 2.2, 3.1 and 3.2].
We will apply this fact in the proof of Theorem 3.23 below.
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The localization theorem Coming back to our setting, let H = L + V where L
is a hierarchical Laplacian and V a random potential of the form V = −

∑
i σi(ω)δai

.
Here σi(ω) := σ(ai, ω) are i.i.d. random variables corresponding to the set of locations
I = {ai}.

Let d(x, y) be the ultrametric which is chosen such that it coincides with the measure
m(B) of the minimal ball B containing both x and y.

Let R(λ, x, y) be the integral kernel of the operator (L − λI)−1, i.e. the solution
of the equation Lu − λu = δy. The function λ → R(λ, x, x) does not depend on x,
we denote its value R(λ). This is strictly increasing continuous in each spectral gap
function, we denote by R−1(ν) its inverse function.

Theorem 3.23 The operator H has a pure point spectrum for P−a.s. ω provided for
some (whence for all) y ∈ X the sequence d(ai, y) eventually increases, and for some
small r (say, 0 < r < 1/3):

lim
M→∞

sup
i≥M

∑

j≥M : j 6=i

1

d(ai, aj)r
= 0. 12 (3.62)

Proof. The set of limit points of the sequence {σi(ω)} coincides (for P−a.s. ω)
with the whole interval [α, β]. Hence, by Theorem 3.19, the closed set Specess(H)
consists (for P -a.a. ω) of two parts: (1) the set Spec(L) and (2) the collection of
countably many disjoint closed intervals Ik = R−1([1/β, 1/α])∩ ]λk+1, λk, [ and the
interval I− = R−1([1/β, 1/α])∩ ] −∞, 0[, i.e.

Specess(H) = Spec(L) ∪ I− ∪ I1 ∪ I2... .

Let RV (λ, x, y) be the integral kernel of the operator (H − λI)−1, i.e. solution of the
equation Hu−λu = δy. Due to the Aizenman-Molchanov criterion, the operator H has
only pure point spectrum (for P−a.s. ω) provided for each y ∈ X, for each interval
Ik, and for Lebesgues a.e. τ ∈ Ik :

lim
ε→+0

∑

x

|RV (τ + iε, x, y)|2 < ∞, (3.63)

for a.e. realization of {σ(y, ω)}.We split the proof of equation (3.63) in seven steps.
Step I. When V has a finite rank, Theorem 3.11(i) and Theorem 3.14 imply that

for each fixed ω the function RV (τ + i0, x, y) = (H − τ I)−1δy(x) belongs to L2(X,m)
for each y ∈ X and for all but finitely many τ ∈ Ik (which are eigenvalues of H).

In general, when the rank of V is infinite, we split V in two parts V ′ = −σ1δa1 and
V ′′ = −

∑
i>1 σiδai

. Writing the set of locations as {a} = {a1} ∪ {ai : i > 1} we get
similarly to equation (3.53): for λ in the domain C+,

RV (λ, x, y) = RV ′′(λ, x, y) + RV ′′(λ, x, a1)B(λ)−1RV ′′(λ, a1, y),

where B(λ) = 1/σ1 − RV ′′(λ, a1, a1) is a non-constant analytic in the domain C+

function. It follows that

‖RV (λ, ∙, y)‖2 ≤ ‖RV ′′(λ, ∙, y)‖2

+ |B(λ)|−1 ‖RV ′′(λ, ∙, a1)‖2 |RV ′′(λ, a1, y)|.

12Clearly this condition implies condition (3.55).
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Hence the function RV (λ, x, y) satisfies condition (3.63), i.e. ‖RV (τ + i0, ∙, y)‖2 is finite
for all y and a.e. τ provided the function RV ′′(λ, x, y) satisfies condition (3.63), i.e.
‖RV ′′(τ + i0, ∙, a)‖2 is finite for all a and a.e. τ , and also one more restriction on τ, it
does not belong to the exceptional set

Υ := {s : B(s + i0) = 0}.

The function B(λ), analytic in the domain C+, admits non-tangential boundary values
B(s + i0) for a.e. s. By the Lusin-Privalov uniqueness theorem on boundary-values
of analytic functions [33, Ch. IV, Sec. 2.5], see also [36, Theorem 1.5], the Lebesgues
measure of the exceptional set Υ equals to zero. Thus, we come to the conclusion that
condition (3.63) for the potential V can be reduced to the case of truncated potential
V ′′.

Repeating this argument finitely many times we come to the final conclusion: in or-
der to prove that (3.63) holds for V we can consider, if necessary, any finitely truncated
potential V ′′ (the potential corresponding to the finitely truncated system of locations
{ai : i > k}) and to prove that (3.63) holds for V ′′ instead of V .

Step II. Writing for λ ∈ C+ equation Hu−λu = δy in the form Lu−λu = δy −V u
we obtain

RV (λ, x, y) = R(λ, x, y) +
∞∑

j=1

σjR(λ, x, aj)RV (λ, aj , y). (3.64)

Equation (3.64) shows that to estimate the function y → ‖RV (λ, ∙, y)‖2 it is enough to
estimate the quantity |RV (λ, aj , y)| for j = 1, 2, ... etc. Indeed, since ‖R(λ, ∙, y)‖2 does
not depend on y, we get

‖RV (λ, ∙, y)‖2 ≤ ‖R(λ, ∙, y)‖2

(

1 + β
∞∑

j=1

|RV (λ, aj , y)|

)

. (3.65)

Choosing x = ai, i = 1, 2, ..., in equation (3.64) and setting R(λ, ai, ai) = R(λ) we
obtain

RV (λ, ai, y) =
R(λ, ai, y)

1 − σiR(λ)
+
∑

j: j 6=i

σjR(λ, aj, ai)RV (λ, aj , y)

1 − σiR(λ)
. (3.66)

Step III. Applying in equation (3.66) the inequality

∣
∣
∣
∣
∣

∞∑

j=1

Zj

∣
∣
∣
∣
∣

s

≤
∞∑

j=1

|Zj|
s , Zj ∈ C, 0 < s ≤ 1,

we will get

|RV (λ, ai, y)|s ≤

∣
∣
∣
∣
R(λ, ai, y)

1 − σiR(λ)

∣
∣
∣
∣

s

+
∑

j: j 6=i

∣
∣
∣
∣
σjR(λ, aj , ai)

1 − σiR(λ)

∣
∣
∣
∣

s

|RV (λ, aj , y)|s

≤

∣
∣
∣
∣
R(λ, ai, y)

1 − σiR(λ)

∣
∣
∣
∣

s

+ βs
∑

j: j 6=i

∣
∣
∣
∣
R(λ, aj , ai)

1 − σiR(λ)

∣
∣
∣
∣

s

|RV (λ, aj , y)|s .
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Taking the expectation over {σi} we obtain the following inequality

E |RV (λ, ai, y)|s ≤ E

∣
∣
∣
∣

1

1 − σiR(λ)

∣
∣
∣
∣

s

|R(λ, aj , y)|s (3.67)

+ βs
∑

j: j 6=i

E

∣
∣
∣
∣
RV (λ, aj , y)

1 − σiR(λ)

∣
∣
∣
∣

s

|R(λ, aj , ai)|
s .

Step IV. Due to equation (3.22) the random variable RV (λ, aj , y) can be represented
in the form

RV (λ, aj , y) = RV ′(λ, aj , y) +
σiRV ′(λ, aj , ai)RV ′(λ, ai, y)

1 − σiRV ′(λ, ai, ai)
:=

aσi + b

cσi + d

where the random variables V ′ = −
∑

k: k 6=i σk(ω)δak
, a, b, c and d do not dependent

on σi (but they of course depend on the truncated sequence {σk : k 6= i}). This
observation and the following two general inequalities from Molchanov’s lectures [27,
Chapter II, Lemma 2.2]): There exist constants c0, c1 > 0 such that for all complex
numbers a, b, c, d, σ′

∫ 1

0

dσ

|σ − σ′|s
≤

c0

1 − s
, for all 0 < s < 1,

and ∫ 1

0

∣
∣
∣
∣
aσ + b

cσ + d

∣
∣
∣
∣

s
dσ

|σ − σ′|s
≤ c1

∫ 1

0

∣
∣
∣
∣
aσ + b

cσ + d

∣
∣
∣
∣

s

dσ, for all 0 < s < 1/2,

yield the following lemma, which is the fundamental point of our reasons.

Lemma 3.24 (Decoupling lemma) There exist constants C0, C
′
0 > 0 which depend on

s, α, β and k such that the inequalities

E

∣
∣
∣
∣

1

1 − σiR(λ)

∣
∣
∣
∣

s

≤ C0

and

E

∣
∣
∣
∣
RV (λ, aj , y)

1 − σiR(λ)

∣
∣
∣
∣

s

≤ C ′
0E |RV (λ, aj , y)|s

hold for all 0 < s < 1/2 and all λ ∈ C+ such that Re λ ∈ Ik.

Step V. For any fixed y ∈ X and λ as above let us denote ψi := E |RV (λ, ai, y)|s.
Applying Decoupling lemma to inequality (3.67) and setting C1 := βsC ′

0 we get an
infinite system of inequalities

ψi ≤ C0 |R(λ, ai, y)|s + C1

∑

j: j 6=i

|R(λ, aj, ai)|
s ψj .

In the vector form this system reads as follows

ψi ≤ gi + (Aψ)i , i = 1, 2, ...,
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where ψ = (ψi), g = (gi) has entries gi = C0 |R(λ, ai, y)|s , and where A is an infinite
matrix with non-negative entries aij = C1 |R(λ, aj, ai)|

s if i 6= j and 0 otherwise.
Iterating formally this infinite system of inequalities we get

ψi ≤ gi + (Ag)i +
(
A2g

)
i
+
(
A3g

)
i
+ ... ≤

(
(I −A)−1 g

)
i
.

In particular, this would yield the following inequality (one of the fundamental points
in the proof of (3.63)),

‖ψ‖ ≤ 2 ‖g‖ (3.68)

given A : L → L is a bounded linear operator acting in some Banach space L of
sequences such that

‖A‖ ≤ 1/2. (3.69)

For instance, choosing L ={ψ : ‖ψ‖ =
∑

i μi |ψi| < ∞} we obtain

∑

i

μiE |RV (λ, ai, y)|s ≤ 2C0

∑

i

μi |R(λ, ai, y)|s (3.70)

given

‖A‖ = sup
‖ψ‖=1

∑

i

μi |(Aψ)i| ≤ 1/2. (3.71)

For ψ such that ‖ψ‖ = 1 we have

∑

i

μi |(Aψ)i| ≤
∑

i

μi

∑

j

aij |ψj|

=
∑

j

μj |ψj|

(
∑

i

μiaij

)

/μj ≤ sup
j

(
∑

i

μiaij

)

/μj .

In particular, inequality (3.71) holds whenever

sup
j

(
∑

i: i 6=j

μi |R(λ, aj, ai)|
s

)

/μj ≤
1

2C1

. (3.72)

Finally, 3.44 together with (3.72) allow us to conclude that (3.69) holds provided

sup
j

(
∑

i: i 6=j

μi
1

d(aj , ai)s

)

/μj ≤
1

2C1C2

. (3.73)

Step VI. For λ as above and εj > 0 which we will choose later consider events

Aj = {|RV (λ, aj , y)| > εj}.

Applying Chebyshev inequality, we will get, for each j = 1, 2, ..., the following inequal-
ity

P (Aj) ≤
E |RV (λ, aj , y)|s

εs
j

. (3.74)
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Equations (3.74), (3.70) and (3.73), yield

∑

j

P (Aj) ≤
∑

j

E |RV (λ, aj , y)|s

εs
j

≤ 2C0

∑

j

|R(λ, aj, y)|s

εs
j

≤ 2C0C2

∑

j

1

d(aj , y)sεs
j

provided εj are chosen such that

sup
j

εs
j

(
∑

i: i 6=j

1

εs
i

1

d(aj , ai)s

)

≤
1

2C1C2

. (3.75)

Let us choose s = 1/2 − δ and εj = 1/d(aj , y)r. Then, truncating if necessary the
potential V , i.e. passing to the potential V ′′ = V −V ′ with V ′ of finite rank as explained
in Step I, we can assume that the sequence εj is a strictly decreasing sequence. By the
ultrametric inequality, we have d(ai, aj) = d(ai, y). Hence

sup
j

εs
j

(
∑

i: i 6=j

1

εs
i

1

d(aj, ai)s

)

≤ sup
j

(
∑

i: i<j

1

d(aj, ai)s

)

+ sup
j

εs
j

(
∑

i: i>j

d(ai, y)rs

d(aj , ai)s

)

≤ sup
j

(
∑

i: i<j

1

d(aj, ai)s

)

+ sup
j

εs
j

(
∑

i: i>j

1

d(aj , ai)(1−r)s

)

≤ sup
j

(
∑

i: i<j

1

d(aj, ai)s

)

+ sup
j

(
∑

i: i 6=j

1

d(aj , ai)(1−r)s

)

.

Thus, truncating the potential V and then choosing 0 < δ < 1/2− r/(1− r) we obtain
inequality (3.75). Moreover, thanks to our choice, the series

∑
j εj converges. Hence of

course converges the series
∑

j P (Aj). Applying the Borel-Cantelli lemma we conclude:
For P−a.s. ω there exists j0(ω) such that

|RV (λ, aj , y)| ≤ εj , for all j ≥ j0(ω), (3.76)

holds for all λ ∈ C+ such that Re λ ∈ Ik.
Step VII. For λ as above, the function R(λ, x, y) = (L − λI)−1δy(x) belongs to

L2(x,m) and, by the homogeneity assumption, its norm ‖R(λ, ∙, y)‖2 does not depend
on y. Having this in mind we write inequality (3.65) (for the truncated potential V ′′)

‖RV ′′(λ, ∙, y)‖2 ≤ ‖R(λ, ∙, y)‖2

(

1 + β
∑

j

|RV ′′(λ, aj , y)|

)

≤ ‖R(λ, ∙, y)‖2



1 + β
∑

j≥j0(ω)

εj + β
∑

j<j0(ω)

|RV ′′(λ, aj , y)|





which clearly holds for all λ as above and for P−a.s. ω. As Im λ ↓ 0 we get finite
limit for P−a.s. ω and for each λ ∈ Ik which does not belong to some exceptional set
Ik(ω) ⊂ Ik of Lebesgues measure zero (the exceptional set appears because we pass
to the boundary values of the Cauchy-Stieltjes integrals RV ′′(λ, aj , y), j < j0(ω), as
explained in Theorem 3.21). This is precisely what we claim in equation (3.66). The
proof is finished.
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